1
|
Gómez-Llano M, McPeek MA, Siepielski AM. Environmental variation shapes and links parasitism to sexual selection. Evol Ecol 2023. [DOI: 10.1007/s10682-023-10236-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
2
|
Strong Genetic Differentiation between Generalist Populations of Venturia inaequalis and Populations from Partially Resistant Apple Cultivars Carrying Rvi3 or Rvi5. DIVERSITY 2022. [DOI: 10.3390/d14121050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The ascomycete fungus Venturia inaequalis causes scab disease, a major problem in apple production. The utilization of resistant cultivars is hindered by emerging new pathogen races, which erode their resistance. Increasing our knowledge on the population genetic processes of the fungus can contribute to the development of resistance gene deployment strategies and more durable resistance. We investigated the effect of four scab race indicator cultivars, ‘Gala’ (no R-gene), ‘Golden Delicious’ (Rvi1), ‘Geneva’ (Rvi3, complex), and OR45t132 (Rvi5), on the V. inaequalis population genetic structure and diversity. Sixty-six monosporic fungal isolates from the four cultivars were genotyped with seven simple sequence repeat primers. Furthermore, the partial resistance of the indicators and the pathogenicity profile of the conidia from each host were assessed. The genetic diversity and structure of the investigated V. inaequalis subpopulations correspond to the partial resistance of the original hosts as well as the subpopulations’ pathogenicity profiles. Indicators carrying Rvi3 and Rvi5 had strongly diverged and specialized V. inaequalis populations on them and fewer symptoms on the field. In line with the complete breakdown of the Rvi1 gene, the population from ‘Golden Delicious’ did not segregate from the susceptible ‘Gala’, and virulence towards Rvi1 was present in all subpopulations.
Collapse
|
3
|
A Genome-Wide Association study in Arabidopsis thaliana to decipher the adaptive genetics of quantitative disease resistance in a native heterogeneous environment. PLoS One 2022; 17:e0274561. [PMID: 36190949 PMCID: PMC9529085 DOI: 10.1371/journal.pone.0274561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/31/2022] [Indexed: 11/05/2022] Open
Abstract
Pathogens are often the main selective agents acting in plant communities, thereby influencing the distribution of polymorphism at loci affecting resistance within and among natural plant populations. In addition, the outcome of plant-pathogen interactions can be drastically affected by abiotic and biotic factors at different spatial and temporal grains. The characterization of the adaptive genetic architecture of disease resistance in native heterogeneous environments is however still missing. In this study, we conducted an in situ Genome-Wide Association study in the spatially heterogeneous native habitat of a highly genetically polymorphic local mapping population of Arabidopsis thaliana, to unravel the adaptive genetic architecture of quantitative disease resistance. Disease resistance largely differed among three native soils and was affected by the presence of the grass Poa annua. The observation of strong crossing reactions norms among the 195 A. thaliana genotypes for disease resistance among micro-habitats, combined with a negative fecundity-disease resistance relationship in each micro-habitat, suggest that alternative local genotypes of A. thaliana are favored under contrasting environmental conditions at the scale of few meters. A complex genetic architecture was detected for disease resistance and fecundity. However, only few QTLs were common between these two traits. Heterogeneous selection in this local population should therefore promote the maintenance of polymorphism at only few candidate resistance genes.
Collapse
|
4
|
Nilusmas S, Mercat M, Perrot T, Djian‐Caporalino C, Castagnone‐Sereno P, Touzeau S, Calcagno V, Mailleret L. Multi-seasonal modelling of plant-nematode interactions reveals efficient plant resistance deployment strategies. Evol Appl 2020; 13:2206-2221. [PMID: 33005219 PMCID: PMC7513734 DOI: 10.1111/eva.12989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023] Open
Abstract
Root-knot nematodes, Meloidogyne spp., are soil-borne polyphagous pests with major impact on crop yield worldwide. Resistant crops efficiently control avirulent root-knot nematodes, but favour the emergence of virulent forms. Since virulence is associated with fitness costs, susceptible crops counter-select virulent root-knot nematodes. In this study, we identify optimal rotation strategies between susceptible and resistant crops to control root-knot nematodes and maximize crop yield. We developed an epidemiological model describing the within-season dynamics of avirulent and virulent root-knot nematodes on susceptible or resistant plant root-systems, and their between-season survival. The model was fitted to experimental data and used to predict yield-maximizing rotation strategies, with special attention to the impact of epidemic severity and genetic parameters. Crop rotations were found to be efficient under realistic parameter ranges. They were characterized by low ratios of resistant plants and were robust to parameter uncertainty. Rotations provide significant gain over resistant-only strategies, especially under intermediate fitness costs and severe epidemic contexts. Switching from the current general deployment of resistant crops to custom rotation strategies could not only maintain or increase crop yield, but also preserve the few and valuable R-genes available.
Collapse
Affiliation(s)
- Samuel Nilusmas
- Université Côte d'Azur, INRAE, CNRS, ISASophia AntipolisFrance
- Université Côte d'Azur, INRIA, INRAE, CNRS, Sorbonne Université, BIOCORESophia AntipolisFrance
| | - Mathilde Mercat
- Université Côte d'Azur, INRAE, CNRS, ISASophia AntipolisFrance
| | - Thomas Perrot
- Université Côte d'Azur, INRAE, CNRS, ISASophia AntipolisFrance
| | | | | | - Suzanne Touzeau
- Université Côte d'Azur, INRAE, CNRS, ISASophia AntipolisFrance
- Université Côte d'Azur, INRIA, INRAE, CNRS, Sorbonne Université, BIOCORESophia AntipolisFrance
| | | | - Ludovic Mailleret
- Université Côte d'Azur, INRAE, CNRS, ISASophia AntipolisFrance
- Université Côte d'Azur, INRIA, INRAE, CNRS, Sorbonne Université, BIOCORESophia AntipolisFrance
| |
Collapse
|
5
|
The Genetic Basis of Natural Variation in Drosophila melanogaster Immune Defense against Enterococcus faecalis. Genes (Basel) 2020; 11:genes11020234. [PMID: 32098395 PMCID: PMC7074548 DOI: 10.3390/genes11020234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 01/03/2023] Open
Abstract
Dissecting the genetic basis of natural variation in disease response in hosts provides insights into the coevolutionary dynamics of host-pathogen interactions. Here, a genome-wide association study of Drosophila melanogaster survival after infection with the Gram-positive entomopathogenic bacterium Enterococcus faecalis is reported. There was considerable variation in defense against E. faecalis infection among inbred lines of the Drosophila Genetics Reference Panel. We identified single nucleotide polymorphisms associated with six genes with a significant (p < 10-08, corresponding to a false discovery rate of 2.4%) association with survival, none of which were canonical immune genes. To validate the role of these genes in immune defense, their expression was knocked-down using RNAi and survival of infected hosts was followed, which confirmed a role for the genes krishah and S6k in immune defense. We further identified a putative role for the Bomanin gene BomBc1 (also known as IM23), in E. faecalis infection response. This study adds to the growing set of association studies for infection in Drosophila melanogaster and suggests that the genetic causes of variation in immune defense differ for different pathogens.
Collapse
|
6
|
Gao K, Muijderman D, Nichols S, Heckel DG, Wang P, Zalucki MP, Groot AT. Parasite-host specificity: A cross-infection study of the parasite Ophryocystis elektroscirrha. J Invertebr Pathol 2020; 170:107328. [PMID: 31952966 DOI: 10.1016/j.jip.2020.107328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/18/2019] [Accepted: 01/11/2020] [Indexed: 11/19/2022]
Abstract
Many parasites are constrained to only one or a few hosts, showing host specificity. It remains unclear why some parasites are specialists and other parasites are generalists. The parasite Ophryocystis elektroscirrha (OE) is a neogregarine protozoan thought to be restricted to monarch butterflies, Danaus plexippus (Nymphaliae) and D. gilippus. Recently, we found OE-like spores in other Lepidoptera, specifically in three noctuid moths: Helicoverpa armigera, H. assulta and H. punctigera, as well as another nymphalid, Parthenos sylvia. To our knowledge, this is the first report of OE-like parasite infections in species other than the genus Danaus. In sequencing 558 bp of 18S rRNA, we found the genetic similarity between OE from D. plexippus and OE-like parasite from the moths H. armigera and H. punctigera to be 95.2%. When we conducted cross-species infection experiments, we could not infect the moths with OE from D. plexippus, but OE-like parasite from H. armigera did infect D. plexippus and a closely related moth species Heliothis virescens. Interestingly, we did not find the OE-like parasite in the H. armigera population from Spain. Inter-population infection experiments with H. armigera demonstrated a higher sensitivity to OE-like infection in the population from Spain compared to the populations from Australia and China. These results suggest geographic variation in OE-like susceptibility and coevolution between parasite and host. Our findings give important new insights into the prevalence and host specificity of OE and OE-like parasites, and provide opportunities to study parasite transmission over spatial and temporal scales.
Collapse
Affiliation(s)
- Ke Gao
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam, the Netherlands.
| | - Daphne Muijderman
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam, the Netherlands
| | - Sarah Nichols
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam, the Netherlands
| | - David G Heckel
- Max Planck Institute for Chemical Ecology, Department of Entomology, Jena, Germany
| | - Peng Wang
- School of Biological Science, The University of Queensland, 4072 Brisbane, Australia
| | - Myron P Zalucki
- School of Biological Science, The University of Queensland, 4072 Brisbane, Australia
| | - Astrid T Groot
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam, the Netherlands; Max Planck Institute for Chemical Ecology, Department of Entomology, Jena, Germany
| |
Collapse
|
7
|
Del Valle JC, Alcalde-Eon C, Escribano-Bailón MT, Buide ML, Whittall JB, Narbona E. Stability of petal color polymorphism: the significance of anthocyanin accumulation in photosynthetic tissues. BMC PLANT BIOLOGY 2019; 19:496. [PMID: 31726989 PMCID: PMC6854811 DOI: 10.1186/s12870-019-2082-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/17/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Anthocyanins are the primary source of colour in flowers and also accumulate in vegetative tissues, where they have multiple protective roles traditionally attributed to early compounds of the metabolic pathway (flavonols, flavones, etc.). Petal-specific loss of anthocyanins in petals allows plants to escape from the negative pleiotropic effects of flavonoid and anthocyanins loss in vegetative organs, where they perform a plethora of essential functions. Herein, we investigate the degree of pleiotropy at the biochemical scale in a pink-white flower colour polymorphism in the shore campion, Silene littorea. We report the frequencies of pink and white individuals across 21 populations and underlying biochemical profiles of three flower colour variants: anthocyanins present in all tissues (pink petals), petal-specific loss of anthocyanins (white petals), and loss of anthocyanins in all tissues (white petals). RESULTS Individuals lacking anthocyanins only in petals represent a stable polymorphism in two populations at the northern edge of the species range (mean frequency 8-21%). Whereas, individuals lacking anthocyanins in the whole plant were found across the species range, yet always at very low frequencies (< 1%). Biochemically, the flavonoids detected were anthocyanins and flavones; in pigmented individuals, concentrations of flavones were 14-56× higher than anthocyanins across tissues with differences of > 100× detected in leaves. Loss of anthocyanin pigmentation, either in petals or in the whole plant, does not influence the ability of these phenotypes to synthesize flavones, and this pattern was congruent among all sampled populations. CONCLUSIONS We found that all colour variants showed similar flavone profiles, either in petals or in the whole plant, and only the flower colour variant with anthocyanins in photosynthetic tissues persists as a stable flower colour polymorphism. These findings suggest that anthocyanins in photosynthetic tissues, not flavonoid intermediates, are the targets of non-pollinator mediated selection.
Collapse
Affiliation(s)
- José Carlos Del Valle
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, 41013, Seville, Spain.
| | - Cristina Alcalde-Eon
- Grupo de Investigación en Polifenoles (GIP), University of Salamanca, 37007, Salamanca, Spain
| | | | - Mª Luisa Buide
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, 41013, Seville, Spain
| | - Justen B Whittall
- Department of Biology, Santa Clara University, Santa Clara, CA, 95053, USA
| | - Eduardo Narbona
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, 41013, Seville, Spain
| |
Collapse
|
8
|
MacQueen A, Tian D, Chang W, Holub E, Kreitman M, Bergelson J. Population Genetics of the Highly Polymorphic RPP8 Gene Family. Genes (Basel) 2019; 10:E691. [PMID: 31500388 PMCID: PMC6771003 DOI: 10.3390/genes10090691] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023] Open
Abstract
Plant nucleotide-binding domain and leucine-rich repeat containing (NLR) genes provide some of the most extreme examples of polymorphism in eukaryotic genomes, rivalling even the vertebrate major histocompatibility complex. Surprisingly, this is also true in Arabidopsis thaliana, a predominantly selfing species with low heterozygosity. Here, we investigate how gene duplication and intergenic exchange contribute to this extraordinary variation. RPP8 is a three-locus system that is configured chromosomally as either a direct-repeat tandem duplication or as a single copy locus, plus a locus 2 Mb distant. We sequenced 48 RPP8 alleles from 37 accessions of A. thaliana and 12 RPP8 alleles from Arabidopsis lyrata to investigate the patterns of interlocus shared variation. The tandem duplicates display fixed differences and share less variation with each other than either shares with the distant paralog. A high level of shared polymorphism among alleles at one of the tandem duplicates, the single-copy locus and the distal locus, must involve both classical crossing over and intergenic gene conversion. Despite these polymorphism-enhancing mechanisms, the observed nucleotide diversity could not be replicated under neutral forward-in-time simulations. Only by adding balancing selection to the simulations do they approach the level of polymorphism observed at RPP8. In this NLR gene triad, genetic architecture, gene function and selection all combine to generate diversity.
Collapse
Affiliation(s)
- Alice MacQueen
- Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Dacheng Tian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210008, China.
| | - Wenhan Chang
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL 60637, USA.
| | - Eric Holub
- School of Life Sciences, Wellesbourne Innovation Campus, University of Warwick, Wellesbourne CV359EF, UK.
| | - Martin Kreitman
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL 60637, USA.
| | - Joy Bergelson
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
9
|
Ecology, not distance, explains community composition in parasites of sky-island Audubon’s Warblers. Int J Parasitol 2019; 49:437-448. [DOI: 10.1016/j.ijpara.2018.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 12/31/2022]
|
10
|
Hartmann FE, Rodríguez de la Vega RC, Brandenburg JT, Carpentier F, Giraud T. Gene Presence-Absence Polymorphism in Castrating Anther-Smut Fungi: Recent Gene Gains and Phylogeographic Structure. Genome Biol Evol 2018; 10:1298-1314. [PMID: 29722826 PMCID: PMC5967549 DOI: 10.1093/gbe/evy089] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2018] [Indexed: 12/14/2022] Open
Abstract
Gene presence-absence polymorphisms segregating within species are a significant source of genetic variation but have been little investigated to date in natural populations. In plant pathogens, the gain or loss of genes encoding proteins interacting directly with the host, such as secreted proteins, probably plays an important role in coevolution and local adaptation. We investigated gene presence-absence polymorphism in populations of two closely related species of castrating anther-smut fungi, Microbotryum lychnidis-dioicae (MvSl) and M. silenes-dioicae (MvSd), from across Europe, on the basis of Illumina genome sequencing data and high-quality genome references. We observed presence-absence polymorphism for 186 autosomal genes (2% of all genes) in MvSl, and only 51 autosomal genes in MvSd. Distinct genes displayed presence-absence polymorphism in the two species. Genes displaying presence-absence polymorphism were frequently located in subtelomeric and centromeric regions and close to repetitive elements, and comparison with outgroups indicated that most were present in a single species, being recently acquired through duplications in multiple-gene families. Gene presence-absence polymorphism in MvSl showed a phylogeographic structure corresponding to clusters detected based on SNPs. In addition, gene absence alleles were rare within species and skewed toward low-frequency variants. These findings are consistent with a deleterious or neutral effect for most gene presence-absence polymorphism. Some of the observed gene loss and gain events may however be adaptive, as suggested by the putative functions of the corresponding encoded proteins (e.g., secreted proteins) or their localization within previously identified selective sweeps. The adaptive roles in plant and anther-smut fungi interactions of candidate genes however need to be experimentally tested in future studies.
Collapse
Affiliation(s)
- Fanny E Hartmann
- Department Génétique et Ecologie Evolutives, Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | - Ricardo C Rodríguez de la Vega
- Department Génétique et Ecologie Evolutives, Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | - Jean-Tristan Brandenburg
- Department Génétique et Ecologie Evolutives, Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | - Fantin Carpentier
- Department Génétique et Ecologie Evolutives, Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | - Tatiana Giraud
- Department Génétique et Ecologie Evolutives, Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| |
Collapse
|
11
|
Mursinoff S, Tack AJM. Spatial variation in soil biota mediates plant adaptation to a foliar pathogen. THE NEW PHYTOLOGIST 2017; 214:644-654. [PMID: 28042886 DOI: 10.1111/nph.14402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/24/2016] [Indexed: 06/06/2023]
Abstract
Theory suggests that below-ground spatial heterogeneity may mediate host-parasite evolutionary dynamics and patterns of local adaptation, but this has rarely been tested in natural systems. Here, we test experimentally for the impact of spatial variation in the abiotic and biotic soil environment on the evolutionary outcome of the interaction between the host plant Plantago lanceolata and its specialist foliar pathogen Podosphaera plantaginis. Plants showed no adaptation to the local soil environment in the absence of natural enemies. However, quantitative, but not qualitative, plant resistance against local pathogens was higher when plants were grown in their local field soil than when they were grown in nonlocal field soil. This pattern was robust when extending the spatial scale beyond a single region, but disappeared with soil sterilization, indicating that soil biota mediated plant adaptation. We conclude that below-ground biotic heterogeneity mediates above-ground patterns of plant adaptation, resulting in increased plant resistance when plants are grown in their local soil environment. From an applied perspective, our findings emphasize the importance of using locally selected seeds in restoration ecology and low-input agriculture.
Collapse
Affiliation(s)
- Sini Mursinoff
- Department of Biosciences, University of Helsinki, PO Box 65 (Viikinkaari 1), FI-00014, Helsinki, Finland
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
12
|
Liao J, Huang H, Meusnier I, Adreit H, Ducasse A, Bonnot F, Pan L, He X, Kroj T, Fournier E, Tharreau D, Gladieux P, Morel JB. Pathogen effectors and plant immunity determine specialization of the blast fungus to rice subspecies. eLife 2016; 5. [PMID: 28008850 PMCID: PMC5182064 DOI: 10.7554/elife.19377] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/01/2016] [Indexed: 12/02/2022] Open
Abstract
Understanding how fungi specialize on their plant host is crucial for developing sustainable disease control. A traditional, centuries-old rice agro-system of the Yuanyang terraces was used as a model to show that virulence effectors of the rice blast fungus Magnaporthe oryzaeh play a key role in its specialization on locally grown indica or japonica local rice subspecies. Our results have indicated that major differences in several components of basal immunity and effector-triggered immunity of the japonica and indica rice varieties are associated with specialization of M. oryzae. These differences thus play a key role in determining M. oryzae host specificity and may limit the spread of the pathogen within the Yuanyang agro-system. Specifically, the AVR-Pia effector has been identified as a possible determinant of the specialization of M. oryzae to local japonica rice. DOI:http://dx.doi.org/10.7554/eLife.19377.001 Microbes that cause diseases in plants are a threat to food security. For example, the rice blast fungus Magnaporthe oryzae causes the loss of enough rice to feed 60 million people each year. Disease-causing microbes must overcome the plant’s first line of defense, which includes preformed barriers and antimicrobial responses that are triggered by characteristic molecules found in many different microbes. The microbes that can overcome this first line of defense typically do so with an arsenal of proteins called effectors that interfere with specific biological processes in the plant. To counteract this interference, some plants have evolved genes that encode proteins that detect these effectors and trigger stronger antimicrobial responses. For centuries, farmers and plant breeders have selected for these resistance genes when trying to breed crops that are more resistant to disease. However, over time, disease-causing microbes have lost effectors, which means that several resistance genes have rapidly become ineffective. Some researchers predicted that growing a mixture of varieties of a given crop together might be a better way of protecting crop yields. Over 16 years ago, this idea was proved successful against the rice blast fungus for rice plants grown in China. However, the exact reasons why this strategy worked and its effects on the fungus were not clear. Now Liao, Huang et al. have taken another look at rice varieties grown via the traditional method of terraces of rice paddies in Yuanyang. Some of these varieties had a strong first line of defense and few resistance genes, while others relied much more on resistance genes to protect themselves again the rice blast fungus. Liao, Huang et al. found that growing rice varieties with such different immune systems forces some of the rice blast fungi to accumulate effector proteins to combat the first line of defense, whereas other fungi had to get rid of these effectors to avoid being recognized by the major resistance genes. These two forces led to the evolution of two specialized populations of fungi that can infect specific rice varieties but not others. This means that the fungi cannot spread in the landscape, and so the fields of rice become resistant as a whole. These new findings demonstrate the importance of diversity in rice for sustainable crop protection. The next challenge will be to demonstrate if a similar approach can also protect other major crops grown in different agricultural settings. DOI:http://dx.doi.org/10.7554/eLife.19377.002
Collapse
Affiliation(s)
- Jingjing Liao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.,Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Huichuan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.,Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Isabelle Meusnier
- Institut National de la Recherche Agronomique, UMR BGPI, Montpellier, France
| | - Henri Adreit
- Centre de coopération internationale en recherche agronomique pour le développement, UMR BGPI, Montpellier, France
| | - Aurélie Ducasse
- Institut National de la Recherche Agronomique, UMR BGPI, Montpellier, France
| | - François Bonnot
- Centre de coopération internationale en recherche agronomique pour le développement, UMR BGPI, Montpellier, France
| | - Lei Pan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.,Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Xiahong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.,Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Thomas Kroj
- Institut National de la Recherche Agronomique, UMR BGPI, Montpellier, France
| | - Elisabeth Fournier
- Institut National de la Recherche Agronomique, UMR BGPI, Montpellier, France
| | - Didier Tharreau
- Centre de coopération internationale en recherche agronomique pour le développement, UMR BGPI, Montpellier, France
| | - Pierre Gladieux
- Institut National de la Recherche Agronomique, UMR BGPI, Montpellier, France
| | - Jean-Benoit Morel
- Institut National de la Recherche Agronomique, UMR BGPI, Montpellier, France
| |
Collapse
|
13
|
MacQueen A, Sun X, Bergelson J. Genetic architecture and pleiotropy shape costs of Rps2-mediated resistance in Arabidopsis thaliana. NATURE PLANTS 2016; 2:16110. [PMID: 27428524 PMCID: PMC4968571 DOI: 10.1038/nplants.2016.110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/20/2016] [Indexed: 05/03/2023]
Abstract
The mounting evidence that R genes incur large fitness costs raises a question: how can there be a 5-10% fitness reduction for all 149 R genes in the Arabidopsis thaliana genome? The R genes tested to date segregate for insertion-deletion (indel) polymorphisms where susceptible alleles are complete deletions. Since costs of resistance are measured as the differential fitness of isolines carrying resistant and susceptible alleles, indels reveal costs that may be masked when susceptible alleles are expressed. Rps2 segregates for two expressed clades of alleles, one resistant and one susceptible. Plants with resistant Rps2 are not less fit than those with a susceptible Rps2 allele in the absence of disease. Instead, all alleles provide a fitness benefit relative to an artificial deletion because of the role of RPS2 as a negative regulator of defence. Our results highlight the interplay between genomic architecture and the magnitude of costs of resistance.
Collapse
Affiliation(s)
- Alice MacQueen
- Department of Ecology and Evolution, University of Chicago, 1101 East 57th Street, Chicago, IL 60637, USA
| | - Xiaoqin Sun
- Department of Ecology and Evolution, University of Chicago, 1101 East 57th Street, Chicago, IL 60637, USA
| | - Joy Bergelson
- Department of Ecology and Evolution, University of Chicago, 1101 East 57th Street, Chicago, IL 60637, USA
- To whom correspondence should be addressed.
| |
Collapse
|
14
|
Castagnone-Sereno P, Mulet K, Iachia C. Tracking changes in life-history traits related to unnecessary virulence in a plant-parasitic nematode. Ecol Evol 2015; 5:3677-86. [PMID: 26380696 PMCID: PMC4567871 DOI: 10.1002/ece3.1643] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 06/29/2015] [Accepted: 07/08/2015] [Indexed: 12/19/2022] Open
Abstract
Evaluating trade-offs in life-history traits of plant pathogens is essential to understand the evolution and epidemiology of diseases. In particular, virulence costs when the corresponding host resistance gene is lacking play a major role in the adaptive biology of pathogens and contribute to the maintenance of their genetic diversity. Here, we investigated whether life-history traits directly linked to the establishment of plant-nematode interactions, that is, ability to locate and move toward the roots of the host plant, and to invade roots and develop into mature females, are affected in Meloidogyne incognita lines virulent against the tomato Mi-1.2 resistance gene. Virulent and avirulent near-isogenic lines only differing in their capacity to reproduce or not on resistant tomatoes were compared in single inoculation or pairwise competition experiments. Data highlighted (1) a global lack of trade-off in traits associated with unnecessary virulence with respect to the nematode ability to successfully infest plant roots and (2) variability in these traits when the genetic background of the nematode is considered irrespective of its (a)virulence status. These data suggest that the variation detected here is independent from the adaptation of M. incognita to host resistance, but rather reflects some genetic polymorphism in this asexual organism.
Collapse
Affiliation(s)
- Philippe Castagnone-Sereno
- UMR1355 Institut Sophia Agrobiotech, INRA 06900, Sophia Antipolis, France ; UMR7254 Institut Sophia Agrobiotech, University of Nice Sophia Antipolis 06900, Sophia Antipolis, France ; UMR7254 Institut Sophia Agrobiotech, CNRS 06900, Sophia Antipolis, France
| | - Karine Mulet
- UMR1355 Institut Sophia Agrobiotech, INRA 06900, Sophia Antipolis, France ; UMR7254 Institut Sophia Agrobiotech, University of Nice Sophia Antipolis 06900, Sophia Antipolis, France ; UMR7254 Institut Sophia Agrobiotech, CNRS 06900, Sophia Antipolis, France
| | - Cathy Iachia
- UMR1355 Institut Sophia Agrobiotech, INRA 06900, Sophia Antipolis, France ; UMR7254 Institut Sophia Agrobiotech, University of Nice Sophia Antipolis 06900, Sophia Antipolis, France ; UMR7254 Institut Sophia Agrobiotech, CNRS 06900, Sophia Antipolis, France
| |
Collapse
|
15
|
Decaestecker E, Verreydt D, De Meester L, Declerck SAJ. Parasite and nutrient enrichment effects on Daphnia interspecific competition. Ecology 2015; 96:1421-30. [PMID: 26236854 DOI: 10.1890/14-1167.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Increased productivity due to nutrient enrichment is hypothesized to affect density-dependent processes, such as transmission success of horizontally transmitting parasites. Changes in nutrient availability can also modify the stoichiometry and condition of individual hosts, which may affect their susceptibility for parasites as well as the growth conditions for parasites within the host. Consequently, if not balanced by increased host immuno-competence or life history responses, changes in the magnitude of parasite effects with increasing nutrient availability are expected. If these parasite effects are host-species specific, this may lead to shifts in the host community structure. We here used the Daphnia- parasite model system to study the effect of nutrient enrichment on parasite-mediated competition in experimental mesocosms. In the absence of parasites, D. magna was competitively dominant to D. pulex at both low and high nutrient levels. Introduction of parasites resulted in infections of D. magna, but not of D. pulex and, as such, reversed the competitive hierarchy between these two species. Nutrient addition resulted in an increased prevalence and infection intensity of some of the parasites on D. magna. However, there was no evidence that high nutrient levels enhanced negative effects of parasites on the hosts. Costs associated with parasite infections may have been compensated by better growth conditions for D. magna in the presence of high nutrient levels.
Collapse
|
16
|
Bruns E, Carson ML, May G. The jack of all trades is master of none: a pathogen's ability to infect a greater number of host genotypes comes at a cost of delayed reproduction. Evolution 2014; 68:2453-66. [PMID: 24890322 DOI: 10.1111/evo.12461] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 05/20/2014] [Indexed: 01/16/2023]
Abstract
A trade-off between a pathogen's ability to infect many hosts and its reproductive capacity on each host genotype is predicted to limit the evolution of an expanded host range, yet few empirical results provide evidence for the magnitude of such trade-offs. Here, we test the hypothesis for a trade-off between the number of host genotypes that a fungal pathogen can infect (host genotype range) and its reproductive capacity on susceptible plant hosts. We used strains of the oat crown rust fungus that carried widely varying numbers of virulence (avr) alleles known to determine host genotype range. We quantified total spore production and the expression of four pathogen life-history stages: infection efficiency, time until reproduction, pustule size, and spore production per pustule. In support of the trade-off hypothesis, we found that virulence level, the number of avr alleles per pathogen strain, was correlated with significant delays in the onset of reproduction and with smaller pustule sizes. Modeling from our results, we conclude that trade-offs have the capacity to constrain the evolution of host genotype range in local populations. In contrast, long-term trends in virulence level suggest that the continued deployment of resistant host lines over wide regions of the United States has generated selection for increased host genotype range.
Collapse
Affiliation(s)
- Emily Bruns
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, Minnesota, 55108; Department of Biology, University of Virginia, Charlottesville, Virginia, 22904.
| | | | | |
Collapse
|
17
|
Lange B, Reuter M, Ebert D, Muylaert K, Decaestecker E. Diet quality determines interspecific parasite interactions in host populations. Ecol Evol 2014; 4:3093-102. [PMID: 25247066 PMCID: PMC4161182 DOI: 10.1002/ece3.1167] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 11/08/2022] Open
Abstract
The widespread occurrence of multiple infections and the often vast range of nutritional resources for their hosts allow that interspecific parasite interactions in natural host populations might be determined by host diet quality. Nevertheless, the role of diet quality with respect to multispecies parasite interactions on host population level is not clear. We here tested the effect of host population diet quality on the parasite community in an experimental study using Daphnia populations. We studied the effect of diet quality on Daphnia population demography and the interactions in multispecies parasite infections of this freshwater crustacean host. The results of our experiment show that the fitness of a low-virulent microsporidian parasite decreased in low, but not in high-host-diet quality conditions. Interestingly, infections with the microsporidium protected Daphnia populations against a more virulent bacterial parasite. The observed interspecific parasite interactions are discussed with respect to the role of diet quality-dependent changes in host fecundity. This study reflects that exploitation competition in multispecies parasite infections is environmentally dependent, more in particular it shows that diet quality affects interspecific parasite competition within a single host and that this can be mediated by host population-level effects.
Collapse
Affiliation(s)
- Benjamin Lange
- Laboratory Aquatic Biology, Science & Technology-Kulak, KU LeuvenKortrijk, 8500, Belgium
| | - Max Reuter
- Department of Genetics, Evolution & Environment, University College LondonLondon, WC1E 6BT, UK
| | - Dieter Ebert
- Zoological Institute, University of BaselBasel, CH-4051, Switzerland
| | - Koenraad Muylaert
- Laboratory Aquatic Biology, Science & Technology-Kulak, KU LeuvenKortrijk, 8500, Belgium
| | - Ellen Decaestecker
- Laboratory Aquatic Biology, Science & Technology-Kulak, KU LeuvenKortrijk, 8500, Belgium
| |
Collapse
|
18
|
Effects of heat shock on resistance to parasitoids and on life history traits in an aphid/endosymbiont system. PLoS One 2013; 8:e75966. [PMID: 24143175 PMCID: PMC3797046 DOI: 10.1371/journal.pone.0075966] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 08/17/2013] [Indexed: 11/25/2022] Open
Abstract
Temperature variation is an important factor determining the outcomes of interspecific interactions, including those involving hosts and parasites. This can apply to variation in average temperature or to relatively short but intense bouts of extreme temperature. We investigated the effect of heat shock on the ability of aphids (Aphis fabae) harbouring protective facultative endosymbionts (Hamiltonella defensa) to resist parasitism by Hymenopteran parasitoids (Lysiphlebus fabarum). Furthermore, we investigated whether heat shocks can modify previously observed genotype-by-genotype (G x G) interactions between different endosymbiont isolates and parasitoid genotypes. Lines of genetically identical aphids possessing different isolates of H. defensa were exposed to one of two heat shock regimes (35°C and 39°C) or to a control temperature (20°C) before exposure to three different asexual lines of the parasitoids. We observed strong G x G interactions on parasitism rates, reflecting the known genetic specificity of symbiont-conferred resistance, and we observed a significant G x G x E interaction induced by heat shocks. However, this three-way interaction was mainly driven by the more extreme heat shock (39°C), which had devastating effects on aphid lifespan and reproduction. Restricting the analysis to the more realistic heat shock of 35°C, the G x G x E interaction was weaker (albeit still significant), and it did not lead to any reversals of the aphid lines' susceptibility rankings to different parasitoids. Thus, under conditions feasibly encountered in the field, the relative fitness of different parasitoid genotypes on hosts protected by particular symbiont strains remains mostly uncomplicated by heat stress, which should simplify biological control programs dealing with this system.
Collapse
|
19
|
Tack AJM, Horns F, Laine AL. The impact of spatial scale and habitat configuration on patterns of trait variation and local adaptation in a wild plant parasite. Evolution 2013; 68:176-89. [PMID: 24372603 PMCID: PMC3916884 DOI: 10.1111/evo.12239] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/26/2013] [Indexed: 11/29/2022]
Abstract
Theory indicates that spatial scale and habitat configuration are fundamental for coevolutionary dynamics and how diversity is maintained in host-pathogen interactions. Yet, we lack empirical data to translate the theory to natural host-parasite systems. In this study, we conduct a multiscale cross-inoculation study using the specialist wild plant pathogen Podosphaera plantaginis on its host plant Plantago lanceolata. We apply the same sampling scheme to a region with highly fragmented (Åland) and continuous (Saaremaa) host populations. Although theory predicts higher parasite virulence in continuous regions, we did not detect differences in traits conferring virulence among the regions. Patterns of adaptation were highly scale dependent. We detected parasite maladaptation among regions, and among populations separated by intermediate distances (6.0-40.0 km) within the fragmented region. In contrast, parasite performance did not vary significantly according to host origin in the continuous landscape. For both regions, differentiation among populations was much larger for genetic variation than for phenotypic variation, indicating balancing selection maintaining phenotypic variation within populations. Our findings illustrate the critical role of spatial scale and habitat configuration in driving host-parasite coevolution. The absence of more aggressive strains in the continuous landscape, in contrast to theoretical predictions, has major implications for long-term decision making in conservation, agriculture, and public health.
Collapse
Affiliation(s)
- Ayco J M Tack
- Metapopulation Research Group, Department of Biosciences, University of Helsinki, PO Box 65 (Viikinkaari 1), University of Helsinki, FI-00014, Finland.
| | | | | |
Collapse
|
20
|
Vale PF. Killing them softly: managing pathogen polymorphism and virulence in spatially variable environments. Trends Parasitol 2013; 29:417-22. [PMID: 23928098 PMCID: PMC3764335 DOI: 10.1016/j.pt.2013.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 07/04/2013] [Accepted: 07/05/2013] [Indexed: 11/30/2022]
Abstract
Understanding why pathogen populations are genetically variable is vital because genetic variation fuels evolution, which often hampers disease control efforts. Here I argue that classical models of evolution in spatially variable environments - specifically, models of hard and soft selection - provide a useful framework to understand the maintenance of pathogen polymorphism and the evolution of virulence. First, the similarities between models of hard and soft selection and pathogen life cycles are described, highlighting how the type and timing of pathogen control measures impose density regulation that may affect both the level of pathogen polymorphism and virulence. The article concludes with an outline of potential lines of future theoretical and experimental work.
Collapse
Affiliation(s)
- Pedro F Vale
- Centre for Immunity, Infection, and Evolution and Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, West Mains Road, Edinburgh EH9 3JT, UK.
| |
Collapse
|
21
|
Susi H, Laine AL. Pathogen life-history trade-offs revealed in allopatry. Evolution 2013; 67:3362-70. [PMID: 24152013 PMCID: PMC4208680 DOI: 10.1111/evo.12182] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 05/29/2013] [Indexed: 11/29/2022]
Abstract
Trade-offs in life-history traits is a central tenet in evolutionary biology, yet their ubiquity and relevance to realized fitness in natural populations remains questioned. Trade-offs in pathogens are of particular interest because they may constrain the evolution and epidemiology of diseases. Here, we studied life-history traits determining transmission in the obligate fungal pathogen, Podosphaera plantaginis, infecting Plantago lanceolata. We find that although traits are positively associated on sympatric host genotypes, on allopatric host genotypes relationships between infectivity and subsequent transmission traits change shape, becoming even negative. The epidemiological prediction of this change in life-history relationships in allopatry is lower disease prevalence in newly established pathogen populations. An analysis of the natural pathogen metapopulation confirms that disease prevalence is lower in newly established pathogen populations and they are more prone to go extinct during winter than older pathogen populations. Hence, life-history trade-offs mediated by pathogen local adaptation may influence epidemiological dynamics at both population and metapopulation levels.
Collapse
Affiliation(s)
- Hanna Susi
- Metapopulation Research Group, PO Box 65 (Viikinkaari 1), Department of Biosciences, FI-00014 University of Helsinki, Finland
| | | |
Collapse
|
22
|
Cayetano L, Vorburger C. Genotype-by-genotype specificity remains robust to average temperature variation in an aphid/endosymbiont/parasitoid system. J Evol Biol 2013; 26:1603-10. [PMID: 23663140 DOI: 10.1111/jeb.12154] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/01/2013] [Indexed: 01/13/2023]
Abstract
Genotype-by-genotype interactions demonstrate the existence of variation upon which selection acts in host-parasite systems at respective resistance and infection loci. These interactions can potentially be modified by environmental factors, which would entail that different genotypes are selected under different environmental conditions. In the current study, we checked for a G × G × E interaction in the context of average temperature and the genotypes of asexual lines of the endoparasitoid wasp Lysiphlebus fabarum and isolates of Hamiltonella defensa, a protective secondary endosymbiont of the wasp's host, the black bean aphid Aphis fabae. We exposed genetically identical aphids harbouring different isolates of H. defensa to three asexual lines of the parasitoid and measured parasitism success under three different temperatures (15, 22 and 29 °C). Although there was clear evidence for increased susceptibility to parasitoids at the highest average temperature and a strong G × G interaction between the host's symbionts and the parasitoids, no modifying effect of temperature, that is, no significant G × G × E interaction, was detected. This robustness of the observed specificity suggests that the relative fitness of different parasitoid genotypes on hosts protected by particular symbionts remains uncomplicated by spatial or temporal variation in temperature, which should facilitate biological control strategies.
Collapse
Affiliation(s)
- L Cayetano
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland.
| | | |
Collapse
|
23
|
Biere A, Tack AJM. Evolutionary adaptation in three‐way interactions between plants, microbes and arthropods. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12096] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Arjen Biere
- Department of Terrestrial Ecology Netherlands Institute of Ecology, NIOO‐KNAW Droevendaalsesteeg 10 6708 PB Wageningen The Netherlands
| | - Ayco J. M. Tack
- Metapopulation Research Group, Department of Biosciences University of Helsinki P. O. Box 65 (Viikinkaari 1) FI‐00014 Helsinki Finland
| |
Collapse
|
24
|
Ajuria Ibarra H, Reader T. Reasons to be different: do conspicuous polymorphisms in invertebrates persist because rare forms are fitter? J Zool (1987) 2013. [DOI: 10.1111/jzo.12034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - T. Reader
- School of Biology; University of Nottingham; Nottingham UK
| |
Collapse
|
25
|
Tack AJM, Thrall PH, Barrett LG, Burdon JJ, Laine AL. Variation in infectivity and aggressiveness in space and time in wild host-pathogen systems: causes and consequences. J Evol Biol 2012; 25:1918-1936. [PMID: 22905782 DOI: 10.1111/j.1420-9101.2012.02588.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 07/02/2012] [Accepted: 07/05/2012] [Indexed: 12/18/2022]
Abstract
Variation in host resistance and in the ability of pathogens to infect and grow (i.e. pathogenicity) is important as it provides the raw material for antagonistic (co)evolution and therefore underlies risks of disease spread, disease evolution and host shifts. Moreover, the distribution of this variation in space and time may inform us about the mode of coevolutionary selection (arms race vs. fluctuating selection dynamics) and the relative roles of G × G interactions, gene flow, selection and genetic drift in shaping coevolutionary processes. Although variation in host resistance has recently been reviewed, little is known about overall patterns in the frequency and scale of variation in pathogenicity, particularly in natural systems. Using 48 studies from 30 distinct host-pathogen systems, this review demonstrates that variation in pathogenicity is ubiquitous across multiple spatial and temporal scales. Quantitative analysis of a subset of extensively studied plant-pathogen systems shows that the magnitude of within-population variation in pathogenicity is large relative to among-population variation and that the distribution of pathogenicity partly mirrors the distribution of host resistance. At least part of the variation in pathogenicity found at a given spatial scale is adaptive, as evidenced by studies that have examined local adaptation at scales ranging from single hosts through metapopulations to entire continents and - to a lesser extent - by comparisons of pathogenicity with neutral genetic variation. Together, these results support coevolutionary selection through fluctuating selection dynamics. We end by outlining several promising directions for future research.
Collapse
Affiliation(s)
- A J M Tack
- Metapopulation Research Group, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - P H Thrall
- CSIRO-Plant Industry, Canberra, ACT, Australia
| | - L G Barrett
- CSIRO-Plant Industry, Canberra, ACT, Australia
| | - J J Burdon
- CSIRO-Plant Industry, Canberra, ACT, Australia
| | - A-L Laine
- Metapopulation Research Group, Department of Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
26
|
Thrall PH, Laine AL, Ravensdale M, Nemri A, Dodds PN, Barrett LG, Burdon JJ. Rapid genetic change underpins antagonistic coevolution in a natural host-pathogen metapopulation. Ecol Lett 2012; 15:425-35. [PMID: 22372578 PMCID: PMC3319837 DOI: 10.1111/j.1461-0248.2012.01749.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antagonistic coevolution is a critical force driving the evolution of diversity, yet the selective processes underpinning reciprocal adaptive changes in nature are not well understood. Local adaptation studies demonstrate partner impacts on fitness and adaptive change, but do not directly expose genetic processes predicted by theory. Specifically, we have little knowledge of the relative importance of fluctuating selection vs. arms-race dynamics in maintaining polymorphism in natural systems where metapopulation processes predominate. We conducted cross-year epidemiological, infection and genetic studies of multiple wild host and pathogen populations in the Linum-Melampsora association. We observed asynchronous phenotypic fluctuations in resistance and infectivity among demes. Importantly, changes in allelic frequencies at pathogen infectivity loci, and in host recognition of these genetic variants, correlated with disease prevalence during natural epidemics. These data strongly support reciprocal coevolution maintaining balanced resistance and infectivity polymorphisms, and highlight the importance of characterising spatial and temporal dynamics in antagonistic interactions.
Collapse
Affiliation(s)
- Peter H. Thrall
- CSIRO Plant Industry, GPO Box 1600, Canberra ACT 2601, Australia
| | - Anna-Liisa Laine
- CSIRO Plant Industry, GPO Box 1600, Canberra ACT 2601, Australia
- Metapopulation Research Group, Department of Biosciences, PO Box 65, FI-00014, University of Helsinki, Finland
| | - Michael Ravensdale
- CSIRO Plant Industry, GPO Box 1600, Canberra ACT 2601, Australia
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, 960 Carling Ave., Ottawa, ON, K1A 0C6, Canada
| | - Adnane Nemri
- CSIRO Plant Industry, GPO Box 1600, Canberra ACT 2601, Australia
| | - Peter N. Dodds
- CSIRO Plant Industry, GPO Box 1600, Canberra ACT 2601, Australia
| | - Luke G. Barrett
- CSIRO Plant Industry, GPO Box 1600, Canberra ACT 2601, Australia
| | - Jeremy J. Burdon
- CSIRO Plant Industry, GPO Box 1600, Canberra ACT 2601, Australia
| |
Collapse
|
27
|
|
28
|
Bernhardsson C, Ingvarsson PK. Geographical structure and adaptive population differentiation in herbivore defence genes in European aspen (Populus tremula L., Salicaceae). Mol Ecol 2012; 21:2197-207. [PMID: 22417129 DOI: 10.1111/j.1365-294x.2012.05524.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
When a phenotypic trait is subjected to spatially variable selection and local adaptation, the underlying genes controlling the trait are also expected to show strong patterns of genetic differentiation because alternative alleles are favoured in different geographical locations. Here, we study 71 single nucleotide polymorphisms (SNPs) from seven genes associated with inducible defence responses in a sample of Populus tremula collected from across Sweden. Four of these genes (PPO2, TI2, TI4 and TI5) show substantial population differentiation, and a principal component analyses conducted on the defence SNPs divides the Swedish population into three distinct clusters. Several defence SNPs show latitudinal clines, although these were not robust to multiple testing. However, five SNPs (located within TI4 and TI5) show strong longitudinal clines that remain significant after multiple test correction. Genetic geographical variation, supporting local adaptation, has earlier been confirmed in genes involved in the photoperiod pathway in P. tremula, but this is, to our knowledge, one of the first times that geographical variation has been found in genes involved in plant defence against antagonists.
Collapse
Affiliation(s)
- Carolina Bernhardsson
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, SE-901 87 Umeå, Sweden.
| | | |
Collapse
|
29
|
CHARTER MOTTI, PELEG ORI, LESHEM YOSSI, ROULIN ALEXANDRE. Similar patterns of local barn owl adaptation in the Middle East and Europe with respect to melanic coloration. Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2012.01863.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Jorgensen TH. The effect of environmental heterogeneity on RPW8-mediated resistance to powdery mildews in Arabidopsis thaliana. ANNALS OF BOTANY 2012; 109:833-42. [PMID: 22234559 PMCID: PMC3286285 DOI: 10.1093/aob/mcr320] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/25/2011] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND AIMS The biotic and abiotic environment of interacting hosts and parasites may vary considerably over small spatial and temporal scales. It is essential to understand how different environments affect host disease resistance because this determines frequency of disease and, importantly, heterogeneous environments can retard direct selection and potentially maintain genetic variation for resistance in natural populations. METHODS The effect of different temperatures and soil nutrient conditions on the outcome of infection by a pathogen was quantified in Arabidopsis thaliana. Expression levels of a gene conferring resistance to powdery mildews, RPW8, were compared with levels of disease to test a possible mechanism behind variation in resistance. KEY RESULTS Most host genotypes changed from susceptible to resistant across environments with the ranking of genotypes differing between treatments. Transcription levels of RPW8 increased after infection and varied between environments, but there was no tight association between transcription and resistance levels. CONCLUSIONS There is a strong potential for a heterogeneous environment to change the resistance capacity of A. thaliana genotypes and hence the direction and magnitude of selection in the presence of the pathogen. Possible causative links between resistance gene expression and disease resistance are discussed in light of the present results on RPW8.
Collapse
Affiliation(s)
- Tove H Jorgensen
- School of Biological Sciences, University of East Anglia, Norwich Research Park, UK.
| |
Collapse
|
31
|
Lopez Pascua L, Gandon S, Buckling A. Abiotic heterogeneity drives parasite local adaptation in coevolving bacteria and phages. J Evol Biol 2011; 25:187-95. [PMID: 22092706 DOI: 10.1111/j.1420-9101.2011.02416.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Spatial abiotic heterogeneity can result in divergent selection, hence might increase the magnitude of host-parasite local adaptation (the mean difference in fitness of sympatric vs. allopatric host-parasite combinations). We explicitly tested this hypothesis by measuring local adaptation in experimentally coevolved populations of bacteria and viruses evolved in the same or different nutrient media. Consistent with previous work, we found that mean levels of evolved phage infectivity and bacteria resistance varied with nutrient concentration, with maximal levels at nutrient concentrations that supported the greatest densities of bacteria. Despite this variation in evolved mean infectivity and resistance between treatments, we found that parasite local adaptation was greatly increased when measured between populations evolved in different, compared with the same, media. This pattern is likely to have resulted from different media imposing divergent selection on bacterial hosts, and phages in turn adapting to their local hosts. These results demonstrate that the abiotic environment can play a strong and predictable role in driving patterns of local adaptation.
Collapse
|
32
|
DREISS AN, ANTONIAZZA S, BURRI R, FUMAGALLI L, SONNAY C, FREY C, GOUDET J, ROULIN A. Local adaptation and matching habitat choice in female barn owls with respect to melanic coloration. J Evol Biol 2011; 25:103-14. [DOI: 10.1111/j.1420-9101.2011.02407.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
33
|
Tellier A, Brown JKM. Spatial heterogeneity, frequency-dependent selection and polymorphism in host-parasite interactions. BMC Evol Biol 2011; 11:319. [PMID: 22044632 PMCID: PMC3273489 DOI: 10.1186/1471-2148-11-319] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 11/01/2011] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Genomic and pathology analysis has revealed enormous diversity in genes involved in disease, including those encoding host resistance and parasite effectors (also known in plant pathology as avirulence genes). It has been proposed that such variation may persist when an organism exists in a spatially structured metapopulation, following the geographic mosaic of coevolution. Here, we study gene-for-gene relationships governing the outcome of plant-parasite interactions in a spatially structured system and, in particular, investigate the population genetic processes which maintain balanced polymorphism in both species. RESULTS Following previous theory on the effect of heterogeneous environments on maintenance of polymorphism, we analysed a model with two demes in which the demes have different environments and are coupled by gene flow. Environmental variation is manifested by different coefficients of natural selection, the costs to the host of resistance and to the parasite of virulence, the cost to the host of being diseased and the cost to an avirulent parasite of unsuccessfully attacking a resistant host. We show that migration generates negative direct frequency-dependent selection, a condition for maintenance of stable polymorphism in each deme. Balanced polymorphism occurs preferentially if there is heterogeneity for costs of resistance and virulence alleles among populations and to a lesser extent if there is variation in the cost to the host of being diseased. We show that the four fitness costs control the natural frequency of oscillation of host resistance and parasite avirulence alleles. If demes have different costs, their frequencies of oscillation differ and when coupled by gene flow, there is amplitude death of the oscillations in each deme. Numerical simulations show that for a multiple deme island model, costs of resistance and virulence need not to be present in each deme for stable polymorphism to occur. CONCLUSIONS Our theoretical results confirm the importance of empirical studies for measuring the environmental heterogeneity for genetic costs of resistance and virulence alleles. We suggest that such studies should be developed to investigate the generality of this mechanism for the long-term maintenance of genetic diversity at host and parasite genes.
Collapse
Affiliation(s)
- Aurélien Tellier
- Section of Evolutionary Biology, Biocenter, University of Munich, 82152 Planegg-Martinsried, Germany.
| | | |
Collapse
|
34
|
Gibson DJ, Allstadt AJ, Baer SG, Geisler M. Effects of foundation species genotypic diversity on subordinate species richness in an assembling community. OIKOS 2011. [DOI: 10.1111/j.1600-0706.2011.19447.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
35
|
Hakes AS, Cronin JT. Resistance and tolerance to herbivory in Solidago altissima (Asteraceae): genetic variability, costs, and selection for multiple traits. AMERICAN JOURNAL OF BOTANY 2011; 98:1446-1455. [PMID: 21846792 DOI: 10.3732/ajb.1000485] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
PREMISE OF THE STUDY Quantifying the genetic variability, fitness costs, and selection gradients associated with plant defense traits is necessary to understand their evolution and continued persistence in populations. Few studies have simultaneously examined the costs, benefits, and genetic variability in multiple traits related to plant resistance and tolerance to herbivory. • METHODS Using 103 Solidago altissima (Asteraceae) genets from two populations previously studied in situ, we conducted a common garden experiment to assess genetic variability, costs, selection gradients, and correlations among resistance, tolerance, and various resistance and tolerance traits (i.e., lateral branching, relative growth rate, leaf addition and senescence rate, specific leaf area, and leaf toughness). • KEY RESULTS We report evidence for significant genetic variability in resistance and various tolerance-related traits but low broad-sense heritability (H(2) < 0.14) for all traits. For all traits examined, no correlation existed between trait levels of parent ramets (measured in their field of origin) and daughter ramets (measured in the common garden), suggesting plasticity in goldenrod traits. We found a strong cost of resistance and selection gradient against high resistance. Conversely, we found no evidence of costs but did find significant selection gradients favoring increased tolerance and many tolerance trait levels. • CONCLUSIONS Our study suggests that herbivores impose selection favoring increased tolerance and reduced resistance in goldenrods. In this environment, we expect that over time, resistant genets will decrease in frequency. Despite strong selection pressures, the evolution of tolerance in this environment may be constrained by the low broad-sense heritability in tolerance traits.
Collapse
Affiliation(s)
- Alyssa S Hakes
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA.
| | | |
Collapse
|
36
|
Mostowy R, Engelstädter J. The impact of environmental change on host-parasite coevolutionary dynamics. Proc Biol Sci 2011; 278:2283-92. [PMID: 21177684 PMCID: PMC3119010 DOI: 10.1098/rspb.2010.2359] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 12/03/2010] [Indexed: 11/12/2022] Open
Abstract
Environmental factors are known to affect the strength and the specificity of interactions between hosts and parasites. However, how this shapes patterns of coevolutionary dynamics is not clear. Here, we construct a simple mathematical model to study the effect of environmental change on host-parasite coevolutionary outcome when interactions are of the matching-alleles or the gene-for-gene type. Environmental changes may effectively alter the selective pressure and the level of specialism in the population. Our results suggest that environmental change altering the specificity of selection in antagonistic interactions can produce alternating time windows of cyclical allele-frequency dynamics and cessation thereof. This type of environmental impact can also explain the maintenance of polymorphism in gene-for-gene interactions without costs. Overall, our study points to the potential consequences of environmental variation in coevolution, and thus the importance of characterizing genotype-by-genotype-by-environment interactions in natural host-parasite systems, especially those that change the direction of selection acting between the two species.
Collapse
Affiliation(s)
- Rafal Mostowy
- Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland.
| | | |
Collapse
|
37
|
Koskella B, Thompson JN, Preston GM, Buckling A. Local biotic environment shapes the spatial scale of bacteriophage adaptation to bacteria. Am Nat 2011; 177:440-51. [PMID: 21460566 DOI: 10.1086/658991] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The ecological, epidemiological, and evolutionary consequences of host-parasite interactions are critically shaped by the spatial scale at which parasites adapt to hosts. The scale of interaction between hyperparasites and their parasites is likely to be influenced by the host of the parasite and potentially likely to differ among within-host environments. Here we examine the scale at which bacteriophages adapt to their host bacteria by studying natural isolates from the surface or interior of horse chestnut leaves. We find that phages are more infective to bacteria from the same tree relative to those from other trees but do not differ in infectivity to bacteria from different leaves within the same tree. The results suggest that phages target common bacterial species, including an important plant pathogen, within plant host tissues; this result has important implications for therapeutic phage epidemiology. Furthermore, we show that phages from the leaf interior are more infective to their local hosts than phages from the leaf surface are to theirs, suggesting either increased resistance of bacteria on the leaf surface or increased phage adaptation within the leaf. These results highlight that biotic environment can play a key role in shaping the spatial scale of parasite adaptation and influencing the outcome of coevolutionary interactions.
Collapse
Affiliation(s)
- Britt Koskella
- Department of Zoology, University of Oxford, South Parks Road, Oxford, United Kingdom.
| | | | | | | |
Collapse
|
38
|
Vale PF, Wilson AJ, Best A, Boots M, Little TJ. Epidemiological, evolutionary, and coevolutionary implications of context-dependent parasitism. Am Nat 2011; 177:510-21. [PMID: 21460572 DOI: 10.1086/659002] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract Victims of infection are expected to suffer increasingly as parasite population growth increases. Yet, under some conditions, faster-growing parasites do not appear to cause more damage, and infections can be quite tolerable. We studied these conditions by assessing how the relationship between parasite population growth and host health is sensitive to environmental variation. In experimental infections of the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa, we show how easily an interaction can shift from a severe interaction, that is, when host fitness declines substantially with each unit of parasite growth, to a tolerable relationship by changing only simple environmental variables: temperature and food availability. We explored the evolutionary and epidemiological implications of such a shift by modeling pathogen evolution and disease spread under different levels of infection severity and found that environmental shifts that promote tolerance ultimately result in populations harboring more parasitized individuals. We also find that the opportunity for selection, as indicated by the variance around traits, varied considerably with the environmental treatment. Thus, our results suggest two mechanisms that could underlie coevolutionary hotspots and coldspots: spatial variation in tolerance and spatial variation in the opportunity for selection.
Collapse
Affiliation(s)
- Pedro F Vale
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Labs, West Mains Road, Edinburgh, Scotland, United Kingdom.
| | | | | | | | | |
Collapse
|
39
|
Loiseau C, Zoorob R, Robert A, Chastel O, Julliard R, Sorci G. Plasmodium relictum infection and MHC diversity in the house sparrow (Passer domesticus). Proc Biol Sci 2011; 278:1264-72. [PMID: 20943698 PMCID: PMC3049082 DOI: 10.1098/rspb.2010.1968] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 09/22/2010] [Indexed: 01/22/2023] Open
Abstract
Antagonistic coevolution between hosts and parasites has been proposed as a mechanism maintaining genetic diversity in both host and parasite populations. In particular, the high level of genetic diversity usually observed at the major histocompatibility complex (MHC) is generally thought to be maintained by parasite-driven selection. Among the possible ways through which parasites can maintain MHC diversity, diversifying selection has received relatively less attention. This hypothesis is based on the idea that parasites exert spatially variable selection pressures because of heterogeneity in parasite genetic structure, abundance or virulence. Variable selection pressures should select for different host allelic lineages resulting in population-specific associations between MHC alleles and risk of infection. In this study, we took advantage of a large survey of avian malaria in 13 populations of the house sparrow (Passer domesticus) to test this hypothesis. We found that (i) several MHC alleles were either associated with increased or decreased risk to be infected with Plasmodium relictum, (ii) the effects were population specific, and (iii) some alleles had antagonistic effects across populations. Overall, these results support the hypothesis that diversifying selection in space can maintain MHC variation and suggest a pattern of local adaptation where MHC alleles are selected at the local host population level.
Collapse
Affiliation(s)
- Claire Loiseau
- Laboratoire Parasitologie Evolutive, Université Pierre et Marie Curie, CNRS UMR 7103, 7, quai St Bernard, Case 237, 75252 Paris Cedex 05, France
| | - Rima Zoorob
- Laboratoire de Génétique Moléculaire et Intégration des Fonctions Cellulaires, CNRS FRE 2937, 7 rue Guy Mocquet, 94801 Villejuif Cedex, France
| | - Alexandre Robert
- Laboratoire Conservation des Espèces, Restauration et Suivi des Populations, Muséum National d'Histoire Naturelle, UMR 5173 CNRS-MNHN-UPMC 55 rue Buffon, 75005 Paris, France
| | - Olivier Chastel
- Centre d'Etudes Biologique de Chizé, CNRS UPR 1934, 79360 Beauvoir-sur-Niort, France
| | - Romain Julliard
- Laboratoire Conservation des Espèces, Restauration et Suivi des Populations, Muséum National d'Histoire Naturelle, UMR 5173 CNRS-MNHN-UPMC 55 rue Buffon, 75005 Paris, France
| | - Gabriele Sorci
- BioGéoSciences, Université de Bourgogne, CNRS UMR 5561, 6 Boulevard Gabriel, 21000 Dijon, France
| |
Collapse
|
40
|
Laine AL, Burdon JJ, Dodds PN, Thrall PH. Spatial variation in disease resistance: from molecules to metapopulations. THE JOURNAL OF ECOLOGY 2011; 99:96-112. [PMID: 21243068 PMCID: PMC3020101 DOI: 10.1111/j.1365-2745.2010.01738.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Variation in disease resistance is a widespread phenomenon in wild plant-pathogen associations. Here, we review current literature on natural plant-pathogen associations to determine how diversity in disease resistance is distributed at different hierarchical levels - within host individuals, within host populations, among host populations at the metapopulation scale and at larger regional scales.We find diversity in resistance across all spatial scales examined. Furthermore, variability seems to be the best counter-defence of plants against their rapidly evolving pathogens. We find that higher diversity of resistance phenotypes also results in higher levels of resistance at the population level.Overall, we find that wild plant populations are more likely to be susceptible than resistant to their pathogens. However, the degree of resistance differs strikingly depending on the origin of the pathogen strains used in experimental inoculation studies. Plant populations are on average 16% more resistant to allopatric pathogen strains than they are to strains that occur within the same population (48 % vs. 32 % respectively).Pathogen dispersal mode affects levels of resistance in natural plant populations with lowest levels detected for hosts of airborne pathogens and highest for waterborne pathogens.Detailed analysis of two model systems, Linum marginale infected by Melampsora lini, and Plantago lanceolata infected by Podosphaera plantaginis, show that the amount of variation in disease resistance declines towards higher spatial scales as we move from individual hosts to metapopulations, but evaluation of multiple spatial scales is needed to fully capture the structure of disease resistance.Synthesis: Variation in disease resistance is ubiquitous in wild plant-pathogen associations. While the debate over whether the resistance structure of plant populations is determined by pathogen-imposed selection versus non-adaptive processes remains unresolved, we do report examples of pathogen-imposed selection on host resistance. Here we highlight the importance of measuring resistance across multiple spatial scales, and of using sympatric strains when looking for signs of coevolution in wild plant-pathogen interactions.
Collapse
Affiliation(s)
- Anna-Liisa Laine
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
- Metapopulation Research Group, Department of Biosciences, PO Box 65, FI-00014, University of Helsinki, Finland
| | - Jeremy J. Burdon
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| | - Peter N. Dodds
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| | - Peter H. Thrall
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| |
Collapse
|
41
|
Brown JKM, Tellier A. Plant-parasite coevolution: bridging the gap between genetics and ecology. ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:345-67. [PMID: 21513455 DOI: 10.1146/annurev-phyto-072910-095301] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We review current ideas about coevolution of plants and parasites, particularly processes that generate genetic diversity. Frequencies of host resistance and parasite virulence alleles that interact in gene-for-gene (GFG) relationships coevolve in the familiar boom-and-bust cycle, in which resistance is selected when virulence is rare, and virulence is selected when resistance is common. The cycle can result in stable polymorphism when diverse ecological and epidemiological factors cause negative direct frequency-dependent selection (ndFDS) on host resistance, parasite virulence, or both, such that the benefit of a trait to fitness declines as its frequency increases. Polymorphism can also be stabilized by overdominance, when heterozygous hosts have greater resistance than homozygotes to diverse pathogens. Genetic diversity can also persist in the form of statistical polymorphism, sustained by random processes acting on gene frequencies and population size. Stable polymorphism allows alleles to be long-lived and genetic variation to be detectable in natural populations. In agriculture, many of the factors promoting stability in host-parasite interactions have been lost, leading to arms races of host defenses and parasite effectors.
Collapse
Affiliation(s)
- James K M Brown
- Department of Disease and Stress Biology, John Innes Center, Colney, Norwich, NR4 7UH, United Kingdom.
| | | |
Collapse
|
42
|
Hoebe PN, Stift M, Holub EB, Mable BK. The effect of mating system on growth of Arabidopsis lyrata in response to inoculation with the biotrophic parasite Albugo candida. J Evol Biol 2010; 24:391-401. [PMID: 21091813 DOI: 10.1111/j.1420-9101.2010.02177.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The effects of variation in host reproductive systems on response to pathogens are not well understood. We inoculated individuals from outcrossing and inbreeding populations of North American Arabidopsis lyrata with Albugo candida (white blister rust) to test the effect of mating system and heterozygosity on disease response. We observed three host infection phenotypes, classified as fully resistant, partially resistant and fully susceptible. Overall, inbreeding populations had more susceptible and fewer partially resistant individuals than outcrossing populations, but the highest proportion of resistant individuals was found in two of the inbreeding populations. Mating system did not affect relative growth rate of inoculated plants, but there were strong effects of population and infection phenotype. We conclude that mating system per se does not determine the resistance of natural A. lyrata populations to infection by Albugo, but that the increased variability in responses among inbreeding populations may be due to reduced effective population size.
Collapse
Affiliation(s)
- P N Hoebe
- Division of Ecology and Evolutionary Biology, University of Glasgow, Glasgow, UK
| | | | | | | |
Collapse
|
43
|
Guivier E, Galan M, Salvador AR, Xuéreb A, Chaval Y, Olsson GE, Essbauer S, Henttonen H, Voutilainen L, Cosson JF, Charbonnel N. Tnf-α expression and promoter sequences reflect the balance of tolerance/resistance to Puumala hantavirus infection in European bank vole populations. INFECTION GENETICS AND EVOLUTION 2010; 10:1208-17. [PMID: 20691810 DOI: 10.1016/j.meegid.2010.07.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 07/12/2010] [Accepted: 07/29/2010] [Indexed: 01/17/2023]
Abstract
The tumor necrosis factor-alpha (TNF-α) influences the ability to limit parasite infection but its over-production might result in inflammatory disorders. The level of Tnf-α gene expression could thus mediate a balance of tolerance/resistance to infections. This study focused on Puumala hantavirus (PUUV) infection in its rodent host, the bank vole (Myodes glareolus). In humans, PUUV is responsible of a mild form of hemorrhagic fever with renal syndrome, nephropathia epidemica (NE). The severity of NE is associated with an over-production of TNF-α. By contrast, PUUV infection in bank vole is chronic and asymptomatic. It is likely that different coevolutionary histories between PUUV and its hosts could lead to different balances of resistance/tolerance to PUUV infection, at least partly mediated by variable production levels of TNF-α. We investigated the hypothesis that bank voles from PUUV endemic areas should exhibit higher levels of tolerance, i.e. lower levels of TNF-α production, than bank voles from areas where PUUV prevalence is low. For this purpose, we analysed variations of Tnf-α gene expression and promoter sequences among European populations of bank voles. Our results revealed an absence of up-regulation of Tnf-α gene expression in PUUV infected bank voles and significant differences in Tnf-α gene expression level with regard to PUUV endemicity. These results corroborated the hypothesis of different balances of tolerance/resistance to PUUV. Two single-nucleotide polymorphism genotypes within the Tnf-α promoter (-302 GG/GG and -296 A/A) were associated with higher Tnf-α gene expression and were more frequent in non-endemic areas. This study emphasized the potential influence of selection acting on TNF-α production and mediating a tolerance/resistance balance to PUUV in bank voles. Further investigations, including the role of phenotypic plasticity and parasite communities on Tnf-α expression levels, should provide important keys to understand the prevalence of PUUV over Europe.
Collapse
Affiliation(s)
- Emmanuel Guivier
- INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro), Campus International de Baillarguet, CS 30016, Montferrier-sur-Lez Cedex, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The past is never dead. It's not even past William Faulkner (1951)
Bacteria can acquire heritable immunity to viral (phage) enemies by incorporating phage DNA into their own genome. This mechanism of anti-viral defence, known by the acronym CRISPR, simultaneously stores detailed information about current and past enemies and the evolved resistance to them. As a high-resolution genetic marker that is intimately tied with the host–pathogen interaction, the CRISPR system offers a unique, and relatively untapped, opportunity to study epidemiological and coevolutionary dynamics in microbial communities that were previously neglected because they could not be cultured in the laboratory. We briefly review the molecular mechanisms of CRISPR-mediated host–pathogen resistance, before assessing their potential importance for coevolution in nature, and their utility as a means of studying coevolutionary dynamics through metagenomics and laboratory experimentation.
Collapse
Affiliation(s)
- Pedro F Vale
- Institute of Evolutionary Biology, University of Edinburgh, The Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK.
| | | |
Collapse
|
45
|
Benesh DP. Developmental inflexibility of larval tapeworms in response to resource variation. Int J Parasitol 2009; 40:487-97. [PMID: 19853609 DOI: 10.1016/j.ijpara.2009.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 10/02/2009] [Accepted: 10/05/2009] [Indexed: 11/30/2022]
Abstract
The timing of habitat switching in organisms with complex life cycles is an important life history characteristic that is often influenced by the larval growth environment. Under starvation, longer developmental times are frequently observed, probably as a consequence of developmental thresholds, but prolonged ontogeny sometimes also occurs under good conditions, as organisms may take advantage of the large potential gains in body size. I investigated whether variation in growth conditions affects the larval development time of a complex life cycle tapeworm (Schistocephalus solidus) in its copepod first host. Moreover, I reviewed patterns of developmental plasticity in larval tapeworms to assess the generality of my findings. Copepod starvation weakly retarded parasite growth but did not affect development. Worms grew bigger in larger copepods, but they developed at a similar rate in large and small hosts. Thus, S. solidus does not delay ontogeny under good conditions nor does it fail to reach a developmental threshold under poor conditions. Although unusual in comparison to free-living organisms, such inflexibility is common in tapeworms. Plasticity, namely prolonged ontogeny, has been mainly observed at high infection intensities. For S. solidus, there were large cross-environment genetic correlations for development, suggesting there may be genetic constraints on the evolution of developmental plasticity.
Collapse
Affiliation(s)
- Daniel P Benesh
- Department of Evolutionary Ecology, Max-Planck-Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Plön, Germany.
| |
Collapse
|
46
|
Barrett LG, Thrall PH, Dodds PN, van der Merwe M, Linde CC, Lawrence GJ, Burdon JJ. Diversity and evolution of effector loci in natural populations of the plant pathogen Melampsora lini. Mol Biol Evol 2009; 26:2499-513. [PMID: 19633228 DOI: 10.1093/molbev/msp166] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Genetic variation for pathogen infectivity is an important driver of disease incidence and prevalence in both natural and managed systems. Here, we use the interaction between the rust pathogen, Melampsora lini, and two host plants, Linum marginale and Linum usitatissimum, to examine how host-pathogen interactions influence the maintenance of polymorphism in genes underlying pathogen virulence. Extensive sequence variation at two effector loci (AvrP123, AvrP4) was found in M. lini isolates collected from across the native range of L. marginale in Australia, as well as in isolates collected from a second host, the cultivated species L. usitatissimum. A highly significant excess of nonsynonymous compared with synonymous polymorphism was found at both loci, suggesting that diversifying selection is important for the maintenance of the observed sequence diversity. Agrobacterium-mediated transient transformation assays were used to demonstrate that variants of both the AvrP123 and AvrP4 genes are differentially recognized by resistance genes in L. marginale. We further characterized patterns of nucleotide variation at AvrP123 and AvrP4 in 10 local populations of M. lini infecting the wild host L. marginale. Populations were significantly differentiated with respect to allelic representation at the Avr loci, suggesting the possibility of local selection maintaining distinct genetic structures between pathogen populations, whereas limited diversity may be explained via selective sweeps and demographic bottlenecks. Together, these results imply that interacting selective and nonselective factors, acting across a broad range of scales, are important for the generation and maintenance of adaptively significant variation in populations of M. lini.
Collapse
Affiliation(s)
- Luke G Barrett
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT Australia.
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Accurate measures of parasite fitness are essential to study host-parasite evolution. Parasite fitness depends on several traits involved in establishing infection, growth and transmission. Individually, these traits provide a reasonable approximation of fitness, but they may also be under the shared control of both host and parasite genetics (G(H) x G(P) interactions), or be differentially sensitive to environmental variation. Using the natural host-parasite system Daphnia magna-Pasteuria ramosa, we performed experimental infections that incorporated host and parasite genetic variation at three different temperatures, and compared the measures of parasite fitness based only on growth rate, or incorporating the ability to infect. We found that infectivity was most important for parasite fitness and depended mainly on the combination of host and parasite genotypes. Variation in post-infection parasite growth and killing time depended on the parasite genotype and its interaction with temperature. These results highlight the merits of studies that can incorporate natural infection routes and emphasize that accurate measures of parasite fitness require knowledge of the genetic control and environmental sensitivity of more than one trait. In addition, no G(H) x G(P) x E interactions were present, suggesting that the potential for genetic specificities to drive frequency-dependent coevolution in this system is robust to thermal variation.
Collapse
|
48
|
Wolinska J, King KC. Environment can alter selection in host-parasite interactions. Trends Parasitol 2009; 25:236-44. [PMID: 19356982 DOI: 10.1016/j.pt.2009.02.004] [Citation(s) in RCA: 249] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 01/30/2009] [Accepted: 02/13/2009] [Indexed: 02/06/2023]
Abstract
Characteristics of hosts and parasites have a genetic basis, and thus can be shaped by coevolution. Infections measured under laboratory conditions have shown that the environment in which hosts and parasites interact might substantially affect the strength and specificity of selection. In addition, various components of host-parasite fitness are differentially altered by the environment. Despite this, environmental fluctuations are often excluded from experimental coevolutionary studies and theoretical models as 'noise'. Because most host-parasite interactions exist in heterogeneous environments, we argue that there is a need to incorporate fluctuating environments into future empirical and theoretical work on host-parasite coevolution.
Collapse
Affiliation(s)
- Justyna Wolinska
- Ludwig-Maximilians-Universität, Department Biologie II, Evolutionsökologie, Grosshaderner Str. 2, D-82152 Planegg-Martinsried, Germany.
| | | |
Collapse
|