1
|
Sukakul T, Bruze M, Mowitz M, Kiuru A, Svedman C. Allergic Contact Dermatitis to Linalool Hydroperoxides: Pitfalls in the Diagnostic Process-Findings from a Repeated Open Application Test Study. Dermatitis 2024; 35:373-379. [PMID: 38386591 DOI: 10.1089/derm.2023.0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Background: Increasing trends of oxidized linalool contact allergy have been reported. However, the impact of reactivity and dose in eliciting allergic contact Dermatitis caused by linalool hydroperoxides is insufficiently investigated. Objectives: To perform repeated open application tests (ROATs) using the real-world concentrations of linalool hydroperoxides in patients and control participants. Materials and Methods: Patients who previously had a positive (patients) and a negative (controls) patch test reaction to linalool hydroperoxides 1.0% in petrolatum were patch tested with a dilution series of linalool hydroperoxides preparations and asked to perform ROAT twice daily with 3 concentrations of linalool hydroperoxides creams and a negative control cream for 28 days. The creams contain 44, 140, and 440 PPM of linalool hydroperoxides, representing real-world doses reported in consumer products. Results: Of all 47 participants, 31 were linalool hydroperoxides contact allergy patients, and 16 were controls. One patient had a positive ROAT reaction in the area where cream at the highest concentration of linalool hydroperoxides was applied for 28 days. Conclusions: Repeated exposure to creams containing linalool hydroperoxides at real-life concentrations could rarely elicit an allergic reaction on intact skin after 4 weeks.
Collapse
Affiliation(s)
- Thanisorn Sukakul
- From the Department of Occupational and Environmental Dermatology, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Magnus Bruze
- From the Department of Occupational and Environmental Dermatology, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Martin Mowitz
- From the Department of Occupational and Environmental Dermatology, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Anna Kiuru
- From the Department of Occupational and Environmental Dermatology, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Cecilia Svedman
- From the Department of Occupational and Environmental Dermatology, Lund University, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
2
|
Sato H, Kato K, Koreishi M, Nakamura Y, Tsujino Y, Satoh A. Aromatic oil from lavender as an atopic dermatitis suppressant. PLoS One 2024; 19:e0296408. [PMID: 38181031 PMCID: PMC10769034 DOI: 10.1371/journal.pone.0296408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
In atopic dermatitis (AD), nerves are abnormally stretched near the surface of the skin, making it sensitive to itching. Expression of neurotrophic factor Artemin (ARTN) involved in such nerve stretching is induced by the xenobiotic response (XRE) to air pollutants and UV radiation products. Therefore, AD can be monitored by the XRE response. Previously, we established a human keratinocyte cell line stably expressing a NanoLuc reporter gene downstream of XRE. We found that 6-formylindolo[3,2-b]carbazole (FICZ), a tryptophan metabolite and known inducer of the XRE, increased reporter and Artemin mRNA expression, indicating that FICZ-treated cells could be a model for AD. Lavender essential oil has been used in folk medicine to treat AD, but the scientific basis for its use is unclear. In the present study, we investigated the efficacy of lavender essential oil and its major components, linalyl acetate and linalool, to suppress AD and sensitize skin using the established AD model cell line, and keratinocyte and dendritic cell activation assays. Our results indicated that lavender essential oil from L. angustifolia and linalyl acetate exerted a strong AD inhibitory effect and almost no skin sensitization. Our model is useful in that it can circumvent the practice of using animal studies to evaluate AD medicines.
Collapse
Affiliation(s)
- Haruna Sato
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Kosuke Kato
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Mayuko Koreishi
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yoshio Tsujino
- Graduate School of Science, Technology, and Innovation, Kobe University, Kobe, Hyogo, Japan
| | - Ayano Satoh
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| |
Collapse
|
3
|
Inan S, Ward SJ, Baltazar CT, Peruggia GA, Javed E, Nayak AP. Epicutaneous Sensitization to the Phytocannabinoid β-Caryophyllene Induces Pruritic Inflammation. Int J Mol Sci 2023; 24:14328. [PMID: 37762646 PMCID: PMC10532273 DOI: 10.3390/ijms241814328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, there has been increased accessibility to cannabis for recreational and medicinal use. Incidentally, there has been an increase in reports describing allergic reactions to cannabis including exacerbation of underlying asthma. Recently, multiple protein allergens were discovered in cannabis, yet these fail to explain allergic sensitization in many patients, particularly urticaria and angioedema. Cannabis has a rich chemical profile including cannabinoids and terpenes that possess immunomodulatory potential. We examined whether major cannabinoids of cannabis such as cannabidiol (CBD) and the bicyclic sesquiterpene beta-caryophyllene (β-CP) act as contact sensitizers. The repeated topical application of mice skin with β-CP at 10 mg/mL (50 µL) induced an itch response and dermatitis at 2 weeks in mice, which were sustained for the period of study. Histopathological analysis of skin tissues revealed significant edema and desquamation for β-CP at 10 mg/mL. For CBD and β-CP, we observed a dose-dependent increase in epidermal thickening with profound thickening observed for β-CP at 10 mg/mL. Significant trafficking of CD11b cells was observed in various compartments of the skin in response to treatment with β-CP in a concentration-dependent manner. Mast cell trafficking was restricted to β-CP (10 mg/mL). Mouse proteome profiler cytokine/chemokine array revealed upregulation of complement C5/5a (anaphylatoxin), soluble intracellular adhesion molecule-1 (sICAM-1) and IL-1 receptor antagonist (IL-1RA) in animals dosed with β-CP (10 mg/mL). Moreover, we observed a dose-dependent increase in serum IgE in animals dosed with β-CP. Treatment with β-CP (10 mg/mL) significantly reduced filaggrin expression, an indicator of barrier disruption. In contrast, treatment with CBD at all concentrations failed to evoke scratching and dermatitis in mice and did not result in increased serum IgE. Further, skin tissues were devoid of any remarkable features, although at 10 mg/mL CBD we did observe the accumulation of dermal CD11b cells in skin tissue sections. We also observed increased filaggrin staining in mice repeatedly dosed with CBD (10 mg/mL). Collectively, our studies indicate that repeated exposure to high concentrations of β-CP can induce dermatitis-like pathological outcomes in mice.
Collapse
Affiliation(s)
- Saadet Inan
- Department of Neural Sciences, Center for Substance Abuse, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (S.I.); (S.J.W.); (C.T.B.)
| | - Sara J. Ward
- Department of Neural Sciences, Center for Substance Abuse, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (S.I.); (S.J.W.); (C.T.B.)
| | - Citlalli T. Baltazar
- Department of Neural Sciences, Center for Substance Abuse, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (S.I.); (S.J.W.); (C.T.B.)
| | - Gabrielle A. Peruggia
- Department of Medicine, Center for Translational Medicine & Division of Pulmonary, Allergy and Critical Care Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA 19107, USA (E.J.)
| | - Elham Javed
- Department of Medicine, Center for Translational Medicine & Division of Pulmonary, Allergy and Critical Care Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA 19107, USA (E.J.)
| | - Ajay P. Nayak
- Department of Medicine, Center for Translational Medicine & Division of Pulmonary, Allergy and Critical Care Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA 19107, USA (E.J.)
| |
Collapse
|
4
|
Zheng R, Zhao J, Ma L, Qie X, Yan X, Hao C. Behavioral, Electrophysiological, and Toxicological Responses of Plutella xylostella to Extracts from Angelica pubescens. INSECTS 2023; 14:613. [PMID: 37504619 PMCID: PMC10380822 DOI: 10.3390/insects14070613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
Plutella xylostella L. is a destructive pest affecting cruciferous vegetables, causing massive economic losses worldwide. Plant-based insecticides are considered promising insect control agents. The Angelica pubescens extract inhibited female oviposition, with an oviposition deterrence index (ODI) of 61.65% at 12.5 mg/mL. We aimed to identify the bioactive compounds in A. pubescens extract. The compounds from A. pubescens extract were analyzed using LC-MS techniques. The toxicity and behavioral responses of larvae and adults of P. xylostella to ten compounds were investigated. We found that the caryophyllene oxide and 3,4-dimethoxycinnamic acid inhibited female oviposition; the ODIs were 98.31% and 97.59% at 1.25 mg/mL, respectively. The A. pubescens extract, caryophyllene oxide, and 3,4-dimethoxycinnamic acid caused larval mortality, with LC50 values of 21.31, 4.56, and 5.52 mg/mL, respectively. The EAG response of females was higher than that of males under A. pubescens extract conditions, while the EAG response of males was higher than that of females in caryophyllene oxide and 3,4-dimethoxycinnamic acid conditions. The A. pubescens extract and caryophyllene oxide showed repellent activity against both female and male adults, while the 3,4-dimethoxycinnamic acid did not elicit any notable behavioral responses from P. xylostella adults. A. pubescens extract and caryophyllene oxide are potential insecticides, oviposition deterrents, and behavioral regulators against P. xylostella, and they could be potential candidates for the development of biological insecticides to control P. xylostella.
Collapse
Affiliation(s)
- Ruirui Zheng
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030800, China
| | - Jinyu Zhao
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030800, China
| | - Li Ma
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030800, China
| | - Xingtao Qie
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030800, China
| | - Xizhong Yan
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030800, China
| | - Chi Hao
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030800, China
| |
Collapse
|
5
|
Wiart C, Kathirvalu G, Raju CS, Nissapatorn V, Rahmatullah M, Paul AK, Rajagopal M, Sathiya Seelan JS, Rusdi NA, Lanting S, Sulaiman M. Antibacterial and Antifungal Terpenes from the Medicinal Angiosperms of Asia and the Pacific: Haystacks and Gold Needles. Molecules 2023; 28:molecules28093873. [PMID: 37175283 PMCID: PMC10180233 DOI: 10.3390/molecules28093873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 05/15/2023] Open
Abstract
This review identifies terpenes isolated from the medicinal Angiosperms of Asia and the Pacific with antibacterial and/or antifungal activities and analyses their distribution, molecular mass, solubility, and modes of action. All data in this review were compiled from Google Scholar, PubMed, Science Direct, Web of Science, ChemSpider, PubChem, and library searches from 1968 to 2022. About 300 antibacterial and/or antifungal terpenes were identified during this period. Terpenes with a MIC ≤ 2 µg/mL are mostly amphiphilic and active against Gram-positive bacteria, with a molecular mass ranging from about 150 to 550 g/mol, and a polar surface area around 20 Ų. Carvacrol, celastrol, cuminol, dysoxyhainic acid I, ent-1β,14β-diacetoxy-7α-hydroxykaur-16-en-15-one, ergosterol-5,8-endoperoxide, geranylgeraniol, gossypol, 16α-hydroxy-cleroda-3,13 (14)Z-diene-15,16-olide, 7-hydroxycadalene, 17-hydroxyjolkinolide B, (20R)-3β-hydroxy-24,25,26,27-tetranor-5α cycloartan-23,21-olide, mansonone F, (+)-6,6'-methoxygossypol, polygodial, pristimerin, terpinen-4-ol, and α-terpineol are chemical frameworks that could be candidates for the further development of lead antibacterial or antifungal drugs.
Collapse
Affiliation(s)
- Christophe Wiart
- Institute for Tropical Biology & Conservation, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Geethanjali Kathirvalu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chandramathi Samudi Raju
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Veeranoot Nissapatorn
- Research Excellence Centre for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh
| | - Alok K Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Mogana Rajagopal
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | | | - Nor Azizun Rusdi
- Institute for Tropical Biology & Conservation, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Scholastica Lanting
- Institute for Tropical Biology & Conservation, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Mazdida Sulaiman
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
6
|
Beuning CN, Lovestead TM, Huber ML, Widegren JA. Vapor pressure measurements on linalool using a rapid and inexpensive method suitable for cannabis-associated terpenes †. JOURNAL OF CHEMICAL AND ENGINEERING DATA 2023; 68:3289-3297. [PMID: 38312736 PMCID: PMC10836221 DOI: 10.1021/acs.jced.3c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Vapor pressure (psat) data are needed to assess the potential use of terpenes as breath markers of recent cannabis use. Herein, a recently introduced gas-saturation method for psat measurements, known as dynamic vapor microextraction (DVME), was used to measure psat for the terpene (±)-3,7-dimethylocta-1,6-dien-3-ol, commonly known as linalool. The DVME apparatus utilizes inexpensive and commercially available components, a low internal volume, and helium carrier gas to minimize nonideal mixture behavior. In the temperature range from 314 K to 354 K, DVME-based measurements of the psat of linalool ranged from 81 Pa to 1250 Pa. With a measurement period of 30 min, the combined standard uncertainty of these measurements ranged from 0.0358·psat to 0.0584·psat, depending on temperature. The DVME-based measurements agree with a Wagner correlation of available literature data. We demonstrate that DVME produces accurate results for values of psat that are 200 times higher than in the DVME validation study with n-eicosane (C20H42). The oxidative stability of linalool was improved by the addition of 0.2 mass % of the antioxidant tert-butylhydroquinone.
Collapse
Affiliation(s)
- Cheryle N Beuning
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, MS 647.07, 325 Broadway, Boulder, CO 80305
| | - Tara M Lovestead
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, MS 647.07, 325 Broadway, Boulder, CO 80305
| | - Marcia L Huber
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, MS 647.07, 325 Broadway, Boulder, CO 80305
| | - Jason A Widegren
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, MS 647.07, 325 Broadway, Boulder, CO 80305
| |
Collapse
|
7
|
Krijl RC, Ipenburg NA, Franken SM, Rustemeyer T. What is the added value of patch testing with 30 fragrance allergens in addition to the European baseline series? Contact Dermatitis 2022; 86:390-397. [PMID: 35122278 PMCID: PMC9302649 DOI: 10.1111/cod.14065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 11/29/2022]
Abstract
Background Patch testing with the fragrance allergy markers in the European baseline series (EBS) does not identify all patients with fragrance allergy. Hydroperoxides of linalool and limonene have been shown to be useful allergens in detecting fragrance sensitization. Objectives To evaluate the added value of testing with 30 fragrance allergens in addition to the EBS. Methods All patients with suspected fragrance allergy who underwent patch testing at the Amsterdam University Medical Centers between November 2019 and January 2021 to the EBS and fragrance series were included. Results Of 323 patients tested, 162 (50.2%) were found to be fragrance sensitized. The most sensitizing single allergens were the hydroperoxides of linalool (1.0 and 0.5% pet.) and limonene (0.3 and 0.2% pet.). Testing with the hydroperoxides of linalool and limonene identified 62 fragrance‐sensitized patients (38.3%) who could not be detected by the common fragrance markers. Of all fragrance‐sensitized patients, 21 (13.0%) would have been missed when not testing with the fragrance series. Conclusions Patch testing with the fragrance series in addition to the EBS is valuable. To reduce the risk of false‐negative reactions, it is advisable to test the hydroperoxides of linalool and limonene.
Highlights
Of the 323 patients with suspected fragrance allergy, 162 (50.2%) were found to be fragrance sensitized. Testing with the hydroperoxides of linalool and limonene identified 62 fragrance‐sensitized patients (38.3%) who could not be detected by the European baseline series (EBS) fragrance markers. When not tested with the fragrance series, 21 (13.0%) of the sensitized patients would have been missed. Routinely performing patch testing with the fragrance series in addition to linalool and limonene hydroperoxide as part of the EBS is recommended.
Collapse
Affiliation(s)
- Rosalie C Krijl
- Department of Dermatology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Norbertus A Ipenburg
- Department of Dermatology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Sylvie M Franken
- Department of Dermatology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Thomas Rustemeyer
- Department of Dermatology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Caryophyllene and caryophyllene oxide: a variety of chemical transformations and biological activities. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01865-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Sukakul T, Bruze M, Mowitz M, Antelmi A, Bergendorff O, Björk J, Dahlin J, Hamnerius N, Hauksson I, Isaksson M, Lejding T, Pontén A, Svedman C. Contact allergy to oxidized linalool and oxidized limonene: Patch testing in consecutive patients with dermatitis. Contact Dermatitis 2021; 86:15-24. [PMID: 34561893 DOI: 10.1111/cod.13980] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/26/2021] [Accepted: 09/19/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Contact allergy to oxidized (ox.) linalool and ox. limonene has been reported to have a high prevalence, raising the question of inclusion into the baseline series. However, several important issues should be clarified and further investigated before inclusion can be warranted. OBJECTIVES To report the trends of ox. terpenes allergy in patients with dermatitis, features of the patch test reactions, and clinical characteristics of the patients. METHODS A retrospective analysis of 5773 patients was performed. All patients were patch tested with baseline series, individual ingredients of fragrance mix I and II, ox. linalool, and ox. limonene from 2013 to 2020. RESULTS The prevalence rates of contact allergy to ox. linalool and ox. limonene were 7.0% and 5.1%, respectively. Significantly increasing trends of contact allergy were observed. More than 95% of contact allergy cases were identified on Day 3/4. Patients with contact allergy to ox. linalool and ox. limonene were significantly younger than those with contact allergy to other fragrances and were predominantly female. Strong reactions were associated with older age and multiple fragrance allergies. CONCLUSIONS Contact allergy to ox. linalool and ox. limonene is becoming increasingly important, and findings show intriguing features. More studies concerning the clinical relevance before recommending these substances for screening are required.
Collapse
Affiliation(s)
- Thanisorn Sukakul
- Department of Occupational and Environmental Dermatology, Lund University, Skåne University Hospital, Malmö, Sweden.,Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Magnus Bruze
- Department of Occupational and Environmental Dermatology, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Martin Mowitz
- Department of Occupational and Environmental Dermatology, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Annarita Antelmi
- Department of Occupational and Environmental Dermatology, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Ola Bergendorff
- Department of Occupational and Environmental Dermatology, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Jonas Björk
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden.,Clinical Studies Sweden, Forum South, Skåne University Hospital, Lund, Sweden
| | - Jakob Dahlin
- Department of Occupational and Environmental Dermatology, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Nils Hamnerius
- Department of Occupational and Environmental Dermatology, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Inese Hauksson
- Department of Occupational and Environmental Dermatology, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Marléne Isaksson
- Department of Occupational and Environmental Dermatology, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Tina Lejding
- Department of Occupational and Environmental Dermatology, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Ann Pontén
- Department of Occupational and Environmental Dermatology, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Cecilia Svedman
- Department of Occupational and Environmental Dermatology, Lund University, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
10
|
Surendran S, Qassadi F, Surendran G, Lilley D, Heinrich M. Myrcene-What Are the Potential Health Benefits of This Flavouring and Aroma Agent? Front Nutr 2021; 8:699666. [PMID: 34350208 PMCID: PMC8326332 DOI: 10.3389/fnut.2021.699666] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
Myrcene (β-myrcene) is an abundant monoterpene which occurs as a major constituent in many plant species, including hops and cannabis. It is a popular flavouring and aroma agent (food additive) used in the manufacture of food and beverages. This review aims to report on the occurrence, biological and toxicological profile of β-myrcene. The main reported biological properties of β-myrcene-anxiolytic, antioxidant, anti-ageing, anti-inflammatory, analgesic properties-are discussed, with the mechanisms of activity. Here we also discuss recent data regarding the safety of β-myrcene. Overall, β-myrcene has shown promising health benefits in many animal studies. However, studies conducted in humans is lacking. In the future, there is potential for the formulation and production of non-alcoholic beers, functional foods and drinks, and cannabis extracts (low in THC) rich in β-myrcene.
Collapse
Affiliation(s)
- Shelini Surendran
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Fatimah Qassadi
- Pharmacognosy and Phytotherapy, University College London (UCL) School of Pharmacy, London, United Kingdom
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | | | | | - Michael Heinrich
- Pharmacognosy and Phytotherapy, University College London (UCL) School of Pharmacy, London, United Kingdom
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
11
|
Heeley-Hill AC, Grange SK, Ward MW, Lewis AC, Owen N, Jordan C, Hodgson G, Adamson G. Frequency of use of household products containing VOCs and indoor atmospheric concentrations in homes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:699-713. [PMID: 34037627 DOI: 10.1039/d0em00504e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Volatile organic compounds (VOCs) are a key class of atmospheric emission released from highly complex petrochemical, transport and solvent sources both outdoors and indoors. This study established the concentrations and speciation of VOCs in 60 homes (204 individuals, 360 × 72 h samples, 40 species) in summer and winter, along with outdoor controls. Self-reported daily statistics were collected in each home on the use of cleaning, household and personal care products, all of which are known to release VOCs. Frequency of product use varied widely: deodorants: 2.9 uses home per day; sealant-mastics 0.02 uses home per day. The total concentration of VOCs indoors (range C2-C10) was highly variable between homes e.g. range 16.6-8150 μg m-3 in winter. Indoor concentrations of VOCs exceeded outdoor for 84% of households studied in summer and 100% of homes in winter. The most abundant VOCs found indoors in this study were n-butane (wintertime range: 1.5-4630 μg m-3), likely released as aerosol propellant, ethanol, acetone and propane. The cumulative use VOC-containing products over multiday timescales by occupants provided little predictive power to infer 72 hour averaged indoor concentrations. However, there was weak covariance between the cumulative usage of certain products and individual VOCs. From a domestic emissions perspective, reducing the use of hydrocarbon-based aerosol propellants indoors would likely have the largest impact.
Collapse
Affiliation(s)
- Aiden C Heeley-Hill
- Wolfson Atmospheric Chemistry Laboratories, University of York, York, YO10 5DD, UK
| | - Stuart K Grange
- Wolfson Atmospheric Chemistry Laboratories, University of York, York, YO10 5DD, UK
| | - Martyn W Ward
- Wolfson Atmospheric Chemistry Laboratories, University of York, York, YO10 5DD, UK
| | - Alastair C Lewis
- National Centre for Atmospheric Science, University of York, York, YO10 5DD, UK.
| | - Neil Owen
- Givaudan UK Ltd, Kennington Road, TN24 0LT Ashford, UK
| | | | - Gemma Hodgson
- QI Statistics, Overdene House, 49 Church Street, Theale, Berkshire RG7 5BX, UK
| | - Greg Adamson
- Givaudan Fragrances Corp., 717 Ridgedale Ave, East Hanover, New Jersey 07936, USA
| |
Collapse
|
12
|
Contact Dermatitis From Gum Mastic (Pistacia lentiscus) and Gum Storax (Liquidambar styraciflua) in Mastisol-Allergic Patients. Dermatitis 2020; 32:430-436. [PMID: 33273244 DOI: 10.1097/der.0000000000000702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Mastisol Liquid Adhesive is widely used on the skin, especially after surgical procedures. It contains gum mastic, gum storax, methyl salicylate, and ethanol. OBJECTIVE The aims of the study were to review our experience patch testing patients allergic to Mastisol and to assess coreacting substances. METHODS We identified 18 patients who were allergic to Mastisol. Most of these had a history of postoperative or cardiac electrode dermatitis and underwent patch testing with multiple surgically related substances, including ingredients of Mastisol, compound tincture of benzoin, and fragrance-related ingredients and botanicals. RESULTS AND CONCLUSIONS Among Mastisol-allergic patients, 13 (72%) of 18 were allergic to gum mastic, whereas 7 (44%) of 16 were allergic to gum storax. There was frequent coreactivity with various fragrance-related materials, including Majantol, Styrax benzoin, Myroxylon balsamum, Myroxylon pereirae, propolis, and others. Two gum mastic-allergic patients had positive patch tests with hydroperoxides of linalool and several other linalool-containing essential oils. As gum mastic contains linalool, it may explain some gum mastic reactions. Among patients without a history of postoperative contact dermatitis, 1 (0.4%) of 250 was patch test positive for gum mastic. This patient had allergic contact dermatitis from fragrances, so the gum mastic reaction was likely a true-positive relevant reaction.
Collapse
|
13
|
Kothalawala SD, Edward D, Harasgama JC, Ranaweera L, Weerasena OVDSJ, Niloofa R, Ratnasooriya WD, Premakumara GAS, Handunnetti SM. Immunomodulatory Activity of a Traditional Sri Lankan Concoction of Coriandrum sativum L. and Coscinium fenestratum G. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:9715060. [PMID: 33005205 PMCID: PMC7509570 DOI: 10.1155/2020/9715060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the immunomodulatory activity of a traditional Sri Lankan concoction of Coriandrum sativum L. and Coscinium fenestratum (Gaertn.) Colebr., which is a Sri Lankan traditional medicine used to relieve inflammation and cold. METHODS In vivo anti-inflammatory activity was tested using carrageenan-induced rat paw-edema model. Mechanism of anti-inflammatory activity was assessed by investigating the production of nitric oxide (NO), expression of iNOS enzyme, and reactive oxygen species (ROS) by rat peritoneal cells. The membrane stabilizing activity was also tested. The antibody response was determined by assessing the specific haemagglutination antibodies raised against sheep red blood cells. RESULTS The three doses of freeze-dried concoction used ((human equivalent dose (HED)-183 mg/kg) 2 × HED and 1/2HED; n = 6 rats/group) showed significant inhibition of paw edema compared to water control at 3rd-5th hours (p < 0.05). Both HED and 1/2HED exhibited marked anti-inflammatory activity (72-83% inhibition at 4th-5th hours; p < 0.05). The HED of the concoction showed significant inhibition of NO (77.5 ± 0.73%, p < 0.001) and ROS production (26.9 ± 2.55%; p < 0.01) by rat peritoneal cells. Inhibition of NO production in the concoction treated rat peritoneal cells was confirmed by the lack of iNOS expression. The concoction also exhibited significant membrane stabilizing activity (IC50 = 0.0006 μg/ml; p = 0.001). HED resulted in a significantly high induction of specific antibody production against SRBC antigens as detected by SRBC haemagglutination assay (mean day 14 titers 253.3 compared to control: 66.7) (p < 0.01). CONCLUSIONS The traditional Sri Lankan concoction of C. sativum and C. fenestratum demonstrated potent in vivo anti-inflammatory activity, significant reduction of ROS, and NO production by rat peritoneal cells and the lack of iNOS expression confirmed the low NO production. The increased membrane stability also supports the anti-inflammatory activity of the concoction. Further, this concoction induced a significantly high antibody response reflecting its immunostimulatory activity. Together these results scientifically validate the therapeutic use of the concoction of C. sativum and C. fenestratum in Sri Lankan traditional medicinal system for immunomodulatory effects.
Collapse
Affiliation(s)
| | - Daniya Edward
- Institute of Biochemistry, Molecular Biology and Biotechnology (IBMBB), University of Colombo, Colombo, Sri Lanka
| | - Jayamini C Harasgama
- Institute of Biochemistry, Molecular Biology and Biotechnology (IBMBB), University of Colombo, Colombo, Sri Lanka
| | - Loshini Ranaweera
- Institute of Biochemistry, Molecular Biology and Biotechnology (IBMBB), University of Colombo, Colombo, Sri Lanka
| | | | - Roshan Niloofa
- Department of Zoology and Environmental Science, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | | | | | - Shiroma M Handunnetti
- Institute of Biochemistry, Molecular Biology and Biotechnology (IBMBB), University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
14
|
|
15
|
Therapeutic Potential of Volatile Terpenes and Terpenoids from Forests for Inflammatory Diseases. Int J Mol Sci 2020; 21:ijms21062187. [PMID: 32235725 PMCID: PMC7139849 DOI: 10.3390/ijms21062187] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Abstract
Forest trees are a major source of biogenic volatile organic compounds (BVOCs). Terpenes and terpenoids are known as the main BVOCs of forest aerosols. These compounds have been shown to display a broad range of biological activities in various human disease models, thus implying that forest aerosols containing these compounds may be related to beneficial effects of forest bathing. In this review, we surveyed studies analyzing BVOCs and selected the most abundant 23 terpenes and terpenoids emitted in forested areas of the Northern Hemisphere, which were reported to display anti-inflammatory activities. We categorized anti-inflammatory processes related to the functions of these compounds into six groups and summarized their molecular mechanisms of action. Finally, among the major 23 compounds, we examined the therapeutic potentials of 12 compounds known to be effective against respiratory inflammation, atopic dermatitis, arthritis, and neuroinflammation among various inflammatory diseases. In conclusion, the updated studies support the beneficial effects of forest aerosols and propose their potential use as chemopreventive and therapeutic agents for treating various inflammatory diseases.
Collapse
|
16
|
Maayah ZH, Takahara S, Ferdaoussi M, Dyck JRB. The molecular mechanisms that underpin the biological benefits of full-spectrum cannabis extract in the treatment of neuropathic pain and inflammation. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165771. [PMID: 32201189 DOI: 10.1016/j.bbadis.2020.165771] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/09/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023]
Abstract
Cannabis has been shown to be beneficial in the treatment of pain and inflammatory diseases. The biological effect of cannabis is mainly attributed to two major cannabinoids, tetrahydrocannabinol and cannabidiol. In the majority of studies to-date, a purified tetrahydrocannabinol and cannabidiol alone or in combination have been extensively examined in many studies for the treatment of numerous disorders including pain and inflammation. However, few studies have investigated the biological benefits of full-spectrum cannabis plant extract. Given that cannabis is known to generate a large number of cannabinoids along with numerous other biologically relevant products including terpenes, studies involving purified tetrahydrocannabinol and/or cannabidiol do not consider the potential biological benefits of the full-spectrum cannabis extracts. This may be especially true in the case of cannabis as a potential treatment of pain and inflammation. Herein, we review the pre-clinical physiological and molecular mechanisms in biological systems that are affected by cannabis.
Collapse
Affiliation(s)
- Zaid H Maayah
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Shingo Takahara
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mourad Ferdaoussi
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jason R B Dyck
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
17
|
|
18
|
Burger P, Plainfossé H, Brochet X, Chemat F, Fernandez X. Extraction of Natural Fragrance Ingredients: History Overview and Future Trends. Chem Biodivers 2019; 16:e1900424. [PMID: 31419369 DOI: 10.1002/cbdv.201900424] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/16/2019] [Indexed: 11/06/2022]
Abstract
For centuries, perfumes consisted in a combination of natural ingredients, mainly of plant origin. From the 19th century on, the advent of organic synthesis enabled the deployment of multiple synthetic olfactory notes, enriching significantly the perfumers' portfolio. Chemistry is ever since the foundation of modern perfumery. However, sustainable-minded consumers, massively rejecting synthetics for safety and ecological issues, engaged a global return to nature in numerous sectors, and the fragrance industry is not outdone. Sustainable extraction of natural products, making use of innovative technologies, process intensification and agro-based solvents, constitutes the answer to develop eco-conceived fragrant ingredients covering every olfactory family without endangering biodiversity any further. The objective of this review is to draw a clear picture of where those technological advances are today and to assess the ones that may be effectively transposed at the industrial scale tomorrow.
Collapse
Affiliation(s)
- Pauline Burger
- NissActive, Pépinière Innovagrasse, Espace Jacques-Louis Lions, 4 traverse Dupont, FR-06130, Grasse, France
| | - Hortense Plainfossé
- NissActive, Pépinière Innovagrasse, Espace Jacques-Louis Lions, 4 traverse Dupont, FR-06130, Grasse, France.,Université Côte d'Azur, CNRS, ICN, Parc Valrose, FR-06108, Nice cedex 2, France
| | - Xavier Brochet
- Firmenich Grasse, ZI les bois de Grasse, 14 avenue Joseph Honoré Isnard, FR-06130, Grasse, France
| | - Farid Chemat
- Avignon University, INRA, UMR408, GREEN Extraction Team, FR-84000, Avignon, France
| | - Xavier Fernandez
- Université Côte d'Azur, CNRS, ICN, Parc Valrose, FR-06108, Nice cedex 2, France
| |
Collapse
|
19
|
Chen J, Song B, Pei X, Cui Z, Xie D. Rheological Behavior of Environmentally Friendly Viscoelastic Solutions Formed by a Rosin-Based Anionic Surfactant. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2004-2011. [PMID: 30715867 DOI: 10.1021/acs.jafc.8b06985] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
It is of great significance to explore novel applications of renewable resources. In this study, a rosin-based anionic surfactant (abbreviated R-11-2-Na), which contains a large hydrophobic group of 30 carbon atoms, was synthesized. R-11-2-Na forms wormlike micelles in the presence of the equimolar organic salt choline chloride, endowing solutions with strong viscoelasticity. The wormlike micellar solutions were investigated using rheology, small-angle X-ray scattering, and freeze-fracture transmission electron microscopy (FF-TEM) methods at 25 °C. Due to the strong van der Waals interactions caused by the large hydrophobic group contained in R-11-2-Na, the zero-shear viscosity (η0) of solutions showed extremely strong dependence on the concentration with an exponent of 23.4. The cross-sectional diameter of the wormlike micelles in the present system was significantly larger than that of the wormlike micelles formed by surfactants containing conventional alkyl tails. This finding may be attributed to the steric hindrance brought by the bulky and rigid dehydroabietic acid unit in the hydrophobic part. The wormlike micelles also showed high tolerance to the organic salt concentration. The present study reveals the notable qualities of rosin-based derivatives in forming complex fluids and facilitates new utilizations of forest resources.
Collapse
Affiliation(s)
- Jingjing Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Binglei Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Xiaomei Pei
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Zhenggang Cui
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Danhua Xie
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Department of Chemistry , Ningde Normal University , Ningde , Fujian 352100 , China
| |
Collapse
|
20
|
Tkachev AV. Problems of the Qualitative and Quantitative Analysis of Plant Volatiles. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162018070142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Paulsen E, Thormann H, Vestergaard L. Eucalyptus species as a cause of airborne allergic contact dermatitis. Contact Dermatitis 2018. [PMID: 29527731 DOI: 10.1111/cod.12938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Evy Paulsen
- Department of Dermatology and Allergy Centre, Odense University Hospital, University of Southern Denmark, 5000, Odense C, Denmark
| | | | - Louise Vestergaard
- Department of Dermatology and Allergy Centre, Odense University Hospital, University of Southern Denmark, 5000, Odense C, Denmark
| |
Collapse
|
22
|
Ramzi A, Ahmadi H, Sadiktsis I, Nilsson U. A two-dimensional non-comprehensive reversed/normal phase high-performance liquid chromatography/tandem mass spectrometry system for determination of limonene and linalool hydroperoxides. J Chromatogr A 2018; 1566:102-110. [DOI: 10.1016/j.chroma.2018.06.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 10/28/2022]
|
23
|
Dosoky NS, Setzer WN. Chemical Composition and Biological Activities of Essential Oils of Curcuma Species. Nutrients 2018; 10:E1196. [PMID: 30200410 PMCID: PMC6164907 DOI: 10.3390/nu10091196] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023] Open
Abstract
Members of the genus Curcuma L. have been used in traditional medicine for centuries for treating gastrointestinal disorders, pain, inflammatory conditions, wounds, and for cancer prevention and antiaging, among others. Many of the biological activities of Curcuma species can be attributed to nonvolatile curcuminoids, but these plants also produce volatile chemicals. Essential oils, in general, have shown numerous beneficial effects for health maintenance and treatment of diseases. Essential oils from Curcuma spp., particularly C. longa, have demonstrated various health-related biological activities and several essential oil companies have recently marketed Curcuma oils. This review summarizes the volatile components of various Curcuma species, the biological activities of Curcuma essential oils, and potential safety concerns of Curcuma essential oils and their components.
Collapse
Affiliation(s)
- Noura S Dosoky
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA.
| | - William N Setzer
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA.
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|
24
|
Dosoky NS, Setzer WN. Biological Activities and Safety of Citrus spp. Essential Oils. Int J Mol Sci 2018; 19:E1966. [PMID: 29976894 PMCID: PMC6073409 DOI: 10.3390/ijms19071966] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/01/2018] [Accepted: 07/03/2018] [Indexed: 12/13/2022] Open
Abstract
Citrus fruits have been a commercially important crop for thousands of years. In addition, Citrus essential oils are valuable in the perfume, food, and beverage industries, and have also enjoyed use as aromatherapy and medicinal agents. This review summarizes the important biological activities and safety considerations of the essential oils of sweet orange (Citrus sinensis), bitter orange (Citrus aurantium), neroli (Citrus aurantium), orange petitgrain (Citrus aurantium), mandarin (Citrus reticulata), lemon (Citrus limon), lime (Citrus aurantifolia), grapefruit (Citrus × paradisi), bergamot (Citrus bergamia), Yuzu (Citrus junos), and kumquat (Citrus japonica).
Collapse
Affiliation(s)
- Noura S Dosoky
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA.
| | - William N Setzer
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA.
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|
25
|
Vasiljević D, Bojović L. Organic and natural cosmetic products : How safe are they? ARHIV ZA FARMACIJU 2018. [DOI: 10.5937/arhfarm1805990v] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
26
|
Wlodek C, Penfold CM, Bourke JF, Chowdhury MMU, Cooper SM, Ghaffar S, Green C, Holden CR, Johnston GA, Mughal AA, Reckling C, Sabroe RA, Stone NM, Thompson D, Wilkinson SM, Buckley DA. Recommendation to test limonene hydroperoxides 0·3% and linalool hydroperoxides 1·0% in the British baseline patch test series. Br J Dermatol 2017; 177:1708-1715. [PMID: 28494107 DOI: 10.1111/bjd.15648] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND There is a significant rate of sensitization worldwide to the oxidized fragrance terpenes limonene and linalool. Patch testing to oxidized terpenes is not routinely carried out; the ideal patch test concentration is unknown. OBJECTIVES To determine the best test concentrations for limonene and linalool hydroperoxides, added to the British baseline patch test series, to optimize detection of true allergy and to minimize irritant reactions. METHODS During 2013-2014, 4563 consecutive patients in 12 U.K. centres were tested to hydroperoxides of limonene in petrolatum (pet.) 0·3%, 0·2% and 0·1%, and hydroperoxides of linalool 1·0%, 0·5% and 0·25% pet. Irritant reactions were recorded separately from doubtful reactions. Concomitant reactions to other fragrance markers and clinical relevance were documented. RESULTS Limonene hydroperoxide 0·3% gave positive reactions in 241 (5·3%) patients, irritant reactions in 93 (2·0%) and doubtful reactions in 110 (2·4%). Linalool hydroperoxide 1·0% gave positive reactions in 352 (7·7%), irritant reactions in 178 (3·9%) and doubtful reactions in 132 (2·9%). A total of 119 patients with crescendo reactions to 0·3% limonene would have been missed if only tested with 0·1% and 131 patients with crescendo reactions to 1·0% linalool would have been missed if only tested with 0·25%. In almost two-thirds of patients with positive patch tests to limonene and linalool the reaction was clinically relevant. The majority of patients did not react to any fragrance marker in the baseline series. CONCLUSIONS We recommend that limonene hydroperoxides be tested at 0·3% and linalool hydroperoxides at 1·0% in the British baseline patch test series.
Collapse
Affiliation(s)
- C Wlodek
- Royal United Hospital, Bath, U.K.,Bristol Royal Infirmary, Bristol, U.K
| | - C M Penfold
- National Institute for Health Research, Biomedical Research Unit in Nutrition, Diet and Lifestyle, University Hospital Bristol Education Centre, Bristol, U.K
| | - J F Bourke
- South Infirmary Victoria University Hospital, Cork, Ireland
| | | | - S M Cooper
- Oxford University Hospitals, Oxford, U.K
| | | | - C Green
- Ninewells Hospital, Dundee, U.K
| | - C R Holden
- Sheffield Teaching Hospitals NHS Trust, Sheffield, U.K
| | | | | | | | - R A Sabroe
- Sheffield Teaching Hospitals NHS Trust, Sheffield, U.K
| | | | - D Thompson
- Sandwell & West Birmingham Hospitals, Birmingham, U.K
| | | | | |
Collapse
|
27
|
Zhou LL, Pratt M. Allergic Contact Cheilitis From a Variety of Lip Balm Ingredients. J Cutan Med Surg 2017; 22:333-335. [PMID: 29039219 DOI: 10.1177/1203475417738969] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Melanie Pratt
- 2 Division of Dermatology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
28
|
|
29
|
Wadhwa G, Kumar S, Chhabra L, Mahant S, Rao R. Essential oil–cyclodextrin complexes: an updated review. J INCL PHENOM MACRO 2017. [DOI: 10.1007/s10847-017-0744-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Abstract
In last 30 to 40 years there has been a significant increase in the incidence of allergy. This increase cannot be explained by genetic factors alone. Increasing air pollution and its interaction with biological allergens along with changing lifestyles are contributing factors. Dust mites, molds, and animal allergens contribute to most of the sensitization in the indoor setting. Tree and grass pollens are the leading allergens in the outdoor setting. Worsening air pollution and increasing particulate matter worsen allergy symptoms and associated morbidity. Cross-sensitization of allergens is common. Treatment involves avoidance of allergens, modifying lifestyle, medical treatment, and immunotherapy.
Collapse
Affiliation(s)
- Madhavi Singh
- Department of Family and Community Medicine, Penn State Hershey Medical Group, 1850 East Park Avenue, Suite 207, State College, PA 16803, USA.
| | - Amy Hays
- Department of Family and Community Medicine, Penn State Hershey Medical Group, 303 Benner Pike #1, State College, PA 16803, USA
| |
Collapse
|
31
|
Deza G, García-Bravo B, Silvestre JF, Pastor-Nieto MA, González-Pérez R, Heras-Mendaza F, Mercader P, Fernández-Redondo V, Niklasson B, Giménez-Arnau AM. Contact sensitization to limonene and linalool hydroperoxides in Spain: a GEIDAC * prospective study. Contact Dermatitis 2017; 76:74-80. [PMID: 27896835 DOI: 10.1111/cod.12714] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/11/2016] [Accepted: 09/21/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Limonene and linalool are common fragrance terpenes widely used in cosmetic, household and hygiene products. Their primary oxidation products formed after air exposure, the hydroperoxides, have been recognized as important contact haptens. OBJECTIVES To investigate the prevalence of contact allergy to hydroperoxides of limonene (Lim-OOHs) and hydroperoxides of linalool (Lin-OOHs) in Spain, and to define the optimal concentration for screening in consecutive patients. METHODS Three different concentrations of Lim-OOHs (0.1%, 0.2% and 0.3% pet.) and Lin-OOHs (0.25%, 0.5% and 1.0% pet.) were simultaneously tested in 3639 consecutive patients at 22 departments of dermatology in Spain. RESULTS Lim-OOHs at 0.1%, 0.2% and 0.3% yielded positive patch test reactions in 1.4%, 3.4% and 5.1% of the tested patients, respectively; and Lin-OOHs at 0.25%, 0.5% and 1.0% yielded positive reactions in 1.3%, 2.9% and 4.9% of the tested patients, respectively. Few irritant (1.5-1.9%) and doubtful reactions (0.4-0.5%) to both terpene hydroperoxides were registered at the highest concentrations tested. CONCLUSIONS Lim-OOHs and Lin-OOHs can be considered as common causes of contact allergy, and their inclusion in an extended baseline patch test series therefore seems to be appropriate. The patch test preparations of Lim-OOHs 0.3% pet. and Lin-OOHs 1.0% pet. are useful tools for screening of contact sensitization.
Collapse
Affiliation(s)
- Gustavo Deza
- Department of Dermatology, Hospital del Mar, Institut Mar d'Investigacions Mèdiques, Universitat Autònoma de Barcelona (UAB), 08003 Barcelona, Spain
| | - Begoña García-Bravo
- Department of Dermatology, University Hospital Virgen Macarena, 41009 Sevilla, Spain
| | - Juan F Silvestre
- Department of Dermatology, University Hospital of Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante- Fundación FISABIO, 03010 Alicante, Spain
| | - Maria A Pastor-Nieto
- Department of Dermatology, University Hospital of Guadalajara, 19002 Guadalajara, Spain
| | | | | | - Pedro Mercader
- Department of Dermatology, University Hospital Morales Meseguer, 30008 Murcia, Spain
| | - Virginia Fernández-Redondo
- Department of Dermatology, University Hospital Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Bo Niklasson
- Chemotechnique Diagnostics, 235 39 Vellinge, Sweden
| | - Ana M Giménez-Arnau
- Department of Dermatology, Hospital del Mar, Institut Mar d'Investigacions Mèdiques, Universitat Autònoma de Barcelona (UAB), 08003 Barcelona, Spain
| | | |
Collapse
|
32
|
Alves VM, Capuzzi SJ, Muratov E, Braga RC, Thornton T, Fourches D, Strickland J, Kleinstreuer N, Andrade CH, Tropsha A. QSAR models of human data can enrich or replace LLNA testing for human skin sensitization. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2016; 18:6501-6515. [PMID: 28630595 PMCID: PMC5473635 DOI: 10.1039/c6gc01836j] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Skin sensitization is a major environmental and occupational health hazard. Although many chemicals have been evaluated in humans, there have been no efforts to model these data to date. We have compiled, curated, analyzed, and compared the available human and LLNA data. Using these data, we have developed reliable computational models and applied them for virtual screening of chemical libraries to identify putative skin sensitizers. The overall concordance between murine LLNA and human skin sensitization responses for a set of 135 unique chemicals was low (R = 28-43%), although several chemical classes had high concordance. We have succeeded to develop predictive QSAR models of all available human data with the external correct classification rate of 71%. A consensus model integrating concordant QSAR predictions and LLNA results afforded a higher CCR of 82% but at the expense of the reduced external dataset coverage (52%). We used the developed QSAR models for virtual screening of CosIng database and identified 1061 putative skin sensitizers; for seventeen of these compounds, we found published evidence of their skin sensitization effects. Models reported herein provide more accurate alternative to LLNA testing for human skin sensitization assessment across diverse chemical data. In addition, they can also be used to guide the structural optimization of toxic compounds to reduce their skin sensitization potential.
Collapse
Affiliation(s)
- Vinicius M. Alves
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
- Laboratory for Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goias, Goiania, GO, 74605-170, Brazil
| | - Stephen J. Capuzzi
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Eugene Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Chemical Technology, Odessa National Polytechnic University, Odessa, 65000, Ukraine
| | - Rodolpho C. Braga
- Laboratory for Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goias, Goiania, GO, 74605-170, Brazil
| | - Thomas Thornton
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Denis Fourches
- Department of Chemistry, Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA
| | - Judy Strickland
- Integrated Laboratory Systems, Inc., P.O. Box 13501, Research Triangle Park, NC, 27709, USA
| | - Nicole Kleinstreuer
- National Institutes of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Carolina H. Andrade
- Laboratory for Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goias, Goiania, GO, 74605-170, Brazil
| | - Alexander Tropsha
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
33
|
Fragrance Allergens, Overview with a Focus on Recent Developments and Understanding of Abiotic and Biotic Activation. COSMETICS 2016. [DOI: 10.3390/cosmetics3020019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
34
|
Gao Y, Pemberton CC, Zhang Y, Weber PM. On the ultrafast photo-induced dynamics of α-terpinene. J Chem Phys 2016; 144:194303. [DOI: 10.1063/1.4948629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yan Gao
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | | | - Yao Zhang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Peter M. Weber
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
35
|
Najdoska-Bogdanov M, Bogdanov JB, Stefova M. Changes in Volatile Compounds during Aging of Sweet Fennel Fruits-Comparison of Hydrodistillation and Static Headspace Sampling Methods. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Two extraction methods for subsequent gas chromatographic (GC) determination of volatiles from freshly harvested and aged fennel fruit samples ( Foeniculum vulgare Mill.,ssp. vulgare var. dulce) have been compared. Hydrodistillation followed by GC-FID and GC-MS analysis was used as a standard method for essential oil characterization, while static headspace followed by GC (SHS-GC-FID) was used as a comparative method for determination of volatile components. As the fennel fruit ages, there is a gradual loss of the volatile components as indicated by the lower yield of essential oil and lower content of volatiles, as indicated by the alternative SHS-GC-FID analysis. Slight differences observed for the main components ( trans-anethole, estragole, fenchone, and limonene) using the two methods are negligible, indicating that these volatiles did not undergo chemical transformation during the sample preparation procedures. A difference in anisaldehyde content was observed when the composition of the hydrodistilled essential oil was compared with the SHS-GC-FIDanalysis of volatiles and explanation for the variation of anisaldehyde content and the origin of other compounds was suggested. Comparison of the obtained results showed that limonene oxides, carvone and carveolare detectable in SHS-GC-FID analysis of the aged fennel fruits, while in hydrodistilled samples analyzed by GC-FID they were not present. Another observed difference was the appearance of products in significant amounts with higher retention times than trans-anethole, namely threo- and erythro-anethole β-hydroxymethylether and anethole glycol that are not detectable in the essential oil obtained by hydrodistillation. So, the relative abundance of the major components is comparable between these two methods for fennel seed up to 3 years from harvest and they can be used interchangeably depending on the purpose and amount of material. Furthermore, SHS-GC-FID can be used for assessment of maximum storage time and quality of fennel fruit suitable for human consumption.
Collapse
Affiliation(s)
- Menče Najdoska-Bogdanov
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, Republic of Macedonia
| | - Jane B. Bogdanov
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, Republic of Macedonia
| | - Marina Stefova
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, Republic of Macedonia
| |
Collapse
|
36
|
Bråred Christensson J, Karlberg AT, Andersen KE, Bruze M, Johansen JD, Garcia-Bravo B, Giménez Arnau A, Goh CL, Nixon R, White IR. Oxidized limonene and oxidized linalool - concomitant contact allergy to common fragrance terpenes. Contact Dermatitis 2016; 74:273-80. [PMID: 26918793 DOI: 10.1111/cod.12545] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 12/30/2015] [Accepted: 12/30/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Limonene and linalool are common fragrance terpenes. Both oxidized R-limonene and oxidized linalool have recently been patch tested in an international setting, showing contact allergy in 5.2% and 6.9% of dermatitis patients, respectively. OBJECTIVE To investigate concomitant reactions between oxidized R-limonene and oxidized linalool in consecutive dermatitis patients. METHODS Oxidized R-limonene 3.0% (containing limonene hydroperoxides 0.33%) and oxidized linalool 6% (linalool hydroperoxides 1%) in petrolatum were tested in 2900 consecutive dermatitis patients in Australia, Denmark, Singapore, Spain, Sweden, and the United Kingdom. RESULTS A total of 281 patients reacted to either oxidized R-limonene or oxidized linalool. Of these, 25% had concomitant reactions to both compounds, whereas 29% reacted only to oxidized R-limonene and 46% only to oxidized linalool. Of the 152 patients reacting to oxidized R-limonene, 46% reacted to oxidized linalool, whereas 35% of the 200 patients reacting to oxidized linalool also reacted to oxidized R-limonene. CONCLUSIONS The majority of the patients (75%) reacted to only one of the oxidation mixtures, thus supporting the specificity of the reactions. The concomitant reactions to the two fragrance allergens suggest multiple sensitizations, which most likely reflect the exposure to the different fragrance materials in various types of consumer products. This is in accordance with what is generally seen for patch test reactions to fragrance materials.
Collapse
Affiliation(s)
- Johanna Bråred Christensson
- Department of Dermatology, Sahlgrenska Academy at University of Gothenburg, 413 45, Gothenburg, Sweden.,Dermatochemistry, Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Gothenburg, Sweden
| | - Ann-Therese Karlberg
- Dermatochemistry, Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Gothenburg, Sweden
| | - Klaus E Andersen
- Department of Dermatology and Allergy Centre, Odense University Hospital, University of Southern Denmark, 5000, Odense, Denmark
| | - Magnus Bruze
- Department of Occupational and Environmental Dermatology, Skåne University Hospital, Lund University, 205 02, Malmö, Sweden
| | - Jeanne D Johansen
- The National Allergy Research Centre, Department of Dermato-allergology, Gentofte Hospital, University of Copenhagen, 2900, Hellerup, Denmark
| | - Begoña Garcia-Bravo
- Department of Dermatology, University Hospital Virgen Macarena, 41007, Seville, Spain
| | - Ana Giménez Arnau
- Department of Dermatology, Hospital del Mar, Institut Mar d'Investigacions Médiques, Universitat Autònoma, 08003, Barcelona, Spain
| | | | - Rosemary Nixon
- Occupational Dermatology Research and Education Centre, Skin and Cancer Foundation, 3053, Victoria, Australia
| | - Ian R White
- Department of Cutaneous Allergy, St John's Institute of Dermatology, St Thomas' Hospital, SE1 7EH, London, UK
| |
Collapse
|
37
|
Klaschka U. Natural personal care products-analysis of ingredient lists and legal situation. ENVIRONMENTAL SCIENCES EUROPE 2016; 28:8. [PMID: 27752443 PMCID: PMC5044959 DOI: 10.1186/s12302-016-0076-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 02/18/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND Many natural substances are classified as dangerous substances according to the European regulation on classification and labelling. Are they used in natural personal care products today? One hundred ingredient lists were analyzed to find this out. RESULTS All products with natural substances contained dangerous natural substances or they contained natural substances, for which the information about their classification as dangerous substances is not available. 54 natural substances quoted in the ingredient lists were found to be classified, with 37 substances being classified due to hazardous effects for skin and eyes. However, the most frequently used natural substances are not classified as dangerous. Natural substances are multi-constituent compounds, leading to two main problems in personal care products: the potential interactions of a multitude of substances and the fact that dangerous constituents are not disclosed in the ingredient lists. For example, the fragrance allergens citral, farnesol, limonene, and linalool are frequent components of the natural substances employed. In addition, 82 products listed allergenic fragrance ingredients as single substances in their ingredient lists. Recommendations for sensitive skin in a product's name do not imply that the '26 fragrance allergens' are omitted. Furthermore, 80 products listed 'parfum'/'aroma', and 50 products listed ethanol. CONCLUSIONS The data show that the loopholes for natural substances and for personal care products in the present European chemical legislation (e.g. the exception for classification and labelling of cosmetic products and the exception for information transfer in the supply chain) are not in line with an adequate consumer and environmental protection.
Collapse
Affiliation(s)
- Ursula Klaschka
- University of Applied Sciences Ulm, Prittwitzstr. 10, 89075 Ulm, Germany
| |
Collapse
|
38
|
Natsch A, Emter R, Badertscher R, Brunner G, Granier T, Kern S, Ellis G. Response to the Letter to the Editor Regarding Our Article (Natsch et al., 2015). Chem Res Toxicol 2015; 28:2082-4. [PMID: 26496065 DOI: 10.1021/acs.chemrestox.5b00423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andreas Natsch
- Biosciences, Analytical Chemistry and Process Research Chemistry, Givaudan Schweiz AG , Ueberlandstrasse 138, CH-8600 Duebendorf, Switzerland
| | - Roger Emter
- Biosciences, Analytical Chemistry and Process Research Chemistry, Givaudan Schweiz AG , Ueberlandstrasse 138, CH-8600 Duebendorf, Switzerland
| | - Remo Badertscher
- Biosciences, Analytical Chemistry and Process Research Chemistry, Givaudan Schweiz AG , Ueberlandstrasse 138, CH-8600 Duebendorf, Switzerland
| | - Gerhard Brunner
- Biosciences, Analytical Chemistry and Process Research Chemistry, Givaudan Schweiz AG , Ueberlandstrasse 138, CH-8600 Duebendorf, Switzerland
| | - Thierry Granier
- Biosciences, Analytical Chemistry and Process Research Chemistry, Givaudan Schweiz AG , Ueberlandstrasse 138, CH-8600 Duebendorf, Switzerland
| | - Susanne Kern
- Biosciences, Analytical Chemistry and Process Research Chemistry, Givaudan Schweiz AG , Ueberlandstrasse 138, CH-8600 Duebendorf, Switzerland
| | - Graham Ellis
- RAPS Fragrance Toxicology, Givaudan International SA , 5 Chemin de la Parfumerie, CH-1214 Vernier, Switzerland
| |
Collapse
|
39
|
Krutz NL, Hennen J, Korb C, Schellenberger MT, Gerberick GF, Blömeke B. Activation of the Endoperoxide Ascaridole Modulates Its Sensitizing Capacity. Toxicol Sci 2015; 147:515-23. [DOI: 10.1093/toxsci/kfv148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
40
|
Alves VM, Muratov E, Fourches D, Strickland J, Kleinstreuer N, Andrade CH, Tropsha A. Predicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds. Toxicol Appl Pharmacol 2015; 284:262-72. [PMID: 25560674 PMCID: PMC4546933 DOI: 10.1016/j.taap.2014.12.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/14/2014] [Accepted: 12/21/2014] [Indexed: 12/20/2022]
Abstract
Repetitive exposure to a chemical agent can induce an immune reaction in inherently susceptible individuals that leads to skin sensitization. Although many chemicals have been reported as skin sensitizers, there have been very few rigorously validated QSAR models with defined applicability domains (AD) that were developed using a large group of chemically diverse compounds. In this study, we have aimed to compile, curate, and integrate the largest publicly available dataset related to chemically-induced skin sensitization, use this data to generate rigorously validated and QSAR models for skin sensitization, and employ these models as a virtual screening tool for identifying putative sensitizers among environmental chemicals. We followed best practices for model building and validation implemented with our predictive QSAR workflow using Random Forest modeling technique in combination with SiRMS and Dragon descriptors. The Correct Classification Rate (CCR) for QSAR models discriminating sensitizers from non-sensitizers was 71-88% when evaluated on several external validation sets, within a broad AD, with positive (for sensitizers) and negative (for non-sensitizers) predicted rates of 85% and 79% respectively. When compared to the skin sensitization module included in the OECD QSAR Toolbox as well as to the skin sensitization model in publicly available VEGA software, our models showed a significantly higher prediction accuracy for the same sets of external compounds as evaluated by Positive Predicted Rate, Negative Predicted Rate, and CCR. These models were applied to identify putative chemical hazards in the Scorecard database of possible skin or sense organ toxicants as primary candidates for experimental validation.
Collapse
Affiliation(s)
- Vinicius M Alves
- Laboratory of Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO 74605-220, Brazil; Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Eugene Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; Laboratory of Theoretical Chemistry, A.V. Bogatsky Physical-Chemical Institute NAS of Ukraine, Odessa 65080, Ukraine
| | - Denis Fourches
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Judy Strickland
- ILS/Contractor Supporting the NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), P.O. Box 13501, Research Triangle Park, NC 27709, USA
| | - Nicole Kleinstreuer
- ILS/Contractor Supporting the NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), P.O. Box 13501, Research Triangle Park, NC 27709, USA
| | - Carolina H Andrade
- Laboratory of Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO 74605-220, Brazil
| | - Alexander Tropsha
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
41
|
Urban JD, Carakostas MC, Taylor SL. Steviol glycoside safety: are highly purified steviol glycoside sweeteners food allergens? Food Chem Toxicol 2014; 75:71-8. [PMID: 25449199 DOI: 10.1016/j.fct.2014.11.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 10/24/2022]
Abstract
Steviol glycoside sweeteners are extracted from the plant Stevia rebaudiana (Bertoni), a member of the Asteraceae (Compositae) family. Many plants from this family can induce hypersensitivity reactions via multiple routes of exposure (e.g., ragweed, goldenrod, chrysanthemum, echinacea, chamomile, lettuce, sunflower and chicory). Based on this common taxonomy, some popular media reports and resources have issued food warnings alleging the potential for stevia allergy. To determine if such allergy warnings are warranted on stevia-based sweeteners, a comprehensive literature search was conducted to identify all available data related to allergic responses following the consumption of stevia extracts or highly purified steviol glycosides. Hypersensitivity reactions to stevia in any form are rare. The few cases documented in the peer-reviewed literature were reported prior to the introduction of high-purity products to the market in 2008 when many global regulatory authorities began to affirm the safety of steviol glycosides. Neither stevia manufacturers nor food allergy networks have reported significant numbers of any adverse events related to ingestion of stevia-based sweeteners, and there have been no reports of stevia-related allergy in the literature since 2008. Therefore, there is little substantiated scientific evidence to support warning statements to consumers about allergy to highly purified stevia extracts.
Collapse
Affiliation(s)
- Jonathan D Urban
- ToxStrategies, Inc., 9390 Research Blvd, Suite 250, Austin, TX 78717, USA.
| | - Michael C Carakostas
- ToxStrategies, Inc., 2 Reeve Court, Suite 200, St., Helena Island, SC 29920, USA
| | - Steve L Taylor
- Food Allergy Research & Resource Program, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
42
|
Andersch Björkman Y, Hagvall L, Siwmark C, Niklasson B, Karlberg AT, Bråred Christensson J. Air-oxidized linalool elicits eczema in allergic patients - a repeated open application test study. Contact Dermatitis 2014; 70:129-38. [PMID: 24588367 DOI: 10.1111/cod.12163] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/11/2013] [Accepted: 09/24/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND Linalool is a commonly used fragrance terpene that forms potent sensitizers upon oxidation. In a recent multicentre study, we found that 7% of 2900 patients showed positive patch test reactions to oxidized linalool at 6.0%. No elicitation studies have been performed. OBJECTIVE To identify threshold concentrations for elicitation of allergic contact dermatitis caused by oxidized linalool in allergic individuals with repeated exposures. METHODS Repeated open application tests were performed in 6 participants previously diagnosed with contact allergy to oxidized linalool. Creams containing 3.0%, 1.0% and 0.30% oxidized linalool (corresponding to 0.56%, 0.19% and 0.056% linalool hydroperoxides, respectively) and 'fine fragrance' containing 1.0%, 0.30% and 0.10% oxidized linalool (corresponding to 0.19%, 0.056% and 0.019% linalool hydroperoxides, respectively) were used twice daily for up to 3 weeks. Patch testing with a dilution series of oxidized linalool was performed. RESULTS Five of 6 participants reacted to the cream containing 3% oxidized linalool. With 1% oxidized linalool, a reaction was seen in 3 (cream) and 4 (fine fragrance) participants, respectively. With 0.3% oxidized linalool, 2 (cream) and 1 (fine fragrance) participants reacted. CONCLUSION Repeated exposure to low concentrations of oxidized linalool can elicit allergic contact dermatitis in previously sensitized individuals.
Collapse
Affiliation(s)
- Ylva Andersch Björkman
- Department of Dermatology, Sahlgrenska Academy at University of Gothenburg, 41345 Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
43
|
Audrain H, Kenward C, Lovell C, Green C, Ormerod A, Sansom J, Chowdhury M, Cooper S, Johnston G, Wilkinson M, King C, Stone N, Horne H, Holden C, Wakelin S, Buckley D. Allergy to oxidized limonene and linalool is frequent in the U.K. Br J Dermatol 2014; 171:292-7. [DOI: 10.1111/bjd.13037] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2014] [Indexed: 11/28/2022]
Affiliation(s)
- H. Audrain
- Royal United Hospital; Bath U.K
- Bristol Royal Infirmary; Bristol U.K
| | | | | | | | | | - J. Sansom
- Bristol Royal Infirmary; Bristol U.K
| | | | | | | | | | - C. King
- Royal Liverpool Hospitals; Liverpool U.K
| | - N. Stone
- Royal Gwent Hospital; Newport U.K
| | - H.L. Horne
- The James Cook University Hospital; Middlesborough U.K
| | | | | | | |
Collapse
|
44
|
Stobiecka A, Bonikowski R, Kula J. Free radical scavenging properties of thienyl and furyl linalool analogues: an experimental and DFT/B3LYP study. FLAVOUR FRAG J 2014. [DOI: 10.1002/ffj.3208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Agnieszka Stobiecka
- Institute of General Food Chemistry, Department of Biotechnology and Food Science; Lodz University of Technology; Stefanowskiego 4/10 90-924 Lodz Poland
| | - Radosław Bonikowski
- Institute of General Food Chemistry, Department of Biotechnology and Food Science; Lodz University of Technology; Stefanowskiego 4/10 90-924 Lodz Poland
| | - Józef Kula
- Institute of General Food Chemistry, Department of Biotechnology and Food Science; Lodz University of Technology; Stefanowskiego 4/10 90-924 Lodz Poland
| |
Collapse
|
45
|
Mann J, McFadden JP, White JML, White IR, Banerjee P. Baseline series fragrance markers fail to predict contact allergy. Contact Dermatitis 2014; 70:276-81. [DOI: 10.1111/cod.12171] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 10/03/2013] [Accepted: 10/07/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Jack Mann
- Friends Dermatology Centre; Kent and Canterbury Hospital; CT13NG Canterbury UK
| | - John P. McFadden
- St John's Institute of Dermatology; St Thomas' Hospital; SE1 7EH London UK
| | | | - Ian R. White
- St John's Institute of Dermatology; St Thomas' Hospital; SE1 7EH London UK
| | - Piu Banerjee
- St John's Institute of Dermatology; St Thomas' Hospital; SE1 7EH London UK
| |
Collapse
|
46
|
Rudbäck J, Hagvall L, Börje A, Nilsson U, Karlberg AT. Characterization of skin sensitizers from autoxidized citronellol - impact of the terpene structure on the autoxidation process. Contact Dermatitis 2014; 70:329-39. [DOI: 10.1111/cod.12234] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/04/2014] [Accepted: 02/19/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Johanna Rudbäck
- Department of Chemistry and Molecular Biology; Dermatochemistry and Skin Allergy, University of Gothenburg; 412 96 Gothenburg Sweden
| | - Lina Hagvall
- Department of Chemistry and Molecular Biology; Dermatochemistry and Skin Allergy, University of Gothenburg; 412 96 Gothenburg Sweden
- Department of Dermatology; Sahlgrenska Academy, University of Gothenburg; 405 30 Gothenburg Sweden
| | - Anna Börje
- Department of Chemistry and Molecular Biology; Dermatochemistry and Skin Allergy, University of Gothenburg; 412 96 Gothenburg Sweden
| | - Ulrika Nilsson
- Department of Analytical Chemistry; Stockholm University; 106 91 Stockholm Sweden
| | - Ann-Therese Karlberg
- Department of Chemistry and Molecular Biology; Dermatochemistry and Skin Allergy, University of Gothenburg; 412 96 Gothenburg Sweden
| |
Collapse
|
47
|
Aprotosoaie AC, Hăncianu M, Costache II, Miron A. Linalool: a review on a key odorant molecule with valuable biological properties. FLAVOUR FRAG J 2014. [DOI: 10.1002/ffj.3197] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ana Clara Aprotosoaie
- Department of Pharmacognosy, Faculty of Pharmacy; University of Medicine and Pharmacy “Grigore T. Popa”; Iasi Romania
| | - Monica Hăncianu
- Department of Pharmacognosy, Faculty of Pharmacy; University of Medicine and Pharmacy “Grigore T. Popa”; Iasi Romania
| | - Irina-Iuliana Costache
- Department of Internal Medicine, Faculty of Medicine; “Sf. Spiridon” University Hospital Iasi; Romania
| | - Anca Miron
- Department of Pharmacognosy, Faculty of Pharmacy; University of Medicine and Pharmacy “Grigore T. Popa”; Iasi Romania
| |
Collapse
|
48
|
Rudbäck J, Ramzy A, Karlberg AT, Nilsson U. Determination of allergenic hydroperoxides in essential oils using gas chromatography with electron ionization mass spectrometry. J Sep Sci 2014; 37:982-9. [DOI: 10.1002/jssc.201300843] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 01/09/2014] [Accepted: 01/21/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Johanna Rudbäck
- Department of Chemistry and Molecular Biology; Dermatochemistry and Skin Allergy; University of Gothenburg; Gothenburg Sweden
| | - Ahmed Ramzy
- Department of Analytical Chemistry; Stockholm University; Stockholm Sweden
| | - Ann-Therese Karlberg
- Department of Chemistry and Molecular Biology; Dermatochemistry and Skin Allergy; University of Gothenburg; Gothenburg Sweden
| | - Ulrika Nilsson
- Department of Analytical Chemistry; Stockholm University; Stockholm Sweden
| |
Collapse
|
49
|
Vocanson M, Nicolas JF, Basketter D. In vitroapproaches to the identification and characterization of skin sensitizers. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17469872.2013.814882] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Basketter D, Maxwell G. Identification and characterization of allergens:in vitroapproaches. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17469872.2.4.471] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|