1
|
Naoun AA, Raphael I, Forsthuber TG. Immunoregulation via Cell Density and Quorum Sensing-like Mechanisms: An Underexplored Emerging Field with Potential Translational Implications. Cells 2022; 11:cells11152442. [PMID: 35954285 PMCID: PMC9368058 DOI: 10.3390/cells11152442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Quorum sensing (QS) was historically described as a mechanism by which bacteria detect and optimize their population density via gene regulation based on dynamic environmental cues. Recently, it was proposed that QS or similar mechanisms may have broader applications across different species and cell types. Indeed, emerging evidence shows that the mammalian immune system can also elicit coordinated responses on a population level to regulate cell density and function, thus suggesting that QS-like mechanisms may also be a beneficial trait of the immune system. In this review, we explore and discuss potential QS-like mechanisms deployed by the immune system to coordinate cellular-level responses, such as T cell responses mediated via the common gamma chain (γc) receptor cytokines and the aryl hydrocarbon receptors (AhRs). We present evidence regarding a novel role of QS as a multifunctional mechanism coordinating CD4+ and CD8+ T cell behavior during steady state and in response to infection, inflammatory diseases, and cancer. Successful clinical therapies such as adoptive cell transfer for cancer treatment may be re-evaluated to harness the effects of the QS mechanism(s) and enhance treatment responsiveness. Moreover, we discuss how signaling threshold perturbations through QS-like mediators may result in disturbances of the complex crosstalk between immune cell populations, undesired T cell responses, and induction of autoimmune pathology. Finally, we discuss the potential therapeutic role of modulating immune-system-related QS as a promising avenue to treat human diseases.
Collapse
Affiliation(s)
- Adrian A. Naoun
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Itay Raphael
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15217, USA
- Correspondence: (I.R.); (T.G.F.)
| | - Thomas G. Forsthuber
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- Correspondence: (I.R.); (T.G.F.)
| |
Collapse
|
2
|
Gossel G, Hogan T, Cownden D, Seddon B, Yates AJ. Memory CD4 T cell subsets are kinetically heterogeneous and replenished from naive T cells at high levels. eLife 2017; 6:23013. [PMID: 28282024 PMCID: PMC5426903 DOI: 10.7554/elife.23013] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 03/04/2017] [Indexed: 01/27/2023] Open
Abstract
Characterising the longevity of immunological memory requires establishing the rules underlying the renewal and death of peripheral T cells. However, we lack knowledge of the population structure and how self-renewal and de novo influx contribute to the maintenance of memory compartments. Here, we characterise the kinetics and structure of murine CD4 T cell memory subsets by measuring the rates of influx of new cells and using detailed timecourses of DNA labelling that also distinguish the behaviour of recently divided and quiescent cells. We find that both effector and central memory CD4 T cells comprise subpopulations with highly divergent rates of turnover, and show that inflows of new cells sourced from the naive pool strongly impact estimates of memory cell lifetimes and division rates. We also demonstrate that the maintenance of CD4 T cell memory subsets in healthy mice is unexpectedly and strikingly reliant on this replenishment.
Collapse
Affiliation(s)
- Graeme Gossel
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary & Life Sciences University of Glasgow, Glasgow, United Kingdom,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Thea Hogan
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Daniel Cownden
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary & Life Sciences University of Glasgow, Glasgow, United Kingdom
| | - Benedict Seddon
- Institute of Immunity and Transplantation, University College London, London, United Kingdom, (BS)
| | - Andrew J Yates
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary & Life Sciences University of Glasgow, Glasgow, United Kingdom, (AJY)
| |
Collapse
|
3
|
Yamaki S, Ine S, Kawabe T, Okuyama Y, Suzuki N, Soroosh P, Mousavi SF, Nagashima H, Sun SL, So T, Sasaki T, Harigae H, Sugamura K, Kudo H, Wada M, Nio M, Ishii N. OX40 and IL-7 play synergistic roles in the homeostatic proliferation of effector memory CD4⁺ T cells. Eur J Immunol 2014; 44:3015-25. [PMID: 25103720 DOI: 10.1002/eji.201444701] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/30/2014] [Accepted: 08/05/2014] [Indexed: 01/20/2023]
Abstract
T-cell homeostasis preserves the numbers, the diversity and functional competence of different T-cell subsets that are required for adaptive immunity. Naïve CD4(+) T (TN ) cells are maintained in the periphery via the common γ-chain family cytokine IL-7 and weak antigenic signals. However, it is not clear how memory CD4(+) T-cell subsets are maintained in the periphery and which factors are responsible for the maintenance. To examine the homeostatic mechanisms, CFSE-labeled CD4(+) CD44(high) CD62L(low) effector memory T (TEM ) cells were transferred into sublethally-irradiated syngeneic C57BL/6 mice, and the systemic cell proliferative responses, which can be divided distinctively into fast and slow proliferations, were assessed by CFSE dye dilution. We found that the fast homeostatic proliferation of TEM cells was strictly regulated by both antigen and OX40 costimulatory signals and that the slow proliferation was dependent on IL-7. The simultaneous blockade of both OX40 and IL-7 signaling completely inhibited the both fast and slow proliferation. The antigen- and OX40-dependent fast proliferation preferentially expanded IL-17-producing helper T cells (Th17 cells). Thus, OX40 and IL-7 play synergistic, but distinct roles in the homeostatic proliferation of CD4(+) TEM cells.
Collapse
Affiliation(s)
- Satoshi Yamaki
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Pediatric Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Lifespan of effector memory CD4+ T cells determined by replication-incompetent integrated HIV-1 provirus. AIDS 2014; 28:1091-9. [PMID: 24492253 DOI: 10.1097/qad.0000000000000223] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Determining the precise lifespan of human T-cell is challenging due to the inability of standard techniques to distinguish between dividing and dying cells. Here, we measured the lifespan of a pool of T cells that were derived from a single cell 'naturally' labelled with a single integrated clone of a replication-incompetent HIV-1 provirus. DESIGN/METHODS Utilizing a combination of techniques, we were able to sequence/map an integration site of a unique provirus with a stop codon at position 42 of the HIV-1 protease. In-vitro reconstruction of this provirus into an infectious clone confirmed its inability to replicate. By combining cell separation and integration site-specific PCR, we were able to follow the fate of this single provirus in multiple T-cell subsets over a 20-year period. As controls, a number of additional integrated proviruses were also sequenced. RESULTS The replication-incompetent HIV-1 provirus was solely contained in the pool of effector memory CD4 T cells for 17 years. The percentage of the total effector memory CD4 T cells containing the replication-incompetent provirus peaked at 1% with a functional half-life of 11.1 months. In the process of sequencing multiple proviruses, we also observed high levels of lethal mutations in the peripheral blood pool of proviruses. CONCLUSION These data indicate that human effector memory CD4 T cells are able to persist in vivo for more than 17 years without detectably reverting to a central memory phenotype. A secondary observation is that the fraction of the pool of integrated HIV-1 proviruses capable of replicating may be considerably less than the 12% currently noted in the literature.
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW The need to control donor-reactive T cell memory for successful organ transplantation is widely acknowledged. Alloreactive memory T cells are present in many human transplant recipients prior to transplantation and are less susceptible to the effects of currently used immunosuppression than naïve T cells. This review brings together recent advances in various fields of immunology that are potentially applicable for targeting memory T cells in sensitized transplant patients. RECENT FINDINGS The topics of the discussion are evoked by the latest findings on immunobiology of memory T cells and include functional diversity of T-cell memory, characteristic features of memory T-cell homeostasis and signaling, costimulatory requirements of memory T cells and their susceptibility to regulation. SUMMARY Despite apparent resistance of memory T cells to currently used therapies, recent findings suggest that recall responses by memory T cells can be controlled at many different levels. Use of this information may facilitate development of future tools managing T-cell memory in transplant settings.
Collapse
|
6
|
Abstract
Combination antiretroviral therapy (cART) has led to a very substantial reduction in morbidity and mortality in HIV-infected patients; however, cART alone is unable to cure HIV and therapy is lifelong. Therefore, a new strategy to cure HIV is urgently needed. There is now a concerted effort from scientists, clinicians and funding agencies to identify ways to achieve either a functional cure (long-term control of HIV in the absence of cART) or a sterilizing cure (elimination of all HIV-infected cells). Multiple strategies aiming at achieving a cure for HIV are currently being investigated, including both pharmacotherapy and gene therapy. In this review, we will review the rationale as well as in vitro and clinical trial data that support the role of histone deacetylase inhibitors as one approach to cure HIV.
Collapse
|
7
|
Stemmy EJ, Benton AS, Lerner J, Alcala S, Constant SL, Freishtat RJ. Extracellular cyclophilin levels associate with parameters of asthma in phenotypic clusters. J Asthma 2011; 48:986-993. [PMID: 21999750 DOI: 10.3109/02770903.2011.623334] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Leukocyte persistence during chronic (quiescent) phases of asthma is a major hallmark of the disease. The mechanisms regulating these persistent leukocyte populations are not clearly understood. An alternative family of chemoattracting proteins, cyclophilins (Cyps), has recently been shown to contribute to leukocyte recruitment in animal models of allergic asthma. The goals of this study were to determine whether Cyps are present in asthma patients during the chronic phase of the disease and to investigate whether levels of Cyps associate with clinical parameters of disease severity. METHODS Nasal wash samples from an urban cohort of 137 patients of age 6-20 years with physician-diagnosed asthma were examined for the presence of cyclophilin A (CypA), cyclophilin B (CypB), as well as several other classical chemokines. Linear, logistic, or ordinal regressions were performed to identify associations between Cyps, chemokines, and clinical parameters of asthma. The asthma cohort was further divided into previously established phenotypic clusters (cluster 1: n = 55; cluster 2: n = 31; and cluster 3: n = 51) and examined for associations. RESULTS Levels of CypB in the asthma group were highly elevated compared to nonasthmatic controls, while a slight increase in Monocyte Chemotactic Protein-1 (MCP-1) was also observed. CypA and MCP-1 were associated with levels of eosinophil cationic protein (ECP; a marker of eosinophil activation). Cluster-specific associations were found for CypA and CypB and clinical asthma parameters [e.g. forced expiratory volume in 1 second (FEV(1)) and ECP]. CONCLUSIONS Cyps are present in nasal wash samples of asthma patients and may be a novel biomarker for clinical parameters of asthma severity.
Collapse
Affiliation(s)
- Erik J Stemmy
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University Medical Center, Washington D.C., USA
| | - Angela S Benton
- Center for Genetic Medicine Research, Children's National Medical Center, Washington D.C., USA
| | - Jennifer Lerner
- Center for Genetic Medicine Research, Children's National Medical Center, Washington D.C., USA
| | - Sarah Alcala
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University Medical Center, Washington D.C., USA
| | - Stephanie L Constant
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University Medical Center, Washington D.C., USA
| | - Robert J Freishtat
- Center for Genetic Medicine Research, Children's National Medical Center, Washington D.C., USA.,Departments of Pediatrics, Emergency Medicine, and Integrative Systems Biology, The George Washington University Medical Center, Washington D.C., USA
| |
Collapse
|
8
|
Stemmy EJ, Balsley MA, Jurjus RA, Damsker JM, Bukrinsky MI, Constant SL. Blocking cyclophilins in the chronic phase of asthma reduces the persistence of leukocytes and disease reactivation. Am J Respir Cell Mol Biol 2011; 45:991-8. [PMID: 21493785 DOI: 10.1165/rcmb.2011-0007oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Allergic asthma is characterized by acute influxes of proinflammatory leukocytes in response to allergen stimulation, followed by quiescent (chronic) periods between allergen challenges, during which sustained, low-level inflammation is evident. These chronic phases of disease are thought to be mediated by populations of leukocytes persisting within airways and tissues. The lack of any in situ proliferation by these cells, along with their limited lifespan, suggests that a continual recruitment of leukocytes from the circulation is needed to maintain disease chronicity. The mechanisms regulating this persistent recruitment of leukocytes are unknown. Although classic leukocyte-attracting chemokines are highly elevated after acute allergen challenge, they return to baseline levels within 24 hours, and remain close to undetectable during the chronic phase. In the present study, we investigated whether an alternative family of chemoattractants, namely, extracellular cyclophilins, might instead play a role in regulating the recruitment and persistence of leukocytes during chronic asthma, because their production is known to be more sustained during inflammatory responses. Using a new murine model of chronic allergic asthma, elevated concentrations of extracellular cyclophilin A, but not classic chemokines, were indeed detected during the chronic phase of asthma. Furthermore, blocking the activity of cyclophilins during this phase reduced the number of persisting leukocytes by up to 80%. This reduction was also associated with a significant inhibition of acute disease reactivation upon subsequent allergen challenge. These findings suggest that blocking the function of cyclophilins during the chronic phase of asthma may provide a novel therapeutic strategy for regulating disease chronicity and severity.
Collapse
Affiliation(s)
- Erik J Stemmy
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University Medical Center, Washington, DC 20037, USA
| | | | | | | | | | | |
Collapse
|
9
|
Dalai SK, Khoruzhenko S, Drake CG, Jie CC, Sadegh-Nasseri S. Resolution of infection promotes a state of dormancy and long survival of CD4 memory T cells. Immunol Cell Biol 2011; 89:870-81. [PMID: 21358746 PMCID: PMC3131418 DOI: 10.1038/icb.2011.2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Memory T cells survive throughout the lifetime of an individual and are protective upon recall. It is not clear how memory T cells can live so long. Here, we demonstrate that at the resolution of a viral infection, low levels of antigen are captured by B cells and presented to specific CD4+ memory T cells to render a state of unresponsiveness. We demonstrate in two systems that this process occurs naturally during the fall of antigen and is associated with a global gene expression program initiated with the clearance of antigen. Our study suggests that in the absence of antigen, a state of dormancy associated with low energy utilization and proliferation can help memory CD4+ T cells to survive nearly throughout the lifetime of mice. The dormant CD4+ memory T cells become activated by stimulatory signals generated by a subsequent infection. We propose that quiescence might be a mechanism necessary to regulate long-term survival of CD4 memory T cells and to prevent cross-reactivity to self, hence autoimmunity.
Collapse
Affiliation(s)
- Sarat K Dalai
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
10
|
Abstract
Signals orchestrating productive CD4+ T-cell responses are well documented; however, the regulation of contraction of CD4+ T-cell effector populations following the resolution of primary immune responses is not well understood. While distinct mechanisms of T-cell death have been defined, the relative importance of discrete death pathways during the termination of immune responses in vivo remains unclear. Here, we review the current understanding of cell-intrinsic and -extrinsic variables that regulate contraction of CD4+ T-cell effector populations through multiple pathways that operate both initially during T-cell priming and later during the effector phase. We discuss the relative importance of antigen-dependent and -independent mechanisms of CD4+ T-cell contraction during in vivo responses, with a special emphasis on influenza virus infection. In this model, we highlight the roles of greater differentiation and presence in the lung of CD4+ effector T cells, as well as their polarization to particular T-helper subsets, in maximizing contraction. We also discuss the role of autocrine interleukin-2 in limiting the extent of contraction, and we point out that these same factors regulate contraction during secondary CD4+ T-cell responses.
Collapse
Affiliation(s)
- K Kai McKinstry
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | |
Collapse
|
11
|
Abstract
While many aspects of memory T-cell immunobiology have been characterized, we suggest that we know only a fraction of the effector functions that CD4 T cells can bring to bear during secondary challenges. Exploring the full impact of memory CD4 T-cell responses is key to the development of improved vaccines against many prominent pathogens, including influenza viruses, and also to a better understanding of the mechanisms of autoimmunity. Here we discuss factors regulating the generation of memory CD4 T cells during the activation of naïve cells and how the nature of the transition from highly activated effector to resting memory upon the resolution of primary responses might impact memory CD4 T-cell heterogeneity in vivo. We stress that memory CD4 T cells have unique functional attributes beyond the secretion of T helper (Th) subset-associated cytokines that can shape highly effective secondary responses through novel mechanisms. These include the recruitment of innate inflammatory responses at early phases of secondary responses as well as the action of enhanced direct effector functions at later phases, in addition to well-established helper roles for CD8 T-cell and B-cell responses.
Collapse
|
12
|
Thomas PG, Brown SA, Morris MY, Yue W, So J, Reynolds C, Webby RJ, Doherty PC. Physiological numbers of CD4+ T cells generate weak recall responses following influenza virus challenge. THE JOURNAL OF IMMUNOLOGY 2010; 184:1721-7. [PMID: 20061406 DOI: 10.4049/jimmunol.0901427] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Naive and recall CD4(+) T cell responses were probed with recombinant influenza A viruses incorporating the OVA OT-II peptide. The extent of OT-II-specific CD4(+) T cell expansion was greater following primary exposure, with secondary challenge achieving no significant increase in numbers, despite higher precursor frequencies. Adoptive transfer experiments with OT-II TCR-transgenic T cells established that the predominant memory set is CD62L(hi), whereas the CD62L(lo) precursors make little contribution to the recall response. Unlike the situation described by other investigators, in which the transfer of very large numbers of in vitro-activated CD4 effectors can modify the disease process, providing CD62L(hi) or CD62L(lo) OT-II-specific T cells at physiological levels neither enhanced virus clearance nor altered clinical progression. Some confounding effects of the transgenic model were observed, with decreasing primary expansion efficiency correlating with greater numbers of transferred cells. This was associated with increased levels of mRNA for the proapoptotic molecule Bim in cells recovered following high-dose transfer. However, even with very low numbers of transferred cells, memory T cells did not expand significantly following secondary challenge. A similar result was recorded in mice primed and boosted to respond to an endogenous IA(b)-restricted epitope derived from the influenza virus hemagglutinin glycoprotein. Depletion of CD8(+) T cells during secondary challenge generated an increased accumulation of OT-II-specific T cells but only at the site of infection. Taken together, significant expansion was not a feature of these secondary influenza-specific CD4 T cell responses and the recall of memory did not enhance recovery.
Collapse
Affiliation(s)
- Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Duffy D, Dawoodji A, Agger EM, Andersen P, Westermann J, Bell EB. Immunological memory transferred with CD4 T cells specific for tuberculosis antigens Ag85B-TB10.4: persisting antigen enhances protection. PLoS One 2009; 4:e8272. [PMID: 20011592 PMCID: PMC2788218 DOI: 10.1371/journal.pone.0008272] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 10/07/2009] [Indexed: 01/18/2023] Open
Abstract
Background High levels of death and morbidity worldwide caused by tuberculosis has stimulated efforts to develop a new vaccine to replace BCG. A number of Mycobacterium tuberculosis (Mtb)-specific antigens have been synthesised as recombinant subunit vaccines for clinical evaluation. Recently a fusion protein of TB antigen Ag85B combined with a second immunodominant TB antigen TB10.4 was emulsified with a novel non-phospholipid-based liposomal adjuvant to produce a new subunit vaccine, investigated here. Currently, there is no consensus as to whether or not long-term T cell memory depends on a source of persisting antigen. To explore this and questions regarding lifespan, phenotype and cytokine patterns of CD4 memory T cells, we developed an animal model in which vaccine-induced CD4 memory T cells could transfer immunity to irradiated recipients. Methodology/Principal Findings The transfer of protective immunity using Ag85B-TB10.4-specific, CD45RBlow CD62Llow CD4 T cells was assessed in sub-lethally irradiated recipients following challenge with live BCG, used here as a surrogate for virulent Mtb. Donor T cells also carried an allotype marker allowing us to monitor numbers of antigen-specific, cytokine-producing CD4 T cells in recipients. The results showed that both Ag85B-TB10.4 and BCG vaccination induced immunity that could be transferred with a single injection of 3×106 CD4 T cells. Ten times fewer numbers of CD4 T cells (0.3×106) from donors immunised with Ag85B-TB10.4 vaccine alone, transferred equivalent protection. CD4 T cells from donors primed by BCG and boosted with the vaccine similarly transferred protective immunity. When BCG challenge was delayed for 1 or 2 months after transfer (a test of memory T cell survival) recipients remained protected. Importantly, recipients that contained persisting antigen, either live BCG or inert vaccine, showed significantly higher levels of protection (p<0.01). Overall the numbers of IFN-γ-producing CD4 T cells were poorly correlated with levels of protection. Conclusions/Significance The Ag85B-TB10.4 vaccine, with or without BCG-priming, generated TB-specific CD4 T cells that transferred protective immunity in mice challenged with BCG. The level of protection was enhanced in recipients containing a residual source of specific antigen that could be either viable or inert.
Collapse
Affiliation(s)
- Darragh Duffy
- Immunology Section, University of Manchester, Manchester, United Kingdom
| | - Amina Dawoodji
- Immunology Section, University of Manchester, Manchester, United Kingdom
| | - Else Marie Agger
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | | | - Eric B. Bell
- Immunology Section, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Tomita T, Kanai T, Totsuka T, Nemoto Y, Okamoto R, Tsuchiya K, Sakamoto N, Ohteki T, Hibi T, Watanabe M. IL-7 is essential for lymphopenia-driven turnover of colitogenic CD4+memory T cells in chronic colitis. Eur J Immunol 2009; 39:2737-47. [DOI: 10.1002/eji.200838905] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Nemoto Y, Kanai T, Kameyama K, Shinohara T, Sakamoto N, Totsuka T, Okamoto R, Tsuchiya K, Nakamura T, Sudo T, Matsumoto S, Watanabe M. Long-Lived Colitogenic CD4+ Memory T Cells Residing Outside the Intestine Participate in the Perpetuation of Chronic Colitis. THE JOURNAL OF IMMUNOLOGY 2009; 183:5059-68. [DOI: 10.4049/jimmunol.0803684] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Reactive oxygen intermediate-induced pathomechanisms contribute to immunosenescence, chronic inflammation and autoimmunity. Mech Ageing Dev 2009; 130:564-87. [PMID: 19632262 DOI: 10.1016/j.mad.2009.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 06/07/2009] [Accepted: 07/15/2009] [Indexed: 02/07/2023]
Abstract
Deregulation of reactive oxygen intermediates (ROI) resulting in either too high or too low concentrations are commonly recognized to be at least in part responsible for many changes associated with aging. This article reviews ROI-dependent mechanisms critically contributing to the decline of immune function during physiologic - or premature - aging. While ROI serve important effector functions in cellular metabolism, signalling and host defence, their fine-tuned generation declines over time, and ROI-mediated damage to several cellular components and/or signalling deviations become increasingly prevalent. Although distinct ROI-associated pathomechanisms contribute to immunosenescence of the innate and adaptive immune system, mutual amplification of dysfunctions may often result in hyporesponsiveness and immunodeficiency, or in chronic inflammation with hyperresponsiveness/deregulation, or both. In this context, we point out how imbalanced ROI contribute ambiguously to driving immunosenescence, chronic inflammation and autoimmunity. Although ROI may offer a distinct potential for therapeutic targeting along with the charming opportunity to rescue from deleterious processes of aging and chronic inflammatory diseases, such modifications, owing to the complexity of metabolic interactions, may carry a marked risk of unforeseen side effects.
Collapse
|
17
|
Ravkov EV, Williams MA. The magnitude of CD4+ T cell recall responses is controlled by the duration of the secondary stimulus. THE JOURNAL OF IMMUNOLOGY 2009; 183:2382-9. [PMID: 19605694 DOI: 10.4049/jimmunol.0900319] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The parameters controlling the generation of robust CD4(+) T cell recall responses remain poorly defined. In this study, we compare recall responses by CD4(+) and CD8(+) memory T cells following rechallenge. Homologous rechallenge of mice immune to either lymphocytic choriomeningitis virus or Listeria monocytogenes results in robust CD8(+) T cell recall responses but poor boosting of CD4(+) T cell recall responses in the same host. In contrast, heterologous rechallenge with a pathogen sharing only a CD4(+) T cell epitope results in robust boosting of CD4(+) T cell recall responses. The disparity in CD4(+) and CD8(+) T cell recall responses cannot be attributed to competition for growth factors or APCs, as robust CD4(+) and CD8(+) T cell recall responses can be simultaneously induced following rechallenge with peptide-pulsed dendritic cells. Instead, CD4(+) T cell recall responses are dependent on the duration of the secondary challenge. Increasing the rechallenge dose results in more potent boosting of CD4(+) T cell recall responses and artificially limiting the duration of secondary infection following heterologous rechallenge adversely impacts the magnitude of CD4(+) T cell, but not CD8(+) T cell, recall responses. These findings suggest that rapid pathogen clearance by secondary CTL following homologous rechallenge prevents optimal boosting of CD4(+) T cell responses and therefore have important practical implications in the design of vaccination and boosting strategies aimed at promoting CD4(+) T cell-mediated protection.
Collapse
Affiliation(s)
- Eugene V Ravkov
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
18
|
Tokoyoda K, Zehentmeier S, Hegazy AN, Albrecht I, Grün JR, Löhning M, Radbruch A. Professional Memory CD4+ T Lymphocytes Preferentially Reside and Rest in the Bone Marrow. Immunity 2009; 30:721-30. [DOI: 10.1016/j.immuni.2009.03.015] [Citation(s) in RCA: 288] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 02/11/2009] [Accepted: 03/10/2009] [Indexed: 01/05/2023]
|
19
|
van Leeuwen EMM, Sprent J, Surh CD. Generation and maintenance of memory CD4(+) T Cells. Curr Opin Immunol 2009; 21:167-72. [PMID: 19282163 DOI: 10.1016/j.coi.2009.02.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/04/2009] [Accepted: 02/16/2009] [Indexed: 10/21/2022]
Abstract
In the course of an immune response to an infectious microbe, pathogen-specific naïve CD4(+) T cells proliferate extensively and differentiate into effector cells. Most of these cells die rapidly, but a small fraction of effector cells persist as memory cells to confer enhanced protection against the same pathogen. Recent advances indicate that strong TCR stimulation during the primary response is essential for the generation of long-lived memory CD4(+) T cells. Memory cells appear to be derived equally from all subsets of effector cells, and memory cells can also acquire additional functional capabilities during the secondary response. Resting memory CD4(+) cells are dependent on signals from contact with IL-7 and IL-15, but not MHC class II, for their survival and intermittent homeostatic proliferation.
Collapse
|
20
|
Wu Z, Jia X, de la Cruz L, Su XC, Marzolf B, Troisch P, Zak D, Hamilton A, Whittle B, Yu D, Sheahan D, Bertram E, Aderem A, Otting G, Goodnow CC, Hoyne GF. Memory T cell RNA rearrangement programmed by heterogeneous nuclear ribonucleoprotein hnRNPLL. Immunity 2009; 29:863-75. [PMID: 19100700 DOI: 10.1016/j.immuni.2008.11.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 09/16/2008] [Accepted: 11/04/2008] [Indexed: 11/26/2022]
Abstract
Differentiation of memory cells involves DNA-sequence changes in B lymphocytes but is less clearly defined in T cells. RNA rearrangement is identified here as a key event in memory T cell differentiation by analysis of a mouse mutation that altered the proportions of naive and memory T cells and crippled the process of Ptprc exon silencing needed to generate CD45RO in memory T cells. A single substitution in a memory-induced RNA-binding protein, hnRNPLL, destabilized an RNA-recognition domain that bound with micromolar affinity to RNA containing the Ptprc exon-silencing sequence. Hnrpll mutation selectively diminished T cell accumulation in peripheral lymphoid tissues but not proliferation. Exon-array analysis of Hnrpll mutant naive and memory T cells revealed an extensive program of alternative mRNA splicing in memory T cells, coordinated by hnRNPLL. A remarkable overlap with alternative splicing in neural tissues may reflect a co-opted strategy for diversifying memory T cells.
Collapse
Affiliation(s)
- Zuopeng Wu
- John Curtin School of Medical Research, Australian Phenomics Facility, Australian National University, Canberra ACT 0200, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The peripheral mature T cell pool is regulated by complex homeostatic mechanisms. Naive T cells are maintained by interleukin-7 (IL-7) and T cell receptor (TCR) signaling from contact with major histocompatibility complex (MHC), which sustain expression of antiapoptotic molecules and allow the cells to survive in interphase. Competition for these ligands declines when T cell numbers are reduced and causes residual naive T cells to proliferate and differentiate into memory-like cells. This memory cell population is thus heterogeneous and comprised of cells derived from responses to both foreign and self-antigens. Typical memory cells are kept alive and induced to divide intermittently by a mixture of IL-7 and IL-15. This review highlights recent advances in how naive and memory T cell homeostasis is regulated.
Collapse
Affiliation(s)
- Charles D Surh
- The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
22
|
Memory T-lymphocyte survival does not require T-cell receptor expression. Proc Natl Acad Sci U S A 2008; 105:20440-5. [PMID: 19074272 DOI: 10.1073/pnas.0806289106] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The factors controlling memory T (Tm)-cell longevity are still poorly defined, and their identification is pivotal to the design of a vaccine conferring long-term protection against infection. Tm cells have the ability to survive in the absence of the T-cell receptor (TCR)-MHC interaction. This does not exclude a possible role for TCR-intrinsic ligand-independent constitutive signaling in Tm-cell homeostasis. Using a unique TCR tetracycline-inducible expression system, we show that the ablation of TCR expression, which abrogates any possible signaling via the TCR, did not influence the survival and self-renewal of antigen-specific CD8(+) Tm cells even when they have to compete with endogenous T cells for survival factors. Moreover, CD8(+) Tm-cell functionality was not altered even on prolonged maintenance in the absence of TCR-MHC interactions. Furthermore, our results show that a subset of CD4(+) Tm cells can survive in the absence of TCR expression in nonlymphopenic hosts.
Collapse
|
23
|
CD4 memory T cells on trial: immunological memory without a memory T cell. Trends Immunol 2008; 29:405-11. [PMID: 18674966 DOI: 10.1016/j.it.2008.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 06/11/2008] [Accepted: 06/25/2008] [Indexed: 11/24/2022]
Abstract
Immunological memory crucially depends on CD4 T cells. In contrast with B cells, we find no decisive evidence that CD4 T cells are permanently altered by antigen stimulation. We propose that the memory response is derived from an increase in frequency of resting naïve-like CD4 T cells with a half-life of years (or months in rodents), rather than the currently proposed specialized T-cell types that have a known lifespan of days. In addition, residual antigen will significantly influence the longevity of a memory response. Our model offers a new insight into immunological memory that could assist the development of CD4 T cell-based vaccines.
Collapse
|
24
|
Tang C, Yamada H, Shibata K, Maeda N, Yoshida S, Wajjwalku W, Ohara N, Yamada T, Kinoshita T, Yoshikai Y. Efficacy of recombinant bacille Calmette-Guérin vaccine secreting interleukin-15/antigen 85B fusion protein in providing protection against Mycobacterium tuberculosis. J Infect Dis 2008; 197:1263-74. [PMID: 18422438 DOI: 10.1086/586902] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Protection against Mycobacterium tuberculosis not only depends on CD4+ T helper type 1 (Th1) cells but, also, on CD8+ T cells. Interleukin (IL)-15 has an important function in the maintenance of memory CD8+ T cells. In the present study, we examined the efficacy of recombinant Mycobacterium bovis bacille Calmette-Guérin (rBCG) secreting fusion protein antigen (Ag) 85B murine IL-15 (rBCG-Ag85B-IL15) in providing protection against M. tuberculosis infection. The levels of major histocompatibility (MHC) class Ib (H2-M3)-binding TB2- or MHC class Ia (H-2Db)-binding MPT64-specific CD8+ T cells producing interferon (IFN)-gamma were significantly higher after immunization with rBCG-Ag85B-IL15 than after immunization with rBCG secreting Ag85B (rBCG-Ag85B). The levels of purified protein derivative- or Ag85B-specific CD4+ T cells producing IFN-gamma were also higher in mice immunized with rBCG-Ag85B-IL15 than in mice immunized with rBCG-Ag85B. Mice immunized with rBCG-Ag85B-IL15 exhibited CD8+ and CD4+ T cells responses that were stronger than those in mice immunized with rBCG-Ag85B, as well as robust protection in the lung against intratracheal challenge of M. tuberculosis. Thus, rBCG-Ag85B-IL15 vaccination capable of inducing efficient cell-mediated immunity might be used as an effective vaccine for tuberculosis.
Collapse
Affiliation(s)
- Ce Tang
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Totsuka T, Kanai T, Nemoto Y, Tomita T, Tsuchiya K, Sakamoto N, Okamoto R, Watanabe M. Immunosenescent colitogenic CD4(+) T cells convert to regulatory cells and suppress colitis. Eur J Immunol 2008; 38:1275-86. [PMID: 18412161 DOI: 10.1002/eji.200737914] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel diseases progress steadily by the expansion of colitogenic CD4(+) cells. However, it remains unknown whether colitogenic CD4(+) cells are long-living like memory cells or exhausted like effector cells. To assess the longevity of colitogenic lamina propria (LP) CD4(+) cells, we performed sequential transfers of LP CD4(+) cells from colitic CD4(+)CD45RB(high) cell-transferred SCID mice into new SCID mice. Although SCID mice transferred with colitic LP CD4(+) cells stably developed colitis until at least the sixth transfer, the interval to the development of colitis gradually lengthened as the number of transfers increased. The incidence of colitis gradually decreased after the seventh transfer. Furthermore, non-colitic LP CD4(+) cells from mice transferred over seven times expressed significantly higher levels of PD-1 and produced significantly lower amounts of IFN-gamma, TNF-alpha, and IL-17 than colitic LP CD4(+) cells recovered after the first transfer. Most notably, we found that re-transfer of non-colitic LP CD4(+) cells recovered after multiple transfers prevented the development of colitis in SCID mice co-transferred with CD4(+)CD45RB(high) cells. Thus, colitogenic LP CD4(+) cells may be exhausted over time, become non-functional, convert to regulatory cells, and finally suppress colitis in the process of immunosenescence.
Collapse
Affiliation(s)
- Teruji Totsuka
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Tomita T, Kanai T, Fujii T, Nemoto Y, Okamoto R, Tsuchiya K, Totsuka T, Sakamoto N, Akira S, Watanabe M. MyD88-dependent pathway in T cells directly modulates the expansion of colitogenic CD4+ T cells in chronic colitis. THE JOURNAL OF IMMUNOLOGY 2008; 180:5291-9. [PMID: 18390710 DOI: 10.4049/jimmunol.180.8.5291] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TLRs that mediate the recognition of pathogen-associated molecular patterns are widely expressed on/in cells of the innate immune system. However, recent findings demonstrate that certain TLRs are also expressed in conventional TCRalphabeta(+) T cells that are critically involved in the acquired immune system, suggesting that TLR ligands can directly modulate T cell function in addition to various innate immune cells. In this study, we report that in a murine model of chronic colitis induced in RAG-2(-/-) mice by adoptive transfer of CD4(+)CD45RB(high) T cells, both CD4(+)CD45RB(high) donor cells and the expanding colitogenic lamina propria CD4(+)CD44(high) memory cells expresses a wide variety of TLRs along with MyD88, a key adaptor molecule required for signal transduction through TLRs. Although RAG-2(-/-) mice transferred with MyD88(-/-)CD4(+)CD45RB(high) cells developed colitis, the severity was reduced with the delayed kinetics of clinical course, and the expansion of colitogenic CD4(+) T cells was significantly impaired as compared with control mice transferred with MyD88(+/+)CD4(+)CD45RB(high) cells. When RAG-2(-/-) mice were transferred with the same number of MyD88(+/+) (Ly5.1(+)) and MyD88(-/-) (Ly5.2(+)) CD4(+)CD45RB(high) cells, MyD88(-/-)CD4(+) T cells showed significantly lower proliferative responses assessed by in vivo CFSE division assay, and also lower expression of antiapoptotic Bcl-2/Bcl-x(L) molecules and less production of IFN-gamma and IL-17, compared with the paired MyD88(+/+)CD4(+) T cells. Collectively, the MyD88-dependent pathway that controls TLR signaling in T cells may directly promote the proliferation and survival of colitogenic CD4(+) T cells to sustain chronic colitis.
Collapse
Affiliation(s)
- Takayuki Tomita
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The small number of antigen-specific memory CD4 T cells surviving long-term after antigen or pathogen challenge are often characterized by a surprising degree of phenotypic and functional heterogeneity. We here propose that the immune system has evolved to express this diversity in memory T-cell populations, in order to provide flexibility in recall responses, via a rapid transition from heterogeneous effector cells into correspondingly heterogeneous memory cells. Little attention has been paid to another important transition-from resting memory cell to re-activated effector. We would suggest that superior functional attributes of secondary effectors arising from memory CD4 T cells, as compared to primary effectors arising from naïve precursors, play an important and underappreciated role in protective secondary immune responses.
Collapse
Affiliation(s)
- K Kai McKinstry
- Trudeau Institute, 154 Algonquin Ave, Saranac Lake, NY 12983, USA.
| | | | | |
Collapse
|
28
|
Tomita T, Kanai T, Fujii T, Nemoto Y, Okamoto R, Tsuchiya K, Totsuka T, Sakamoto N, Watanabe M. Continuous generation of colitogenic CD4+ T cells in persistent colitis. Eur J Immunol 2008; 38:1264-74. [DOI: 10.1002/eji.200737745] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
29
|
Sanz I, Wei C, Lee FEH, Anolik J. Phenotypic and functional heterogeneity of human memory B cells. Semin Immunol 2008; 20:67-82. [PMID: 18258454 PMCID: PMC2440717 DOI: 10.1016/j.smim.2007.12.006] [Citation(s) in RCA: 271] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 12/06/2007] [Indexed: 12/25/2022]
Abstract
Memory B cells are more heterogeneous than previously thought. Given that B cells play powerful antibody-independent effector functions, it seems reasonable to assume division of labor between distinct memory B cells subpopulations in both protective and pathogenic immune responses. Here we review the information emerging regarding the heterogeneity of human memory B cells. A better understanding of this topic should greatly improve our ability to target specific B cell subsets either in vaccine responses or in autoimmune diseases and organ rejection among other pathological conditions where B cells play central pathogenic roles.
Collapse
Affiliation(s)
- Iñaki Sanz
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | | | | | | |
Collapse
|
30
|
Aldrich M, Sanders D, Lapteva N, Huang XF, Chen SY. SOCS1 downregulation in dendritic cells promotes memory T-cell responses. Vaccine 2007; 26:1128-35. [PMID: 18222020 DOI: 10.1016/j.vaccine.2007.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 11/07/2007] [Accepted: 11/07/2007] [Indexed: 12/17/2022]
Abstract
SOCS1-1 is crucial for control of immune cell cytokine expression, including those cytokines known to enable memory T-cell formation and homeostasis. In this study, we found that immunization with SOCS1-downregulated bone marrow-derived dendritic cells generated increased antigen-specific CD8(+) T memory cells and antigen-specific responses, as measured by ELISPOT, CTL assays, serum ELISAs, and T-cell proliferation assays. Bone marrow-derived dendritic cells in which SOCS1 was downregulated expressed increased levels of surface IL-15Ra and thymic leukemia (TL) antigen, both of which support memory cell development. This work supports a crucial role for SOCS1 in regulation of dendritic cell-directed generation of memory T-cell responses.
Collapse
Affiliation(s)
- Melissa Aldrich
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | |
Collapse
|
31
|
Gernez Y, Tirouvanziam R, Nguyen KD, Herzenberg LA, Krensky AM, Nadeau KC. Altered phosphorylated signal transducer and activator of transcription profile of CD4+CD161+ T cells in asthma: modulation by allergic status and oral corticosteroids. J Allergy Clin Immunol 2007; 120:1441-8. [PMID: 17919711 DOI: 10.1016/j.jaci.2007.08.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 08/02/2007] [Accepted: 08/06/2007] [Indexed: 01/21/2023]
Abstract
BACKGROUND Asthma is a complex immunologic disorder linked to altered cytokine signaling. OBJECTIVE We tested whether asthmatic patients showed any change in cytokine-dependent signal transducer and activator of transcription (STAT) levels, focusing on the central/effector-memory CD4(+)CD161(+) subset, which represents 15% to 25% of circulating T cells. METHODS We quantified intracellular levels of active phosphorylated STAT (phospho-STAT) 1, 3, 5, and 6 by means of flow cytometry, without any activation or expansion. RESULTS Baseline phospho-STAT1 and phospho-STAT6 levels were increased in CD4(+)CD161(+) T cells from asthmatic patients compared with those from healthy control subjects (by 10- and 8-fold, respectively). This asthma-associated alteration was both subset specific because no change was seen in CD4(+)CD161(-)CD25(+) (regulatory T cells) and CD4(+)CD161(-)CD25(-) subsets and isoform specific because phospho-STAT5 and phospho-STAT3 levels were unchanged. Among asthmatic patients, phospho-STAT1 and phospho-STAT6 levels correlated negatively with each other, suggesting antagonistic regulation. Oral corticosteroid (OCS) treatment significantly decreased phospho-STAT6 and IL-4 levels but not phospho-STAT1 levels. Disease parameters showing significant correlations with phospho-STAT1, phospho-STAT6, or both included age at onset, plasma IgE levels, and levels of the T(H)2 cytokines IL-4 and IL-10 and the T(H)1 cytokine IL-2. Overall, combined phospho-STAT1 and phospho-STAT6 measurements showed excellent predictive value for identifying (1) asthmatic patients versus healthy control subjects, (2) allergic versus nonallergic asthmatic patients, and (3) asthmatic patients taking versus those not taking OCSs. CONCLUSION Baseline changes in phospho-STAT1 and phospho-STAT6 levels in blood CD4(+)CD161(+) T cells identify asthmatic patients and mirror their allergic status and response to OCSs. CLINICAL IMPLICATIONS These results confirm the pathologic importance of activated STAT1 and STAT6 in asthma and suggest their potential use as clinical biomarkers.
Collapse
Affiliation(s)
- Yael Gernez
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | |
Collapse
|
32
|
Li X, McKinstry KK, Swain SL, Dalton DK. IFN-gamma acts directly on activated CD4+ T cells during mycobacterial infection to promote apoptosis by inducing components of the intracellular apoptosis machinery and by inducing extracellular proapoptotic signals. THE JOURNAL OF IMMUNOLOGY 2007; 179:939-49. [PMID: 17617585 PMCID: PMC2532516 DOI: 10.4049/jimmunol.179.2.939] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Despite many studies, the regulation of CD4(+) T cell apoptosis during the shutdown of immune responses is not fully understood. We have investigated the molecular mechanisms of IFN-gamma in regulating apoptosis of CD4(+) T cells during bacillus Calmette-Guérin (BCG) infection of mice. Our data provide new insight into the regulation of CD4(+) T cell apoptosis by IFN-gamma. As CD4(+) T cells responded to BCG infection, there was a coordinated increase in IFN-gamma production by effector CD4(+) T cells and a coordinated IFN-gamma-dependent up-regulation of many diverse apoptosis-pathway genes in effector CD4(+) T cells. Unexpectedly, IFN-gamma up-regulated transcripts and protein expression of Bcl-2, Bax, Bim, Bid, Apaf-1, and caspase-9 in activated CD4(+) T cells--components of the apoptosis machinery that are involved in promoting mitochondrial damage-mediated apoptosis. Wild-type, but not IFN-gamma knockout, CD4(+) T cells underwent apoptosis that was associated with damaged mitochondrial membranes. IFN-gamma also up-regulated expression of cell-extrinsic signals of apoptosis, including TRAIL, DR5, and TNFR1. Cell-extrinsic apoptosis signals from TNF-alpha, TRAIL, and NO were capable of damaging the mitochondrial membranes in activated CD4(+) T cells. Moreover, activated CD4(+) T cells from BCG-infected DR5, TNFR1, and inducible NO synthase knockout mice had impaired caspase-9 activity, suggesting impaired mitochondria-pathway apoptosis. We propose that IFN-gamma promotes apoptosis of CD4(+) T cells during BCG infection as follows: 1) by sensitizing CD4(+) T cells to apoptosis by inducing intracellular apoptosis molecules and 2) by inducing cell-extrinsic apoptosis signals that kill CD4(+) effector T cells.
Collapse
Affiliation(s)
| | | | | | - Dyana K. Dalton
- Address correspondence and reprint requests to Dr. Dyana K. Dalton, Trudeau Institute, 154 Algonquin Avenue, Saranac Lake, NY 12983. E-mail address:
| |
Collapse
|
33
|
McKinstry KK, Golech S, Lee WH, Huston G, Weng NP, Swain SL. Rapid default transition of CD4 T cell effectors to functional memory cells. ACTA ACUST UNITED AC 2007; 204:2199-211. [PMID: 17724126 PMCID: PMC2118696 DOI: 10.1084/jem.20070041] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The majority of highly activated CD4 T cell effectors die after antigen clearance, but a small number revert to a resting state, becoming memory cells with unique functional attributes. It is currently unclear when after antigen clearance effectors return to rest and acquire important memory properties. We follow well-defined cohorts of CD4 T cells through the effector-to-memory transition by analyzing phenotype, important functional properties, and gene expression profiles. We find that the transition from effector to memory is rapid in that effectors rested for only 3 d closely resemble canonical memory cells rested for 60 d or longer in the absence of antigen. This is true for both Th1 and Th2 lineages, and occurs whether CD4 T cell effectors rest in vivo or in vitro, suggesting a default pathway. We find that the effector–memory transition at the level of gene expression occurs in two stages: a rapid loss of expression of a myriad of effector-associated genes, and a more gradual gain of expression of a cohort of genes uniquely associated with memory cells rested for extended periods.
Collapse
|
34
|
Valujskikh A, Li XC. Frontiers in nephrology: T cell memory as a barrier to transplant tolerance. J Am Soc Nephrol 2007; 18:2252-61. [PMID: 17634436 DOI: 10.1681/asn.2007020151] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Anna Valujskikh
- Department of Immunology, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | |
Collapse
|
35
|
Cush SS, Anderson KM, Ravneberg DH, Weslow-Schmidt JL, Flaño E. Memory generation and maintenance of CD8+ T cell function during viral persistence. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 179:141-53. [PMID: 17579032 PMCID: PMC3110076 DOI: 10.4049/jimmunol.179.1.141] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During infection with viruses that establish latency, the immune system needs to maintain lifelong control of the infectious agent in the presence of persistent Ag. By using a gamma-herpesvirus (gammaHV) infection model, we demonstrate that a small number of virus-specific central-memory CD8+ T cells develop early during infection, and that virus-specific CD8+T cells maintain functional and protective capacities during chronic infection despite low-level Ag persistence. During the primary immune response, we show generation of CD8+ memory T cell precursors expressing lymphoid homing molecules (CCR7, L-selectin) and homeostatic cytokine receptors (IL-7alpha, IL-2/IL-15beta). During long-term persistent infection, central-memory cells constitute 20-50% of the virus-specific CD8+ T cell population and maintain the expression of L-selectin, CCR7, and IL-7R molecules. Functional analyses demonstrate that during viral persistence: 1) CD8+ T cells maintain TCR affinity for peptide/MHC complexes, 2) the functional avidity of CD8+ T cells measured as the capacity to produce IFN-gamma is preserved intact, and 3) virus-specific CD8+ T cells have in vivo killing capacity. Next, we demonstrate that at 8 mo post-virus inoculation, long-term CD8+ T cells are capable of mediating a protective recall response against the establishment of gammaHV68 splenic latency. These observations provide evidence that functional CD8+ memory T cells can be generated and maintained during low-load gammaHV68 persistence.
Collapse
Affiliation(s)
- Stephanie S. Cush
- Center for Vaccines and Immunity, Columbus Children’s Research Institute, Columbus, OH 43205
| | - Kathleen M. Anderson
- Center for Vaccines and Immunity, Columbus Children’s Research Institute, Columbus, OH 43205
| | - David H. Ravneberg
- Center for Vaccines and Immunity, Columbus Children’s Research Institute, Columbus, OH 43205
| | - Janet L. Weslow-Schmidt
- Center for Vaccines and Immunity, Columbus Children’s Research Institute, Columbus, OH 43205
| | - Emilio Flaño
- Center for Vaccines and Immunity, Columbus Children’s Research Institute, Columbus, OH 43205
- College of Medicine, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
36
|
Purton JF, Tan JT, Rubinstein MP, Kim DM, Sprent J, Surh CD. Antiviral CD4+ memory T cells are IL-15 dependent. ACTA ACUST UNITED AC 2007; 204:951-61. [PMID: 17420265 PMCID: PMC2118539 DOI: 10.1084/jem.20061805] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Survival and intermittent proliferation of memory CD4(+) and CD8(+) T cells appear to be controlled by different homeostatic mechanisms. In particular, contact with interleukin (IL)-15 has a decisive influence on memory CD8(+) cells, but not memory CD4(+) cells. Past studies of memory CD4(+) cells have relied heavily on the use of naturally occurring memory phenotype (MP) cells as a surrogate for antigen (Ag)-specific memory cells. However, we show here that MP CD4(+) cells contain a prominent subset of rapidly proliferating major histocompatibility complex (MHC) II-dependent cells. In contrast, Ag-specific memory CD4 cells have a slow turnover rate and are MHC II independent. In irradiated hosts, these latter cells ignore IL-15 and expand in response to the elevated levels of IL-7 in the lymphopenic hosts. In contrast, in normal nonlymphopenic hosts where IL-7 levels are low, memory CD4 cells are heavily dependent on IL-15. Significantly, memory CD4(+) responsiveness to endogenous IL-15 reflects marked competition from other cells, especially CD8(+) and natural killer cells, and increases considerably after removal of these cells. Therefore, under normal physiological conditions, homeostasis of CD8(+) and CD4(+) memory cells is quite similar and involves IL-15 and IL-7.
Collapse
Affiliation(s)
- Jared F Purton
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
37
|
Totsuka T, Kanai T, Nemoto Y, Makita S, Okamoto R, Tsuchiya K, Watanabe M. IL-7 Is Essential for the Development and the Persistence of Chronic Colitis. THE JOURNAL OF IMMUNOLOGY 2007; 178:4737-48. [PMID: 17404253 DOI: 10.4049/jimmunol.178.8.4737] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although IL-7 has recently emerged as a key cytokine involved in controlling the homeostatic turnover and the survival of peripheral resting memory CD4(+) T cells, its potential to be sustained pathogenic CD4(+) T cells in chronic immune diseases, such as inflammatory bowel diseases, still remains unclear. In this study, we demonstrate that IL-7 is essential for the development and the persistence of chronic colitis induced by adoptive transfer of normal CD4(+)CD45RB(high) T cells or colitogenic lamina propria (LP) CD4(+) memory T cells into immunodeficient IL-7(+/+) x RAG-1(-/-) and IL-7(-/-) x RAG-1(-/-) mice. Although IL-7(+/+) x RAG-1(-/-) recipients transferred with CD4(+)CD45RB(high) splenocytes developed massive inflammation of the large intestinal mucosa concurrent with massive expansion of Th1 cells, IL-7(-/-) x RAG-1(-/-) recipients did not. Furthermore, IL-7(-/-) x RAG-1(-/-), but not IL-7(+/+) x RAG-1(-/-), mice transferred with LP CD4(+)CD44(high)CD62L(-)IL-7Ralpha(high) effector-memory T cells (T(EM)) isolated from colitic CD4(+)CD45RB(high)-transferred mice did not develop colitis. Although rapid proliferation of transferred colitogenic LP CD4(+) T(EM) cells was observed in the in IL-7(-/-) x RAG-1(-/-) mice to a similar extent of those in IL-7(+/+) x RAG-1(-/-) mice, Bcl-2 expression was significantly down-modulated in the transferred CD4(+) T cells in IL-7(-/-) x RAG-1(-/-) mice compared with those in IL-7(+/+) x RAG-1(-/-) mice. Taken together, IL-7 is essential for the development and the persistence of chronic colitis as a critical survival factor for colitogenic CD4(+) T(EM) cells, suggesting that therapeutic approaches targeting IL-7/IL-7R signaling pathway may be feasible in the treatment of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Teruji Totsuka
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|