1
|
Castañeda-Reyes ED, Gonzalez-Almazán A, Lubbert-Licón A, Yahya NF, Gonzalez de Mejia E. Encapsulation of soybean lunasin and amaranth unsaponifiable matter in liposomes induces cell cycle arrest in an allograft melanoma mouse model. Sci Rep 2024; 14:27858. [PMID: 39537778 PMCID: PMC11561292 DOI: 10.1038/s41598-024-79448-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
Melanoma is the most aggressive type of skin cancer and can metastasize during primary tumor formation. This research aimed to determine the relationship between the prevention of melanoma development in a mouse model treated with liposomes loaded with soybean lunasin and amaranth unsaponifiable matter (UM + LunLip) and cell cycle arrest. Tumors excised from C57BL/6 mice treated topically or subcutaneously with UM + LunLip were subjected to immunohistochemistry. Markers related to cell cycle inhibition (p16, p21, p27, and p53) and markers involved in cell cycle progression (cyclin-dependent kinase, CDK6, and cyclin D1) were assessed. The results showed that UM + LunLip had antitumor activity in C57BL/6 mice treated either topically or subcutaneously by p16, p21, p27, and p53 overexpression (up to 572-, 134-, 30-, and 57-fold change, FC, respectively) in the tumors of mice treated with 30 mg UM + LunLip/kg body weight compared with the tumor-bearing untreated control. However, CDK6 and cyclin D1 expression was not inhibited (up to 1.37 FC and 2.09 FC, respectively), which is a typical behavior of cyclin D in melanoma. Therefore, melanoma tumor development was prevented by the overexpression of cell cycle inhibitors p16, p21, p27, and p53 due to UM + LunLip treatments. Since the topical application was effective, less invasive, and more practical for the user, this application will be recommended for future steps in in vivo studies.
Collapse
Affiliation(s)
| | - Alejandro Gonzalez-Almazán
- Department of Food Science and Human Nutrition, University of Illinois, Champaign, IL, USA
- Tecnológico de Monterrey, Monterrey, Nuevo León, México
| | - Alán Lubbert-Licón
- Department of Food Science and Human Nutrition, University of Illinois, Champaign, IL, USA
- Tecnológico de Monterrey, Monterrey, Nuevo León, México
| | - Najwa Farhana Yahya
- Department of Food Science and Human Nutrition, University of Illinois, Champaign, IL, USA
| | | |
Collapse
|
2
|
Zhang C, Pan G, Qin JJ. Role of F-box proteins in human upper gastrointestinal tumors. Biochim Biophys Acta Rev Cancer 2024; 1879:189035. [PMID: 38049014 DOI: 10.1016/j.bbcan.2023.189035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/06/2023]
Abstract
Protein ubiquitination and degradation is an essential physiological process in almost all organisms. As the key participants in this process, the E3 ubiquitin ligases have been widely studied and recognized. F-box proteins, a crucial component of E3 ubiquitin ligases that regulates diverse biological functions, including cell differentiation, proliferation, migration, and apoptosis by facilitating the degradation of substrate proteins. Currently, there is an increasing focus on studying the role of F-box proteins in cancer. In this review, we present a comprehensive overview of the significant contributions of F-box proteins to the development of upper gastrointestinal tumors, highlighting their dual roles as both carcinogens and tumor suppressors. We delve into the molecular mechanisms underlying the involvement of F-box proteins in upper gastrointestinal tumors, exploring their interactions with specific substrates and their cross-talks with other key signaling pathways. Furthermore, we discuss the implications of F-box proteins in radiotherapy resistance in the upper gastrointestinal tract, emphasizing their potential as clinical therapeutic and prognostic targets. Overall, this review provides an up-to-date understanding of the intricate involvement of F-box proteins in human upper gastrointestinal tumors, offering valuable insights for the identification of prognostic markers and the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Che Zhang
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guangzhao Pan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jiang-Jiang Qin
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| |
Collapse
|
3
|
Neudorf NM, Thompson LL, Lichtensztejn Z, Razi T, McManus KJ. Reduced SKP2 Expression Adversely Impacts Genome Stability and Promotes Cellular Transformation in Colonic Epithelial Cells. Cells 2022; 11:cells11233731. [PMID: 36496990 PMCID: PMC9738323 DOI: 10.3390/cells11233731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Despite the high morbidity and mortality rates associated with colorectal cancer (CRC), the underlying molecular mechanisms driving CRC development remain largely uncharacterized. Chromosome instability (CIN), or ongoing changes in chromosome complements, occurs in ~85% of CRCs and is a proposed driver of cancer development, as the genomic changes imparted by CIN enable the acquisition of karyotypes that are favorable for cellular transformation and the classic hallmarks of cancer. Despite these associations, the aberrant genes and proteins driving CIN remain elusive. SKP2 encodes an F-box protein, a variable subunit of the SKP1-CUL1-F-box (SCF) complex that selectively targets proteins for polyubiquitylation and degradation. Recent data have identified the core SCF complex components (SKP1, CUL1, and RBX1) as CIN genes; however, the impact reduced SKP2 expression has on CIN, cellular transformation, and oncogenesis remains unknown. Using both short- small interfering RNA (siRNA) and long-term (CRISPR/Cas9) approaches, we demonstrate that diminished SKP2 expression induces CIN in both malignant and non-malignant colonic epithelial cell contexts. Moreover, temporal assays reveal that reduced SKP2 expression promotes cellular transformation, as demonstrated by enhanced anchorage-independent growth. Collectively, these data identify SKP2 as a novel CIN gene in clinically relevant models and highlight its potential pathogenic role in CRC development.
Collapse
Affiliation(s)
- Nicole M. Neudorf
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Laura L. Thompson
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Zelda Lichtensztejn
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Tooba Razi
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Kirk J. McManus
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Correspondence: ; Tel.: +1-204-787-2833
| |
Collapse
|
4
|
Targeting the untargetable: RB1-deficient tumours are vulnerable to Skp2 ubiquitin ligase inhibition. Br J Cancer 2022; 127:969-975. [PMID: 35752713 PMCID: PMC9470583 DOI: 10.1038/s41416-022-01898-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 11/08/2022] Open
Abstract
Proteins that regulate the cell cycle are accumulated and degraded in a coordinated manner during the transition from one cell cycle phase to the next. The rapid loss of a critical protein, for example, to allow the cell to move from G1/G0 to S phase, is often regulated by its ubiquitination and subsequent proteasomal degradation. Protein ubiquitination is mediated by a series of three ligases, of which the E3 ligases provide the specificity for a particular protein substrate. One such E3 ligase is SCFSkp1/Cks1, which has a substrate recruiting subunit called S-phase kinase-associated protein 2 (Skp2). Skp2 regulates cell proliferation, apoptosis, and differentiation, can act as an oncogene, and is overexpressed in human cancer. A primary target of Skp2 is the cyclin-dependent kinase inhibitor p27 (CDKN1b) that regulates the cell cycle at several points. The RB1 tumour suppressor gene regulates Skp2 activity by two mechanisms: by controlling its mRNA expression, and by an effect on Skp2's enzymatic activity. For the latter, the RB1 protein (pRb) directly binds to the substrate-binding site on Skp2, preventing protein substrates from being ubiquitinated and degraded. Inactivating mutations in RB1 are common in human cancer, becoming more frequent in aggressive, metastatic, and drug-resistant tumours. Hence, RB1 mutation leads to the loss of pRb, an unrestrained increase in Skp2 activity, the unregulated decrease in p27, and the loss of cell cycle control. Because RB1 mutations lead to the loss of a functional protein, its direct targeting is not possible. This perspective will discuss evidence validating Skp2 as a therapeutic target in RB1-deficient cancer.
Collapse
|
5
|
Liu J, Zheng X, Li W, Ren L, Li S, Yang Y, Yang H, Ge B, Du G, Shi J, Wang J. Anti-tumor effects of Skp2 inhibitor AAA-237 on NSCLC by arresting cell cycle at G0/G1 phase and inducing senescence. Pharmacol Res 2022; 181:106259. [PMID: 35577307 DOI: 10.1016/j.phrs.2022.106259] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 12/25/2022]
Abstract
Lung cancer is by far the leading cause of cancer death worldwide, and 85% of patients are diagnosed with non-small cell lung cancer (NSCLC), which is still very difficult to treat. Skp2 functions as an oncogene that participates in processes of many cancers. Here, we report a novel Skp2 inhibitor AAA-237 that binds to Skp2 protein and inhibits the proliferation of the NSCLC cells. We further investigated the anti-NSCLC mechanism of AAA-237 and found that it arrested the cell cycle at the G0/G1 phase by targeting Skp2 to reduce the degradation of p21Cip1 and p27Kip1 or by transcriptionally activating FOXO1 to increase the mRNA expression of p21Cip1 and p27Kip1. More importantly, we found that treatment of a high concentration AAA-237 could induce apoptosis of NSCLC cells and treatment of a low AAA-237 concentration for a longer time could induce senescence of NSCLC cells. Similar results were found in nude mice xenografted with A549 cells. AAA-237 inhibited tumor growth by inducing apoptosis and senescence in a dose-dependent manner. Considering these results, we propose that AAA-237 could be a promising therapeutic drug for treating patients with NSCLC.
Collapse
Affiliation(s)
- Jinyi Liu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiangjin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Sha Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yihui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Hong Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Binbin Ge
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial, People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
6
|
Thompson LL, Rutherford KA, Lepage CC, McManus KJ. The SCF Complex Is Essential to Maintain Genome and Chromosome Stability. Int J Mol Sci 2021; 22:8544. [PMID: 34445249 PMCID: PMC8395177 DOI: 10.3390/ijms22168544] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 12/20/2022] Open
Abstract
The SKP1, CUL1, F-box protein (SCF) complex encompasses a group of 69 SCF E3 ubiquitin ligase complexes that primarily modify protein substrates with poly-ubiquitin chains to target them for proteasomal degradation. These SCF complexes are distinguishable by variable F-box proteins, which determine substrate specificity. Although the function(s) of each individual SCF complex remain largely unknown, those that have been characterized regulate a wide array of cellular processes, including gene transcription and the cell cycle. In this regard, the SCF complex regulates transcription factors that modulate cell signaling and ensures timely degradation of primary cell cycle regulators for accurate replication and segregation of genetic material. SCF complex members are aberrantly expressed in a myriad of cancer types, with altered expression or function of the invariable core SCF components expected to have a greater impact on cancer pathogenesis than that of the F-box proteins. Accordingly, this review describes the normal roles that various SCF complexes have in maintaining genome stability before discussing the impact that aberrant SCF complex expression and/or function have on cancer pathogenesis. Further characterization of the SCF complex functions is essential to identify and develop therapeutic approaches to exploit aberrant SCF complex expression and function.
Collapse
Affiliation(s)
- Laura L. Thompson
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (L.L.T.); (K.A.R.); (C.C.L.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Kailee A. Rutherford
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (L.L.T.); (K.A.R.); (C.C.L.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Chloe C. Lepage
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (L.L.T.); (K.A.R.); (C.C.L.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Kirk J. McManus
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (L.L.T.); (K.A.R.); (C.C.L.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
7
|
Wu T, Gu X, Cui H. Emerging Roles of SKP2 in Cancer Drug Resistance. Cells 2021; 10:cells10051147. [PMID: 34068643 PMCID: PMC8150781 DOI: 10.3390/cells10051147] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
More than half of all cancer patients receive chemotherapy, however, some of them easily acquire drug resistance. Resistance to chemotherapy has become a massive obstacle to achieve high rates of pathological complete response during cancer therapy. S-phase kinase-associated protein 2 (Skp2), as an E3 ligase, was found to be highly correlated with drug resistance and poor prognosis. In this review, we summarize the mechanisms that Skp2 confers to drug resistance, including the Akt-Skp2 feedback loop, Skp2-p27 pathway, cell cycle and mitosis regulation, EMT (epithelial-mesenchymal transition) property, enhanced DNA damage response and repair, etc. We also addressed novel molecules that either inhibit Skp2 expression or target Skp2-centered interactions, which might have vast potential for application in clinics and benefit cancer patients in the future.
Collapse
Affiliation(s)
- Ting Wu
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China;
| | - Xinsheng Gu
- Department of Pharmacology, College of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China;
| | - Hongmei Cui
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China;
- Correspondence:
| |
Collapse
|
8
|
Soysouvanh F, Giuliano S, Habel N, El-Hachem N, Pisibon C, Bertolotto C, Ballotti R. An Update on the Role of Ubiquitination in Melanoma Development and Therapies. J Clin Med 2021; 10:jcm10051133. [PMID: 33800394 PMCID: PMC7962844 DOI: 10.3390/jcm10051133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/27/2022] Open
Abstract
The ubiquitination system plays a critical role in regulation of large array of biological processes and its alteration has been involved in the pathogenesis of cancers, among them cutaneous melanoma, which is responsible for the most deaths from skin cancers. Over the last decades, targeted therapies and immunotherapies became the standard therapeutic strategies for advanced melanomas. However, despite these breakthroughs, the prognosis of metastatic melanoma patients remains unoptimistic, mainly due to intrinsic or acquired resistances. Many avenues of research have been investigated to find new therapeutic targets for improving patient outcomes. Because of the pleiotropic functions of ubiquitination, and because each step of ubiquitination is amenable to pharmacological targeting, much attention has been paid to the role of this process in melanoma development and resistance to therapies. In this review, we summarize the latest data on ubiquitination and discuss the possible impacts on melanoma treatments.
Collapse
Affiliation(s)
- Frédéric Soysouvanh
- Inserm U1065, C3M, Team 1, Biology, and Pathologies of Melanocytes, University of Nice Côte d’Azur, 06200 Nice, France; (F.S.); (S.G.); (N.H.); (C.P.); (C.B.)
| | - Serena Giuliano
- Inserm U1065, C3M, Team 1, Biology, and Pathologies of Melanocytes, University of Nice Côte d’Azur, 06200 Nice, France; (F.S.); (S.G.); (N.H.); (C.P.); (C.B.)
| | - Nadia Habel
- Inserm U1065, C3M, Team 1, Biology, and Pathologies of Melanocytes, University of Nice Côte d’Azur, 06200 Nice, France; (F.S.); (S.G.); (N.H.); (C.P.); (C.B.)
| | - Najla El-Hachem
- Laboratory of Cancer Signaling, University of Liège, 4020 Liège, Belgium;
| | - Céline Pisibon
- Inserm U1065, C3M, Team 1, Biology, and Pathologies of Melanocytes, University of Nice Côte d’Azur, 06200 Nice, France; (F.S.); (S.G.); (N.H.); (C.P.); (C.B.)
| | - Corine Bertolotto
- Inserm U1065, C3M, Team 1, Biology, and Pathologies of Melanocytes, University of Nice Côte d’Azur, 06200 Nice, France; (F.S.); (S.G.); (N.H.); (C.P.); (C.B.)
- Equipe labellisée Fondation ARC 2019, 06200 Nice, France
| | - Robert Ballotti
- Inserm U1065, C3M, Team 1, Biology, and Pathologies of Melanocytes, University of Nice Côte d’Azur, 06200 Nice, France; (F.S.); (S.G.); (N.H.); (C.P.); (C.B.)
- Equipe labellisée Ligue Contre le Cancer 2020, 06200 Nice, France
- Correspondence: ; Tel.: +33-4-89-06-43-32
| |
Collapse
|
9
|
Naik PP. Cutaneous Malignant Melanoma: A Review of Early Diagnosis and Management. World J Oncol 2021; 12:7-19. [PMID: 33738001 PMCID: PMC7935621 DOI: 10.14740/wjon1349] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Cutaneous melanoma (CM) is a malignant tumor formed from pigment-producing cells called melanocytes. It is one of the most aggressive and fatal forms of skin malignancy. In the last decades, CM's incidence has gradually risen, with 351,880 new cases in 2015. Since the 1960s, its incidence has increased steadily, in 2019, with approximately 96,000 new cases. A greater understanding of early diagnosis and management of CM is urgently needed because of the high mortality rates due to metastatic melanoma. Timely detection of melanoma is crucial for successful treatment, but diagnosis with histopathology may also pose a significant challenge to this objective. Early diagnosis and management are essential and contribute to better survival rates of the patient. To better control this malignancy, such information is expected to be particularly useful in the early detection of possible metastatic lesions and the development of new therapeutic approaches. This article reviews the available information on the early diagnosis and management of CM and discusses such information's potential in facilitating the future prospective.
Collapse
Affiliation(s)
- Piyu Parth Naik
- Department of Dermatology, Saudi German Hospitals and Clinics, Hessa Street 331 West, Al Barsha 3, Exit 36 Sheikh Zayed Road, Opposite of American School, Dubai, United Arab Emirates.
| |
Collapse
|
10
|
Cai Z, Moten A, Peng D, Hsu CC, Pan BS, Manne R, Li HY, Lin HK. The Skp2 Pathway: A Critical Target for Cancer Therapy. Semin Cancer Biol 2020; 67:16-33. [PMID: 32014608 DOI: 10.1016/j.semcancer.2020.01.013] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 12/16/2022]
Abstract
Strictly regulated protein degradation by ubiquitin-proteasome system (UPS) is essential for various cellular processes whose dysregulation is linked to serious diseases including cancer. Skp2, a well characterized component of Skp2-SCF E3 ligase complex, is able to conjugate both K48-linked ubiquitin chains and K63-linked ubiquitin chains on its diverse substrates, inducing proteasome mediated proteolysis or modulating the function of tagged substrates respectively. Overexpression of Skp2 is observed in various human cancers associated with poor survival and adverse therapeutic outcomes, which in turn suggests that Skp2 engages in tumorigenic activity. To that end, the oncogenic properties of Skp2 are demonstrated by various genetic mouse models, highlighting the potential of Skp2 as a target for tackling cancer. In this article, we will describe the downstream substrates of Skp2 as well as upstream regulators for Skp2-SCF complex activity. We will further summarize the comprehensive oncogenic functions of Skp2 while describing diverse strategies and therapeutic platforms currently available for developing Skp2 inhibitors.
Collapse
Affiliation(s)
- Zhen Cai
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA.
| | - Asad Moten
- National Capital Consortium, Department of Defense, Washington DC, 20307, USA; Institute for Complex Systems, HealthNovations International, Houston, TX, 77089, USA; Center for Cancer Research, National Institutes of Health, Bethesda, MD, 20814, USA; Center on Genomics, Vulnerable Populations, and Health Disparities, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Danni Peng
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA
| | - Che-Chia Hsu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA
| | - Bo-Syong Pan
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA
| | - Rajeshkumar Manne
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA
| | - Hong-Yu Li
- University of Arkansas for Medical Sciences, College of Pharmacy, Division of Pharmaceutical Science, 200 South Cedar, Little Rock AR 72202, USA
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA; Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan; Department of Biotechnology, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
11
|
Zhao H, Pan H, Wang H, Chai P, Ge S, Jia R, Fan X. SKP2 targeted inhibition suppresses human uveal melanoma progression by blocking ubiquitylation of p27. Onco Targets Ther 2019; 12:4297-4308. [PMID: 31213847 PMCID: PMC6549483 DOI: 10.2147/ott.s203888] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/27/2019] [Indexed: 12/25/2022] Open
Abstract
Background: SKP2 is considered an oncogene involved in various malignancies. SKP2 protein is a critical subunit of the SKP1-CUL1-F-box (SCF) E3 ligase complex which affects the cell cycle profoundly by specifically recognizing cell cycle regulators and mediating their ubiquitylation and proteasomal degradation. SKP2 dysfunction is characteristic of many tumor cells. However, its role in uveal melanoma (UM) has not been elucidated. Materials and methods: We analyzed the expressions of SKP2 in different UM cell lines compared with normal pigment cell by RNA-seq, RT-qPCR and Western blot. We then knocked down SKP2 in OM431 and MUM2B cells and confirmed its roles in cell proliferation via CCK8 assay. The sensitivity of cells to SKP2 inhibitor C1 (SKPin C1) in vitro was evaluated by CCK8 assay and colony formation assay, and the sensitivity of MUM2B cells to SKPin C1 in vivo was estimated using the nude mouse-based xenograft model. Western blot and Immunoprecipitation assay were performed to detect the change of p27 and its ubiquitylation level in UM cells treated with SKPin C1, respectively. Results: The results showed that SKP2 was significantly highly expressed in UM cells. SKP2 promoted the progression of UM and knockdown of SKP2 inhibited cell proliferation in UM cells. SKP2 inhibitor C1 that targets SKP2 essentially inhibits the growth of UM cells both in vivo and in vitro. SKP2 inhibitor C1 decreased the degradation of p27 by blocking ubiquitylation of p27, resulting in p27 accumulation and cell cycle arrest in UM cells. Conclusion: Our findings demonstrated that SKP2 targeted inhibition suppresses UM cell proliferation and provides new options and possibilities for targeted therapies in UM.
Collapse
Affiliation(s)
- Hongbo Zhao
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology , Shanghai, People's Republic of China
| | - Hui Pan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology , Shanghai, People's Republic of China
| | - Huixue Wang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology , Shanghai, People's Republic of China
| | - Peiwei Chai
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology , Shanghai, People's Republic of China
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology , Shanghai, People's Republic of China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology , Shanghai, People's Republic of China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology , Shanghai, People's Republic of China
| |
Collapse
|
12
|
Regulat-INGs in tumors and diseases: Focus on ncRNAs. Cancer Lett 2019; 447:66-74. [PMID: 30673590 DOI: 10.1016/j.canlet.2019.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 12/11/2022]
Abstract
ING family genes (Inhibitor of Growth) are tumor suppressor genes that play a vital role in cell homeostasis. It has been shown that their expression is lost or diminished in many cancers and other diseases. The main mechanisms by which they are regulated in oncogenesis have not yet been fully elucidated. The involvement of non-coding RNAs (ncRNAs) and in particular microRNAs (miRNAs) in post-transcriptional gene regulation is well established. miRNAs are short sequences (18-25 nucleotides) that can bind to the 3 'UTR sequence of the targeted messenger RNA (mRNA), leading to its degradation or translational repression. Interactions between the ING family and miRNAs have been described in some cancers but also in other diseases. The involvement of miRNAs in ING family regulation opens up new fields of investigation, particularly for targeted therapies. In this review, we will summarize the regulatory mechanisms at the RNA and protein level of the ING family and focus on the interactions with ncRNAs.
Collapse
|
13
|
Kulinski M, Achkar IW, Haris M, Dermime S, Mohammad RM, Uddin S. Dysregulated expression of SKP2 and its role in hematological malignancies. Leuk Lymphoma 2018; 59:1051-1063. [PMID: 28797197 DOI: 10.1080/10428194.2017.1359740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
S-phase kinase-associated protein 2 (SKP2) is a well-studied F-box protein and a critical part of the Skp1-Cul1-Fbox (SCF) E3 ligase complex. It controls cell cycle by regulating the expression level of p27 and p21 through ubiquitination and proteasomal degradation. SKP2-mediated loss of p27Kip1 is associated with poor clinical outcome in various types of cancers including hematological malignancies. It is however well established that SKP2 is an oncogene, and its targeting may be an attractive therapeutic strategy for the management of hematological malignancies. In this article, we have highlighted the recent findings from our group and other investigators regarding the role of SKP2 in the pathogenesis of hematological malignancies.
Collapse
Affiliation(s)
- Michal Kulinski
- a Translational Research Institute, Academic Health System , Hamad Medical Corporation , Doha , Qatar
| | - Iman W Achkar
- a Translational Research Institute, Academic Health System , Hamad Medical Corporation , Doha , Qatar
| | - Mohammad Haris
- b Translational Medicine Research Branch , Sidra Medical and Research Center , Doha , Qatar
| | - Said Dermime
- c National Center for Cancer Care and Research , Hamad Medical Corporation , Doha , Qatar
| | - Ramzi M Mohammad
- a Translational Research Institute, Academic Health System , Hamad Medical Corporation , Doha , Qatar
| | - Shahab Uddin
- a Translational Research Institute, Academic Health System , Hamad Medical Corporation , Doha , Qatar
| |
Collapse
|
14
|
Brożyna AA, Aplin A, Cohen C, Carlson G, Page AJ, Murphy M, Slominski AT, Carlson JA. CKS1 expression in melanocytic nevi and melanoma. Oncotarget 2018; 9:4173-4187. [PMID: 29423113 PMCID: PMC5790530 DOI: 10.18632/oncotarget.23648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/16/2017] [Indexed: 12/22/2022] Open
Abstract
Cyclin-dependent kinase subunit 1 (Cks1) regulates the degradation of p27, an important G1-S inhibitor, which is up regulated by MAPK pathway activation. In this study, we sought to determine whether Cks1 expression is increased in melanocytic tumors and correlates with outcome and/or other clinicopathologic prognostic markers. Cks1 expression was assessed by immunohistochemistry in 298 melanocytic lesions. The frequency and intensity of cytoplasmic and nuclear expression was scored as a labeling index and correlated with clinico-pathological data. Nuclear Cks1 protein was found in 63% of melanocytic nevi, 89% primary and 90% metastatic melanomas with mean labeling index of 7 ± 16, 19 ± 20, and 30 ± 29, respectively. While cytoplasmic Cks1 was found in 41% of melanocytic nevi, 84% primary and 95% metastatic melanomas with mean labeling index of 18 ± 34, 35 ± 34, and 52 ± 34, accordingly. Histologic stepwise model of tumor progression, defined as progression from benign nevi to primary melanomas, to melanoma metastases, revealed a significant increase in nuclear and cytoplasmic Cks1 expression with tumor progression. Nuclear and cytoplasmic Cks1 expression correlated with the presence of ulceration, increased mitotic rate, Breslow depth, Clark level, tumor infiltrating lymphocytes and gender. However, other well-known prognostic factors (age, anatomic site, and regression) did not correlate with any type of Cks1 expression. Similarly, increasing nuclear expression of Cks1 significantly correlated with worse overall survival. Thus, Cks1 expression appears to play a role in the progression of melanoma, where high levels of expression are associated with poor outcome. Cytoplasmic expression of Cks1 might represent high turnover of protein via the ubiquination/proteosome pathway.
Collapse
Affiliation(s)
- Anna A Brożyna
- Department of Tumor Pathology and Pathomorphology, Faculty of Health Sciences, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz 85-796, Poland
| | - Andrew Aplin
- Department of Cancer Biology, BLSB 524, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Cynthia Cohen
- Winship Cancer Institute, Emory University Hospital, Atlanta, GA 30322, USA
| | - Grant Carlson
- Winship Cancer Institute, Emory University Hospital, Atlanta, GA 30322, USA
| | - Andrew Joseph Page
- Pancreas, Liver, and Cancer Surgery, Piedmont Healthcare, Atlanta, GA 30309, USA
| | - Michael Murphy
- Department of Dermatology, UConn Health, Farmington, CT 06030, USA
| | - Andrzej T Slominski
- Department of Dermatology, Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - J Andrew Carlson
- Department of Pathology and Laboratory Medicine, Albany Medical College MC-81, Albany, NY 12208, USA
| |
Collapse
|
15
|
Autilio C, Paolillo C, Lavieri MM, Pocino K, De Paolis E, Di Stasio E, Marchetti P, Gian Carlo CA, Capoluongo E. PAX3d mRNA over 2.76 copies/µL in the bloodstream predicts cutaneous malignant melanoma relapse. Oncotarget 2017; 8:85479-85491. [PMID: 29156734 PMCID: PMC5689624 DOI: 10.18632/oncotarget.20177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 07/25/2017] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE The aim of this study was to evaluate if our molecular algorithm, based on tumor circulating transcripts, may predict relapse risk in cutaneous malignant melanoma (CMM). RESULTS The multi-marker panel was able to differentiate patients with CMM from HC with high diagnostic sensitivity and specificity, especially for MITF-m and TGFB2 (91-100%) whose levels decreased during follow-up of recurrence-free patients, and remained stable in the case of relapse. PAX3d higher than 2.76 copies/µL emerged as a promising biomarker [specificity = 75-93% and negative predictive value = 75-98%] to stratify subjects at high risk of CMM recurrence independently of age, gender and AJCC staging [OD = 9.5(3.2-28.0), p < 0.001]. The survival analysis confirmed PAX3d performance in relapse prediction with significant differences in recurrence risk 12 months after the basal time-point (p = 0.008). MATERIALS AND METHODS Peripheral blood was collected from 111 CMM patients and from 87 healthy controls (HC) randomly selected. Each specimen was examined by qRT-PCR analysis for the expression of 3 tumor-related transcripts (PAX3d, MITF-m and TGFB2) at diagnosis, and at the following 6 and 12 months during clinical monitoring. CONCLUSIONS We demonstrated the usefulness of our molecular algorithm to indirectly detect circulating melanoma cells in blood, along with PAX3d capability to assess patients' progression and relapse prediction.
Collapse
Affiliation(s)
- Chiara Autilio
- Institute of Clinical Biochemistry, Laboratory of Clinical Molecular Diagnostics, Fondazione Policlinico “A. Gemelli”, Catholic University of the Sacred Heart, Rome, Italy
| | - Carmela Paolillo
- Institute of Clinical Biochemistry, Laboratory of Clinical Molecular Diagnostics, Fondazione Policlinico “A. Gemelli”, Catholic University of the Sacred Heart, Rome, Italy
| | | | - Krizia Pocino
- Institute of Clinical Biochemistry, Laboratory of Clinical Molecular Diagnostics, Fondazione Policlinico “A. Gemelli”, Catholic University of the Sacred Heart, Rome, Italy
| | - Elisa De Paolis
- Institute of Clinical Biochemistry, Laboratory of Clinical Molecular Diagnostics, Fondazione Policlinico “A. Gemelli”, Catholic University of the Sacred Heart, Rome, Italy
| | - Enrico Di Stasio
- Laboratory of Clinical Biochemistry, Fondazione Policlinico “A. Gemelli”, Rome, Italy
| | | | | | - Ettore Capoluongo
- Institute of Clinical Biochemistry, Laboratory of Clinical Molecular Diagnostics, Fondazione Policlinico “A. Gemelli”, Catholic University of the Sacred Heart, Rome, Italy
- Laboratory of Advanced Molecular Diagnostics (DIMA), Istituto Dermopatico dell’Immacolata, Fondazione Luigi Maria Monti, IRCCS, Rome, Italy
- “Molipharma Srl” a Spinoff of Catholic University, Campobasso, Italy
| |
Collapse
|
16
|
Ma J, Guo W, Li C. Ubiquitination in melanoma pathogenesis and treatment. Cancer Med 2017; 6:1362-1377. [PMID: 28544818 PMCID: PMC5463089 DOI: 10.1002/cam4.1069] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 12/13/2022] Open
Abstract
Melanoma is one of the most aggressive skin cancers with fiercely increasing incidence and mortality. Since the progressive understanding of the mutational landscape and immunologic pathogenic factors in melanoma, the targeted therapy and immunotherapy have been recently established and gained unprecedented improvements for melanoma treatment. However, the prognosis of melanoma patients remains unoptimistic mainly due to the resistance and nonresponse to current available drugs. Ubiquitination is a posttranslational modification which plays crucial roles in diverse cellular biological activities and participates in the pathogenesis of various cancers, including melanoma. Through the regulation of multiple tumor promoters and suppressors, ubiquitination is emerging as the key contributor and therefore a potential therapeutic target for melanoma. Herein, we summarize the current understanding of ubiquitination in melanoma, from mechanistic insights to clinical progress, and discuss the prospect of ubiquitination modification in melanoma treatment.
Collapse
Affiliation(s)
- Jinyuan Ma
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Weinan Guo
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
17
|
O LG, Park CE. The Expression of Solute carrier family membersGenes in Mouse Ovarian Developments. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2017. [DOI: 10.15324/kjcls.2017.49.1.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Lee-Gyun O
- Department of Laboratory Medicine, St. Vincent Hospital, The Catholic University of Korea, Suwon, Korea
| | - Chang-Eun Park
- Department of Biomedical Laboratory Science, Molecular Diagnostics Research Institute, Namseoul University, Cheonan, Korea
| |
Collapse
|
18
|
Chen L, Liu T, Tu Y, Rong D, Cao Y. Cul1 promotes melanoma cell proliferation by promoting DEPTOR degradation and enhancing cap-dependent translation. Oncol Rep 2015; 35:1049-56. [PMID: 26717892 DOI: 10.3892/or.2015.4442] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 09/15/2015] [Indexed: 11/06/2022] Open
Abstract
Cullin1 (Cul1) serves as a rigid scaffold in the SCF (Skp1/Cullin/Rbx1/F-box protein) E3 ubiquitin ligase complex and has been found to be overexpressed in melanoma and to enhance melanoma cell proliferation by promoting G1-S phase transition. However, the underlying mechanisms involved in the regulation of melanoma cell proliferation by Cul1 remain poorly understood. In the present study, we found that Cul1 promoted mTORC1 activity and cap-dependent translation by enhancing the ubiquitination and degradation of DEPTOR. We further showed that suppression of the eIF4F complex assembly profoundly inhibited the promoting effect of Cul1 on melanoma cell proliferation, while enhancement of the eIF4F complex activity reversed the inhibitory effect of Cul1 depletion on melanoma cell proliferation, indicating that Cul1 contributes to melanoma cell proliferation by activating cap‑dependent translation. These data elucidate the role of Cul1 in cap-dependent translation and improves our understanding of the underlying mechanisms involved in the regulation of melanoma cell proliferation by Cul1.
Collapse
Affiliation(s)
- Lan Chen
- Department of Dermatology, The Affiliated Hospital of Guiyang Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Tianyu Liu
- Department of Dermatology, The Affiliated Hospital of Guiyang Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yunhua Tu
- Department of Dermatology, The Affiliated Hospital of Guiyang Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Dongyun Rong
- Department of Dermatology, The Affiliated Hospital of Guiyang Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yu Cao
- Department of Dermatology, The Affiliated Hospital of Guiyang Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
19
|
Bielskienė K, Bagdonienė L, Mozūraitienė J, Kazbarienė B, Janulionis E. E3 ubiquitin ligases as drug targets and prognostic biomarkers in melanoma. MEDICINA-LITHUANIA 2015; 51:1-9. [PMID: 25744769 DOI: 10.1016/j.medici.2015.01.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 01/18/2015] [Indexed: 12/30/2022]
Abstract
Melanomas are highly proliferative and invasive, and are most frequently metastatic. Despite many advances in cancer treatment over the last several decades, the prognosis for patients with advanced melanoma remains poor. New treatment methods and strategies are necessary. The main hallmark of cancer is uncontrolled cellular proliferation with alterations in the expression of proteins. Ubiquitin and ubiquitin-related proteins posttranslationally modify proteins and thereby alter their functions. The ubiquitination process is involved in various physiological responses, including cell growth, cell death, and DNA damage repair. E3 ligases, the most specific enzymes of ubiquitination system, participate in the turnover of many key regulatory proteins and in the development of cancer. E3 ligases are of interest as drug targets for their ability to regulate proteins stability and functions. Compared to the general proteasome inhibitor bortezomib, which blocks the entire protein degradation, drugs that target a particular E3 ligase are expected to have better selectivity with less associated toxicity. Components of different E3 ligases complexes (FBW7, MDM2, RBX1/ROC1, RBX2/ROC2, cullins and many others) are known as oncogenes or tumor suppressors in melanomagenesis. These proteins participate in regulation of different cellular pathways and such important proteins in cancer development as p53 and Notch. In this review we summarized published data on the role of known E3 ligases in the development of melanoma and discuss the inhibitors of E3 ligases as a novel approach for the treatment of malignant melanomas.
Collapse
Affiliation(s)
| | - Lida Bagdonienė
- Department of Biochemistry and Molecular Biology, Vilnius University, Vilnius, Lithuania.
| | | | | | | |
Collapse
|
20
|
PCTAIRE1 regulates p27 stability, apoptosis and tumor growth in malignant melanoma. Oncoscience 2014; 1:624-33. [PMID: 25593992 PMCID: PMC4278280 DOI: 10.18632/oncoscience.86] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 10/05/2014] [Indexed: 12/27/2022] Open
Abstract
PCTAIRE1 is a cyclin-dependent kinase family protein that has been implicated in spermatogenesis. Although we recently revealed the function of PCTAIRE1 in tumorigenesis of epithelial carcinoma cells, its tumorigenic function in melanoma remains unclear. Interrogation of the Oncomine database revealed that malignant melanoma showed up-regulation of PCTAIRE1 mRNA compared to normal skin and benign melanocytic nevus tissues. In the melanoma cell lines A2058 and SK-MEL-28, PCTAIRE1 gene knockdown using siRNA or shRNA diminished melanoma cell proliferation as assessed by cellular ATP levels, cell counting and clonogenic assays. Moreover, FACS analyses of annexin V-PI staining and DNA content showed that PCTAIRE1 knockdown caused apoptosis in A2058 cells. In contrast, PCTAIRE1 does not appear to be involved in the proliferation of immortalized human keratinocyte HaCaT cells. Depletion of PCTAIRE1 by siRNA/shRNA led to p27 accumulation in melanoma cells but not HaCaT cells. In tumor xenografts of melanoma A2058 cells, conditional knockdown of PCTAIRE1 restored p27 protein expression and suppressed tumor growth. Our findings reveal a crucial role for PCTAIRE1 in regulating p27 protein levels and tumor growth in melanoma cells, suggesting that PCTAIRE1 could provide a target for melanoma treatment.
Collapse
|
21
|
Abbas O, Miller DD, Bhawan J. Cutaneous malignant melanoma: update on diagnostic and prognostic biomarkers. Am J Dermatopathol 2014; 36:363-79. [PMID: 24803061 DOI: 10.1097/dad.0b013e31828a2ec5] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The incidence of cutaneous malignant melanoma has rapidly increased in recent years in all parts of the world, and melanoma is a leading cause of cancer death. As even relatively small melanomas may have metastatic potential, accurate assessment of progression is critical. Although diagnosis of cutaneous malignant melanoma is usually based on histopathologic criteria, these criteria may at times be inadequate in differentiating melanoma from certain types of benign nevi. As for prognosis, tumor (Breslow) thickness, mitotic rate, and ulceration have been considered the most important prognostic indicators among histopathologic criteria. However, there are cases of thin primary melanomas that have ultimately developed metastases despite complete excision. Given this, an accurate assessment of melanoma progression is critical, and development of molecular biomarkers that identify high-risk melanoma in its early phase is urgently needed. Large-scale genomic profiling has identified considerable heterogeneity in melanoma and suggests subgrouping of tumors by patterns of gene expression and mutation will ultimately be essential to accurate staging. This subgrouping in turn may allow for more targeted therapy. In this review, we aim to provide an update on the most promising new biomarkers that may help in the identification and prognostication of melanoma.
Collapse
Affiliation(s)
- Ossama Abbas
- *Associate Professor of Clinical Dermatology, Dermatology Department, American University of Beirut-Medical Center, Beirut, Lebanon; and †Assistant Professor of Dermatology (D.D.M.), Professor of Dermatology and Pathology (J.B.), Dermatopathology Section, Department of Dermatology, Boston University School of Medicine, Boston, MA
| | | | | |
Collapse
|
22
|
Mandalà M, Massi D. Tissue prognostic biomarkers in primary cutaneous melanoma. Virchows Arch 2014; 464:265-81. [PMID: 24487785 DOI: 10.1007/s00428-013-1526-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/03/2013] [Indexed: 01/04/2023]
Abstract
Cutaneous melanoma (CM) causes the greatest number of skin cancer-related deaths worldwide. Predicting CM prognosis is important to determine the need for further investigation, counseling of patients, to guide appropriate management (particularly the need for postoperative adjuvant therapy), and for assignment of risk status in groups of patients entering clinical trials. Since recurrence rate is largely independent from stages defined by morphological and morphometric criteria, there is a strong need for identification of additional robust prognostic factors to support decision-making processes. Most data on prognostic biomarkers in melanoma have been evaluated in tumor tissue samples by conventional morphology and immunohistochemistry (IHC) as well as DNA and RNA analyses. In the present review, we critically summarize main high-quality studies investigating IHC-based protein biomarkers of melanoma outcome according to Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK)-derived criteria. Pathways have been classified and conveyed in the "biologic road" previously described by Hanahan and Weinberg. Data derived from genomic and transcriptomic technologies have been critically reviewed to better understand if any of investigated proteins or gene signatures should be incorporated into clinical practice or still remain a field of melanoma research. Despite a wide body of research, no molecular prognostic biomarker has yet been translated into clinical practice. Conventional tissue biomarkers, such as Breslow thickness, ulceration, mitotic rate and lymph node positivity, remain the backbone prognostic indicators in melanoma.
Collapse
Affiliation(s)
- Mario Mandalà
- Unit of Clinical and Translational Research, Medical Oncology, Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | | |
Collapse
|
23
|
Zbytek B, Carlson JA, Granese J, Ross J, Mihm MC, Slominski A. Current concepts of metastasis in melanoma. ACTA ACUST UNITED AC 2014; 3:569-585. [PMID: 19649148 DOI: 10.1586/17469872.3.5.569] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The main cause of death in melanoma patients is widespread metastases. Staging of melanoma is based on the primary tumor thickness, ulceration, lymph node and distant metastases. Metastases develop in regional lymph nodes, as satellite or in-transit lesions, or in distant organs. Lymph flow and chemotaxis is responsible for the homing of melanoma cells to different sites. Standard pathologic evaluation of sentinel lymph nodes fails to find occult melanoma in a significant proportion of cases. Detection of small numbers of malignant melanoma cells in these and other sites, such as adjacent to the primary site, bone marrow or the systemic circulation, may be enhanced by immunohistochemistry, reverse transcription PCR, evaluation of lymphatic vessel invasion and proteomics. In the organs to which melanoma cells metastasize, extravasation of melanoma cells is regulated by adhesion molecules, matrix metalloproteases, chemokines and growth factors. Melanoma cells may travel along external vessel lattices. After settling in the metastatic sites, melanoma cells develop mechanisms that protect them against the attack of the immune system. It is thought that one of the reasons why melanoma cells are especially resistant to killing is the fact that melanocytes (cells from which melanoma cells derive) are resistant to such noxious factors as ultraviolet light and reactive oxygen species. Targeted melanoma therapies are, so far, largely unsuccessful, and new ones, such as adjuvant inhibition of melanogenesis, are under development.
Collapse
Affiliation(s)
- Blazej Zbytek
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, 930 Madison Avenue, Memphis, TN 38163, USA, Tel.: +1 901 448 6300, ,
| | | | | | | | | | | |
Collapse
|
24
|
Rothberg BEG, Rimm DL. Construction and analysis of multiparameter prognostic models for melanoma outcome. Methods Mol Biol 2014; 1102:227-58. [PMID: 24258982 DOI: 10.1007/978-1-62703-727-3_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The outcome of Stage II melanoma is uncertain. Despite that 10-year melanoma-specific survival can approach 50 % following curative-intent wide local excision and negative sentinel lymph node biopsy, the adverse risk-benefit ratio of interferon-based adjuvant regimens precludes their use in most patients. The discovery and translation of protein-based prognostic biomarkers into the clinic offers the promise for residual risk stratification of Stage II melanoma patients beyond conventional clinicopathologic criteria to identify an additional subset of patients who, based upon tumor molecular profiles, might also derive benefit from adjuvant regimens. Despite incorporation of Ki-67 assays into clinical practice, systematic review of REMARK-compliant, immunostain-based prognostic biomarker assays in melanoma suggests that residual risk of recurrence might be best explained by a composite score derived from a small panel of proteins representing independent features of melanoma biology. Reflecting this trend, to date, five such multiparameter melanoma prognostic models have been published. Here, we review these five models and provide detailed protocols for discovering and validating multiparameter models including: appropriate cohort recruitment strategies, comprehensive laboratory protocols supporting fully quantitative chromogenic or fluorescent immunostaining platforms, statistical approaches to create composite prognostic indices recommended steps for model validation in independent cohorts.
Collapse
|
25
|
Qu X, Shen L, Zheng Y, Cui Y, Feng Z, Liu F, Liu J. A signal transduction pathway from TGF-β1 to SKP2 via Akt1 and c-Myc and its correlation with progression in human melanoma. J Invest Dermatol 2014; 134:159-167. [PMID: 23792459 DOI: 10.1038/jid.2013.281] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 10/12/2012] [Accepted: 10/29/2012] [Indexed: 12/31/2022]
Abstract
Both SKP2 (S-phase kinase-associated protein 2) and transforming growth factor-β1 (TGF-β1) play important roles in cancer metastasis through different mechanisms: TGF-β1 via induction of epithelial-mesenchymal transition (EMT) and SKP2 via downregulating p27(kip1). Recent studies indicated that c-Myc and Akt1 were active players in metastasis. In this study we demonstrated a crosstalk between these pathways. Specifically, we found that TGF-β1 treatment increased SKP2 expression accompanied with increased phosphorylation of Akt1 and c-Myc protein accumulation during EMT. We demonstrated that Akt1 was required for TGF-β1-mediated SKP2 upregulation and that c-Myc transcription factor specifically bound to the promoter of SKP2 for its enhanced transcription. Analysis of 25 samples of normal human skin, nevi, and melanomas revealed a positive correlation between c-Myc and SKP2 accumulation. Furthermore, accumulation of SKP2 and c-Myc proteins was significantly higher in metastatic melanoma samples as compared with that in primary melanomas, which again was higher than that in normal skin or nevi. In summary, our results integrated TGF-β1 signals to SKP2 via Akt1 and c-Myc during EMT, and provided, to our knowledge, a previously unreported mechanistic molecular event for TGF-β1-induced metastasis in human melanoma.
Collapse
Affiliation(s)
- Xuan Qu
- Institute of Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University School of Life Science and Technology, Xi'an, China
| | - Liangliang Shen
- Department of Biochemistry and Molecular Biology, The State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi'an, China
| | - Yan Zheng
- Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yang Cui
- Institute of Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University School of Life Science and Technology, Xi'an, China
| | - Zhihui Feng
- Center for Mitochondrial Biology and Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Feng Liu
- Department of Medicine, University of California Irvine Medical School, Irvine, California, USA; Chao Family Comprehensive Cancer Center, University of California Irvine Medical School, Irvine, California, USA.
| | - Jiankang Liu
- Institute of Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University School of Life Science and Technology, Xi'an, China
| |
Collapse
|
26
|
Zhou W, Slingerland JM. Links between oestrogen receptor activation and proteolysis: relevance to hormone-regulated cancer therapy. Nat Rev Cancer 2014; 14:26-38. [PMID: 24505618 DOI: 10.1038/nrc3622] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oestrogen receptor-α (ERα) is a master transcription factor that regulates cell proliferation and homeostasis in many tissues. Despite beneficial ERα functions, sustained oestrogenic exposure increases the risk and/or the progression of various cancers, including those of the breast, endometrium and ovary. Oestrogen–ERα interaction can trigger post-translational ERα modifications through crosstalk with signalling pathways to promote transcriptional activation and ubiquitin-mediated ERα proteolysis, with co-activators that have dual roles as ubiquitin ligases. These processes are reviewed herein. The elucidation of mechanisms whereby oestrogen drives both ERα transactivation and receptor proteolysis might have important therapeutic implications not only for breast cancer but also potentially for other hormone-regulated cancers.
Collapse
|
27
|
Wu L, Grigoryan AV, Li Y, Hao B, Pagano M, Cardozo TJ. Specific small molecule inhibitors of Skp2-mediated p27 degradation. ACTA ACUST UNITED AC 2013; 19:1515-24. [PMID: 23261596 DOI: 10.1016/j.chembiol.2012.09.015] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 09/17/2012] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
Abstract
In the ubiquitin proteasome system, the E3 ligase SCF-Skp2 and its accessory protein, Cks1, promote proliferation largely by inducing the degradation of the CDK inhibitor p27. Overexpression of Skp2 in human cancers correlates with poor prognosis, and deregulation of SCF-Skp2-Cks1 promotes tumorigenesis in animal models. We identified small molecule inhibitors specific to SCF-Skp2 activity using in silico screens targeted to the binding interface for p27. These compounds selectively inhibited Skp2-mediated p27 degradation by reducing p27 binding through key compound-receptor contacts. In cancer cells, the compounds induced p27 accumulation in a Skp2-dependent manner and promoted cell-type-specific blocks in the G1 or G2/M phases. Designing SCF-Skp2-specific inhibitors may be a novel strategy to treat cancers dependent on the Skp2-p27 axis.
Collapse
Affiliation(s)
- Lily Wu
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
28
|
Benevenuto-de-Andrade BA, León JE, Carlos R, Delgado-Azañero W, Mosqueda-Taylor A, Paes-de-Almeida O. Immunohistochemical expression of Skp2 protein in oral nevi and melanoma. Med Oral Patol Oral Cir Bucal 2013; 18:e388-91. [PMID: 23385514 PMCID: PMC3668862 DOI: 10.4317/medoral.18781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/11/2012] [Indexed: 11/24/2022] Open
Abstract
Objective: The aim of this study was to analyze the immunohistochemical expression of Skp2 protein in 38 oral nevi and 11 primary oral melanomas.
Study Design: Expression of this ubiquitin protein was evaluated by immunohistochemistry in 49 oral melanocytic lesions, including 38 intramucosal nevi and 11 primary oral melanomas. The labeling index (LI) was assessed considering the percentage of cells expressing nuclear positivity out of the total number of cells, counting 1000 cells per slide.
Results: Skp2 protein was rarely expressed in intramucosal nevi, in contrast to oral melanomas, which showed high levels of this protein.
Conclusion: These results indicate that Skp2 protein may play a role in the development and progression of oral melanomas, and it also could be useful as an immunohistochemical marker for differential diagnosis of oral benign and malignant melanocytic lesions.
Key words:Oral melanoma, oral nevi, Skp2, cell cycle, immunohistochemistry.
Collapse
|
29
|
Xie CM, Wei W, Sun Y. Role of SKP1-CUL1-F-box-protein (SCF) E3 ubiquitin ligases in skin cancer. J Genet Genomics 2013; 40:97-106. [PMID: 23522382 PMCID: PMC3861240 DOI: 10.1016/j.jgg.2013.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 01/30/2013] [Accepted: 02/04/2013] [Indexed: 11/25/2022]
Abstract
Many biological processes such as cell proliferation, differentiation, and cell death depend precisely on the timely synthesis and degradation of key regulatory proteins. While protein synthesis can be regulated at multiple levels, protein degradation is mainly controlled by the ubiquitin-proteasome system (UPS), which consists of two distinct steps: (1) ubiquitylation of targeted protein by E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme and E3 ubiquitin ligase, and (2) subsequent degradation by the 26S proteasome. Among all E3 ubiquitin ligases, the SCF (SKP1-CUL1-F-box protein) E3 ligases are the largest family and are responsible for the turnover of many key regulatory proteins. Aberrant regulation of SCF E3 ligases is associated with various human diseases, such as cancers, including skin cancer. In this review, we provide a comprehensive overview of all currently published data to define a promoting role of SCF E3 ligases in the development of skin cancer. The future directions in this area of research are also discussed with an ultimate goal to develop small molecule inhibitors of SCF E3 ligases as a novel approach for the treatment of human skin cancer. Furthermore, altered components or substrates of SCF E3 ligases may also be developed as the biomarkers for early diagnosis or predicting prognosis.
Collapse
Affiliation(s)
- Chuan-Ming Xie
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yi Sun
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, MI 48109, USA
| |
Collapse
|
30
|
Sistrunk C, Kim SH, Wang X, Lee SH, Kim Y, Macias E, Rodriguez-Puebla ML. Skp2 deficiency inhibits chemical skin tumorigenesis independent of p27(Kip1) accumulation. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1854-64. [PMID: 23474082 DOI: 10.1016/j.ajpath.2013.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 12/18/2012] [Accepted: 01/14/2013] [Indexed: 01/11/2023]
Abstract
S-phase kinase-associated protein 2 (Skp2) functions as the receptor component of the Skp-Cullin-F-box complex and is implicated in the degradation of several cell cycle regulators, such as p21(Cip1), p27(Kip1), p57(Kip2), and cyclin E. Numerous studies in human and experimental tumors have demonstrated low p27(Kip1) levels and elevated Skp2 expression. However, a direct association between the inverse correlation of Skp2 and p27(Kip1) with tumorigenesis has not been demonstrated. Herein, we provide evidence that skin tumorigenesis is inhibited in Skp2(-/-) mice. An analysis of mouse keratinocytes indicates that increased p27(Kip1) levels in Skp2(-/-) epidermis cause reduced cell proliferation that is alleviated in the epidermis from Skp2(-/-)/p27(-/-) compound mice. In contrast, we establish that a p27(Kip1) deficiency does not overturn the reduced skin tumorigenesis experienced by Skp2(-/-) mice. In addition, Skp2(-/-) epidermis exhibits an accumulation of p53-cofactor CBP/p300 that is associated with elevated apoptosis in hair follicles and decreased skin tumorigenesis. We conclude that p27(Kip1) accumulation is responsible for the hypoplasia observed in normal tissues of Skp2(-/-) mice but does not have a preponderant function in reducing skin tumorigenesis.
Collapse
Affiliation(s)
- Christopher Sistrunk
- Department of Molecular Biomedical Sciences and the Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Chondrogianni N, Petropoulos I, Grimm S, Georgila K, Catalgol B, Friguet B, Grune T, Gonos ES. Protein damage, repair and proteolysis. Mol Aspects Med 2012; 35:1-71. [PMID: 23107776 DOI: 10.1016/j.mam.2012.09.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/26/2012] [Indexed: 01/10/2023]
Abstract
Proteins are continuously affected by various intrinsic and extrinsic factors. Damaged proteins influence several intracellular pathways and result in different disorders and diseases. Aggregation of damaged proteins depends on the balance between their generation and their reversal or elimination by protein repair systems and degradation, respectively. With regard to protein repair, only few repair mechanisms have been evidenced including the reduction of methionine sulfoxide residues by the methionine sulfoxide reductases, the conversion of isoaspartyl residues to L-aspartate by L-isoaspartate methyl transferase and deglycation by phosphorylation of protein-bound fructosamine by fructosamine-3-kinase. Protein degradation is orchestrated by two major proteolytic systems, namely the lysosome and the proteasome. Alteration of the function for both systems has been involved in all aspects of cellular metabolic networks linked to either normal or pathological processes. Given the importance of protein repair and degradation, great effort has recently been made regarding the modulation of these systems in various physiological conditions such as aging, as well as in diseases. Genetic modulation has produced promising results in the area of protein repair enzymes but there are not yet any identified potent inhibitors, and, to our knowledge, only one activating compound has been reported so far. In contrast, different drugs as well as natural compounds that interfere with proteolysis have been identified and/or developed resulting in homeostatic maintenance and/or the delay of disease progression.
Collapse
Affiliation(s)
- Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| | - Isabelle Petropoulos
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Stefanie Grimm
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Konstantina Georgila
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Betul Catalgol
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Haydarpasa, Istanbul, Turkey
| | - Bertrand Friguet
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Tilman Grune
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| |
Collapse
|
32
|
The prognostic value of Skp2 expression in Egyptian diffuse large B-cell lymphoma. Appl Immunohistochem Mol Morphol 2012; 20:47-55. [PMID: 21558842 DOI: 10.1097/pai.0b013e318219a19f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma worldwide. Both morphologically and prognostically, it represents a disease of a diverse spectrum. S-phase kinase-associated protein 2 (Skp2) is a member of mammalian F-box proteins, which displays S-phase-promoting function through ubiquitin-mediated proteolysis of the cyclin-dependent kinase inhibitor, p27. The aim of this study is to evaluate the prognostic value of Skp2 in DLBCL (70 cases) by immunohistochemical staining technique, and its correlation with the clinicopathological features and survival. Five (25%) control cases (reactive follicular hyperplasia) showed high Skp2 expression compared with 52.9% of DLBCL using 10% as a cutoff point with a significant difference (P=0.04). Skp2 was seen staining the large cells in proliferating germinal centers of the control group. High Skp2 expression in DLBCL was associated with several progressive parameters, such as advanced stage (P=0.036), involvement of more than one extranodal site (P=0.05), and high proliferation (P=0.0001). It was also significantly associated with the presence (P=0.007) and extent (P=0.002) of necrosis and inversely correlated with p27 expression (P=0.0001). From this study, Skp2 expression in DLBCL identified subset of cases characterized by aggressive features such as advanced stage, increased number of extranodal sites, high proliferation, and shorter survival time. The association of Skp2 with necrosis may be a reflection of its ability in promoting proliferative tumor capacity.
Collapse
|
33
|
Immunohistochemical expression of p16, p21, p27 and cyclin D1 in oral nevi and melanoma. Head Neck Pathol 2012; 6:297-304. [PMID: 22311377 PMCID: PMC3422579 DOI: 10.1007/s12105-012-0334-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 01/25/2012] [Indexed: 10/14/2022]
Abstract
The acquisition of abnormalities at G1/S is considered a crucial step in the genesis and progression of melanoma. The expression of cell cycle regulators has also been used in various neoplasms as an adjunct to diagnosis. The aim of this study was to compare the expression of p16, p21, p27 and cyclin D1 in oral nevi and melanomas. Expression of these cell cycle regulatory proteins was evaluated by immunohistochemistry in 51 oral melanocytic lesions, including 38 intramucosal nevi and 13 primary oral melanomas. p16 and p27 were highly expressed in intramucosal nevi, whereas p21 and cyclin D1 expression was higher in oral melanomas. The results indicate that p21 and cyclin D1 may be involved in the development of oral melanomas, and eventually they may be useful in the differential diagnoses of oral benign and malignant melanocytic lesions.
Collapse
|
34
|
Chondrogianni N, Gonos ES. Structure and Function of the Ubiquitin–Proteasome System. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 109:41-74. [DOI: 10.1016/b978-0-12-397863-9.00002-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Wang G, Chan CH, Gao Y, Lin HK. Novel roles of Skp2 E3 ligase in cellular senescence, cancer progression, and metastasis. CHINESE JOURNAL OF CANCER 2011; 31:169-77. [PMID: 22200179 PMCID: PMC3777478 DOI: 10.5732/cjc.011.10319] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
S-phase kinase-associated protein 2 (Skp2) belongs to the F-box protein family. It is a component of the SCF E3 ubiquitin ligase complex. Skp2 has been shown to regulate cellular proliferation by targeting several cell cycle-regulated proteins for ubiquitination and degradation, including cyclin-dependent kinase inhibitor p27. Skp2 has also been demonstrated to display an oncogenic function since its overexpression has been observed in many human cancers. This review discusses the recent discoveries on the novel roles of Skp2 in regulating cellular senescence, cancer progression, and metastasis, as well as the therapeutic potential of targeting Skp2 for human cancer treatment.
Collapse
Affiliation(s)
- Guocan Wang
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
36
|
SHIN EUN, KIM SOOHEE, JEONG HAEYEON, JANG JAJUNE, LEE KYUNGBUN. Nuclear expression of S-phase kinase-associated protein 2 predicts poor prognosis of hepatocellular carcinoma. APMIS 2011; 120:349-57. [DOI: 10.1111/j.1600-0463.2011.02838.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Chen G, Cheng Y, Zhang Z, Martinka M, Li G. Prognostic significance of cytoplasmic p27 expression in human melanoma. Cancer Epidemiol Biomarkers Prev 2011; 20:2212-21. [PMID: 21828232 DOI: 10.1158/1055-9965.epi-11-0472] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The cyclin-dependent kinase inhibitor p27 plays important roles in cell proliferation, cell motility, and apoptosis. Interestingly, the nuclear and cytoplasmic p27 exert opposite biological functions. In this study, we investigated the prognostic impact of subcellular p27 expression. METHODS We constructed melanoma tissue microarrays in a large series of melanoma patients, including 29 normal nevi, 52 dysplastic nevi, 270 primary melanomas, and 148 metastatic melanomas. The expression level of subcellular p27 in different stages of melanocytic lesions and its prognostic significance were evaluated. RESULTS Compared with dysplastic nevi, nuclear p27 expression was remarkably reduced in primary melanomas and further reduced in metastatic melanoma (P < 0.001 for both), whereas cytoplasmic p27 expression is significantly increased from dysplastic nevi to primary melanomas (P = 0.032) and further increased in melanoma metastases (P = 0.037). Although loss of nuclear p27 expression is correlated with a worse 5-year survival of primary melanoma patients in Kaplan-Meier analysis (P = 0.046), it is not a prognostic factor by multivariate Cox regression analysis. On the contrary, Kaplan-Meier analysis showed that gain of cytoplasmic p27 was associated with a poor 5-year survival of metastatic melanoma patients (P < 0.001). Multivariate Cox regression analysis revealed that positive cytoplasmic p27 expression is an independent prognostic factor to predict metastatic melanoma patient outcome. CONCLUSION Cytoplasmic p27 may serve as a promising prognostic marker for metastatic melanoma. IMPACT Because there is no reliable prognostic marker for metastatic melanoma, our finding may have important clinical implications using cytoplasmic p27 as a prognostic biomarker for advanced melanoma.
Collapse
Affiliation(s)
- Guangdi Chen
- Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
38
|
Cytoplasmic Skp2 expression is increased in human melanoma and correlated with patient survival. PLoS One 2011; 6:e17578. [PMID: 21386910 PMCID: PMC3046256 DOI: 10.1371/journal.pone.0017578] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 02/09/2011] [Indexed: 12/05/2022] Open
Abstract
Background S-phase kinase protein 2 (Skp2), an F-box protein, targets cell cycle regulators via ubiquitin-mediated degradation. Skp2 is frequently overexpressed in a variety of cancers and associated with patient survival. In melanoma, however, the prognostic significance of subcellular Skp2 expression remains controversial. Methods To investigate the role of Skp2 in melanoma development, we constructed tissue microarrays and examined Skp2 expression in melanocytic lesions at different stages, including 30 normal nevi, 61 dysplastic nevi, 290 primary melanomas and 146 metastatic melanomas. The TMA was assessed for cytoplasmic and nuclear Skp2 expression by immunohistochemistry. The Kaplan-Meier method was used to evaluate the patient survival. The univariate and multivariate Cox regression models were performed to estimate the harzard ratios (HR) at five-year follow-up. Results Cytoplasmic but not nuclear Skp2 expression was gradually increased from normal nevi, dysplastic nevi, primary melanomas to metastatic melanomas. Cytoplasmic Skp2 expression correlated with AJCC stages (I vs II–IV, P<0.001), tumor thickness (≤2.00 vs >2.00 mm, P<0.001) and ulceration (P = 0.005). Increased cytoplasmic Skp2 expression was associated with a poor five-year disease-specific survival of patients with primary melanoma (P = 0.018) but not metastatic melanoma (P>0.05). Conclusion This study demonstrates that cytoplasmic Skp2 plays an important role in melanoma pathogenesis and its expression correlates with patient survival. Our data indicate that cytoplasmic Skp2 may serve as a potential biomarker for melanoma progression and a therapeutic target for this disease.
Collapse
|
39
|
Hu D, Liu W, Wu G, Wan Y. Nuclear translocation of Skp2 facilitates its destruction in response to TGFβ signaling. Cell Cycle 2011; 10:285-92. [PMID: 21212736 DOI: 10.4161/cc.10.2.14517] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Skp2, a F-box protein that determines the substrate specificity for SCF ubiquitin ligase, has recently been demonstrated to be degraded by Cdh1/APC in response to TGFβ signaling. The TGFβ-induced Skp2 proteolysis results in the stabilization of p27 that is necessary to facilitate TGFβ cytostatic effect. Previous observation from immunocytochemistry indicates that Cdh1 principally localizes in the nucleus while Skp2 mainly localizes in the cytosol, which leaves us a puzzle on how Skp2 is recognized and then ubiquitylated by Cdh1/APC in response to TGFβ stimulation. Here, we report that Skp2 is rapidly translocated from the cytosol to the nucleus upon the cellular stimulation with TGFβ. Using a combinatorial approach of immunocytochemistry, biochemical-fraction-coupled immunoprecipitation, mutagenesis as well as protein degradation assay, we have demonstrated that the TGFβ-induced Skp2 nucleus translocation is critical for TGFβ cytostatic effect that allows physical interaction between Cdh1 and Skp2 and in turn facilitates the Skp2 ubquitylation by Cdh1/APC. Disruption of nuclear localization motifs on Skp2 stabilizes Skp2 in the presence of TGF-β signaling, which attenuates TGFβ-induced p27 accumulation and antagonizes TGFβ-induced growth inhibition. Our finding reveals a cellular mechanism that facilitates Skp2 ubiquitylation by Cdh1/APC in response to TGFβ.
Collapse
Affiliation(s)
- Dong Hu
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
40
|
Rose AE, Wang G, Hanniford D, Monni S, Tu T, Shapiro RL, Berman RS, Pavlick AC, Pagano M, Darvishian F, Mazumdar M, Hernando E, Osman I. Clinical relevance of SKP2 alterations in metastatic melanoma. Pigment Cell Melanoma Res 2010; 24:197-206. [PMID: 20883453 DOI: 10.1111/j.1755-148x.2010.00784.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In this study, we investigated the mechanism(s) of altered expression of protooncogene SKP2 in metastatic melanoma and its clinical relevance in patients with metastatic melanoma. The genomic status of SKP2 was assessed in cell lines by sequencing, single nucleotide polymorphism array, and genomic PCR. Copy number status was then evaluated for concordance with SKP2 mRNA and protein expression. SKP2 protein was further evaluated by immunohistochemistry in 93 human metastatic tissues. No mutations were identified in SKP2. Increased copy number at the SKP2 locus was observed in 6/14 (43%) metastatic cell lines and in 9/22 (41%) human metastatic tissues which was associated with overexpression of SKP2 protein. Overexpression of SKP2 protein in human tissues was associated with worse survival in a multivariate model controlling for the site of metastasis. Copy number gain is a major contributing mechanism of SKP2 overexpression in metastatic melanoma. Results may have implications for the development of therapeutics that target SKP2.
Collapse
Affiliation(s)
- Amy E Rose
- Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Nakayama K. Growth and progression of melanoma and non-melanoma skin cancers regulated by ubiquitination. Pigment Cell Melanoma Res 2010; 23:338-51. [DOI: 10.1111/j.1755-148x.2010.00692.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
42
|
Chen G, Wang Y, Garate M, Zhou J, Li G. The tumor suppressor ING3 is degraded by SCFSkp2-mediated ubiquitin–proteasome system. Oncogene 2009; 29:1498-508. [DOI: 10.1038/onc.2009.424] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
43
|
Gould Rothberg BE, Bracken MB, Rimm DL. Tissue biomarkers for prognosis in cutaneous melanoma: a systematic review and meta-analysis. J Natl Cancer Inst 2009; 101:452-74. [PMID: 19318635 DOI: 10.1093/jnci/djp038] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In the clinical management of early-stage cutaneous melanoma, it is critical to determine which patients are cured by surgery alone and which should be treated with adjuvant therapy. To assist in this decision, many groups have made an effort to use molecular information. However, although there are hundreds of studies that have sought to assess the potential prognostic value of molecular markers in predicting the course of cutaneous melanoma, at this time, no molecular method to improve risk stratification is part of recommended clinical practice. To help understand this disconnect, we conducted a systematic review and meta-analysis of the published literature that reported immunohistochemistry-based protein biomarkers of melanoma outcome. Three parallel search strategies were applied to the PubMed database through January 15, 2008, to identify cohort studies that reported associations between immunohistochemical expression and survival outcomes in melanoma that conformed to the REMARK criteria. Of the 102 cohort studies, we identified only 37 manuscripts, collectively describing 87 assays on 62 distinct proteins, which met all inclusion criteria. Promising markers that emerged included melanoma cell adhesion molecule (MCAM)/MUC18 (all-cause mortality [ACM] hazard ratio [HR] = 16.34; 95% confidence interval [CI] = 3.80 to 70.28), matrix metalloproteinase-2 (melanoma-specific mortality [MSM] HR = 2.6; 95% CI = 1.32 to 5.07), Ki-67 (combined ACM HR = 2.66; 95% CI = 1.41 to 5.01), proliferating cell nuclear antigen (ACM HR = 2.27; 95% CI = 1.56 to 3.31), and p16/INK4A (ACM HR = 0.29; 95% CI = 0.10 to 0.83, MSM HR = 0.4; 95% CI = 0.24 to 0.67). We further noted incomplete adherence to the REMARK guidelines: 14 of 27 cohort studies that failed to adequately report their methods and nine studies that failed to either perform multivariable analyses or report their risk estimates were published since 2005.
Collapse
|
44
|
Lin HK, Wang G, Chen Z, Teruya-Feldstein J, Liu Y, Chan CH, Yang WL, Erdjument-Bromage H, Nakayama KI, Nimer S, Tempst P, Pandolfi PP. Phosphorylation-dependent regulation of cytosolic localization and oncogenic function of Skp2 by Akt/PKB. Nat Cell Biol 2009; 11:420-32. [PMID: 19270694 DOI: 10.1038/ncb1849] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 12/15/2008] [Indexed: 12/12/2022]
Abstract
Skp2 is an F-box protein that forms the SCF complex with Skp1 and Cullin-1 to constitute an E3 ligase for ubiquitylation. Ubiquitylation and degradation of the p27 are critical for Skp2-mediated entry to the cell cycle, and overexpression and cytosolic accumulation of Skp2 have been clearly associated with tumorigenesis, although the functional significance of the latter is still unknown. Here we show that Akt/protein kinase B (PKB) interacts with and directly phosphorylates Skp2. We find that Skp2 phosphorylation by Akt triggers SCF complex formation and E3 ligase activity. A phosphorylation-defective Skp2 mutant is drastically impaired in its ability to promote cell proliferation and tumorigenesis. Furthermore, we show that Akt-mediated phosphorylation triggers 14-3-3beta-dependent Skp2 relocalization to the cytosol, and we attribute a specific role to cytosolic Skp2 in the positive regulation of cell migration. Finally, we demonstrate that high levels of activation of Akt correlate with the cytosolic accumulation of Skp2 in human cancer specimens. Our results therefore define a novel proto-oncogenic Akt/PKB-dependent signalling pathway.
Collapse
Affiliation(s)
- Hui-Kuan Lin
- Department of Pathology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Inhibitor of growth 4 is involved in melanomagenesis and induces growth suppression and apoptosis in melanoma cell line M14. Melanoma Res 2009; 19:1-7. [DOI: 10.1097/cmr.0b013e32831bc42f] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
46
|
Carlson JA, Ross JS, Slominski AJ. New techniques in dermatopathology that help to diagnose and prognosticate melanoma. Clin Dermatol 2009; 27:75-102. [DOI: 10.1016/j.clindermatol.2008.09.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
47
|
He S, Zhang D, Cheng F, Gong F, Guo Y. Applications of RNA interference in cancer therapeutics as a powerful tool for suppressing gene expression. Mol Biol Rep 2009; 36:2153-63. [PMID: 19117119 DOI: 10.1007/s11033-008-9429-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 12/08/2008] [Indexed: 01/07/2023]
Abstract
Cancer poses a tremendous therapeutic challenge worldwide, highlighting the critical need for developing novel therapeutics. A promising cancer treatment modality is gene therapy, which is a form of molecular medicine designed to introduce into target cells genetic material with therapeutic intent. The history of RNA interference (RNAi) has only a dozen years, however, further studies have revealed that it is a potent method of gene silencing that has developed rapidly over the past few years as a result of its extensive importance in the study of genetics, molecular biology and physiology. RNAi is a natural process by which small interfering RNA (siRNA) duplex directs sequence specific post-transcriptional silencing of homologous genes by binding to its complementary mRNA and triggering its elimination. RNAi has been extensively used as a novel and effective gene silencing tool for the fundamental research of cancer therapeutics, and has displayed great potential in clinical treatment.
Collapse
Affiliation(s)
- Song He
- Molecular Medicine & Tumor Research Center, Chongqing Medical University, Chongqing, China.
| | | | | | | | | |
Collapse
|
48
|
Larson AR, Konat E, Alani RM. Melanoma biomarkers: current status and vision for the future. ACTA ACUST UNITED AC 2008; 6:105-17. [PMID: 19107110 DOI: 10.1038/ncponc1296] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2007] [Accepted: 09/25/2008] [Indexed: 01/29/2023]
Abstract
Melanoma is the leading cause of death from skin cancer in industrialized countries. Clinical and histological variables such as primary tumor invasion, ulceration, and lymph node status might fail to identify early-stage disease that will eventually progress. Tumor biomarkers might help to identify patients with early-stage melanoma who are likely to develop advanced disease and would benefit from additional therapies. These biomarkers offer the possibility of improved tumor staging through the molecular detection of microscopic lymph node metastases that are not visible on routine histological examination. We focus on biomarkers localized to the tumor tissue and those of prognostic value. We give an overview of the melanoma biomarkers that are most helpful for prediction of patients' outcomes, and discuss the primary melanoma biomarkers that have been shown to be of prognostic significance independent of primary tumor thickness and other common clinical prognostic indicators. Although such tumor-associated biomarkers are thought to have the greatest potential, a lack of reliable data makes their true clinical utility difficult to determine. We conclude that several biomarkers show promise in early studies; however, additional large-scale studies are warranted. We suggest cautious optimism for the field of melanoma biomarkers, which we expect to be translated into clinical practice over the next few years.
Collapse
Affiliation(s)
- Allison R Larson
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231-1000, USA
| | | | | |
Collapse
|
49
|
Fang L, Hu Q, Hua Z, Li S, Dong W. Growth inhibition of a tongue squamous cell carcinoma cell line (Tca8113) in vitro and in vivo via siRNA-mediated down-regulation of skp2. Int J Oral Maxillofac Surg 2008; 37:847-52. [DOI: 10.1016/j.ijom.2008.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 01/02/2008] [Accepted: 05/29/2008] [Indexed: 10/21/2022]
|
50
|
Abstract
Targeted proteasomal degradation mediated by E3 ubiquitin ligases controls cell cycle progression, and alterations in their activities likely contribute to malignant cell proliferation. S phase kinase-associated protein 2 (Skp2) is the F-box component of an E3 ubiquitin ligase complex that targets p27(Kip1) and cyclin E1 to the proteasome. In human melanoma, Skp2 is highly expressed, regulated by mutant B-RAF, and required for cell growth. We show that Skp2 depletion in melanoma cells resulted in a tetraploid cell cycle arrest. Surprisingly, co-knockdown of p27(Kip1) or cyclin E1 failed to prevent the tetraploid arrest induced by Skp2 knockdown. Enhanced Aurora A phosphorylation and repression of G2/M regulators cyclin B1, cyclin-dependent kinase 1, and cyclin A indicated a G2/early M phase arrest in Skp2-depleted cells. Furthermore, expression of nuclear localized cyclin B1 prevented tetraploid accumulation after Skp2 knockdown. The p53 status is most frequently wild type in melanoma, and the tetraploid arrest and down-regulation of G2/M regulatory genes were strongly dependent on wild-type p53 expression. In mutant p53 melanoma lines, Skp2 depletion did not induce cell cycle arrest despite up-regulation of p27(Kip1). These data indicate that elevated Skp2 expression may overcome p53-dependent cell cycle checkpoints in melanoma cells and highlight Skp2 actions that are independent of p27(Kip1) degradation.
Collapse
Affiliation(s)
- Rong Hu
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY 12208, USA
| | | |
Collapse
|