1
|
Chen SW, Chu Y, Chu CH, Pham XDT, Ng HP, Guo CL, Cheng PL. ECM29/proteasome-mediated self-antigen generation by CNS-resident neuroglia promotes regulatory T cell activation. Cell Rep 2025; 44:115161. [PMID: 39786996 DOI: 10.1016/j.celrep.2024.115161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 11/08/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
Proteasomes generate antigenic peptides presented on cell surfaces-a process that, in neuroglia, is highly responsive to external stimuli. However, the function of the self-antigens presented by CNS parenchymal cells remains unclear. Here, we report that the fidelity of neuroglial self-antigens is crucial to suppress encephalitogenic T cell responses by elevating regulatory T (Treg) cell populations. We demonstrate that loss of the proteasome adaptor protein Ecm29 alters the efficacy and accuracy of antigen generation. Inducible oligodendroglia- or microglia-conditional Ecm29 knockout mice exhibit higher susceptibility to experimental autoimmune encephalomyelitis (EAE) than control counterparts do, coincident with reduced Treg cell populations in the spinal cord. Immunopeptidome profiling identifies self-antigens that modulate myelin-reactive T cell responses. Intraspinal adeno-associated virus (AAV)/Olig001-mediated expression of the self-antigen NDUFA1p ameliorates EAE and expands NDUFA1p-recognizing CD103+CD8+CD122+ Treg cells. Thus, Ecm29/proteasome-controlled, neuroglia-derived self-antigens modulate CNS immune tolerance.
Collapse
Affiliation(s)
- Sheng-Wen Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ying Chu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chien-Hsin Chu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | - Hang Pong Ng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chin-Lin Guo
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| | - Pei-Lin Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
2
|
Cuinat S, Bézieau S, Deb W, Mercier S, Vignard V, Isidor B, Küry S, Ebstein F. Understanding neurodevelopmental proteasomopathies as new rare disease entities: A review of current concepts, molecular biomarkers, and perspectives. Genes Dis 2024; 11:101130. [PMID: 39220754 PMCID: PMC11364055 DOI: 10.1016/j.gendis.2023.101130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/30/2023] [Accepted: 08/19/2023] [Indexed: 09/04/2024] Open
Abstract
The recent advances in high throughput sequencing technology have drastically changed the practice of medical diagnosis, allowing for rapid identification of hundreds of genes causing human diseases. This unprecedented progress has made clear that most forms of intellectual disability that affect more than 3% of individuals worldwide are monogenic diseases. Strikingly, a substantial fraction of the mendelian forms of intellectual disability is associated with genes related to the ubiquitin-proteasome system, a highly conserved pathway made up of approximately 1200 genes involved in the regulation of protein homeostasis. Within this group is currently emerging a new class of neurodevelopmental disorders specifically caused by proteasome pathogenic variants which we propose to designate "neurodevelopmental proteasomopathies". Besides cognitive impairment, these diseases are typically associated with a series of syndromic clinical manifestations, among which facial dysmorphism, motor delay, and failure to thrive are the most prominent ones. While recent efforts have been made to uncover the effects exerted by proteasome variants on cell and tissue landscapes, the molecular pathogenesis of neurodevelopmental proteasomopathies remains ill-defined. In this review, we discuss the cellular changes typically induced by genomic alterations in proteasome genes and explore their relevance as biomarkers for the diagnosis, management, and potential treatment of these new rare disease entities.
Collapse
Affiliation(s)
- Silvestre Cuinat
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Stéphane Bézieau
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Wallid Deb
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Sandra Mercier
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Virginie Vignard
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Bertrand Isidor
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Sébastien Küry
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Frédéric Ebstein
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| |
Collapse
|
3
|
Mahncke C, Schmiedeke F, Simm S, Kaderali L, Bröker BM, Seifert U, Cammann C. DiscovEpi: automated whole proteome MHC-I-epitope prediction and visualization. BMC Bioinformatics 2024; 25:310. [PMID: 39333860 PMCID: PMC11438315 DOI: 10.1186/s12859-024-05931-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Antigen presentation is a central step in initiating and shaping the adaptive immune response. To activate CD8+ T cells, pathogen-derived peptides are presented on the cell surface of antigen-presenting cells bound to major histocompatibility complex (MHC) class I molecules. CD8+ T cells that recognize these complexes with their T cell receptor are activated and ideally eliminate infected cells. Prediction of putative peptides binding to MHC class I (MHC-I) is crucial for understanding pathogen recognition in specific immune responses and for supporting drug and vaccine design. There are reliable databases for epitope prediction algorithms available however they primarily focus on the prediction of epitopes in single immunogenic proteins. RESULTS We have developed the tool DiscovEpi to establish an interface between whole proteomes and epitope prediction. The tool allows the automated identification of all potential MHC-I-binding peptides within a proteome and calculates the epitope density and average binding score for every protein, a protein-centric approach. DiscovEpi provides a convenient interface between automated multiple sequence extraction by organism and cell compartment from the database UniProt for subsequent epitope prediction via NetMHCpan. Furthermore, it allows ranking of proteins by their predicted immunogenicity on the one hand and comparison of different proteomes on the other. By applying the tool, we predict a higher immunogenic potential of membrane-associated proteins of SARS-CoV-2 compared to those of influenza A based on the presented metrics epitope density and binding score. This could be confirmed visually by comparing the epitope maps of the influenza A strain and SARS-CoV-2. CONCLUSION Automated prediction of whole proteomes and the subsequent visualization of the location of putative epitopes on sequence-level facilitate the search for putative immunogenic proteins or protein regions and support the study of adaptive immune responses and vaccine design.
Collapse
Affiliation(s)
- C Mahncke
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, 17475, Greifswald, Germany
- Research Unit Emerging Viruses, Leibniz Institute of Virology, 20251, Hamburg, Germany
| | - F Schmiedeke
- Institute of Immunology, University Medicine Greifswald, 17475, Greifswald, Germany
| | - S Simm
- Institute of Bioinformatics, University Medicine Greifswald, 17475, Greifswald, Germany
- Institute of Bioanalytics, University of Applied Sciences Coburg, 96450, Coburg, Germany
| | - L Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, 17475, Greifswald, Germany
| | - B M Bröker
- Institute of Immunology, University Medicine Greifswald, 17475, Greifswald, Germany
| | - U Seifert
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, 17475, Greifswald, Germany
| | - C Cammann
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, 17475, Greifswald, Germany.
| |
Collapse
|
4
|
Kamal K, Richardsdotter‐Andersson E, Dondalska A, Wahren‐Herlenius M, Spetz A. A Non-Coding Oligonucleotide Recruits Cutaneous CD11b + Cells that Inhibit Thelper Responses and Promote Tregs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400260. [PMID: 38896803 PMCID: PMC11336929 DOI: 10.1002/advs.202400260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Skin-resident antigen-presenting cells (APC) play an important role in maintaining peripheral tolerance via immune checkpoint proteins and induction of T regulatory cells (Tregs). However, there is a lack of knowledge on how to expand or recruit immunoregulatory cutaneous cells without causing inflammation. Here, it is shown that administration of a non-coding single-stranded oligonucleotide (ssON) leads to CCR2-dependent accumulation of CD45+CD11b+Ly6C+ cells in the skin that express substantial levels of PD-L1 and ILT3. Transcriptomic analyses of skin biopsies reveal the upregulation of key immunosuppressive genes after ssON administration. Functionally, the cutaneous CD11b+ cells inhibit Th1/2/9 responses and promote the induction of CD4+FoxP3+ T-cells. In addition, ssON treatment of imiquimod-induced inflammation results in significantly reduced Th17 responses. It is also shown that induction of IL-10 production in the presence of cutaneous CD11b+ cells isolated after ssON administrations is partly PD-L1 dependent. Altogether, an immunomodulatory ssON is identified that can be used therapeutically to recruit cutaneous CD11b+ cells with the capacity to dampen Th cells.
Collapse
Affiliation(s)
- Kahkashan Kamal
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversitySvante Arrhenius väg 20CStockholmSE‐106 91Sweden
| | | | - Aleksandra Dondalska
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversitySvante Arrhenius väg 20CStockholmSE‐106 91Sweden
| | - Marie Wahren‐Herlenius
- Department of MedicineKarolinska University HospitalKarolinska InstitutetVisionsgatan 18, L8SolnaSE‐171 76Sweden
| | - Anna‐Lena Spetz
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversitySvante Arrhenius väg 20CStockholmSE‐106 91Sweden
| |
Collapse
|
5
|
Inholz K, Bader U, Mundt S, Basler M. The Significant Role of PA28αβ in CD8 + T Cell-Mediated Graft Rejection Contrasts with Its Negligible Impact on the Generation of MHC-I Ligands. Int J Mol Sci 2024; 25:5649. [PMID: 38891837 PMCID: PMC11172216 DOI: 10.3390/ijms25115649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The proteasome generates the majority of peptides presented on MHC class I molecules. The cleavage pattern of the proteasome has been shown to be changed via the proteasome activator (PA)28 alpha beta (PA28αβ). In particular, several immunogenic peptides have been reported to be PA28αβ-dependent. In contrast, we did not observe a major impact of PA28αβ on the generation of different major histocompatibility complex (MHC) classI ligands. PA28αβ-knockout mice infected with the lymphocytic choriomeningitis virus (LCMV) or vaccinia virus showed a normal cluster of differentiation (CD) 8 response and viral clearance. However, we observed that the adoptive transfer of wild-type cells into PA28αβ-knockout mice led to graft rejection, but not vice versa. Depletion experiments showed that the observed rejection was mediated by CD8+ cytotoxic T cells. These data indicate that PA28αβ might be involved in the development of the CD8+ T cell repertoire in the thymus. Taken together, our data suggest that PA28αβ is a crucial factor determining T cell selection and, therefore, impacts graft acceptance.
Collapse
Affiliation(s)
- Katharina Inholz
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, 8280 Kreuzlingen, Switzerland;
- Division of Immunology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Ulrika Bader
- Division of Immunology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Sarah Mundt
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Michael Basler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, 8280 Kreuzlingen, Switzerland;
- Division of Immunology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
6
|
Tatsumi K, Kitahata S, Komatani Y, Katsuyama A, Yakushiji F, Ichikawa S. Modulation of proteasome subunit selectivity of syringolins. Bioorg Med Chem 2024; 106:117733. [PMID: 38704960 DOI: 10.1016/j.bmc.2024.117733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024]
Abstract
Development of selective or dual proteasome subunit inhibitors based on syringolin B as a scaffold is described. We focused our efforts on a structure-activity relationship study of inhibitors with various substituents at the 3-position of the macrolactam moiety of syringolin B analogue to evaluate whether this would be sufficient to confer subunit selectivity by using sets of analogues with hydrophobic, basic and acidic substituents, which were designed to target Met45, Glu53 and Arg45 embedded in the S1 subsite, respectively. The structure-activity relationship study using systematic analogues provided insight into the origin of the subunit-selective inhibitory activity. This strategy would be sufficient to confer subunit selectivity regarding β5 and β2 subunits.
Collapse
Affiliation(s)
- Kengo Tatsumi
- Faculty of Pharmaceutical Science, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Shun Kitahata
- Faculty of Pharmaceutical Science, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yuya Komatani
- Faculty of Pharmaceutical Science, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Akira Katsuyama
- Faculty of Pharmaceutical Science, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Fumika Yakushiji
- Faculty of Pharmaceutical Science, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Satoshi Ichikawa
- Faculty of Pharmaceutical Science, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
7
|
Leister H, Krause FF, Gil B, Prus R, Prus I, Hellhund-Zingel A, Mitra M, Da Rosa Gerbatin R, Delanty N, Beausang A, Brett FM, Farrell MA, Cryan J, O’Brien DF, Henshall DC, Helmprobst F, Pagenstecher A, Steinhoff U, Visekruna A, Engel T. Immunoproteasome deficiency results in age-dependent development of epilepsy. Brain Commun 2024; 6:fcae017. [PMID: 38317856 PMCID: PMC10839634 DOI: 10.1093/braincomms/fcae017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/17/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024] Open
Abstract
The immunoproteasome is a central protease complex required for optimal antigen presentation. Immunoproteasome activity is also associated with facilitating the degradation of misfolded and oxidized proteins, which prevents cellular stress. While extensively studied during diseases with increasing evidence suggesting a role for the immunoproteasome during pathological conditions including neurodegenerative diseases, this enzyme complex is believed to be mainly not expressed in the healthy brain. In this study, we show an age-dependent increase in polyubiquitination in the brains of wild-type mice, accompanied by an induction of immunoproteasomes, which was most prominent in neurons and microglia. In contrast, mice completely lacking immunoproteasomes (triple-knockout mice), displayed a strong increase in polyubiquitinated proteins already in the young brain and developed spontaneous epileptic seizures, beginning at the age of 6 months. Injections of kainic acid led to high epilepsy-related mortality of aged triple-knockout mice, confirming increased pathological hyperexcitability states. Notably, the expression of the immunoproteasome was reduced in the brains of patients suffering from epilepsy. In addition, the aged triple-knockout mice showed increased anxiety, tau hyperphosphorylation and degeneration of Purkinje cell population with the resulting ataxic symptoms and locomotion alterations. Collectively, our study suggests a critical role for the immunoproteasome in the maintenance of a healthy brain during ageing.
Collapse
Affiliation(s)
- Hanna Leister
- Institute for Medical Microbiology and Hygiene, Philipps-University, 35043 Marburg, Germany
| | - Felix F Krause
- Institute for Medical Microbiology and Hygiene, Philipps-University, 35043 Marburg, Germany
| | - Beatriz Gil
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Ruslan Prus
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Inna Prus
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Anne Hellhund-Zingel
- Institute for Medical Microbiology and Hygiene, Philipps-University, 35043 Marburg, Germany
| | - Meghma Mitra
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Rogerio Da Rosa Gerbatin
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Norman Delanty
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
- Department of Neurology, Beaumont Hospital, D09V2N0 Dublin, Ireland
| | - Alan Beausang
- Department of Neuropathology, Beaumont Hospital, D09V2N0 Dublin, Ireland
| | - Francesca M Brett
- Department of Neuropathology, Beaumont Hospital, D09V2N0 Dublin, Ireland
| | - Michael A Farrell
- Department of Neuropathology, Beaumont Hospital, D09V2N0 Dublin, Ireland
| | - Jane Cryan
- Department of Neuropathology, Beaumont Hospital, D09V2N0 Dublin, Ireland
| | - Donncha F O’Brien
- Department of Neurosurgery, Beaumont Hospital, D09V2N0 Dublin, Ireland
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Frederik Helmprobst
- Institute of Neuropathology, Philipps-University, 35043 Marburg, Germany
- Core Facility for Mouse Pathology and Electron Microscopy, Philipps-University, 35043 Marburg, Germany
| | - Axel Pagenstecher
- Institute of Neuropathology, Philipps-University, 35043 Marburg, Germany
- Core Facility for Mouse Pathology and Electron Microscopy, Philipps-University, 35043 Marburg, Germany
| | - Ulrich Steinhoff
- Institute for Medical Microbiology and Hygiene, Philipps-University, 35043 Marburg, Germany
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University, 35043 Marburg, Germany
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| |
Collapse
|
8
|
Cammann C, Kulla J, Wiebusch L, Walz C, Zhao F, Lowinus T, Topfstedt E, Mishra N, Henklein P, Bommhardt U, Bossaller L, Hagemeier C, Schadendorf D, Schmidt B, Paschen A, Seifert U. Proteasome inhibition potentiates Kv1.3 potassium channel expression as therapeutic target in drug-sensitive and -resistant human melanoma cells. Biomed Pharmacother 2023; 168:115635. [PMID: 37816303 DOI: 10.1016/j.biopha.2023.115635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/24/2023] [Accepted: 10/03/2023] [Indexed: 10/12/2023] Open
Abstract
Primary and acquired therapy resistance is a major problem in patients with BRAF-mutant melanomas being treated with BRAF and MEK inhibitors (BRAFI, MEKi). Therefore, development of alternative therapy regimes is still required. In this regard, new drug combinations targeting different pathways to induce apoptosis could offer promising alternative approaches. Here, we investigated the combination of proteasome and Kv1.3 potassium channel inhibition on chemo-resistant, BRAF inhibitor-resistant as well as sensitive human melanoma cells. Our experiments demonstrated that all analyzed melanoma cell lines were sensitive to proteasome inhibitor treatment at concentrations that are not toxic to primary human fibroblasts. To further reduce proteasome inhibitor-associated side effects, and to foster apoptosis, potassium channels, which are other targets to induce pro-apoptotic effects in cancer cells, were blocked. In support, combined exposure of melanoma cells to proteasome and Kv1.3 channel inhibitor resulted in synergistic effects and significantly reduced cell viability. On the molecular level, enhanced apoptosis correlated with an increase of intracellular Kv1.3 channels and pro-apoptotic proteins such as Noxa and Bak and a reduction of anti-apoptotic proteins. Thus, use of combined therapeutic strategies triggering different apoptotic pathways may efficiently prevent the outgrowth of drug-resistant and -sensitive BRAF-mutant melanoma cells. In addition, this could be the basis for an alternative approach to treat other tumors expressing mutated BRAF such as non-small-cell lung cancer.
Collapse
Affiliation(s)
- Clemens Cammann
- Friedrich Loeffler - Institute of Medical Microbiology - Virology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Jonas Kulla
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke-University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Lüder Wiebusch
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Christian Walz
- Clemens Schöpf-Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Alarich Weiss-Straße 4-8, 64287 Darmstadt, Germany
| | - Fang Zhao
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Theresa Lowinus
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke-University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Eylin Topfstedt
- Friedrich Loeffler - Institute of Medical Microbiology - Virology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Neha Mishra
- Section of Rheumatology, Clinic and Policlinic of Internal Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Petra Henklein
- Institute of Molecular Biology and Biochemistry, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Charité Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Ursula Bommhardt
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke-University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Lukas Bossaller
- Section of Rheumatology, Clinic and Policlinic of Internal Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Christian Hagemeier
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Boris Schmidt
- Clemens Schöpf-Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Alarich Weiss-Straße 4-8, 64287 Darmstadt, Germany
| | - Annette Paschen
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Ulrike Seifert
- Friedrich Loeffler - Institute of Medical Microbiology - Virology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany.
| |
Collapse
|
9
|
Meng Z, Rodriguez Ehrenfried A, Tan CL, Steffens LK, Kehm H, Zens S, Lauenstein C, Paul A, Schwab M, Förster JD, Salek M, Riemer AB, Wu H, Eckert C, Leonhardt CS, Strobel O, Volkmar M, Poschke I, Offringa R. Transcriptome-based identification of tumor-reactive and bystander CD8 + T cell receptor clonotypes in human pancreatic cancer. Sci Transl Med 2023; 15:eadh9562. [PMID: 37967201 DOI: 10.1126/scitranslmed.adh9562] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/16/2023] [Indexed: 11/17/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is generally refractory to immune checkpoint blockade, although patients with genetically unstable tumors can show modest therapeutic benefit. We previously demonstrated the presence of tumor-reactive CD8+ T cells in PDAC samples. Here, we charted the tumor-infiltrating T cell repertoire in PDAC by combining single-cell transcriptomics with functional testing of T cell receptors (TCRs) for reactivity against autologous tumor cells. On the basis of a comprehensive dataset including 93 tumor-reactive and 65 bystander TCR clonotypes, we delineated a gene signature that effectively distinguishes between these T cell subsets in PDAC, as well as in other tumor indications. This revealed a high frequency of tumor-reactive TCR clonotypes in three genetically unstable samples. In contrast, the T cell repertoire in six genetically stable PDAC tumors was largely dominated by bystander T cells. Nevertheless, multiple tumor-reactive TCRs were successfully identified in each of these samples, thereby providing a perspective for personalized immunotherapy in this treatment-resistant indication.
Collapse
Affiliation(s)
- Zibo Meng
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Aaron Rodriguez Ehrenfried
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
- Helmholtz-Institute for Translational Oncology by DKFZ (HI-TRON), 55131 Mainz, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Chin Leng Tan
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Laura K Steffens
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Hannes Kehm
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Stefan Zens
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Claudia Lauenstein
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Alina Paul
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Marius Schwab
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Jonas D Förster
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
- Division of Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Molecular Vaccine Design, German Center for Infection Research (DZIF), partner site Heidelberg, 69120 Heidelberg, Germany
| | - Mogjiborahman Salek
- Division of Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Molecular Vaccine Design, German Center for Infection Research (DZIF), partner site Heidelberg, 69120 Heidelberg, Germany
| | - Angelika B Riemer
- Division of Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Molecular Vaccine Design, German Center for Infection Research (DZIF), partner site Heidelberg, 69120 Heidelberg, Germany
| | - Heshui Wu
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Christoph Eckert
- Pathology Institute, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Carl-Stephan Leonhardt
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Oliver Strobel
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Michael Volkmar
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
- Helmholtz-Institute for Translational Oncology by DKFZ (HI-TRON), 55131 Mainz, Germany
| | - Isabel Poschke
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
- Immune Monitoring Unit, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Rienk Offringa
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| |
Collapse
|
10
|
Chandran A, Oliver HJ, Rochet JC. Role of NFE2L1 in the Regulation of Proteostasis: Implications for Aging and Neurodegenerative Diseases. BIOLOGY 2023; 12:1169. [PMID: 37759569 PMCID: PMC10525699 DOI: 10.3390/biology12091169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 09/29/2023]
Abstract
A hallmark of aging and neurodegenerative diseases is a disruption of proteome homeostasis ("proteostasis") that is caused to a considerable extent by a decrease in the efficiency of protein degradation systems. The ubiquitin proteasome system (UPS) is the major cellular pathway involved in the clearance of small, short-lived proteins, including amyloidogenic proteins that form aggregates in neurodegenerative diseases. Age-dependent decreases in proteasome subunit expression coupled with the inhibition of proteasome function by aggregated UPS substrates result in a feedforward loop that accelerates disease progression. Nuclear factor erythroid 2- like 1 (NFE2L1) is a transcription factor primarily responsible for the proteasome inhibitor-induced "bounce-back effect" regulating the expression of proteasome subunits. NFE2L1 is localized to the endoplasmic reticulum (ER), where it is rapidly degraded under basal conditions by the ER-associated degradation (ERAD) pathway. Under conditions leading to proteasome impairment, NFE2L1 is cleaved and transported to the nucleus, where it binds to antioxidant response elements (AREs) in the promoter region of proteasome subunit genes, thereby stimulating their transcription. In this review, we summarize the role of UPS impairment in aging and neurodegenerative disease etiology and consider the potential benefit of enhancing NFE2L1 function as a strategy to upregulate proteasome function and alleviate pathology in neurodegenerative diseases.
Collapse
Affiliation(s)
- Aswathy Chandran
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Haley Jane Oliver
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
11
|
Wu S, Liang T, Jiang J, Zhu J, Chen T, Zhou C, Huang S, Yao Y, Guo H, Ye Z, Chen L, Chen W, Fan B, Qin J, Liu L, Wu S, Ma F, Zhan X, Liu C. Proteomic analysis to identification of hypoxia related markers in spinal tuberculosis: a study based on weighted gene co-expression network analysis and machine learning. BMC Med Genomics 2023; 16:142. [PMID: 37340462 DOI: 10.1186/s12920-023-01566-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 05/31/2023] [Indexed: 06/22/2023] Open
Abstract
OBJECTIVE This article aims at exploring the role of hypoxia-related genes and immune cells in spinal tuberculosis and tuberculosis involving other organs. METHODS In this study, label-free quantitative proteomics analysis was performed on the intervertebral discs (fibrous cartilaginous tissues) obtained from five spinal tuberculosis (TB) patients. Key proteins associated with hypoxia were identified using molecular complex detection (MCODE), weighted gene co-expression network analysis(WGCNA), least absolute shrinkage and selection operator (LASSO), and support vector machine recursive feature Elimination (SVM-REF) methods, and their diagnostic and predictive values were assessed. Immune cell correlation analysis was then performed using the Single Sample Gene Set Enrichment Analysis (ssGSEA) method. In addition, a pharmaco-transcriptomic analysis was also performed to identify targets for treatment. RESULTS The three genes, namely proteasome 20 S subunit beta 9 (PSMB9), signal transducer and activator of transcription 1 (STAT1), and transporter 1 (TAP1), were identified in the present study. The expression of these genes was found to be particularly high in patients with spinal TB and other extrapulmonary TB, as well as in TB and multidrug-resistant TB (p-value < 0.05). They revealed high diagnostic and predictive values and were closely related to the expression of multiple immune cells (p-value < 0.05). It was inferred that the expression of PSMB9, STAT 1, and TAP1 could be regulated by different medicinal chemicals. CONCLUSION PSMB9, STAT1, and TAP1, might play a key role in the pathogenesis of TB, including spinal TB, and the protein product of the genes can be served as diagnostic markers and potential therapeutic target for TB.
Collapse
Affiliation(s)
- Shaofeng Wu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tuo Liang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jie Jiang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jichong Zhu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tianyou Chen
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chenxing Zhou
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shengsheng Huang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuanlin Yao
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hao Guo
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhen Ye
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liyi Chen
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wuhua Chen
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Binguang Fan
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiahui Qin
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lu Liu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Siling Wu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fengzhi Ma
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xinli Zhan
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Chong Liu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
12
|
Ebstein F, Küry S, Most V, Rosenfelt C, Scott-Boyer MP, van Woerden GM, Besnard T, Papendorf JJ, Studencka-Turski M, Wang T, Hsieh TC, Golnik R, Baldridge D, Forster C, de Konink C, Teurlings SM, Vignard V, van Jaarsveld RH, Ades L, Cogné B, Mignot C, Deb W, Jongmans MC, Sessions Cole F, van den Boogaard MJH, Wambach JA, Wegner DJ, Yang S, Hannig V, Brault JA, Zadeh N, Bennetts B, Keren B, Gélineau AC, Powis Z, Towne M, Bachman K, Seeley A, Beck AE, Morrison J, Westman R, Averill K, Brunet T, Haasters J, Carter MT, Osmond M, Wheeler PG, Forzano F, Mohammed S, Trakadis Y, Accogli A, Harrison R, Guo Y, Hakonarson H, Rondeau S, Baujat G, Barcia G, Feichtinger RG, Mayr JA, Preisel M, Laumonnier F, Kallinich T, Knaus A, Isidor B, Krawitz P, Völker U, Hammer E, Droit A, Eichler EE, Elgersma Y, Hildebrand PW, Bolduc F, Krüger E, Bézieau S. PSMC3 proteasome subunit variants are associated with neurodevelopmental delay and type I interferon production. Sci Transl Med 2023; 15:eabo3189. [PMID: 37256937 PMCID: PMC10506367 DOI: 10.1126/scitranslmed.abo3189] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/10/2023] [Indexed: 06/02/2023]
Abstract
A critical step in preserving protein homeostasis is the recognition, binding, unfolding, and translocation of protein substrates by six AAA-ATPase proteasome subunits (ATPase-associated with various cellular activities) termed PSMC1-6, which are required for degradation of proteins by 26S proteasomes. Here, we identified 15 de novo missense variants in the PSMC3 gene encoding the AAA-ATPase proteasome subunit PSMC3/Rpt5 in 23 unrelated heterozygous patients with an autosomal dominant form of neurodevelopmental delay and intellectual disability. Expression of PSMC3 variants in mouse neuronal cultures led to altered dendrite development, and deletion of the PSMC3 fly ortholog Rpt5 impaired reversal learning capabilities in fruit flies. Structural modeling as well as proteomic and transcriptomic analyses of T cells derived from patients with PSMC3 variants implicated the PSMC3 variants in proteasome dysfunction through disruption of substrate translocation, induction of proteotoxic stress, and alterations in proteins controlling developmental and innate immune programs. The proteostatic perturbations in T cells from patients with PSMC3 variants correlated with a dysregulation in type I interferon (IFN) signaling in these T cells, which could be blocked by inhibition of the intracellular stress sensor protein kinase R (PKR). These results suggest that proteotoxic stress activated PKR in patient-derived T cells, resulting in a type I IFN response. The potential relationship among proteosome dysfunction, type I IFN production, and neurodevelopment suggests new directions in our understanding of pathogenesis in some neurodevelopmental disorders.
Collapse
Affiliation(s)
- Frédéric Ebstein
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Sébastien Küry
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Victoria Most
- Institut für Medizinische Physik und Biophysik, Universität Leipzig, Medizinische Fakultät, Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Cory Rosenfelt
- Department of Pediatrics, University of Alberta, Edmonton, AB CT6G 1C9, Canada
| | | | - Geeske M. van Woerden
- Department of Neuroscience, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Thomas Besnard
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Jonas Johannes Papendorf
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Maja Studencka-Turski
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Tianyun Wang
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Neuroscience Research Institute, Peking University; Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing 100191, China
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Richard Golnik
- Klinik für Pädiatrie I, Universitätsklinikum Halle (Saale), 06120 Halle (Saale)
| | - Dustin Baldridge
- The Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63130-4899, USA
| | - Cara Forster
- GeneDx, 207 Perry Parkway, Gaithersburg, MD 20877, USA
| | - Charlotte de Konink
- Department of Neuroscience, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Selina M.W. Teurlings
- Department of Neuroscience, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Virginie Vignard
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | | | - Lesley Ades
- Department of Clinical Genetics, The Children’s Hospital at Westmead, Locked Bag 4001, Westmead, NSW, 2145, Australia
- Disciplines of Genomic Medicine & Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2145, Australia
| | - Benjamin Cogné
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Cyril Mignot
- APHP, Hôpital Pitié-Salpêtrière, Département de Génétique, Centre de Reference Déficience Intellectuelle de Causes Rares, GRC UPMC «Déficience Intellectuelle et Autisme», 75013 Paris, France
- Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR 7225, 75013, Paris, France
| | - Wallid Deb
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Marjolijn C.J. Jongmans
- Department of Genetics, University Medical Center Utrecht, 3508 AB, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
| | - F. Sessions Cole
- The Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63130-4899, USA
| | | | - Jennifer A. Wambach
- The Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63130-4899, USA
| | - Daniel J. Wegner
- The Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63130-4899, USA
| | - Sandra Yang
- GeneDx, 207 Perry Parkway, Gaithersburg, MD 20877, USA
| | - Vickie Hannig
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jennifer Ann Brault
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Neda Zadeh
- Genetics Center, Orange, CA 92868, USA; Division of Medical Genetics, Children’s Hospital of Orange County, Orange, CA 92868, USA
| | - Bruce Bennetts
- Disciplines of Genomic Medicine & Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2145, Australia
- Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children’s Hospital at Westmead, Sydney, NSW, 2145, Australia
| | - Boris Keren
- Département de Génétique, Centre de Référence des Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 75013 Paris
| | - Anne-Claire Gélineau
- Département de Génétique, Centre de Référence des Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 75013 Paris
| | - Zöe Powis
- Department of Clinical Research, Ambry Genetics, Aliso Viejo, CA 92656, USA
| | - Meghan Towne
- Department of Clinical Research, Ambry Genetics, Aliso Viejo, CA 92656, USA
| | | | - Andrea Seeley
- Genomic Medicine Institute, Geisinger, Danville, PA 17822, USA
| | - Anita E. Beck
- Department of Pediatrics, Division of Genetic Medicine, University of Washington & Seattle Children’s Hospital, Seattle, WA 98195-6320, USA
| | - Jennifer Morrison
- Division of Genetics, Arnold Palmer Hospital for Children, Orlando Health, Orlando, FL 32806, USA
| | - Rachel Westman
- Division of Genetics, St. Luke’s Clinic, Boise, ID 83712, USA
| | - Kelly Averill
- Department of Pediatrics, Division of Pediatric Neurology, UT Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Theresa Brunet
- Institute of Human Genetics, Technical University of Munich, School of Medicine, 81675 Munich, Germany
- Institute of Neurogenomics (ING), Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Judith Haasters
- Klinikum der Universität München, Integriertes Sozial- pädiatrisches Zentrum, 80337 Munich, Germany
| | - Melissa T. Carter
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, ON K1H 8L1, Canada
- Department of Genetics, Children’s Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
| | - Matthew Osmond
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, ON K1H 8L1, Canada
| | - Patricia G. Wheeler
- Division of Genetics, Arnold Palmer Hospital for Children, Orlando Health, Orlando, FL 32806, USA
| | - Francesca Forzano
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Clinical Genetics Department, Guy’s & St Thomas’ NHS Foundation Trust, London SE1 9RT, UK
| | - Shehla Mohammed
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Clinical Genetics Department, Guy’s & St Thomas’ NHS Foundation Trust, London SE1 9RT, UK
| | - Yannis Trakadis
- Division of Medical Genetics, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Andrea Accogli
- Division of Medical Genetics, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Rachel Harrison
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Department of Clinical Genetics, Nottingham University Hospitals NHS Trust, City Hospital Campus, The Gables, Gate 3, Hucknall Road, Nottingham NG5 1PB, UK
| | - Yiran Guo
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Center for Data Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19146, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sophie Rondeau
- Service de Médecine Génomique des Maladies Rares, Hôpital Universitaire Necker-Enfants Malades, 75743 Paris, France
| | - Geneviève Baujat
- Service de Médecine Génomique des Maladies Rares, Hôpital Universitaire Necker-Enfants Malades, 75743 Paris, France
| | - Giulia Barcia
- Service de Médecine Génomique des Maladies Rares, Hôpital Universitaire Necker-Enfants Malades, 75743 Paris, France
| | - René Günther Feichtinger
- University Children’s Hospital, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Johannes Adalbert Mayr
- University Children’s Hospital, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Martin Preisel
- University Children’s Hospital, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Frédéric Laumonnier
- UMR 1253, iBrain, Université de Tours, Inserm, 37032 Tours, France
- Service de Génétique, Centre Hospitalier Régional Universitaire, 37032 Tours, France
| | - Tilmann Kallinich
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin; 13353 Berlin, Germany
- Deutsches Rheumaforschungszentrum, An Institute of the Leibniz Association, Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Alexej Knaus
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Bertrand Isidor
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Peter Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Uwe Völker
- Universitätsmedizin Greifswald, Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Abteilung für Funktionelle Genomforschung, 17487 Greifswald, Germany
| | - Elke Hammer
- Universitätsmedizin Greifswald, Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Abteilung für Funktionelle Genomforschung, 17487 Greifswald, Germany
| | - Arnaud Droit
- Research Center of Quebec CHU-Université Laval, Québec, QC PQ G1E6W2, Canada
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Ype Elgersma
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Peter W. Hildebrand
- Institut für Medizinische Physik und Biophysik, Universität Leipzig, Medizinische Fakultät, Härtelstr. 16-18, 04107 Leipzig, Germany
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
- Berlin Institute of Health, 10178 Berlin, Germany
| | - François Bolduc
- Department of Pediatrics, University of Alberta, Edmonton, AB CT6G 1C9, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Elke Krüger
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Stéphane Bézieau
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| |
Collapse
|
13
|
Apcher S, Vojtesek B, Fahraeus R. In search of the cell biology for self- versus non-self- recognition. Curr Opin Immunol 2023; 83:102334. [PMID: 37210933 DOI: 10.1016/j.coi.2023.102334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/23/2023]
Abstract
Several of today's cancer treatments are based on the immune system's capacity to detect and destroy cells expressing neoantigens on major histocompatibility class-I molecules (MHC-I). Despite this, we still do not know the cell biology behind how antigenic peptide substrates (APSs) for the MHC-I pathway are produced. Indeed, there are few research fields with so many divergent views as the one concerning the source of APSs. This is quite remarkable considering their fundamental role in the immune systems' capacity to detect and destroy virus-infected or transformed cells. A better understanding of the processes generating APSs and how these are regulated will shed light on the evolution of self-recognition and provide new targets for therapeutic intervention. We discuss the search for the elusive source of MHC-I peptides and highlight the cell biology that is still missing to explain how they are synthesised and where they come from.
Collapse
Affiliation(s)
- Sebastien Apcher
- Institut Gustave Roussy, Université Paris Sud, UMR 1015, Villejuif, France
| | - Borek Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 65653 Brno, Czech Republic
| | - Robin Fahraeus
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, France; Department of Medical Biosciences, Building 6M, Umeå University, 901 85 Umeå, Sweden; RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 65653 Brno, Czech Republic.
| |
Collapse
|
14
|
Avsec D, Škrlj Miklavčič M, Burnik T, Kandušer M, Bizjak M, Podgornik H, Mlinarič-Raščan I. Inhibition of p38 MAPK or immunoproteasome overcomes resistance of chronic lymphocytic leukemia cells to Bcl-2 antagonist venetoclax. Cell Death Dis 2022; 13:860. [PMID: 36209148 PMCID: PMC9547871 DOI: 10.1038/s41419-022-05287-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 01/23/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is a hematological neoplasm of CD19-positive mature-appearing B lymphocytes. Despite the clinical success of targeted therapies in CLL, the development of resistance diminishes their therapeutic activity. This is also true for the Bcl-2 antagonist venetoclax. We investigated the molecular mechanisms that drive venetoclax resistance in CLL, with a clear focus to provide new strategies to successfully combat it. Activation of CLL cells with IFNγ, PMA/ionomycin, and sCD40L diminished the cytotoxicity of venetoclax. We demonstrated that the metabolic activity of cells treated with 1 nM venetoclax alone was 48% of untreated cells, and was higher for cells co-treated with IFNγ (110%), PMA/ionomycin (78%), and sCD40L (62%). As of molecular mechanism, we showed that PMA/ionomycin and sCD40L triggered translocation of NFκB in primary CLL cells, while IFNγ activated p38 MAPK, suppressed spontaneous and venetoclax-induced apoptosis and induced formation of the immunoproteasome. Inhibition of immunoproteasome with ONX-0914 suppressed activity of immunoproteasome and synergized with venetoclax against primary CLL cells. On the other hand, inhibition of p38 MAPK abolished cytoprotective effects of IFNγ. We demonstrated that venetoclax-resistant (MEC-1 VER) cells overexpressed p38 MAPK and p-Bcl-2 (Ser70), and underexpressed Mcl-1, Bax, and Bak. Inhibition of p38 MAPK or immunoproteasome triggered apoptosis in CLL cells and overcame the resistance to venetoclax of MEC-1 VER cells and venetoclax-insensitive primary CLL cells. In conclusion, the p38 MAPK pathway and immunoproteasome represent novel targets to combat venetoclax resistance in CLL.
Collapse
Affiliation(s)
- Damjan Avsec
- grid.8954.00000 0001 0721 6013University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia
| | - Marja Škrlj Miklavčič
- grid.8954.00000 0001 0721 6013University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia
| | - Tilen Burnik
- grid.8954.00000 0001 0721 6013University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia
| | - Maša Kandušer
- grid.8954.00000 0001 0721 6013University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia
| | - Maruša Bizjak
- grid.8954.00000 0001 0721 6013University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia
| | - Helena Podgornik
- grid.8954.00000 0001 0721 6013University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia ,grid.29524.380000 0004 0571 7705University Medical Centre Ljubljana, Department of Haematology, SI-1000 Ljubljana, Slovenia
| | - Irena Mlinarič-Raščan
- grid.8954.00000 0001 0721 6013University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
15
|
Frankowska N, Lisowska K, Witkowski JM. Proteolysis dysfunction in the process of aging and age-related diseases. FRONTIERS IN AGING 2022; 3:927630. [PMID: 35958270 PMCID: PMC9361021 DOI: 10.3389/fragi.2022.927630] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/30/2022] [Indexed: 12/20/2022]
Abstract
In this review, we discuss in detail the most relevant proteolytic systems that together with chaperones contribute to creating the proteostasis network that is kept in dynamic balance to maintain overall functionality of cellular proteomes. Data accumulated over decades demonstrate that the effectiveness of elements of the proteostasis network declines with age. In this scenario, failure to degrade misfolded or faulty proteins increases the risk of protein aggregation, chronic inflammation, and the development of age-related diseases. This is especially important in the context of aging-related modification of functions of the immune system.
Collapse
Affiliation(s)
- Natalia Frankowska
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland
| | - Katarzyna Lisowska
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland
| | - Jacek M Witkowski
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
16
|
Gonçalves JJ, da Mata CPSM, Lourenço AA, Ribeiro ÁL, Ferreira GM, Fraga-Silva TFDC, de Souza FM, Almeida VES, Batista IA, D`Avila-Mesquita C, Couto AES, Campos LCB, Paim AAO, Ferreira LL, de Melo Oliveira P, de Almeida Teixeira L, Priscila de Almeida Marques D, Retes de Moraes H, Pereira SH, Brito-de-Sousa JP, Campi-Azevedo AC, Peruhype-Magalhães V, Araújo MSS, Teixeira-Carvalho A, da Fonseca FG, Bonato VLD, Becari C, Ferro D, Menegueti MG, Mazzoni AAS, Auxiliadora-Martins M, Coelho-dos-Reis JG, Martins-Filho OA. Timeline Kinetics of Systemic and Airway Immune Mediator Storm for Comprehensive Analysis of Disease Outcome in Critically Ill COVID-19 Patients. Front Immunol 2022; 13:903903. [PMID: 35720401 PMCID: PMC9204232 DOI: 10.3389/fimmu.2022.903903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
In the present study, the levels of serum and airway soluble chemokines, pro-inflammatory/regulatory cytokines, and growth factors were quantified in critically ill COVID-19 patients (total n=286) at distinct time points (D0, D2-6, D7, D8-13 and D>14-36) upon Intensive Care Unit (ICU) admission. Augmented levels of soluble mediators were observed in serum from COVID-19 patients who progress to death. An opposite profile was observed in tracheal aspirate samples, indicating that systemic and airway microenvironment diverge in their inflammatory milieu. While a bimodal distribution was observed in the serum samples, a unimodal peak around D7 was found for most soluble mediators in tracheal aspirate samples. Systems biology tools further demonstrated that COVID-19 display distinct eccentric soluble mediator networks as compared to controls, with opposite profiles in serum and tracheal aspirates. Regardless the systemic-compartmentalized microenvironment, networks from patients progressing to death were linked to a pro-inflammatory/growth factor-rich, highly integrated center. Conversely, patients evolving to discharge exhibited networks of weak central architecture, with lower number of neighborhood connections and clusters of pro-inflammatory and regulatory cytokines. All in all, this investigation with robust sample size landed a comprehensive snapshot of the systemic and local divergencies composed of distinct immune responses driven by SARS-CoV-2 early on severe COVID-19.
Collapse
Affiliation(s)
| | - Camila Pacheco Silveira Martins da Mata
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Hospital Risoleta Tolentino Neves, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Ágata Lopes Ribeiro
- Hospital Risoleta Tolentino Neves, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Fernanda Mesquita de Souza
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Iara Antunes Batista
- Hospital Risoleta Tolentino Neves, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Carolina D`Avila-Mesquita
- Divisão de Cirurgia Vascular, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Ariel E. S. Couto
- Divisão de Cirurgia Vascular, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Ligia C. B. Campos
- Divisão de Cirurgia Vascular, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Adriana Alves Oliveira Paim
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Linziane Lopes Ferreira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Patrícia de Melo Oliveira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lorena de Almeida Teixeira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Henrique Retes de Moraes
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Samille Henriques Pereira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | - Flávio Guimarães da Fonseca
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Centro de Tecnologia em Vacinas da Universidade Federal de Minas Gerais (UFMG), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vânia Luiza Deperon Bonato
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Christiane Becari
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Divisão de Cirurgia Vascular, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Denise Ferro
- Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Amanda Alves Silva Mazzoni
- Divisão de Medicina Intensiva, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Maria Auxiliadora-Martins
- Divisão de Medicina Intensiva, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Jordana Grazziela Coelho-dos-Reis
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Jordana Grazziela Coelho-dos-Reis, ; ; Olindo Assis Martins-Filho,
| | - Olindo Assis Martins-Filho
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
- *Correspondence: Jordana Grazziela Coelho-dos-Reis, ; ; Olindo Assis Martins-Filho,
| |
Collapse
|
17
|
Kloetzel PM. Neo-Splicetopes in Tumor Therapy: A Lost Case? Front Immunol 2022; 13:849863. [PMID: 35265089 PMCID: PMC8898901 DOI: 10.3389/fimmu.2022.849863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Proteasome generates spliced peptides by ligating two distant cleavage products in a reverse proteolysis reaction. The observation that CD8+ T cells recognizing a spliced peptide induced T cell rejection in a melanoma patient following adoptive T cell transfer (ATT), raised some hopes with regard to the general therapeutic and immune relevance of spliced peptides. Concomitantly, the identification of spliced peptides was also the start of a controversy with respect to their frequency, abundancy and their therapeutic applicability. Here I review some of the recent evidence favoring or disfavoring an immune relevance of splicetopes and discuss from a theoretical point of view the potential usefulness of tumor specific splicetopes and why against all odds it still may seem worth trying to identify such tumor and patient-specific neosplicetopes for application in ATT.
Collapse
Affiliation(s)
- Peter M Kloetzel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biochemistry, Berlin, Germany
| |
Collapse
|
18
|
Akbari P, Katsarou A, Daghighian R, van Mil LW, Huijbers EJ, Griffioen AW, van Beijnum JR. Directing CAR T cells towards the tumor vasculature for the treatment of solid tumors. Biochim Biophys Acta Rev Cancer 2022; 1877:188701. [DOI: 10.1016/j.bbcan.2022.188701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 10/19/2022]
|
19
|
Liu QR, Aseer KR, Yao Q, Zhong X, Ghosh P, O’Connell JF, Egan JM. Anti-Inflammatory and Pro-Autophagy Effects of the Cannabinoid Receptor CB2R: Possibility of Modulation in Type 1 Diabetes. Front Pharmacol 2022; 12:809965. [PMID: 35115945 PMCID: PMC8804091 DOI: 10.3389/fphar.2021.809965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease resulting from loss of insulin-secreting β-cells in islets of Langerhans. The loss of β-cells is initiated when self-tolerance to β-cell-derived contents breaks down, which leads to T cell-mediated β-cell damage and, ultimately, β-cell apoptosis. Many investigations have demonstrated the positive effects of antagonizing cannabinoid receptor 1 (CB1R) in metabolic diseases such as fatty liver disease, obesity, and diabetes mellitus, but the role of cannabinoid receptor 2 (CB2R) in such diseases is relatively unknown. Activation of CB2R is known for its immunosuppressive roles in multiple sclerosis, rheumatoid arthritis, Crohn’s, celiac, and lupus diseases, and since autoimmune diseases can share common environmental and genetic factors, we propose CB2R specific agonists may also serve as disease modifiers in diabetes mellitus. The CNR2 gene, which encodes CB2R protein, is the result of a gene duplication of CNR1, which encodes CB1R protein. This ortholog evolved rapidly after transitioning from invertebrates to vertebrate hundreds of million years ago. Human specific CNR2 isoforms are induced by inflammation in pancreatic islets, and a CNR2 nonsynonymous SNP (Q63R) is associated with autoimmune diseases. We collected evidence from the literature and from our own studies demonstrating that CB2R is involved in regulating the inflammasome and especially release of the cytokine interleukin 1B (IL-1β). Furthermore, CB2R activation controls intracellular autophagy and may regulate secretion of extracellular vesicles from adipocytes that participate in recycling of lipid droplets, dysregulation of which induces chronic inflammation and obesity. CB2R activation may play a similar role in islets of Langerhans. Here, we will discuss future strategies to unravel what roles, if any, CB2R modifiers potentially play in T1DM.
Collapse
Affiliation(s)
- Qing-Rong Liu
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States
- *Correspondence: Qing-Rong Liu, ; Josephine M. Egan,
| | - Kanikkai Raja Aseer
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Qin Yao
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Xiaoming Zhong
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, United States
| | - Paritosh Ghosh
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Jennifer F. O’Connell
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Josephine M. Egan
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States
- *Correspondence: Qing-Rong Liu, ; Josephine M. Egan,
| |
Collapse
|
20
|
Transcriptome Analysis of Large to Giant Congenital Melanocytic Nevus Reveals Cell Cycle Arrest and Immune Evasion: Identifying Potential Targets for Treatment. J Immunol Res 2021; 2021:8512200. [PMID: 34912899 PMCID: PMC8668353 DOI: 10.1155/2021/8512200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
Large to giant congenital melanocytic nevus (lgCMN) is a benign cutaneous tumor that develops during embryogenesis. A large number of lgCMN patients are ineligible for surgical treatment; hence, there is an urgent need to develop pharmacological treatments. Clinically, tumorigenesis and progression essentially halt after birth, resulting in the homeostasis of growth arrest and survival. Numerous studies have employed whole-genome or whole-exome sequencing to clarify the etiology of lgCMN; however, transcriptome sequencing of lgCMN is still lacking. Through comprehensive transcriptome analysis, this study elucidated the ongoing regulation and homeostasis of lgCMN and identified potential targets for treatment. Transcriptome sequencing, identification of differentially expressed genes and hub genes, protein–protein network construction, functional enrichment, pathway analysis, and gene annotations were performed in this study. Immunohistochemistry, real-time quantitative PCR, immunocytofluorescence, and cell cycle assays were employed for further validation. The results revealed several intriguing phenomena in lgCMN, including P16-induced cell cycle arrest, antiapoptotic activity, and immune evasion caused by malfunction of tumor antigen processing. The arrested cell cycle in lgCMN is consistent with its phenotype and rare malignant transformation. Antiapoptotic activity and immune evasion might explain how such heterogeneous cells have avoided elimination. Major histocompatibility complex (MHC) class I-mediated tumor antigen processing was the hub pathway that was significantly downregulated in lgCMN, and ITCH, FBXW7, HECW2, and WWP1 were identified as candidate hub genes. In conclusion, our research provides new perspectives for immunotherapy and targeted therapy.
Collapse
|
21
|
Padariya M, Kote S, Mayordomo M, Dapic I, Alfaro J, Hupp T, Fahraeus R, Kalathiya U. Structural determinants of peptide-dependent TAP1-TAP2 transit passage targeted by viral proteins and altered by cancer-associated mutations. Comput Struct Biotechnol J 2021; 19:5072-5091. [PMID: 34589184 PMCID: PMC8453138 DOI: 10.1016/j.csbj.2021.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 01/20/2023] Open
Abstract
The TAP1-TAP2 complex transports antigenic peptide substrates into the endoplasmic reticulum (ER). In ER, the peptides are further processed and loaded on the major histocompatibility class (MHC) I molecules by the peptide loading complex (PLC). The TAP transporters are linked with the PLC; a target for cancers and viral immune evasion. But the mechanisms whereby the cancer-derived mutations in TAP1-TAP2 or viral factors targeting the PLC, interfere peptide transport are only emerging. This study describes that transit of peptides through TAP can take place via two different channels (4 or 8 helices) depending on peptide length and sequence. Molecular dynamics and binding affinity predictions of peptide-transporters demonstrated that smaller peptides (8-10 mers; e.g. AAGIGILTV, SIINFEKL) can transport quickly through the transport tunnel compared to longer peptides (15-mer; e.g. ENPVVHFFKNIVTPR). In line with a regulated and selective peptide transport by TAPs, the immunopeptidome upon IFN-γ treatment in melanoma cells induced the shorter length (9-mer) peptide presentation over MHC-I that exhibit a relatively weak binding affinity with TAP. A conserved distance between N and C terminus residues of the studied peptides in the transport tunnel were reported. Furthermore, by adversely interacting with the TAP transport passage or affecting TAPNBD domains tilt movement, the viral proteins and cancer-derived mutations in TAP1-TAP2 may induce allosteric effects in TAP that block conformation of the tunnel (closed towards ER lumen). Interestingly, some cancer-associated mutations (e.g. TAP1R372Q and TAP2R373H) can specifically interfere with selective transport channels (i.e. for longer-peptides). These results provide a model for how viruses and cancer-associated mutations targeting TAP interfaces can affect MHC-I antigen presentation, and how the IFN-γ pathway alters MHC-I antigen presentation via the kinetics of peptide transport.
Collapse
Affiliation(s)
- Monikaben Padariya
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
| | - Sachin Kote
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
| | - Marcos Mayordomo
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
| | - Irena Dapic
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
| | - Javier Alfaro
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland EH4 2XR, United Kingdom
| | - Ted Hupp
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland EH4 2XR, United Kingdom
| | - Robin Fahraeus
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
- Department of Medical Biosciences, Building 6M, Umeå University, 901 85 Umeå, Sweden
- RECAMO, Masaryk Memorial Cancer Institute, Zlutykopec 7, 65653 Brno, Czech Republic
| | - Umesh Kalathiya
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
| |
Collapse
|
22
|
Ansar M, Ebstein F, Özkoç H, Paracha SA, Iwaszkiewicz J, Gesemann M, Zoete V, Ranza E, Santoni FA, Sarwar MT, Ahmed J, Krüger E, Bachmann-Gagescu R, Antonarakis SE. Biallelic variants in PSMB1 encoding the proteasome subunit β6 cause impairment of proteasome function, microcephaly, intellectual disability, developmental delay and short stature. Hum Mol Genet 2021; 29:1132-1143. [PMID: 32129449 DOI: 10.1093/hmg/ddaa032] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 12/30/2022] Open
Abstract
The molecular cause of the majority of rare autosomal recessive disorders remains unknown. Consanguinity due to extensive homozygosity unravels many recessive phenotypes and facilitates the detection of novel gene-disease links. Here, we report two siblings with phenotypic signs, including intellectual disability (ID), developmental delay and microcephaly from a Pakistani consanguineous family in which we have identified homozygosity for p(Tyr103His) in the PSMB1 gene (Genbank NM_002793) that segregated with the disease phenotype. PSMB1 encodes a β-type proteasome subunit (i.e. β6). Modeling of the p(Tyr103His) variant indicates that this variant weakens the interactions between PSMB1/β6 and PSMA5/α5 proteasome subunits and thus destabilizes the 20S proteasome complex. Biochemical experiments in human SHSY5Y cells revealed that the p(Tyr103His) variant affects both the processing of PSMB1/β6 and its incorporation into proteasome, thus impairing proteasome activity. CRISPR/Cas9 mutagenesis or morpholino knock-down of the single psmb1 zebrafish orthologue resulted in microcephaly, microphthalmia and reduced brain size. Genetic evidence in the family and functional experiments in human cells and zebrafish indicates that PSMB1/β6 pathogenic variants are the cause of a recessive disease with ID, microcephaly and developmental delay due to abnormal proteasome assembly.
Collapse
Affiliation(s)
- Muhammad Ansar
- Department of Genetic Medicine and Development, University of Geneva, Geneva 1211, Switzerland
| | - Frédéric Ebstein
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Greifswald 17475, Germany
| | - Hayriye Özkoç
- Institute of Medical Genetics, University of Zurich, Schlieren 8952, Switzerland
| | - Sohail A Paracha
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan
| | - Justyna Iwaszkiewicz
- Molecular Modeling Group, Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Matthias Gesemann
- Department of Molecular Life Sciences, University of Zurich, Zurich 8057, Switzerland
| | - Vincent Zoete
- Molecular Modeling Group, Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland.,Department of Fundamental Oncology, Ludwig Institute for Cancer Research, Lausanne University, Epalinges 1066, Switzerland
| | - Emmanuelle Ranza
- Department of Genetic Medicine and Development, University of Geneva, Geneva 1211, Switzerland.,Service of Genetic Medicine, University Hospitals of Geneva, Geneva 1205, Switzerland
| | - Federico A Santoni
- Department of Genetic Medicine and Development, University of Geneva, Geneva 1211, Switzerland.,Department of Endocrinology Diabetes and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Muhammad T Sarwar
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan
| | - Jawad Ahmed
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan
| | - Elke Krüger
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Greifswald 17475, Germany
| | - Ruxandra Bachmann-Gagescu
- Institute of Medical Genetics, University of Zurich, Schlieren 8952, Switzerland.,Department of Molecular Life Sciences, University of Zurich, Zurich 8057, Switzerland
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva, Geneva 1211, Switzerland.,Service of Genetic Medicine, University Hospitals of Geneva, Geneva 1205, Switzerland.,iGE3 Institute of Genetics and Genomics of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
23
|
Ruano D. Proteostasis Dysfunction in Aged Mammalian Cells. The Stressful Role of Inflammation. Front Mol Biosci 2021; 8:658742. [PMID: 34222330 PMCID: PMC8245766 DOI: 10.3389/fmolb.2021.658742] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
Aging is a biological and multifactorial process characterized by a progressive and irreversible deterioration of the physiological functions leading to a progressive increase in morbidity. In the next decades, the world population is expected to reach ten billion, and globally, elderly people over 80 are projected to triple in 2050. Consequently, it is also expected an increase in the incidence of age-related pathologies such as cancer, diabetes, or neurodegenerative disorders. Disturbance of cellular protein homeostasis (proteostasis) is a hallmark of normal aging that increases cell vulnerability and might be involved in the etiology of several age-related diseases. This review will focus on the molecular alterations occurring during normal aging in the most relevant protein quality control systems such as molecular chaperones, the UPS, and the ALS. Also, alterations in their functional cooperation will be analyzed. Finally, the role of inflammation, as a synergistic negative factor of the protein quality control systems during normal aging, will also be addressed. A better comprehension of the age-dependent modifications affecting the cellular proteostasis, as well as the knowledge of the mechanisms underlying these alterations, might be very helpful to identify relevant risk factors that could be responsible for or contribute to cell deterioration, a fundamental question still pending in biomedicine.
Collapse
Affiliation(s)
- Diego Ruano
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
24
|
Komov L, Melamed Kadosh D, Barnea E, Admon A. The Effect of Interferons on Presentation of Defective Ribosomal Products as HLA Peptides. Mol Cell Proteomics 2021; 20:100105. [PMID: 34087483 PMCID: PMC8724922 DOI: 10.1016/j.mcpro.2021.100105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/15/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
A subset of class I major histocompatibility complex (MHC)-bound peptides is produced from immature proteins that are rapidly degraded after synthesis. These defective ribosomal products (DRiPs) have been implicated in early alert of the immune system about impending infections. Interferons are important cytokines, produced in response to viral infection, that modulate cellular metabolism and gene expression patterns, increase the presentation of MHC molecules, and induce rapid degradation of proteins and cell-surface presentation of their derived MHC peptides, thereby contributing to the battle against pathogen infections. This study evaluated the role of interferons in the induction of rapid degradation of DRiPs to modulate the repertoire of DRiP-derived MHC peptides. Cultured human breast cancer cells were treated with interferons, and the rates of synthesis and degradation of cellular protein and their degradation products were determined by LC-MS/MS analysis, following the rates of incorporation of heavy stable isotope–labeled amino acids (dynamic stable isotope labeling by amino acids in cell culture, dynamic SILAC) at several time points after the interferon application. Large numbers of MHC peptides that incorporated the heavy amino acids faster than their source proteins indicated that DRiP peptides were abundant in the MHC peptidome; interferon treatment increased by about twofold their relative proportions in the peptidome. Such typical DRiP-derived MHC peptides were from the surplus subunits of the proteasome and ribosome, which are degraded because of the transition to immunoproteasomes and a new composition of ribosomes incorporating protein subunits that are induced by the interferon. We conclude that degradation of surplus subunits induced by the interferon is a major source for DRiP–MHC peptides, a phenomenon relevant to coping with viral infections, where a rapid presentation of MHC peptides derived from excess viral proteins may help alert the immune system about the impending infection. Degradation products of surplus subunits are often presented as HLA peptides. Interferons increase degradation and presentation of such defective products. Dynamic SILAC facilitates identification of such HLA peptides. This cellular pathway provides alert to the immune system about viral infections.
Collapse
Affiliation(s)
- Liran Komov
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Eilon Barnea
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
25
|
French T, Israel N, Düsedau HP, Tersteegen A, Steffen J, Cammann C, Topfstedt E, Dieterich D, Schüler T, Seifert U, Dunay IR. The Immunoproteasome Subunits LMP2, LMP7 and MECL-1 Are Crucial Along the Induction of Cerebral Toxoplasmosis. Front Immunol 2021; 12:619465. [PMID: 33968021 PMCID: PMC8099150 DOI: 10.3389/fimmu.2021.619465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/16/2021] [Indexed: 11/28/2022] Open
Abstract
Cell survival and function critically relies on the fine-tuned balance of protein synthesis and degradation. In the steady state, the standard proteasome is sufficient to maintain this proteostasis. However, upon inflammation, the sharp increase in protein production requires additional mechanisms to limit protein-associated cellular stress. Under inflammatory conditions and the release of interferons, the immunoproteasome (IP) is induced to support protein processing and recycling. In antigen-presenting cells constitutively expressing IPs, inflammation-related mechanisms contribute to the formation of MHC class I/II-peptide complexes, which are required for the induction of T cell responses. The control of Toxoplasma gondii infection relies on Interferon-γ (IFNγ)-related T cell responses. Whether and how the IP affects the course of anti-parasitic T cell responses along the infection as well as inflammation of the central nervous system is still unknown. To answer this question we used triple knockout (TKO) mice lacking the 3 catalytic subunits of the immunoproteasome (β1i/LMP2, β2i/MECL-1 and β5i/LMP7). Here we show that the numbers of dendritic cells, monocytes and CD8+ T cells were reduced in Toxoplasma gondii-infected TKO mice. Furthermore, impaired IFNγ, TNF and iNOS production was accompanied by dysregulated chemokine expression and altered immune cell recruitment to the brain. T cell differentiation was altered, apoptosis rates of microglia and monocytes were elevated and STAT3 downstream signaling was diminished. Consequently, anti-parasitic immune responses were impaired in TKO mice leading to elevated T. gondii burden and prolonged neuroinflammation. In summary we provide evidence for a critical role of the IP subunits β1i/LMP2, β2i/MECL-1 and β5i/LMP7 for the control of cerebral Toxoplasma gondii infection and subsequent neuroinflammation.
Collapse
Affiliation(s)
- Timothy French
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Nicole Israel
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany.,Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Henning Peter Düsedau
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Anne Tersteegen
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Johannes Steffen
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Clemens Cammann
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany.,Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Eylin Topfstedt
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany
| | - Daniela Dieterich
- Institute of Pharmacology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Ulrike Seifert
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany.,Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
26
|
Role of Proteasomes in Inflammation. J Clin Med 2021; 10:jcm10081783. [PMID: 33923887 PMCID: PMC8072576 DOI: 10.3390/jcm10081783] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022] Open
Abstract
The ubiquitin–proteasome system (UPS) is involved in multiple cellular functions including the regulation of protein homeostasis, major histocompatibility (MHC) class I antigen processing, cell cycle proliferation and signaling. In humans, proteasome loss-of-function mutations result in autoinflammation dominated by a prominent type I interferon (IFN) gene signature. These genomic alterations typically cause the development of proteasome-associated autoinflammatory syndromes (PRAAS) by impairing proteasome activity and perturbing protein homeostasis. However, an abnormal increased proteasomal activity can also be found in other human inflammatory diseases. In this review, we cast a light on the different clinical aspects of proteasomal activity in human disease and summarize the currently studied therapeutic approaches.
Collapse
|
27
|
Batley KC, Sandoval-Castillo J, Kemper CM, Zanardo N, Tomo I, Beheregaray LB, Möller LM. Whole genomes reveal multiple candidate genes and pathways involved in the immune response of dolphins to a highly infectious virus. Mol Ecol 2021; 30:6434-6448. [PMID: 33675577 DOI: 10.1111/mec.15873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 01/02/2023]
Abstract
Wildlife species are challenged by various infectious diseases that act as important demographic drivers of populations and have become a great conservation concern particularly under growing environmental changes. The new era of whole genome sequencing provides new opportunities and avenues to explore the role of genetic variants in the plasticity of immune responses, particularly in non-model systems. Cetacean morbillivirus (CeMV) has emerged as a major viral threat to cetacean populations worldwide, contributing to the death of thousands of individuals of multiple dolphin and whale species. To understand the genomic basis of immune responses to CeMV, we generated and analysed whole genomes of 53 Indo-Pacific bottlenose dolphins (Tursiops aduncus) exposed to Australia's largest known CeMV-related mortality event that killed at least 50 dolphins from three different species. The genomic data set consisted of 10,168,981 SNPs anchored onto 23 chromosome-length scaffolds and 77 short scaffolds. Whole genome analysis indicated that levels of inbreeding in the dolphin population did not influence the outcome of an individual. Allele frequency estimates between survivors and nonsurvivors of the outbreak revealed 15,769 candidate SNPs, of which 689 were annotated to 295 protein coding genes. These included 50 genes with functions related to innate and adaptive immune responses, and cytokine signalling pathways and genes thought to be involved in immune responses to other morbilliviruses. Our study characterised genomic regions and pathways that may contribute to CeMV immune responses in dolphins. This represents a stride towards clarifying the complex interactions of the cetacean immune system and emphasises the value of whole genome data sets in understanding genetic elements that are essential for species conservation, including disease susceptibility and adaptation.
Collapse
Affiliation(s)
- Kimberley C Batley
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.,Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Jonathan Sandoval-Castillo
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | | | - Nikki Zanardo
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.,Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Ikuko Tomo
- South Australian Museum, Adelaide, South Australia, Australia
| | - Luciano B Beheregaray
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Luciana M Möller
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.,Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
28
|
Kasahara M. Role of immunoproteasomes and thymoproteasomes in health and disease. Pathol Int 2021; 71:371-382. [PMID: 33657242 DOI: 10.1111/pin.13088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
The proteasome is a multisubunit protease that degrades intracellular proteins into small peptides. Besides playing a pivotal role in many cellular processes indispensable for survival, it is involved in the production of peptides presented by major histocompatibility complex class I molecules. In addition to the standard proteasome shared in all eukaryotes, jawed vertebrates have two specialized forms of proteasome known as immunoproteasomes and thymoproteasomes. The immunoproteasome, which contains cytokine-inducible catalytic subunits with distinct cleavage specificities, produces peptides presented by class I molecules more efficiently than the standard proteasome. The thymoproteasome, which contains a unique catalytic subunit β5t, is a tissue-specific proteasome expressed exclusively in cortical thymic epithelial cells. It plays a critical role in CD8+ cytotoxic T cell development via positive selection. This review provides a brief overview on the structure and function of these specialized forms of proteasome and their involvement in human disease.
Collapse
Affiliation(s)
- Masanori Kasahara
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
29
|
Burris A, Waite KA, Reuter Z, Ockerhausen S, Roelofs J. Proteasome activator Blm10 levels and autophagic degradation directly impact the proteasome landscape. J Biol Chem 2021; 296:100468. [PMID: 33639167 PMCID: PMC8039559 DOI: 10.1016/j.jbc.2021.100468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/12/2021] [Accepted: 02/23/2021] [Indexed: 12/09/2022] Open
Abstract
The proteasome selectively degrades proteins. It consists of a core particle (CP), which contains proteolytic active sites that can associate with different regulators to form various complexes. How these different complexes are regulated and affected by changing physiological conditions, however, remains poorly understood. In this study, we focused on the activator Blm10 and the regulatory particle (RP). In yeast, increased expression of Blm10 outcompeted RP for CP binding, which suggests that controlling the cellular levels of Blm10 can affect the relative amounts of RP-bound CP. While strong overexpression of BLM10 almost eliminated the presence of RP-CP complexes, the phenotypes this should induce were not observed. Our results show this was due to the induction of Blm10-CP autophagy under prolonged growth in YPD. Similarly, under conditions of endogenous BLM10 expression, Blm10 was degraded through autophagy as well. This suggests that reducing the levels of Blm10 allows for more CP-binding surfaces and the formation of RP-CP complexes under nutrient stress. This work provides important insights into maintaining the proteasome landscape and how protein expression levels affect proteasome function.
Collapse
Affiliation(s)
- Alicia Burris
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA; Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Kenrick A Waite
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Zachary Reuter
- Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Samuel Ockerhausen
- Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Jeroen Roelofs
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA; Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, Kansas, USA.
| |
Collapse
|
30
|
Aladdin A, Yao Y, Yang C, Kahlert G, Ghani M, Király N, Boratkó A, Uray K, Dittmar G, Tar K. The Proteasome Activators Blm10/PA200 Enhance the Proteasomal Degradation of N-Terminal Huntingtin. Biomolecules 2020; 10:biom10111581. [PMID: 33233776 PMCID: PMC7699873 DOI: 10.3390/biom10111581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 12/22/2022] Open
Abstract
The Blm10/PA200 family of proteasome activators modulates the peptidase activity of the core particle (20S CP). They participate in opening the 20S CP gate, thus facilitating the degradation of unstructured proteins such as tau and Dnm1 in a ubiquitin- and ATP-independent manner. Furthermore, PA200 also participates in the degradation of acetylated histones. In our study, we use a combination of yeast and human cell systems to investigate the role of Blm10/PA200 in the degradation of N-terminal Huntingtin fragments (N-Htt). We demonstrate that the human PA200 binds to N-Htt. The loss of Blm10 in yeast or PA200 in human cells results in increased mutant N-Htt aggregate formation and elevated cellular toxicity. Furthermore, Blm10 in vitro accelerates the proteasomal degradation of soluble N-Htt. Collectively, our data suggest N-Htt as a new substrate for Blm10/PA200-proteasomes and point to new approaches in Huntington's disease (HD) research.
Collapse
Affiliation(s)
- Azzam Aladdin
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.A.); (M.G.); (N.K.); (A.B.); (K.U.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Yanhua Yao
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10460, USA;
- Correspondence: (Y.Y.); (G.D.); (K.T.); Tel.: +86-21-6384-6590 (Y.Y.); +352-26970-944 (G.D.); +36-52-412-345 (K.T.)
| | - Ciyu Yang
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10460, USA;
- Departments of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Marvi Ghani
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.A.); (M.G.); (N.K.); (A.B.); (K.U.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Nikolett Király
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.A.); (M.G.); (N.K.); (A.B.); (K.U.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Anita Boratkó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.A.); (M.G.); (N.K.); (A.B.); (K.U.)
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.A.); (M.G.); (N.K.); (A.B.); (K.U.)
| | - Gunnar Dittmar
- Proteomics of Cellular Signalling, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
- Department of Life Science and Medicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
- Correspondence: (Y.Y.); (G.D.); (K.T.); Tel.: +86-21-6384-6590 (Y.Y.); +352-26970-944 (G.D.); +36-52-412-345 (K.T.)
| | - Krisztina Tar
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.A.); (M.G.); (N.K.); (A.B.); (K.U.)
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10460, USA;
- Correspondence: (Y.Y.); (G.D.); (K.T.); Tel.: +86-21-6384-6590 (Y.Y.); +352-26970-944 (G.D.); +36-52-412-345 (K.T.)
| |
Collapse
|
31
|
López E, Marinaro F, de Pedro MDLÁ, Sánchez-Margallo FM, Gómez-Serrano M, Ponath V, Pogge von Strandmann E, Jorge I, Vázquez J, Fernández-Pereira LM, Crisóstomo V, Álvarez V, Casado JG. The Immunomodulatory Signature of Extracellular Vesicles From Cardiosphere-Derived Cells: A Proteomic and miRNA Profiling. Front Cell Dev Biol 2020; 8:321. [PMID: 32582685 PMCID: PMC7295954 DOI: 10.3389/fcell.2020.00321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Experimental data demonstrated that the regenerative potential and immunomodulatory capacity of cardiosphere-derived cells (CDCs) is mediated by paracrine mechanisms. In this process, extracellular vesicles derived from CDCs (EV-CDCs) are key mediators of their therapeutic effect. Considering the future applicability of these vesicles in human diseases, an accurate preclinical-to-clinical translation is needed, as well as an exhaustive molecular characterization of animal-derived therapeutic products. Based on that, the main goal of this study was to perform a comprehensive characterization of proteins and miRNAs in extracellular vesicles from porcine CDCs as a clinically relevant animal model. The analysis was performed by identification and quantification of proteins and miRNA expression profiles. Our results revealed the presence of clusters of immune-related and cardiac-related molecular biomarkers in EV-CDCs. Additionally, considering that priming stem cells with inflammatory stimuli may increase the therapeutic potential of released vesicles, here we studied the dynamic changes that occur in the extracellular vesicles from IFNγ-primed CDCs. These analyses detected statistically significant changes in several miRNAs and proteins. Notably, the increase in interleukin 6 (IL6) protein, as well as the increase in mir-125b (that targets IL6 receptor) was especially relevant. These results suggest a potential involvement of EV-CDCs in the regulation of the IL6/IL6R axis, with implications in inflammatory-mediated diseases.
Collapse
Affiliation(s)
- Esther López
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Federica Marinaro
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | | | - Francisco Miguel Sánchez-Margallo
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - María Gómez-Serrano
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology (ZTI), Philipps University, Marburg, Germany
| | - Viviane Ponath
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University, Marburg, Germany.,Clinic for Hematology, Oncology, and Immunology, Philipps University, Marburg, Germany
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University, Marburg, Germany.,Clinic for Hematology, Oncology, and Immunology, Philipps University, Marburg, Germany
| | - Inmaculada Jorge
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jesús Vázquez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Verónica Crisóstomo
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Verónica Álvarez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Javier G Casado
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
32
|
Douida A, Batista F, Robaszkiewicz A, Boto P, Aladdin A, Szenykiv M, Czinege R, Virág L, Tar K. The proteasome activator PA200 regulates expression of genes involved in cell survival upon selective mitochondrial inhibition in neuroblastoma cells. J Cell Mol Med 2020; 24:6716-6730. [PMID: 32368861 PMCID: PMC7299700 DOI: 10.1111/jcmm.15323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/15/2020] [Accepted: 04/08/2020] [Indexed: 12/22/2022] Open
Abstract
The conserved Blm10/PA200 activators bind to the proteasome core and facilitate peptide and protein turnover. Blm10/PA200 proteins enhance proteasome peptidase activity and accelerate the degradation of unstructured proteasome substrates. Our knowledge about the exact role of PA200 in diseased cells, however, is still limited. Here, we show that stable knockdown of PA200 leads to a significantly elevated number of cells in S phase after treatment with the ATP synthase inhibitor, oligomycin. However, following exposure to the complex I inhibitor rotenone, more PA200‐depleted cells were in sub‐G1 and G2/M phases indicative of apoptosis. Chromatin immunoprecipitation (ChIP) and ChIP‐seq data analysis of collected reads indicate PA200‐enriched regions in the genome of SH‐SY5Y. We found that PA200 protein peaks were in the vicinity of transcription start sites. Gene ontology annotation revealed that genes whose promoters were enriched upon anti‐PA200 ChIP contribute to the regulation of crucial intracellular processes, including proliferation, protein modifications and metabolism. Selective mitochondrial inhibitors induced PA200 redistribution in the genome, leading to protein withdrawal from some gene promoters and binding to others. Collectively, the results support a model in which PA200 potentially regulates cellular homeostasis at the transcriptional level, in addition to its described role as an alternative activator of the proteasome.
Collapse
Affiliation(s)
- Abdennour Douida
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,University of Debrecen, Doctoral School of Molecular Medicine, Debrecen, Hungary
| | - Frank Batista
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Agnieszka Robaszkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Pal Boto
- Stem Cell Differentiation Laboratory, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Azzam Aladdin
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,University of Debrecen, Doctoral School of Molecular Medicine, Debrecen, Hungary
| | - Mónika Szenykiv
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Rita Czinege
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Krisztina Tar
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
33
|
Colberg L, Cammann C, Greinacher A, Seifert U. Structure and function of the ubiquitin-proteasome system in platelets. J Thromb Haemost 2020; 18:771-780. [PMID: 31898400 DOI: 10.1111/jth.14730] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/30/2019] [Indexed: 12/16/2022]
Abstract
Platelets are small anucleate blood cells with a life span of 7 to 10 days. They are main regulators of hemostasis. Balanced platelet activity is crucial to prevent bleeding or occlusive thrombus formation. Growing evidence supports that platelets also participate in immune reactions, and interaction between platelets and leukocytes contributes to both thrombosis and inflammation. The ubiquitin-proteasome system (UPS) plays a key role in maintaining cellular protein homeostasis by its ability to degrade non-functional self-, foreign, or short-lived regulatory proteins. Platelets express standard and immunoproteasomes. Inhibition of the proteasome impairs platelet production and platelet function. Platelets also express major histocompatibility complex (MHC) class I molecules. Peptide fragments released by proteasomes can bind to MHC class I, which makes it also likely that platelets can activate epitope specific cytotoxic T lymphocytes (CTLs). In this review, we focus on current knowledge on the significance of the proteasome for the functions of platelets as critical regulators of hemostasis as well as modulators of the immune response.
Collapse
Affiliation(s)
- Lisa Colberg
- Friedrich Loeffler Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Clemens Cammann
- Friedrich Loeffler Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Andreas Greinacher
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Ulrike Seifert
- Friedrich Loeffler Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
34
|
Kondakova IV, Shashova EE, Sidenko EA, Astakhova TM, Zakharova LA, Sharova NP. Estrogen Receptors and Ubiquitin Proteasome System: Mutual Regulation. Biomolecules 2020; 10:biom10040500. [PMID: 32224970 PMCID: PMC7226411 DOI: 10.3390/biom10040500] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/21/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
This review provides information on the structure of estrogen receptors (ERs), their localization and functions in mammalian cells. Additionally, the structure of proteasomes and mechanisms of protein ubiquitination and cleavage are described. According to the modern concept, the ubiquitin proteasome system (UPS) is involved in the regulation of the activity of ERs in several ways. First, UPS performs the ubiquitination of ERs with a change in their functional activity. Second, UPS degrades ERs and their transcriptional regulators. Third, UPS affects the expression of ER genes. In addition, the opportunity of the regulation of proteasome functioning by ERs—in particular, the expression of immune proteasomes—is discussed. Understanding the complex mechanisms underlying the regulation of ERs and proteasomes has great prospects for the development of new therapeutic agents that can make a significant contribution to the treatment of diseases associated with the impaired function of these biomolecules.
Collapse
Affiliation(s)
- Irina V. Kondakova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5 Kooperativny Street, 634009 Tomsk, Russia; (I.V.K.); (E.E.S.); (E.A.S.)
| | - Elena E. Shashova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5 Kooperativny Street, 634009 Tomsk, Russia; (I.V.K.); (E.E.S.); (E.A.S.)
| | - Evgenia A. Sidenko
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5 Kooperativny Street, 634009 Tomsk, Russia; (I.V.K.); (E.E.S.); (E.A.S.)
| | - Tatiana M. Astakhova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia; (T.M.A.); (L.A.Z.)
| | - Liudmila A. Zakharova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia; (T.M.A.); (L.A.Z.)
| | - Natalia P. Sharova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia; (T.M.A.); (L.A.Z.)
- Correspondence: ; Tel.: +7-499-135-7674; Fax: +7-499-135-3322
| |
Collapse
|
35
|
Targeting the ubiquitin-proteasome pathway to overcome anti-cancer drug resistance. Drug Resist Updat 2020; 48:100663. [DOI: 10.1016/j.drup.2019.100663] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/01/2019] [Accepted: 11/03/2019] [Indexed: 02/07/2023]
|
36
|
Studencka-Turski M, Çetin G, Junker H, Ebstein F, Krüger E. Molecular Insight Into the IRE1α-Mediated Type I Interferon Response Induced by Proteasome Impairment in Myeloid Cells of the Brain. Front Immunol 2019; 10:2900. [PMID: 31921161 PMCID: PMC6932173 DOI: 10.3389/fimmu.2019.02900] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/26/2019] [Indexed: 12/24/2022] Open
Abstract
Proteostasis is critical for cells to maintain the balance between protein synthesis, quality control, and degradation. This is particularly important for myeloid cells of the central nervous system as their immunological function relies on proper intracellular protein turnover by the ubiquitin-proteasome system. Accordingly, disruption of proteasome activity due to, e.g., loss-of-function mutations within genes encoding proteasome subunits, results in systemic autoinflammation. On the molecular level, pharmacological inhibition of proteasome results in endoplasmic reticulum (ER) stress-activated unfolded protein response (UPR) as well as an induction of type I interferons (IFN). Nevertheless, our understanding as to whether and to which extent UPR signaling regulates type I IFN response is limited. To address this issue, we have tested the effects of proteasome dysfunction upon treatment with proteasome inhibitors in primary murine microglia and microglia-like cell line BV-2. Our data show that proteasome impairment by bortezomib is a stimulus that activates all three intracellular ER-stress transducers activation transcription factor 6, protein kinase R-like endoplasmic reticulum kinase and inositol-requiring protein 1 alpha (IRE1α), causing a full activation of the UPR. We further demonstrate that impaired proteasome activity in microglia cells triggers an induction of IFNβ1 in an IRE1-dependent manner. An inhibition of the IRE1 endoribonuclease activity significantly attenuates TANK-binding kinase 1-mediated activation of type I IFN. Moreover, interfering with TANK-binding kinase 1 activity also compromised the expression of C/EBP homologous protein 10, thereby emphasizing a multilayered interplay between UPR and type IFN response pathway. Interestingly, the induced protein kinase R-like endoplasmic reticulum kinase-activation transcription factor 4-C/EBP homologous protein 10 and IRE1-X-box-binding protein 1 axes caused a significant upregulation of proinflammatory cytokine interleukin 6 expression that exacerbates STAT1/STAT3 signaling in cells with dysfunctional proteasomes. Altogether, these findings indicate that proteasome impairment disrupts ER homeostasis and triggers a complex interchange between ER-stress sensors and type I IFN signaling, thus inducing in myeloid cells a state of chronic inflammation.
Collapse
Affiliation(s)
- Maja Studencka-Turski
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Gonca Çetin
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Heike Junker
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Frédéric Ebstein
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
37
|
Textoris-Taube K, Cammann C, Henklein P, Topfstedt E, Ebstein F, Henze S, Liepe J, Zhao F, Schadendorf D, Dahlmann B, Uckert W, Paschen A, Mishto M, Seifert U. ER-aminopeptidase 1 determines the processing and presentation of an immunotherapy-relevant melanoma epitope. Eur J Immunol 2019; 50:270-283. [PMID: 31729751 DOI: 10.1002/eji.201948116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 08/19/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023]
Abstract
Dissecting the different steps of the processing and presentation of tumor-associated antigens is a key aspect of immunotherapies enabling to tackle the immune response evasion attempts of cancer cells. The immunodominant glycoprotein gp100209-217 epitope, which is liberated from the melanoma differentiation antigen gp100PMEL17 , is part of immunotherapy trials. By analyzing different human melanoma cell lines, we here demonstrate that a pool of N-terminal extended peptides sharing the common minimal epitope is generated by melanoma proteasome subtypes. In vitro and in cellulo experiments indicate that ER-resident aminopeptidase 1 (ERAP1)-but not ERAP2-defines the processing of this peptide pool thereby modulating the T-cell recognition of melanoma cells. By combining the outcomes of our studies and others, we can sketch the complex processing and endogenous presentation pathway of the gp100209-217 -containing epitope/peptides, which are produced by proteasomes and are translocated to the vesicular compartment through different pathways, where the precursor peptides that reach the endoplasmic reticulum are further processed by ERAP1. The latter step enhances the activation of epitope-specific T lymphocytes, which might be a target to improve the efficiency of anti-melanoma immunotherapy.
Collapse
Affiliation(s)
- Kathrin Textoris-Taube
- Shared Facility for Mass Spectrometry, Berlin Institute of Health, Institut für Biochemie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clemens Cammann
- Friedrich Loeffler Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Petra Henklein
- Berlin Institute of Health, Institut für Biochemie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eylin Topfstedt
- Friedrich Loeffler Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Frédéric Ebstein
- Berlin Institute of Health, Institut für Biochemie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sarah Henze
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Juliane Liepe
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Fang Zhao
- Klinik für Dermatologie, Universitätsklinikum Essen, Essen and German Cancer Consortium (DKTK), Universität Duisburg-Essen, Essen, Germany
| | - Dirk Schadendorf
- Klinik für Dermatologie, Universitätsklinikum Essen, Essen and German Cancer Consortium (DKTK), Universität Duisburg-Essen, Essen, Germany
| | - Burkhardt Dahlmann
- Berlin Institute of Health, Institut für Biochemie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Wolfgang Uckert
- Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz Gemeinschaft, Berlin, Germany
| | - Annette Paschen
- Klinik für Dermatologie, Universitätsklinikum Essen, Essen and German Cancer Consortium (DKTK), Universität Duisburg-Essen, Essen, Germany
| | - Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom.,Centro Interdipartimentale di Ricerca sul Cancro "Giorgio Prodi", University of Bologna, Bologna, Italy
| | - Ulrike Seifert
- Friedrich Loeffler Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
38
|
Ebstein F, Poli Harlowe MC, Studencka-Turski M, Krüger E. Contribution of the Unfolded Protein Response (UPR) to the Pathogenesis of Proteasome-Associated Autoinflammatory Syndromes (PRAAS). Front Immunol 2019; 10:2756. [PMID: 31827472 PMCID: PMC6890838 DOI: 10.3389/fimmu.2019.02756] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
Type I interferonopathies cover a phenotypically heterogeneous group of rare genetic diseases including the recently described proteasome-associated autoinflammatory syndromes (PRAAS). By definition, PRAAS are caused by inherited and/or de novo loss-of-function mutations in genes encoding proteasome subunits such as PSMB8, PSMB9, PSMB7, PSMA3, or proteasome assembly factors including POMP and PSMG2, respectively. Disruption of any of these subunits results in perturbed intracellular protein homeostasis including accumulation of ubiquitinated proteins which is accompanied by a type I interferon (IFN) signature. The observation that, similarly to pathogens, proteasome dysfunctions are potent type I IFN inducers is quite unexpected and, up to now, the underlying molecular mechanisms of this process remain largely unknown. One promising candidate for triggering type I IFN under sterile conditions is the unfolded protein response (UPR) which is typically initiated in response to an accumulation of unfolded and/or misfolded proteins in the endoplasmic reticulum (ER) (also referred to as ER stress). The recent observation that the UPR is engaged in subjects carrying POMP mutations strongly suggests its possible implication in the cause-and-effect relationship between proteasome impairment and interferonopathy onset. The purpose of this present review is therefore to discuss the possible role of the UPR in the pathogenesis of PRAAS. We will particularly focus on pathways initiated by the four ER-membrane proteins ATF6, PERK, IRE1-α, and TCF11/Nrf1 which undergo activation under proteasome inhibition. An overview of the current understanding of the mechanisms and potential cross-talk between the UPR and inflammatory signaling casacades is provided to convey a more integrated picture of the pathophysiology of PRAAS and shed light on potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Frédéric Ebstein
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - María Cecilia Poli Harlowe
- Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Maja Studencka-Turski
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Elke Krüger
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
39
|
Li S, Dai X, Gong K, Song K, Tai F, Shi J. PA28α/β Promote Breast Cancer Cell Invasion and Metastasis via Down-Regulation of CDK15. Front Oncol 2019; 9:1283. [PMID: 31824858 PMCID: PMC6883405 DOI: 10.3389/fonc.2019.01283] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/05/2019] [Indexed: 12/22/2022] Open
Abstract
PA28α/β activated immunoproteasome frequently participates in MHC class I antigen processing, however, whether it is involved in breast tumor progression remains largely unclear. Here, our evidences show that PA28α/β proteins are responsible for breast cancer cell migration, invasion, and metastasis. Knockdown of immunoproteasome core subunit β5i also robustly suppresses the tumor cell migration and invasion. Interestingly, silencing of PA28α/β and β5i up-regulates the protein expression of cyclin-dependent kinase 15 (CDK15). Our data further indicate that the loss of CDK15 is important for breast tumor cell invasion and metastasis. Taken together, this study implicates that targeting of PA28α/β represents a potential way for treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Shengnan Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangdong, China.,Department of Pathology, Nanfang Hospital, Southern Medical University, Guangdong, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangdong, China
| | - Xiaoqin Dai
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangdong, China.,Department of Pathology, Nanfang Hospital, Southern Medical University, Guangdong, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangdong, China.,Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Kunxiang Gong
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangdong, China.,Department of Pathology, Nanfang Hospital, Southern Medical University, Guangdong, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangdong, China
| | - Kai Song
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangdong, China.,Department of Pathology, Nanfang Hospital, Southern Medical University, Guangdong, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangdong, China
| | - Fang Tai
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangdong, China.,Department of Pathology, Nanfang Hospital, Southern Medical University, Guangdong, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangdong, China
| | - Jian Shi
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangdong, China.,Department of Pathology, Nanfang Hospital, Southern Medical University, Guangdong, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangdong, China
| |
Collapse
|
40
|
Friedrich M, Jasinski-Bergner S, Lazaridou MF, Subbarayan K, Massa C, Tretbar S, Mueller A, Handke D, Biehl K, Bukur J, Donia M, Mandelboim O, Seliger B. Tumor-induced escape mechanisms and their association with resistance to checkpoint inhibitor therapy. Cancer Immunol Immunother 2019; 68:1689-1700. [PMID: 31375885 DOI: 10.1007/s00262-019-02373-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/28/2019] [Indexed: 12/19/2022]
Abstract
Immunotherapy aims to activate the immune system to fight cancer in a very specific and targeted manner. Despite the success of different immunotherapeutic strategies, in particular antibodies directed against checkpoints as well as adoptive T-cell therapy, the response of patients is limited in different types of cancers. This attributes to escape of the tumor from immune surveillance and development of acquired resistances during therapy. In this review, the different evasion and resistance mechanisms that limit the efficacy of immunotherapies targeting tumor-associated antigens presented by major histocompatibility complex molecules on the surface of the malignant cells are summarized. Overcoming these escape mechanisms is a great challenge, but might lead to a better clinical outcome of patients and is therefore currently a major focus of research.
Collapse
Affiliation(s)
- Michael Friedrich
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Simon Jasinski-Bergner
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Maria-Filothei Lazaridou
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Karthikeyan Subbarayan
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Sandy Tretbar
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Anja Mueller
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Diana Handke
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Katharina Biehl
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Jürgen Bukur
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Marco Donia
- Department of Oncology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Ofer Mandelboim
- Department of Immunology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany.
| |
Collapse
|
41
|
Gorny X, Säring P, Bergado Acosta JR, Kahl E, Kolodziejczyk MH, Cammann C, Wernecke KEA, Mayer D, Landgraf P, Seifert U, Dieterich DC, Fendt M. Deficiency of the immunoproteasome subunit β5i/LMP7 supports the anxiogenic effects of mild stress and facilitates cued fear memory in mice. Brain Behav Immun 2019; 80:35-43. [PMID: 30797047 DOI: 10.1016/j.bbi.2019.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/22/2018] [Accepted: 02/20/2019] [Indexed: 02/01/2023] Open
Abstract
Proteolysis as mediated by one of the major cellular protein degradation pathways, the ubiquitin-proteasome system (UPS), plays an essential role in learning and memory formation. However, the functional relevance of immunoproteasomes in the healthy brain and especially their impact on normal brain function including processes of learning and memory has not been investigated so far. In the present study, we analyzed the phenotypic effects of an impaired immunoproteasome formation using a β5i/LMP7-deficient mouse model in different behavioral paradigms focusing on locomotor activity, exploratory behavior, innate anxiety, startle response, prepulse inhibition, as well as fear and safety conditioning. Overall, our results demonstrate no strong effects of constitutive β5i/LMP7-deficiency on gross locomotor abilities and anxiety-related behavior in general. However, β5i/LMP7-deficient mice expressed more anxiety after mild stress and increased cued fear after fear conditioning. These findings indicate that the basal proper formation of immunoproteasomes and/or at least the expression of β5i/LMP7 in healthy mice seem to be involved in the regulation of anxiety and cued fear levels.
Collapse
Affiliation(s)
- Xenia Gorny
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Germany
| | - Paula Säring
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany
| | - Jorge R Bergado Acosta
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Germany
| | - Evelyn Kahl
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany
| | | | - Clemens Cammann
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Germany; Friedrich Loeffler Institute for Medical Microbiology, University Medicine, University Greifswald, Greifswald, Germany
| | - Kerstin E A Wernecke
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Germany
| | - Dana Mayer
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany
| | - Peter Landgraf
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany
| | - Ulrike Seifert
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Germany; Friedrich Loeffler Institute for Medical Microbiology, University Medicine, University Greifswald, Greifswald, Germany
| | - Daniela C Dieterich
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Germany.
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Germany.
| |
Collapse
|
42
|
Abdelaal O, Barber H, Atala A, Sadri-Ardekani H. Purging of malignant cell contamination prior to spermatogonia stem cell autotransplantation to preserve fertility: progress & prospects. Curr Opin Endocrinol Diabetes Obes 2019; 26:166-174. [PMID: 30998603 DOI: 10.1097/med.0000000000000481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE OF REVIEW This systematic review evaluates the state of the art in terms of strategies used to detect and remove contaminated malignant cells from testicular biopsy prior to spermatogonia stem cells (SSCs) autotransplantation to restore fertility. RECENT FINDINGS Several trials have been done in past two decades to determine the reliable methods of detecting and purging cancer cells prior to SSCs autotransplantation. SUMMARY The success in treating childhood cancer has dramatically increased over the past few decades. This leads to increasing demand for a method of fertility preservation for patients with pediatric cancer, as many cancer therapies can be gonadotoxic. Storing the SSCs prior to chemo- or radiation therapies and transplanting them back has been tested as a method of restoring fertility in rodents and nonhuman primate models. This has promise for restoring fertility in childhood cancer survivors. One of the major concerns is the possibility of malignant cell presence in testicular tissue biopsies that could re-introduce cancer to the patient after SSCs autotransplantation. Non-solid cancers - especially hematologic malignancies - have the risk of being transplanted back into patients after SSCs cryopreservation even if they were only present in small number in the stored testicular tissue biopsy.
Collapse
Affiliation(s)
- Omar Abdelaal
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Urology, Faculty of Medicine, Zagazig University, Egypt
| | - Heather Barber
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Hooman Sadri-Ardekani
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
43
|
Han Z, Xue W, Tao L, Lou Y, Qiu Y, Zhu F. Genome-wide identification and analysis of the eQTL lncRNAs in multiple sclerosis based on RNA-seq data. Brief Bioinform 2019; 21:1023-1037. [PMID: 31323688 DOI: 10.1093/bib/bbz036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/29/2022] Open
Abstract
Abstract
The pathogenesis of multiple sclerosis (MS) is significantly regulated by long noncoding RNAs (lncRNAs), the expression of which is substantially influenced by a number of MS-associated risk single nucleotide polymorphisms (SNPs). It is thus hypothesized that the dysregulation of lncRNA induced by genomic variants may be one of the key molecular mechanisms for the pathology of MS. However, due to the lack of sufficient data on lncRNA expression and SNP genotypes of the same MS patients, such molecular mechanisms underlying the pathology of MS remain elusive. In this study, a bioinformatics strategy was applied to obtain lncRNA expression and SNP genotype data simultaneously from 142 samples (51 MS patients and 91 controls) based on RNA-seq data, and an expression quantitative trait loci (eQTL) analysis was conducted. In total, 2383 differentially expressed lncRNAs were identified as specifically expressing in brain-related tissues, and 517 of them were affected by SNPs. Then, the functional characterization, secondary structure changes and tissue and disease specificity of the cis-eQTL SNPs and lncRNA were assessed. The cis-eQTL SNPs were substantially and specifically enriched in neurological disease and intergenic region, and the secondary structure was altered in 17.6% of all lncRNAs in MS. Finally, the weighted gene coexpression network and gene set enrichment analyses were used to investigate how the influence of SNPs on lncRNAs contributed to the pathogenesis of MS. As a result, the regulation of lncRNAs by SNPs was found to mainly influence the antigen processing/presentation and mitogen-activated protein kinases (MAPK) signaling pathway in MS. These results revealed the effectiveness of the strategy proposed in this study and give insight into the mechanism (SNP-mediated modulation of lncRNAs) underlying the pathology of MS.
Collapse
Affiliation(s)
- Zhijie Han
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Yan Lou
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yunqing Qiu
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Feng Zhu
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| |
Collapse
|
44
|
Velazquez-Caldelas TE, Alcalá-Corona SA, Espinal-Enríquez J, Hernandez-Lemus E. Unveiling the Link Between Inflammation and Adaptive Immunity in Breast Cancer. Front Immunol 2019; 10:56. [PMID: 30761130 PMCID: PMC6362261 DOI: 10.3389/fimmu.2019.00056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/10/2019] [Indexed: 12/21/2022] Open
Abstract
Inflammation has been recognized as an important driver in the development and growth of malignancies. Inflammatory signaling in cancer emerges from the combinatorial interaction of several deregulated pathways. Pathway deregulation is often driven by changes in the underlying gene regulatory networks. Confronted with such complex scenario, it can be argued that a closer analysis of the structure of such regulatory networks will shed some light on how gene deregulation led to sustained inflammation in cancer. Here, we inferred an inflammation-associated gene regulatory network from 641 breast cancer and 78 healthy samples. A modular structure analysis of the regulatory network was carried out, revealing a hierarchical modular structure. Modules show significant overrepresentation score p-values for biological processes unveiling a definite association between inflammatory processes and adaptive immunity. Other modules are enriched for T-cell activation, differentiation of CD8+ lymphocytes and immune cell migration, thus reinforcing the aforementioned association. These analyses suggest that in breast cancer tumors, the balance between antitumor response and immune tolerance involving CD8+ T cells is tipped in favor of the tumor. One possible mechanism is the induction of tolerance and anergization of these cells by persistent antigen exposure.
Collapse
Affiliation(s)
| | - Sergio Antonio Alcalá-Corona
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Ecology and Evolution, Erman Biology Center, The University of Chicago, Chicago, IL, United States
| | - Jesús Espinal-Enríquez
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Enrique Hernandez-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
45
|
Yang X, Liang X, Zheng M, Tang Y. Cellular Phenotype Plasticity in Cancer Dormancy and Metastasis. Front Oncol 2018; 8:505. [PMID: 30456206 PMCID: PMC6230580 DOI: 10.3389/fonc.2018.00505] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/16/2018] [Indexed: 02/05/2023] Open
Abstract
Cancer dormancy is a period of cancer progression in which residual tumor cells exist, but clinically remain asymptomatic for a long time, as well as resistant to conventional chemo- and radiotherapies. Cellular phenotype plasticity represents that cellular phenotype could convert between epithelial cells and cells with mesenchymal traits. Recently, this process has been shown to closely associate with tumor cell proliferation, cancer dormancy and metastasis. In this review, we have described different scenarios of how the transition from epithelial to mesenchymal morphology (EMT) and backwards (MET) are connected with the initiation of dormancy and reactivation of proliferation. These processes are fundamental for cancer cells to invade tissues and metastasize. Recognizing the mechanisms underlying the cellular phenotype plasticity as well as dormancy and targeting them is likely to increase the efficiency of traditional tumor treatment inhibiting tumor metastasis.
Collapse
Affiliation(s)
- Xiao Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of OralPathology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinhua Liang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of OralPathology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Min Zheng
- Department of Stomatology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, China
| | - Yaling Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of OralPathology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
46
|
Yasutomo K. Dysregulation of immunoproteasomes in autoinflammatory syndromes. Int Immunol 2018; 31:631-637. [DOI: 10.1093/intimm/dxy059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/30/2018] [Indexed: 12/30/2022] Open
Abstract
Abstract
Immunoproteasomes degrade ubiquitin-coupled proteins and play a role in creating peptides for presentation by MHC class I proteins. Studies of gene-deficient mice, in which each immunoproteasomal subunit was affected, have demonstrated that dysfunction of immunoproteasomes leads to immunodeficiency, i.e. reduced expression of MHC class I and attenuation of CD8 T-cell responses. Recent studies, however, have uncovered a new type of autoinflammatory syndrome characterized by fever, nodular erythema and progressive partial lipodystrophy that is caused by genetic mutations in immunoproteasome subunits. These mutations disturbed the assembly of immunoproteasomes, which led to reduced proteasomal activity and thus accumulation of ubiquitin-coupled proteins. Those findings suggest that immunoproteasomes function as anti-inflammatory machinery in humans. The discovery of a new type of autoinflammatory syndrome caused by dysregulated immunoproteasomes provides novel insights into the important roles of immunoproteasomes in inflammation as well as the spectrum of autoinflammatory diseases.
Collapse
Affiliation(s)
- Koji Yasutomo
- Department of Immunology & Parasitology, Graduate School of Medicine, Tokushima University, Kuramoto, Tokushima, Japan
| |
Collapse
|
47
|
Komov L, Kadosh DM, Barnea E, Milner E, Hendler A, Admon A. Cell Surface MHC Class I Expression Is Limited by the Availability of Peptide-Receptive "Empty" Molecules Rather than by the Supply of Peptide Ligands. Proteomics 2018; 18:e1700248. [PMID: 29707912 DOI: 10.1002/pmic.201700248] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 04/16/2018] [Indexed: 01/07/2023]
Abstract
While antigen processing and presentation (APP) by the major histocompatibility complex class I (MHC-I) molecules have been extensively studied, a question arises as to whether the level of MHC-I expression is limited by the supply of peptide-receptive (empty) MHC molecules, or by the availability of peptide ligands for loading. To this end, the effect of interferons (IFNs) on the MHC peptidomes of human breast cancer cells (MCF-7) were evaluated. Although all four HLA allotypes of the MCF-7 cells (HLA-A*02:01, B*18, B*44, and C*5) present peptides of similar lengths and C-termini, which should be processed similarly by the proteasome and by the APP chaperones, the IFNs induced differential modulation of the HLA-A, B, and C peptidomes. In addition, overexpression of recombinant soluble HLA-A*02:01, introduced to compete with the identical endogenous membrane-bound HLA-A*02:01 for peptides of the MCF-7 cells, did not alter the expression level or the presented peptidome of the membrane-bound HLA-A*02:01. Taken together, these results indicate that a surplus supply of peptides is available inside the ER for loading onto the MHC-I peptide-receptive molecules, and that cell surface MHC-I expression is likely limited by the availability of empty MHC molecules.
Collapse
Affiliation(s)
- Liran Komov
- Department of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Dganit Melamed Kadosh
- Department of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Eilon Barnea
- Department of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Elena Milner
- Department of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Ayellet Hendler
- Department of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Arie Admon
- Department of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| |
Collapse
|
48
|
Nilofar Danishmalik S, Lee SH, Sin JI. Tumor regression is mediated via the induction of HER263-71- specific CD8+ CTL activity in a 4T1.2/HER2 tumor model: no involvement of CD80 in tumor control. Oncotarget 2018; 8:26771-26788. [PMID: 28460461 PMCID: PMC5432296 DOI: 10.18632/oncotarget.15816] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 02/20/2017] [Indexed: 02/01/2023] Open
Abstract
In the CT26/HER2 and 4T1.2/HER2 tumor models, CT26/HER2 cells form tumors that continue to grow, whereas 4T1.2/HER2 cells form tumors that eventually regress. Here, we investigated the differences in the behaviors of these two cell lines. When immune cells from 4T1.2/HER2 tumor-bearing animals were stimulated with HER2 class I peptides, they displayed a 2-fold increase in IFN-γ levels, in response to the peptides, HER263-71 and HER2342-350. In contrast, extremely high levels of antigen-non-specific IFN-γ production were observed with immune cells and sera from CT26/HER2 tumor-bearing mice. However, IFN-γ had no effect on tumor progression in the CT26/HER2 model, as determined by an IFN-γ knockout assay. 4T1.2/HER2 tumor-bearing mice displayed CTL activity in response to HER263-71 but not to HER2342-350, whereas no such induction was observed in CT26/HER2 tumor-bearing mice. When 4T1.2/HER2 cell-challenged mice were depleted of CD8+ T cells, they lost their tumor-regressing activity, suggesting an antitumor role of HER263-71-specific CD8+ CTLs in the control of this tumor type. CT26/HER2 cells also expressed CD80. However, CD80-transfected 4T1.2/HER2 and CD80-non-expressing CT26/HER2 cells failed to alter their tumorigenicity, suggesting no role of CD80 in tumor control. Despite increased levels of myeloid-derived suppressor cells in the tumor, they were not associated with tumor progression in the CT26/HER2 model, as determined by a cell depletion assay. Overall, these data show that, contrary to CT26/HER2 tumors, 4T1.2/HER2 tumors regress via the induction of HER263-71-specific CD8+ CTLs and that CD80 is not associated with the regression of these tumors.
Collapse
Affiliation(s)
- Sayyed Nilofar Danishmalik
- BK21 Plus Graduate Program and Department of Microbiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 200-701, Korea
| | - Si-Hyeong Lee
- BK21 Plus Graduate Program and Department of Microbiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 200-701, Korea
| | - Jeong-Im Sin
- BK21 Plus Graduate Program and Department of Microbiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 200-701, Korea
| |
Collapse
|
49
|
Dytfeld D, Luczak M, Wrobel T, Usnarska-Zubkiewicz L, Brzezniakiewicz K, Jamroziak K, Giannopoulos K, Przybylowicz-Chalecka A, Ratajczak B, Czerwinska-Rybak J, Nowicki A, Joks M, Czechowska E, Zawartko M, Szczepaniak T, Grzasko N, Morawska M, Bochenek M, Kubicki T, Morawska M, Tusznio K, Jakubowiak A, Komarnicki MA. Comparative proteomic profiling of refractory/relapsed multiple myeloma reveals biomarkers involved in resistance to bortezomib-based therapy. Oncotarget 2018; 7:56726-56736. [PMID: 27527861 PMCID: PMC5302948 DOI: 10.18632/oncotarget.11059] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/20/2016] [Indexed: 12/17/2022] Open
Abstract
Identifying biomarkers of the resistance in multiple myeloma (MM) is a key research challenge. We aimed to identify proteins that differentiate plasma cells in patients with refractory/relapsed MM (RRMM) who achieved at least very good partial response (VGPR) and in those with reduced response to PAD chemotherapy (bortezomib, doxorubicin and dexamethasone). Comparative proteomic analysis was conducted on pretreatment plasma cells from 77 proteasome inhibitor naïve patients treated subsequently with PAD due to RRMM. To increase data confidence we used two independent proteomic platforms: isobaric Tags for Relative and Absolute Quantitation (iTRAQ) and label free (LF). Proteins were considered as differentially expressed when their accumulation between groups differed by at least 50% in iTRAQ and LF. The proteomic signature revealed 118 proteins (35 up-regulated and 83 down-regulated in ≥ VGPR group). Proteins were classified into four classes: (1) involved in proteasome function; (2) involved in the response to oxidative stress; (3) related to defense response; and (4) regulating the apoptotic process. We confirmed the differential expression of proteasome activator complex subunit 1 (PSME1) by enzyme-linked immunosorbent assay. Increased expression of proteasomes and proteins involved in protection from oxidative stress (eg., TXN, TXNDC5) plays a major role in bortezomib resistance.
Collapse
Affiliation(s)
- Dominik Dytfeld
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland.,Researchers of Polish Myeloma Consortium
| | - Magdalena Luczak
- nstitute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.,Institute of Chemical Technology and Engineering, Poznan University of Technology, Poznan, Poland
| | - Tomasz Wrobel
- Department of Hematology and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland.,Researchers of Polish Myeloma Consortium
| | - Lidia Usnarska-Zubkiewicz
- Department of Hematology and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Katarzyna Brzezniakiewicz
- Department of Hematology and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland.,Researchers of Polish Myeloma Consortium
| | - Krzysztof Jamroziak
- Institute of Hematology and Transfusiology, Warsaw, Poland.,Researchers of Polish Myeloma Consortium
| | - Krzysztof Giannopoulos
- Experimental Hematooncology Department, Medical University of Lublin and Hematology Department, St John's Cancer Center in Lublin, Lublin, Poland.,Researchers of Polish Myeloma Consortium
| | - Anna Przybylowicz-Chalecka
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| | - Blazej Ratajczak
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Czerwinska-Rybak
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| | - Adam Nowicki
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland.,Researchers of Polish Myeloma Consortium
| | - Monika Joks
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland.,Researchers of Polish Myeloma Consortium
| | - Elzbieta Czechowska
- Department of Internal Medicine and Hematology, StanisÅaw Staszic Specialist Hospital, PiÅa, Poland.,Researchers of Polish Myeloma Consortium
| | | | - Tomasz Szczepaniak
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland.,Researchers of Polish Myeloma Consortium
| | - Norbert Grzasko
- Experimental Hematooncology Department, Medical University of Lublin and Hematology Department, St John's Cancer Center in Lublin, Lublin, Poland.,Researchers of Polish Myeloma Consortium
| | - Marta Morawska
- Experimental Hematooncology Department, Medical University of Lublin and Hematology Department, St John's Cancer Center in Lublin, Lublin, Poland.,Researchers of Polish Myeloma Consortium
| | - Maciej Bochenek
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| | - Tadeusz Kubicki
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| | - Michalina Morawska
- Department of Hematology, Hospital in Gorzow Wlkp, Gorzow Wlkp, Poland.,Researchers of Polish Myeloma Consortium
| | | | | | - MieczysÅ Aw Komarnicki
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
50
|
Moris P, Jongert E, van der Most RG. Characterization of T-cell immune responses in clinical trials of the candidate RTS,S malaria vaccine. Hum Vaccin Immunother 2017; 14:17-27. [PMID: 28934066 PMCID: PMC5791571 DOI: 10.1080/21645515.2017.1381809] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The candidate malaria vaccine RTS,S has demonstrated 45.7% efficacy over 18 months against all clinical disease in a phase-III field study of African children. RTS,S targets the circumsporozoite protein (CSP), which is expressed on the Plasmodium sporozoite during the pre-erythrocyte stage of its life-cycle; the stage between mosquito bite and liver infection. Early in the development of RTS,S, it was recognized that CSP-specific cell-mediated immunity (CMI) was required to complement CSP-specific antibody-mediated immunity. In reviewing RTS,S clinical studies, associations between protection and various types of CMI (CSP-specific CD4+ T cells and INF-γ ELISPOTs) have been identified, but not consistently. It is plausible that certain CD4+ T cells support antibody responses or co-operate with other immune-cell types to potentially elicit protection. However, the identities of vaccine correlates of protection, implicating either CSP-specific antibodies or T cells remain elusive, suggesting that RTS,S clinical trials may benefit from additional immunogenicity analyses that can be informed by the results of controlled human malaria infection studies.
Collapse
|