1
|
Lan Z, Guo L, Fletcher A, Ang N, Whitfield-Cargile C, Bryan L, Welch S, Richardson L, Cosgriff-Hernandez E. Antimicrobial hydrogel foam dressing with controlled release of gallium maltolate for infection control in chronic wounds. Bioact Mater 2024; 42:433-448. [PMID: 39308545 PMCID: PMC11415875 DOI: 10.1016/j.bioactmat.2024.08.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024] Open
Abstract
Effective treatment of infection in chronic wounds is critical to improve patient outcomes and prevent severe complications, including systemic infections, increased morbidity, and amputations. Current treatments, including antibiotic administration and antimicrobial dressings, are challenged by the increasing prevalence of antibiotic resistance and patients' sensitivity to the delivered agents. Previous studies have demonstrated the potential of a new antimicrobial agent, Gallium maltolate (GaM); however, the high burst release from the GaM-loaded hydrogel gauze required frequent dressing changes. To address this need, we developed a hydrogel foam-based wound dressing with GaM-loaded microspheres for sustained infection control. First, the minimal inhibitory and bactericidal concentrations (MIC and MBC) of GaM against two Staphylococcus aureus strains isolated from chronic wounds were identified. No significant adverse effects of GaM on dermal fibroblasts were shown at the MIC, indicating an acceptable selectivity index. For the sustained release of GaM, electrospraying was employed to fabricate microspheres with different release kinetics. Systematic investigation of loading and microsphere size on release kinetics indicated that the larger microsphere size and lower GaM loading resulted in a sustained GaM release profile over the target 5 days. Evaluation of the GaM-loaded hydrogel dressing demonstrated cytocompatibility and antibacterial activities with a zone of inhibition test. An equine distal limb wound model was developed and utilized to demonstrate the efficacy of GaM-loaded hydrogel foam in vivo. This antimicrobial hydrogel foam dressing displayed the potential to combat methicillin-resistant S. aureus (MRSA) infection with controlled GaM release to improve chronic wound healing.
Collapse
Affiliation(s)
- Ziyang Lan
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, TX, 78712, USA
| | - Leopold Guo
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, TX, 78712, USA
| | - Alan Fletcher
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, TX, 78712, USA
| | - Nicolai Ang
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Laura Bryan
- Department of Pathobiology, Texas A&M University, College Station, TX, 77843, USA
| | - Shannara Welch
- Clinical Microbiology Lab, Veterinary Teaching Hospital, Texas A&M University, College Station, TX, 77843, USA
| | - Lauren Richardson
- Department of Large Animal Medicine, University of Georgia, Athens, GA, 30602, USA
| | | |
Collapse
|
2
|
Ribeiro G, Carvalho L, Borges J, Prazeres J. The Best Protocol to Treat Equine Skin Wounds by Second Intention Healing: A Scoping Review of the Literature. Animals (Basel) 2024; 14:1500. [PMID: 38791717 PMCID: PMC11117370 DOI: 10.3390/ani14101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Equine skin wound treatment continues to be a challenge for veterinarians. Despite being a frequent practice, it remains difficult to choose an evidence-based treatment protocol. This study aimed to comprehensively explore the literature and provide a scoping review of therapeutic strategies for equine skin wounds and identify knowledge gaps and opportunities for future research. This review was conducted using specific criteria to select literature that described methods to manage second intention wound healing. After removing duplicates and screening papers for suitability, 81 manuscripts were included for data extraction. Of these, 59 articles were experimental studies, 10 were case reports, 9 were case series, and 3 were clinical studies. The most frequent wound location was the distal limbs. Macroscopic assessment was the main tool used to evaluate treatment effectiveness. All of the case reports, case series, and clinical studies reported positive outcomes with regard to the treatment used, while only 36% of the experimental studies found significant healing improvement in treated wounds compared to control groups. It was found that there are many treatments that have exhibited controversial results, and there exists a lack of evidence for the adoption of specific treatment protocols.
Collapse
Affiliation(s)
- Gesiane Ribeiro
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande 376, 1749-024 Lisbon, Portugal; (L.C.); (J.B.); (J.P.)
- Veterinary and Animal Research Centre (CECAV), Faculty of Veterinary Medicine, Lusófona University—Lisbon University Centre, Campo Grande 376, 1749-024 Lisbon, Portugal
| | - Lúcia Carvalho
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande 376, 1749-024 Lisbon, Portugal; (L.C.); (J.B.); (J.P.)
| | - João Borges
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande 376, 1749-024 Lisbon, Portugal; (L.C.); (J.B.); (J.P.)
- MED—Mediterranean Institute for Agriculture, Environment and Development, Évora University, Pólo da Mitra Apartado 94, 7006-554 Évora, Portugal
| | - José Prazeres
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande 376, 1749-024 Lisbon, Portugal; (L.C.); (J.B.); (J.P.)
| |
Collapse
|
3
|
Charlotte C. P, Benoit B, Olivier M. L. The effects of a synthetic epidermis spray on secondary intention wound healing in adult horses. PLoS One 2024; 19:e0299990. [PMID: 38451976 PMCID: PMC10919598 DOI: 10.1371/journal.pone.0299990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/19/2024] [Indexed: 03/09/2024] Open
Abstract
OBJECTIVES To evaluate secondary intention wound healing in the horse's limbs when treated with the synthetic epidermis spray (Novacika®, Cohesive S.A.S, France) or with a standard bandaging technique. METHODS Six Standardbred mares were included in the study. Four 2.5 x 2.5 cm full-thickness skin wounds were created on each thoracic limb. Two wounds were located on the dorsoproximal aspect of the cannon bone and the other two at the dorsoproximal aspect of the fetlock. Six hours after creation, wounds were randomly treated with synthetic epidermis spray or standard bandaging. The wounds were assessed every 4 days by gross visual assessment and using a 3D imaging camera. Analysis was performed with a 3D imaging application. RESULTS Out of 46 wounds, 22 showed exuberant granulation tissue and were part of the standard bandaging group. Whether the wounds were treated with synthetic epidermis spray or standard bandaging, the time for healing was the same. CONCLUSION The synthetic epidermis spray studied in this model has allowed healing without the production of exuberant granulation tissue but did not reduce the median wound healing time compared to a standard bandaging technique. The synthetic epidermis spray is potentially an interesting alternative for the management of secondary intention wound healing of superficial and non-infected distal limb wounds in adult horses on economical and practical aspects. However, all statistical inference (p-values especially) must be interpreted with caution, given the size of the sample.
Collapse
Affiliation(s)
- Paindaveine Charlotte C.
- Unité ICE-Groupe de Recherche en Médecine et Rééducation des Equidés de Sport (GREMERES), Centre for Equine Health, Ecole Nationale Vétérinaire de Lyon, VetAgro Sup, Université de Lyon, Lyon, France
| | - Bihin Benoit
- Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Lepage Olivier M.
- Unité ICE-Groupe de Recherche en Médecine et Rééducation des Equidés de Sport (GREMERES), Centre for Equine Health, Ecole Nationale Vétérinaire de Lyon, VetAgro Sup, Université de Lyon, Lyon, France
| |
Collapse
|
4
|
Harman RM, Rajesh A, Van de Walle GR. Use of Biologics and Stem Cells for Wound Healing in the Horse. Vet Clin North Am Equine Pract 2023; 39:525-539. [PMID: 37442731 DOI: 10.1016/j.cveq.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023] Open
Abstract
Treatment of skin wounds is a high priority in veterinary medicine because healthy uncompromised skin is essential for the well-being of horses. Stem cells and other biologic therapies offer benefits by reducing the need for surgical procedures and conventional antibiotics. Evidence from in vitro studies and small in vivo trials supports the use of equine stem cells and biologics for the treatment of acute and chronic cutaneous wounds. Larger clinical trials are warranted to better evaluate the regenerative and immunological responses to these treatments. Additionally, delivery methods and treatment schedules should be optimized to improve efficacy of these novel therapies.
Collapse
Affiliation(s)
- Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Aarthi Rajesh
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
5
|
Brock AK, Chamoun-Emanuelli AM, Howard EA, Huntzinger KD, Lawhon SD, Bryan LK, Cosgriff-Hernandez EM, Cohen ND, Whitfield-Cargile CM. Wound swabs versus biopsies to detect methicillin resistant Staphylococcus aureus in experimental equine wounds. Vet Surg 2022; 51:1196-1205. [PMID: 36102600 PMCID: PMC9588683 DOI: 10.1111/vsu.13872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 07/10/2022] [Accepted: 07/16/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To compare: (1) the load and diversity of cultivatable bacterial species isolated from tissue biopsies with cultures from surface swabs, and (2) the ability of each technique to detect methicillin-resistant Staphylococcus aureus (MRSA) in a model of MRSA-infected equine wounds. STUDY DESIGN Experimental in vivo study. ANIMALS Three light-breed adult horses. METHODS Four 2.5 × 2.5 cm full-thickness skin wounds were created on the dorsolateral aspect of each forelimb. Five days later, each wound was inoculated with a pure culture of MRSA (ATCC 43300). One hundred microlitres of 0, 5 × 108 , 5 × 109 or 5 × 1010 colony forming units (CFU)/ml was used to inoculate each wound. Surface swabs (Levine technique) and tissue biopsy samples (3 mm punch biopsy) were obtained at 2, 7, 14, and 21 days after inoculation. Quantitative aerobic culture was performed using routine clinical techniques. RESULTS A similar bacterial profile was identified from the culture of each wound-sampling technique and there was moderate correlation (R = 0.49, P < .001) between the bacterial bioburdens. Agreement was fair (κ = 0.31; 95% CI, 0.129-0.505) between the sampling techniques in identification of MRSA. Methicillin-resistant Staphylococcus aureus was isolated more frequently (P = .016) from cultures of tissue biopsies (79%; 76/96) than from surface swabs (62%; 60/96). CONCLUSION Bacterial load and diversity did not differ between sampling techniques but MRSA was detected more often from the cultures of tissue biopsies. CLINICAL SIGNIFICANCE Tissue biopsy should be preferred to culture swab in wounds where MRSA is suspected.
Collapse
Affiliation(s)
- Abbi K. Brock
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843
| | - Ana M. Chamoun-Emanuelli
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843
| | - Emily A. Howard
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843
| | - Katie D. Huntzinger
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843
| | - Laura K. Bryan
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843
| | | | - Noah D. Cohen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843
| | - Canaan M. Whitfield-Cargile
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843
| |
Collapse
|
6
|
Li W, Shan M, Hao Y, Liu H, Wang Y, Qiu J. Skin endothelial cell and microcirculation function study in recurred keloids patients after keloid surgery and radiotherapy. Medicine (Baltimore) 2022; 101:e31286. [PMID: 36316928 PMCID: PMC9622619 DOI: 10.1097/md.0000000000031286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Keloid is a type of benign tumor of the skin with abnormal proliferation of fibrous tissue. We sought to observe the changes in skin microcirculation and endothelial cell function around the recurred keloid and explore the skin microcirculation characters in recurred keloid patients. METHODS Six patients with recurred keloid were treated with keloid surgery and radiotherapy for the second time. Microcirculation of recurred keloids and their surrounding normal skin tissue was observed with laser Doppler flowmeter before operation. Expression of vascular endothelial growth factor (VEGF), CD31, and HIF-1α were identified by several assay. RESULTS The local blood flow of group RN was enhanced. The average strength of group N is 0.87. The average strength of group RN is 2.08. The expression of VEGF, CD31, and hypoxia inducible factor-1α (HIF-1α) protein in the keloid-recurred skin (RN) group was higher than the normal skin group via immunohistochemistry (IHC) and Western blotting analysis. The relative expression of VEGF and CD31 mRNA was significantly increased in RN group samples (P < .05). CONCLUSIONS There are significant differences in the expression of VEGF, CD31, and HIF-1α in the recurred keloid skin after radiotherapy and normal skin. They may be used as potential biomarkers and targets for future research on keloid recurrence.
Collapse
Affiliation(s)
- Wenbo Li
- Department of Radiation Oncology, Peking Union Medical College Hospital, Beijing, China
| | - Mengjie Shan
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yan Hao
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hao Liu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Youbin Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
- *Correspondence: Jie Qiu, Department of Radiation Oncology, Peking Union Medical College Hospital, Dongcheng district, Shuaifuyuan 1#, Beijing 100730, China and Youbin Wang, Department of Plastic Surgery, Peking Union Medical College Hospital, Dongcheng district, Shuaifuyuan 1#, Beijing 100730, China (e-mail: and )
| | - Jie Qiu
- Department of Radiation Oncology, Peking Union Medical College Hospital, Beijing, China
- *Correspondence: Jie Qiu, Department of Radiation Oncology, Peking Union Medical College Hospital, Dongcheng district, Shuaifuyuan 1#, Beijing 100730, China and Youbin Wang, Department of Plastic Surgery, Peking Union Medical College Hospital, Dongcheng district, Shuaifuyuan 1#, Beijing 100730, China (e-mail: and )
| |
Collapse
|
7
|
Anantama NA, Du Cheyne C, Martens A, Roth SP, Burk J, De Spiegelaere W, Michler JK. The granulation (t)issue: A narrative and scoping review of basic and clinical research of the equine distal limb exuberant wound healing disorder. Vet J 2022; 280:105790. [PMID: 35093532 DOI: 10.1016/j.tvjl.2022.105790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
Abstract
Exuberant granulation tissue (EGT) is often observed during second intention wound healing in horses. Despite its impact on wound care, the basic mechanisms leading to EGT are still unclear and effective strategies to prevent and/or treat EGT are lacking. The development of EGT is a poorly understood, multifactorial process involving hyperproliferating fibroblasts and malfunctional differentiation of keratinocytes, suboptimal wound contraction, dysfunctional vascularisation, and chronic inflammation. To consolidate and describe basic and clinical research literature on EGT and to identify knowledge gaps and opportunities for future research, a search was systematically conducted using predefined search terms. Subsequently, a scoping review was conducted using specific criteria to select the peer-reviewed literature that described methods to treat and/or prevent EGT. Proposed mechanisms of effects as well as results and main conclusions were extracted and tabulated. The systematic search resulted in 1062 publications in PubMed and 767 in Web of Science. Twenty additional studies were later included. Of these, 327 studies were reviewed for the narrative review on basic research and 35 controlled clinical trials were eligible for the scoping review. All 35 studies were conducted in university hospitals, and all but one involved surgically induced non-infected wounds. The study population was predominantly horses (n = 230) with a small number of ponies (n = 18) and donkeys (n = 14). In conclusion, there remains a strong need for evidence-based recommendations on EGT treatment, preferably using multi-centre studies that represent the general population of horses, include higher numbers of animals, and are performed in naturally occurring wounds. This narrative and scoping review also emphasises the importance of incorporating basic research knowledge in the study design of clinical trials.
Collapse
Affiliation(s)
- Nadia Ayurini Anantama
- Institute of Veterinary Anatomy, Histology and Embryology, Leipzig University, An den Tierkliniken 43, 04103 Leipzig, Germany
| | - Charis Du Cheyne
- Laboratory of Morphology, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Ann Martens
- Department of Surgery and Anaesthesiology of Domestic Animals, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Susanne Pauline Roth
- Veterinary Teaching Hospital, Department for Horses, Leipzig University, An den Tierkliniken 21, 04103 Leipzig, Germany
| | - Janina Burk
- Equine Clinic (Surgery, Orthopedics), Giessen University, Frankfurter Str. 108, 35392 Gießen, Germany
| | - Ward De Spiegelaere
- Laboratory of Morphology, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Jule Kristin Michler
- Institute of Veterinary Anatomy, Histology and Embryology, Leipzig University, An den Tierkliniken 43, 04103 Leipzig, Germany.
| |
Collapse
|
8
|
Effect of Allogeneic Oral Mucosa Mesenchymal Stromal Cells on Equine Wound Repair. Vet Med Int 2021; 2021:5024905. [PMID: 34950446 PMCID: PMC8692048 DOI: 10.1155/2021/5024905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/14/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Objective To assess the clinical value and safety of the application of allogeneic equine oral mucosa mesenchymal stromal cells (OM-MSCs) to wounds. Animals. 8 healthy adult horses without front limb skin lesions or musculoskeletal disease. Procedures. Stem cells were isolated from the oral mucosa of a donor horse. Horses were subjected to the creation of eight full-thickness cutaneous wounds, two on each distal forelimb (FL) and two on both sides of the thorax (TH). Each wound was subjected to one out of four treatments: no medication (T1), hyaluronic acid- (HA-) gel containing OM-MSC (T2), HA-gel containing OM-MSC secretome (T3), and HA-gel alone (T4). Gross macroscopic evaluation and laser digital photographic documentation were regularly performed to allow wound assessment including wound surface area. Full-thickness skin punch biopsy was performed at each site before wound induction (D0, normal skin) and after complete wound healing (D62, repaired skin). Results All wounds healed without adverse effect at D62. Distal limb wounds are slower to heal than body wounds. OM-MSC and its secretome have a positive impact on TH wound contraction. OM-MSC has a positive impact on the contraction and epithelialization of FL wounds. No significant difference between wound sites before and after treatment was noted at histological examination. Conclusion and Clinical Relevance. Using horse cells harvested from oral mucosa is a feasible technique to produce OM-MSC or its secretome. The gel produced by the combination of these biologic components with HA shows a positive impact when applied during the early stage of wound healing.
Collapse
|
9
|
Mund SJK, MacPhee DJ, Campbell J, Honaramooz A, Wobeser B, Barber SM. Macroscopic, Histologic, and Immunomodulatory Response of Limb Wounds Following Intravenous Allogeneic Cord Blood-Derived Multipotent Mesenchymal Stromal Cell Therapy in Horses. Cells 2021; 10:cells10112972. [PMID: 34831196 PMCID: PMC8616408 DOI: 10.3390/cells10112972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
Limb wounds are common in horses and often develop complications. Intravenous multipotent mesenchymal stromal cell (MSC) therapy is promising but has risks associated with intravenous administration and unknown potential to improve cutaneous wound healing. The objectives were to determine the clinical safety of administering large numbers of allogeneic cord blood-derived MSCs intravenously, and if therapy causes clinically adverse reactions, accelerates wound closure, improves histologic healing, and alters mRNA expression of common wound cytokines. Wounds were created on the metacarpus of 12 horses. Treatment horses were administered 1.51-2.46 × 108 cells suspended in 50% HypoThermosol FRS, and control horses were administered 50% HypoThermosol FRS alone. Epithelialization, contraction, and wound closure rates were determined using planimetric analysis. Wounds were biopsied and evaluated for histologic healing characteristics and cytokine mRNA expression. Days until wound closure was also determined. The results indicate that 3/6 of treatment horses and 1/6 of control horses experienced minor transient reactions. Treatment did not accelerate wound closure or improve histologic healing. Treatment decreased wound size and decreased all measured cytokines except transforming growth factor-β3. MSC intravenous therapy has the potential to decrease limb wound size; however, further work is needed to understand the clinical relevance of adverse reactions.
Collapse
Affiliation(s)
- Suzanne J. K. Mund
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; (J.C.); (S.M.B.)
- Correspondence: ; Tel.: +1-306-966-7178
| | - Daniel J. MacPhee
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; (D.J.M.); (A.H.)
| | - John Campbell
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; (J.C.); (S.M.B.)
| | - Ali Honaramooz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; (D.J.M.); (A.H.)
| | - Bruce Wobeser
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada;
| | - Spencer M. Barber
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; (J.C.); (S.M.B.)
| |
Collapse
|
10
|
Du Cheyne C, Martens A, De Spiegelaere W. High Numbers of CD163-Positive Macrophages in the Fibrotic Region of Exuberant Granulation Tissue in Horses. Animals (Basel) 2021; 11:2728. [PMID: 34573694 PMCID: PMC8464979 DOI: 10.3390/ani11092728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/31/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022] Open
Abstract
Exuberant granulation tissue (EGT) is a frequently encountered complication during second intention healing in equine distal limb wounds. Although it is still unknown what exactly triggers the formation of this tissue, previous research has revealed a persistent inflammatory response in these wounds. In this preliminary study we examined this inflammatory response in EGT-developing wounds as well as in experimental induced wounds. Immunohistological stainings were performed to detect primary inflammatory immune cells (MAC387 staining) as well as pro-resolution immune cells (CD163 staining). Our results show a significantly higher amount of MAC387+ and CD163+ cells in the fibrotic regions of EGT compared with the 19-day-old experimental wounds. This persistent high amount of fibrosis-promoting CD163+ cells in EGT suggests that the wound healing processes in EGT-developing wounds are arrested at the level of the proliferation phase.
Collapse
Affiliation(s)
- Charis Du Cheyne
- Department of Morphology, Ghent University, 9820 Merelbeke, Belgium;
| | - Ann Martens
- Department of Surgery and Anaesthesiology of Domestic Animals, Ghent University, 9820 Merelbeke, Belgium;
| | | |
Collapse
|
11
|
Harman RM, Theoret CL, Van de Walle GR. The Horse as a Model for the Study of Cutaneous Wound Healing. Adv Wound Care (New Rochelle) 2021; 10:381-399. [PMID: 34042536 DOI: 10.1089/wound.2018.0883] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Significance: Cutaneous wounds are a major problem in both human and equine medicine. The economic cost of treating skin wounds and related complications in humans and horses is high, and in both species, particular types of chronic wounds do not respond well to current therapies, leading to suffering and morbidity. Recent Advances: Conventional methods for the treatment of cutaneous wounds are generic and have not changed significantly in decades. However, as more is learned about the mechanisms involved in normal skin wound healing, and how failure of these processes leads to chronic nonhealing wounds, novel therapies targeting the specific pathologies of hard-to-heal wounds are being developed and evaluated. Critical Issues: Physiologically relevant animal models are needed to (1) study the mechanisms involved in normal and impaired skin wound healing and (2) test newly developed therapies. Future Directions: Similarities in normal wound healing in humans and horses, and the natural development of distinct types of hard-to-heal chronic wounds in both species, make the horse a physiologically relevant model for the study of mechanisms involved in wound repair. Horses are also well-suited models to test novel therapies. In addition, studies in horses have the potential to benefit veterinary, as well as human medicine.
Collapse
Affiliation(s)
- Rebecca M. Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | | | - Gerlinde R. Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York
| |
Collapse
|
12
|
Reyner CL, Winter RL, Maneval KL, Boone LH, Wooldridge AA. Effect of recombinant equine interleukin-1β on function of equine endothelial colony-forming cells in vitro. Am J Vet Res 2021; 82:318-325. [PMID: 33764832 DOI: 10.2460/ajvr.82.4.318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the effects of recombinant equine IL-1β on function of equine endothelial colony-forming cells (ECFCs) in vitro. SAMPLE ECFCs derived from peripheral blood samples of 3 healthy adult geldings. PROCEDURES Function testing was performed to assess in vitro wound healing, tubule formation, cell adhesion, and uptake of 1,1'-dioctadecyl-3,3,3',3' tetramethylindocarbocyanine perchlorate-labeled acetylated low-density lipoprotein (DiI-Ac-LDL) by cultured ECFCs. Cell proliferation was determined by 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide assay. Effects on function test results of different concentrations and exposure times of recombinant equine IL-1β were assessed. RESULTS Challenge of cultured ECFCs with IL-1β for 48 hours inhibited tubule formation. Continuous challenge (54 hours) with IL-1β in the wound healing assay reduced gap closure. The IL-1β exposure did not significantly affect ECFC adhesion, DiI-Ac-LDL uptake, or ECFC proliferation. CONCLUSIONS AND CLINICAL RELEVANCE These results suggested a role for IL-1β in the inhibition of ECFC function in vitro. Functional changes in ECFCs following challenge with IL-1β did not appear to be due to changes in cell proliferative capacity. These findings have implications for designing microenvironments for and optimizing therapeutic effects of ECFCs used to treat ischemic diseases in horses.
Collapse
|
13
|
J Rgensen E, Hjerpe FB, Hougen HP, Bjarnsholt T, Berg LC, Jacobsen S. Histologic changes and gene expression patterns in biopsy specimens from bacteria-inoculated and noninoculated excisional body and limb wounds in horses healing by second intention. Am J Vet Res 2020; 81:276-284. [PMID: 32101041 DOI: 10.2460/ajvr.81.3.276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate histologic changes and gene expression patterns in body and limb wounds in horses in response to bacterial inoculation. SAMPLE Wound biopsy specimens from 6 horses collected on days 7, 14, 21, and 27 after excisional wounds (20 wounds/horse) were created over the metacarpal and metatarsal region and lateral thoracic region (body) and then inoculated or not inoculated on day 4 with Staphylococcus aureus and Pseudomonas aeruginosa. PROCEDURES Specimens were histologically scored for the amount of inflammation, edema, angiogenesis, fibrosis organization, and epithelialization. Quantitative PCR assays were performed to quantify gene expression of 10 inflammatory, proteolytic, fibrotic, and hypoxia-related markers involved in wound healing. RESULTS Except for gene expression of interleukin-6 on day 27 and tumor necrosis factor-α on day 14, bacterial inoculation had no significant effect on histologic scores and gene expression. Gene expression of interleukin-1β and -6, serum amyloid A, and matrix metalloproteinase-9 was higher in limb wounds versus body wounds by day 27. Gene expression of cellular communication network factor 1 was higher in limb wounds versus body wounds throughout the observation period. CONCLUSIONS AND CLINICAL RELEVANCE The lack of clear markers of wound infection in this study reflected well-known difficulties in detecting wound infections in horses. Changes consistent with protracted inflammation were evident in limb wounds, and gene expression patterns of limb wounds shared similarities with those of chronic wounds in humans. Cellular communication network factor warrants further investigation and may be useful in elucidating the mechanisms underlying poor limb wound healing in horses.
Collapse
|
14
|
Lawless SP, Cohen ND, Lawhon SD, Chamoun-Emanuelli AM, Wu J, Rivera-Vélez A, Weeks BR, Whitfield-Cargile CM. Effect of gallium maltolate on a model of chronic, infected equine distal limb wounds. PLoS One 2020; 15:e0235006. [PMID: 32559258 PMCID: PMC7304909 DOI: 10.1371/journal.pone.0235006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/06/2020] [Indexed: 02/06/2023] Open
Abstract
Distal limb wounds are common injuries sustained by horses and their healing is fraught with complications due to equine anatomy, prevalence of infection, and challenges associated with wound management. Gallium is a semi-metallic element that has been shown to possess antimicrobial properties and aid in wound healing in various preclinical models. The effects of Gallium have not been studied in equine wound healing. Therefore, the objective of this study was to compare healing rates between gallium-treated and untreated wounds of equine distal limbs and to demonstrate the antimicrobial effects of gallium on wounds inoculated with S. aureus. Using an established model of equine wound healing we demonstrated beneficial effects of 0.5% topical gallium maltolate on equine wound healing. Specifically we documented reduced healing times, reduced bioburden, and reduced formation of exuberant granulation tissue in wounds treated with gallium maltolate as compared with untreated wounds. Gallium appeared to exert its beneficial effects via its well-described antimicrobial actions as well as by altering the expression of specific genes known to be involved in wound healing of horses and other animals. Specifically, gallium maltolate appeared to increase expression of transforming growth factor-β in both infected and un-infected wounds. Further work is needed to document the effects of gallium on naturally occurring equine wounds and to compare the effects of gallium with other wound treatment options. These data, however, suggest that gallium may be an attractive and novel means of improving equine distal limb wound healing.
Collapse
Affiliation(s)
- Shauna P. Lawless
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Noah D. Cohen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Ana M. Chamoun-Emanuelli
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Jing Wu
- Veterinary Medical Teaching Hospital, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Andrés Rivera-Vélez
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Brad R. Weeks
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Canaan M. Whitfield-Cargile
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
15
|
Winter RL, Tian Y, Caldwell FJ, Seeto WJ, Koehler JW, Pascoe DA, Fan S, Gaillard P, Lipke EA, Wooldridge AA. Cell engraftment, vascularization, and inflammation after treatment of equine distal limb wounds with endothelial colony forming cells encapsulated within hydrogel microspheres. BMC Vet Res 2020; 16:43. [PMID: 32019556 PMCID: PMC7001230 DOI: 10.1186/s12917-020-2269-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Endothelial colony forming cells (ECFCs) may be useful therapeutically in conditions with poor blood supply, such as distal limb wounds in the horse. Encapsulation of ECFCs into injectable hydrogel microspheres may ensure cell survival and cell localization to improve neovascularization and healing. Autologous ECFCs were isolated from 6 horses, labeled with quantum nanodots (QD), and a subset were encapsulated in poly(ethylene) glycol fibrinogen microspheres (PEG-Fb MS). Full-thickness dermal wounds were created on each distal limb and injected with empty PEG-Fb MS, serum, ECFCs, or ECFCs encapsulated into PEG- Fb MS (ECFC/MS). Analysis included wound surface area (WSA), granulation tissue scoring (GS), thermography, collagen density staining, and immunohistochemical staining for endothelial and inflammatory cells. The purpose of this study was to track cell location and evaluate wound vascularization and inflammatory response after injection of ECFC/MS or naked ECFCs in equine distal limb wounds. RESULTS ECFCs were found near and within newly formed blood vessels up to 3 weeks after injection. ECFC and ECFC/MS groups had the greatest blood vessel quantity at week 1 in the wound periphery. Wounds treated with ECFCs and ECFC/MS had the lowest density of neutrophils and macrophages at week 4. There were no significant effects of ECFC or ECFC/MS treatment on other measured parameters. CONCLUSIONS Injection of microsphere encapsulated ECFCs was practical for clinical use and well-tolerated. The positive ECFC treatment effects on blood vessel density and wound inflammation warrant further investigation.
Collapse
Affiliation(s)
- Randolph L. Winter
- Department of Clinical Sciences, Auburn University, Auburn, AL USA
- Department of Clinical Sciences, Ohio State University, Columbus, OH USA
| | - Yuan Tian
- Department of Chemical Engineering, Auburn University, Auburn, AL USA
| | - Fred J. Caldwell
- Department of Clinical Sciences, Auburn University, Auburn, AL USA
| | - Wen J. Seeto
- Department of Chemical Engineering, Auburn University, Auburn, AL USA
| | - Jey W. Koehler
- Department of Pathobiology, Auburn University, Auburn, AL USA
| | | | - Shirley Fan
- Department of Mathematics, Auburn University, Auburn, AL USA
| | | | | | | |
Collapse
|
16
|
Lingzhi Z, Meirong L, Xiaobing F. Biological approaches for hypertrophic scars. Int Wound J 2019; 17:405-418. [PMID: 31860941 DOI: 10.1111/iwj.13286] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/01/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
Scar formation is usually the pathological consequence of skin trauma. And hypertrophic scars (HSs) frequently occur in people after being injured deeply. HSs are unusually considered as the result of tissue contraction and excessive extracellular matrix component deposition. Myofibroblasts, as the effector cells, mainly differentiated from fibroblasts, play the crucial role in the pathophysiology of HSs. A number of growth factors, inflammatory cytokines involved in the process of HS occurrence. Currently, with in-depth exploration and clinical research of HSs, various creative and effective treatments budded. In here, we summarize the progress in the molecular mechanism of HSs, and review the available biotherapeutic methods for their pathophysiological characteristics. Additionally, we further prospected that the comprehensive therapy may be more suitable for HS treatment.
Collapse
Affiliation(s)
- Zhong Lingzhi
- Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China
| | - Li Meirong
- Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China.,Central Laboratory, Trauma Treatment Center, Chinese PLA General Hospital Hainan Branch, Sanya, China
| | - Fu Xiaobing
- Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
17
|
Fowler AW, Gilbertie JM, Watson VE, Prange T, Osborne JA, Schnabel LV. Effects of acellular equine amniotic allografts on the healing of experimentally induced full-thickness distal limb wounds in horses. Vet Surg 2019; 48:1416-1428. [PMID: 31385329 DOI: 10.1111/vsu.13304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 07/01/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To characterize the growth factors contained in equine amniotic membrane allograft (eAM; StemWrap scaffold and StemWrap+ injection) and to evaluate the effect of eAM on equine distal limb wound healing. STUDY DESIGN Prospective experimental controlled study. SAMPLE POPULATION Eight adult horses. METHODS Transforming growth factor (TGF)-β1, vascular endothelial growth factor (VEGF), epidermal growth factor, platelet-derived growth factor-BB, and prostaglandin E2 (PGE2 ) concentrations in StemWrap+ were assessed with enzyme-linked immunosorbent assay. Two full-thickness 6.25-cm2 skin wounds were created on each metacarpus. On one forelimb, one wound was treated with eAM, and the other was left untreated (eAM control). On the contralateral limb, one wound was treated with a silicone dressing, and the other served as negative control. Three-dimensional images were obtained to determine wound circumference and surface area analyses at each bandage change until healed. Excessive granulation tissue was debrided once weekly for 4 weeks. Biopsy samples were taken to evaluate quality of wound healing via histologic and immunohistochemistry assays. RESULTS StemWrap+ contained moderate concentrations of TGF-β1 (494.10 pg/mL), VEGF (212.52 pg/mL), and PGE2 (1811.61 pg/mL). Treatment of wounds with eAM did not affect time to healing or histologic quality of the healing compared with other groups but was associated with increased granulation tissue production early in the study, particularly on day 7. CONCLUSION Application of eAM resulted in increased granulation tissue production while maintaining appropriate healing of experimental wounds. CLINICAL SIGNIFICANCE Use of eAM is likely most beneficial for substantial wounds in which expedient production of large amounts of granulation tissue is desirable.
Collapse
Affiliation(s)
- Alexander W Fowler
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina
| | - Jessica M Gilbertie
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Victoria E Watson
- Department of Pathobiology and Diagnostic Investigation, Michigan State University College of Veterinary Medicine, East Lansing, Michigan
| | - Timo Prange
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina
| | - Jason A Osborne
- Department of Statistics, North Carolina State University, Raleigh, North Carolina
| | - Lauren V Schnabel
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
18
|
Abstract
Distal limb wounds in horses heal substantially different than trunk wounds, commonly resulting in exuberant granulation tissue and exposed and sequestered bone. Surgical intervention of severe rectovaginal lacerations in the mare should be delayed until the tissues have heeled and scar tissue has remodeled. Wounds resulting in severe hemorrhage require appropriate emergent fluid therapy and potentially transfusion therapy.
Collapse
Affiliation(s)
- Randy B Eggleston
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens, GA 30602, USA.
| |
Collapse
|
19
|
Wise LM, Bodaan CJ, Stuart GS, Real NC, Lateef Z, Mercer AA, Riley CB, Theoret CL. Treatment of limb wounds of horses with orf virus IL-10 and VEGF-E accelerates resolution of exuberant granulation tissue, but does not prevent its development. PLoS One 2018; 13:e0197223. [PMID: 29763436 PMCID: PMC5953458 DOI: 10.1371/journal.pone.0197223] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/27/2018] [Indexed: 12/13/2022] Open
Abstract
Bandaging of limb wounds in horses leads to formation of exuberant granulation tissue (EGT) that retards healing due to protracted inflammation, aberrant vascularisation and delayed epithelialisation. EGT is not observed if wounds are left undressed or when wounds are on the body. A previous study showed that short-term administration of proteins derived from orf virus dampened inflammation and promoted epithelialisation of open wounds in horses. Here, we investigated the impact of orf virus interleukin-10 and vascular endothelial growth factor-E on the development and resolution of EGT. Excisional wounds were created on the forelimb of four horses, and bandages were maintained until full healing to induce EGT formation. Matching body wounds were created to ensure EGT was limited to the limb, and to differentiate the effects of the viral proteins on normal healing and on EGT formation. Viral proteins or the hydrogel vehicle control were administered topically to site-matched wounds at day 1, with repeat administration at day 8. Wound healing and EGT formation were monitored macroscopically. Wound margin samples were harvested at 2, 7 and 14 days, and at full healing, with histology used to observe epithelialisation, immunofluorescence used to detect inflammatory cells, angiogenesis and cell death, and qPCR to measure expression of genes regulating inflammation and angiogenesis. Limb wounds developed EGT, and exhibited slower healing than body wounds. Viral protein treatment did not accelerate healing at either location nor limit EGT formation in limb wounds. Treatment of limb wounds did however increase epithelialisation and angiogenesis, without dampening inflammatory cell infiltration or gene expression. The healed wounds also had less occlusion and death of blood vessels and fewer epidermal rete ridges following viral protein treatment. These findings indicate that the viral protein treatment does not suppress wound inflammation or EGT formation, but does promote vascular and epidermal repair and EGT resolution.
Collapse
Affiliation(s)
- Lyn M. Wise
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- * E-mail:
| | - Christa J. Bodaan
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Gabriella S. Stuart
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Nicola C. Real
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Zabeen Lateef
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Andrew A. Mercer
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | - Christine L. Theoret
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
- Comparative Tissue Healing Laboratory, Département de Biomedecine Vétérinaire, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
20
|
Textor JA, Clark KC, Walker NJ, Aristizobal FA, Kol A, LeJeune SS, Bledsoe A, Davidyan A, Gray SN, Bohannon-Worsley LK, Woolard KD, Borjesson DL. Allogeneic Stem Cells Alter Gene Expression and Improve Healing of Distal Limb Wounds in Horses. Stem Cells Transl Med 2017; 7:98-108. [PMID: 29063737 PMCID: PMC5746157 DOI: 10.1002/sctm.17-0071] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/25/2017] [Indexed: 12/27/2022] Open
Abstract
Distal extremity wounds are a significant clinical problem in horses and humans and may benefit from mesenchymal stem cell (MSC) therapy. This study evaluated the effects of direct wound treatment with allogeneic stem cells, in terms of gross, histologic, and transcriptional features of healing. Three full-thickness cutaneous wounds were created on each distal forelimb in six healthy horses, for a total of six wounds per horse. Umbilical cord-blood derived equine MSCs were applied to each wound 1 day after wound creation, in one of four forms: (a) normoxic- or (b) hypoxic-preconditioned cells injected into wound margins, or (c) normoxic- or (d) hypoxic-preconditioned cells embedded in an autologous fibrin gel and applied topically to the wound bed. Controls were one blank (saline) injected wound and one blank fibrin gel-treated wound per horse. Data were collected weekly for 6 weeks and included wound surface area, thermography, gene expression, and histologic scoring. Results indicated that MSC treatment by either delivery method was safe and improved histologic outcomes and wound area. Hypoxic-preconditioning did not offer an advantage. MSC treatment by injection resulted in statistically significant increases in transforming growth factor beta and cyclooxygenase-2 expression at week 1. Histologically, significantly more MSC-treated wounds were categorized as pro-healing than pro-inflammatory. Wound area was significantly affected by treatment: MSC-injected wounds were consistently smaller than gel-treated or control wounds. In conclusion, MSC therapy shows promise for distal extremity wounds in horses, particularly when applied by direct injection into the wound margin. Stem Cells Translational Medicine 2018;7:98-108.
Collapse
Affiliation(s)
- Jamie A Textor
- Department of Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Kaitlin C Clark
- Department of Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Naomi J Walker
- Department of Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Fabio A Aristizobal
- Department of Veterinary Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Amir Kol
- Department of Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Sarah S LeJeune
- Department of Veterinary Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Andrea Bledsoe
- Department of Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Arik Davidyan
- Department of Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Sarah N Gray
- Department of Veterinary Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Laurie K Bohannon-Worsley
- Department of Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Kevin D Woolard
- Department of Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Dori L Borjesson
- Department of Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| |
Collapse
|
21
|
Tsang AS, Dart AJ, Sole-Guitart A, Dart CM, Perkins NR, Jeffcott LB. Comparison of the effects of topical application of UMF20 and UMF5 manuka honey with a generic multifloral honey on wound healing variables in an uncontaminated surgical equine distal limb wound model. Aust Vet J 2017; 95:333-337. [PMID: 28714567 DOI: 10.1111/avj.12616] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2016] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To compare the effect of application of manuka honey with unique manuka factor (UMF) 5 or 20 with a generic multifloral honey on equine wound healing variables. METHODS Two full-thickness skin wounds (2.5 × 2.5 cm) were created on the metatarsus of both hindlimbs of eight Standardbred horses. The wounds on each horse were assigned to 1 of 4 treatments: UMF20 (UMF20) and UMF5 (UMF5) manuka honey; generic multifloral honey (GH); and a saline control. Bandages were changed daily for 12 days, after which treatment was stopped and the bandages were removed. Wound area was measured on day 1, then weekly until day 42. Overall wound healing rate (cm2 /day) and time to complete healing were recorded. RESULTS There was no difference in wound area for any of the treatments on any measurement day except for day 21, where the mean wound area for wounds treated with UMF20 was smaller than the mean wound area for the UMF5-treated wounds (P = 0.031). There was no difference in mean (± SE) overall healing rate (cm2 /day) among the treatment groups. There were differences in mean (± SE) days to complete healing. Wounds treated with UMF20 healed faster than wounds treated with GH (P = 0.02) and control wounds (P = 0.01). CONCLUSIONS Treatment of wounds with UMF20 reduced overall wound healing time compared with wounds treated with GH and control wounds. However, using this model the difference in the overall time to complete healing was small.
Collapse
Affiliation(s)
- A S Tsang
- Research and Clinical Trials Unit, University Veterinary Teaching Hospital Camden, University of Sydney, 410 Werombi Road, Camden, New South Wales 2570, Australia
| | - A J Dart
- Research and Clinical Trials Unit, University Veterinary Teaching Hospital Camden, University of Sydney, 410 Werombi Road, Camden, New South Wales 2570, Australia
| | - A Sole-Guitart
- Research and Clinical Trials Unit, University Veterinary Teaching Hospital Camden, University of Sydney, 410 Werombi Road, Camden, New South Wales 2570, Australia
| | - C M Dart
- Research and Clinical Trials Unit, University Veterinary Teaching Hospital Camden, University of Sydney, 410 Werombi Road, Camden, New South Wales 2570, Australia
| | - N R Perkins
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - L B Jeffcott
- Research and Clinical Trials Unit, University Veterinary Teaching Hospital Camden, University of Sydney, 410 Werombi Road, Camden, New South Wales 2570, Australia
| |
Collapse
|
22
|
Harman RM, Bihun IV, Van de Walle GR. Secreted factors from equine mesenchymal stromal cells diminish the effects of TGF-β1 on equine dermal fibroblasts and alter the phenotype of dermal fibroblasts isolated from cutaneous fibroproliferative wounds. Wound Repair Regen 2017; 25:234-247. [DOI: 10.1111/wrr.12515] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 02/21/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Rebecca M. Harman
- Baker Institute for Animal Health, College of Veterinary Medicine; Cornell University; Ithaca New York
| | - Ivanna V. Bihun
- Baker Institute for Animal Health, College of Veterinary Medicine; Cornell University; Ithaca New York
| | - Gerlinde R. Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine; Cornell University; Ithaca New York
| |
Collapse
|
23
|
Jørgensen E, Bay L, Bjarnsholt T, Bundgaard L, Sørensen MA, Jacobsen S. The occurrence of biofilm in an equine experimental wound model of healing by secondary intention. Vet Microbiol 2017; 204:90-95. [PMID: 28532812 DOI: 10.1016/j.vetmic.2017.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/03/2017] [Accepted: 03/08/2017] [Indexed: 11/28/2022]
Abstract
In humans, biofilm is a well-known cause of delayed healing and low-grade inflammation of chronic wounds. In horses, biofilm formation in wounds has been studied to a very limited degree. The objective of this study was thus to investigate the occurrence of biofilm in equine experimental wounds healing by secondary intention. Tissue biopsies from non-contaminated, experimental excisional shoulder and limb wounds were obtained on day 1-2, day 7-10 and day 14-15 post-wounding. Limb wounds were either un-bandaged or bandaged to induce exuberant granulation tissue (EGT) formation and thereby impaired healing. Presence of biofilm in tissue biopsies was assessed by peptide nucleic acid fluorescence in situ hybridization (PNA FISH) and confocal laser scanning microscopy (CLSM). Bandaged limb wounds developed EGT and displayed delayed healing, while shoulder and un-bandaged limb wounds healed normally. Biofilm was detected in limb wounds only. At day 14-15 biofilm was significantly more prevalent in bandaged limb wounds than in un-bandaged limb wounds (P=0.003). Further, bandaged limb wounds had a statistically significant increase in biofilm burden from day 7-10 to day 14-15 (P=0.009). The finding that biofilm was most prevalent in bandaged limb wounds with EGT formation suggests that biofilm may be linked to delayed wound healing in horses, as has been observed in humans. The inability to clear bacteria could be related to hypoxia and low-grade inflammation in the EGT, but the interaction between biofilm forming bacteria and wound healing in horses needs further elucidation.
Collapse
Affiliation(s)
- E Jørgensen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Højbakkegaard Allé 5, DK-2630 Taastrup, Denmark.
| | - L Bay
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark.
| | - T Bjarnsholt
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark; Department of Clinical Microbiology, Juliane Maries Vej 22, 2100 Copenhagen Ø, Rigshospitalet, Denmark.
| | - L Bundgaard
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Højbakkegaard Allé 5, DK-2630 Taastrup, Denmark.
| | - M A Sørensen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Højbakkegaard Allé 5, DK-2630 Taastrup, Denmark.
| | - S Jacobsen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Højbakkegaard Allé 5, DK-2630 Taastrup, Denmark.
| |
Collapse
|
24
|
Bischofberger AS, Dart CM, Horadagoda N, Perkins NR, Jeffcott LB, Little CB, Dart AJ. Effect of Manuka honey gel on the transforming growth factor β1 and β3 concentrations, bacterial counts and histomorphology of contaminated full-thickness skin wounds in equine distal limbs. Aust Vet J 2016; 94:27-34. [PMID: 26814159 DOI: 10.1111/avj.12405] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/31/2014] [Accepted: 10/16/2014] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate the effect of 66% Manuka honey gel on the concentrations of transforming growth factor (TGF)-β1 and TGF-β3, bacterial counts and histomorphology during healing of contaminated equine distal limb wounds. METHODS In this experimental study of 10 Standardbred horses, five full-thickness skin wounds (2 × 1.5 cm) were created on one metacarpus and six similar wounds were created on the contralateral metacarpus. Wounds were assigned to three groups: non-contaminated control wounds; contaminated control wounds; contaminated wounds treated daily with 1 mL Manuka honey gel topically for 10 days. For the contaminated wounds, faeces were applied for 24 h after wound creation. In five horses wounds were bandaged and in the other five horses wounds were left without a bandage. Biopsies were taken on days 1, 2, 7 and 10 after wounding to evaluate the effects of Manuka honey gel, wound contamination and bandaging on TGF-β1 and TGF-β3 concentrations, aerobic and anaerobic bacterial counts, and histomorphology. RESULTS Manuka honey gel had no significant effect on TGF-β1 and TGF-β3 concentrations or wound bacterial counts. Manuka honey gel decreased wound inflammation (days 7, 10), increased angiogenesis (days 2, 7, 10), increased fibrosis and collagen organisation (day 7) and increased epithelial hyperplasia (days 7, 10). CONCLUSIONS Treatment with Manuka honey gel resulted in a more organised granulation tissue bed early in wound repair, which may contribute to enhanced healing of equine distal limb wounds.
Collapse
Affiliation(s)
- A S Bischofberger
- Research and Clinical Trials Unit, University Veterinary Teaching Hospital Camden, University of Sydney, Camden, New South Wales, Australia
| | - C M Dart
- Research and Clinical Trials Unit, University Veterinary Teaching Hospital Camden, University of Sydney, Camden, New South Wales, Australia
| | - N Horadagoda
- Research and Clinical Trials Unit, University Veterinary Teaching Hospital Camden, University of Sydney, Camden, New South Wales, Australia
| | - N R Perkins
- Ausvet Animal Health Services, Toowoomba, QLD, Australia
| | - L B Jeffcott
- Research and Clinical Trials Unit, University Veterinary Teaching Hospital Camden, University of Sydney, Camden, New South Wales, Australia
| | - C B Little
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Institute of Bone and Joint Research, University of Sydney at Royal North Shore Hospital, St Leonards, NSW, Australia
| | - A J Dart
- Research and Clinical Trials Unit, University Veterinary Teaching Hospital Camden, University of Sydney, Camden, New South Wales, Australia.
| |
Collapse
|
25
|
Bodaan CJ, Wise LM, Wakelin KA, Stuart GS, Real NC, Mercer AA, Riley CB, Theoret C. Short-term treatment of equine wounds with orf virus IL-10 and VEGF-E dampens inflammation and promotes repair processes without accelerating closure. Wound Repair Regen 2016; 24:966-980. [PMID: 27681311 DOI: 10.1111/wrr.12488] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/24/2016] [Indexed: 11/28/2022]
Abstract
Healing is delayed in limb wounds relative to body wounds of horses, partly because of sustained inflammation and inefficient angiogenesis. In laboratory animals, proteins derived from orf virus modulate these processes and enhance healing. We aimed to compare immune cell trafficking and the inflammatory, vascular, and epidermal responses in body and limb wounds of horses and then to investigate the impact of orf virus interleukin-10 and vascular endothelial growth factor-E on these processes. Standardized excisional wounds were created on the body and forelimb of horses and their progression monitored macroscopically until healed. Tissue samples were harvested to measure the expression of genes regulating inflammation and repair (quantitative polymerase chain reaction) and to observe epithelialization (histology), innate immune cell infiltration, and angiogenesis (immunofluorescence). Delayed healing of limb wounds was characterized by intensified and extended pro-inflammatory signaling and exacerbated innate immune response, concomitant with the absence of anti-inflammatory eIL-10. Blood vessels were initially more permeable and then matured belatedly, concomitant with retarded production of angiogenic factors. Epithelial coverage was achieved belatedly in limb wounds. Viral proteins were administered to wounds of one body and one limb site/horse at days 1-3, while wounds at matching sites served as controls. Treatment dampened pro-inflammatory gene expression and the innate immune response in all wounds. It also improved angiogenic gene expression, but primarily in body wounds, where it altered blood vessel density and myofibroblast persistence. Moreover, the viral proteins increased epithelialization of all wounds. The short-term viral protein therapy did not, however, improve the healing rate of wounds in either location, likely due to suboptimal dosing. In conclusion, we have further detailed the processes contributing to protracted healing in limb wounds of horses and shown that short-term administration of viral proteins exerts several promising though transient effects that, if optimized, may positively influence healing.
Collapse
Affiliation(s)
- Christa J Bodaan
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North
| | - Lyn M Wise
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Kirsty A Wakelin
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Gabriella S Stuart
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Nicola C Real
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Andrew A Mercer
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Christopher B Riley
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North
| | - Christine Theoret
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North.,Comparative Tissue Healing Laboratory, Department of Veterinary Biomedical Sciences, Faculty of Veterinary Medicine, University of Montreal, Montreal, Canada
| |
Collapse
|
26
|
Bischofberger AS, Tsang AS, Horadagoda N, Dart CM, Perkins NR, Jeffcott LB, Jackson CJ, Dart AJ. Effect of activated protein C in second intention healing of equine distal limb wounds: a preliminary study. Aust Vet J 2016; 93:361-6. [PMID: 26412117 DOI: 10.1111/avj.12363] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/09/2014] [Accepted: 03/10/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To investigate the effect of activated protein C (APC) on second intention healing of distal limb wounds in horses. METHODS In this experimental study of eight Standardbred geldings, six full-thickness skin wounds (2 × 1.5 cm) were created on one metacarpus (biopsy limb) and five similar wounds were created on the contralateral metacarpus (photographed limb). Three wounds on the biopsy limb were treated topically with 190 µg APC on days 1, 3, 6 and 9, while the remaining three wounds were untreated (control). One treated and one control wound were biopsied on days 4, 7 and 11 for histopathology. Wounds on the photographed limb were treated with either 66% Manuka honey gel, a commercial antibiotic ointment (bacitracin-neomycin-polymixin B ointment; BNP) or petrolatum daily throughout healing, treated on days 1,3,6 and 9 with 190 µg APC or left untreated. These wounds were digitally photographed and the wound area measured on day 1, then weekly until day 49. Overall time to healing was recorded. RESULTS There was no effect of APC on wound size, the rate of healing or the overall time to heal. However, compared with control wounds, histological scoring demonstrated enhanced epithelialisation (day 4) and angiogenesis (day 11). Wound healing variables for wounds treated with APC, Manuka honey gel and control wounds were not different and the variables for wounds treated with BNP and petrolatum demonstrated delayed healing. CONCLUSION The improvements in histological scores in APC-treated wounds suggest further study into the effect of APC on second intention wound healing in horses is warranted.
Collapse
Affiliation(s)
- A S Bischofberger
- Research and Clinical Trials Unit, University Veterinary Teaching Hospital Camden, University of Sydney, 410 Werombi Road, Camden, New South Wales, 2570, Australia
| | - A S Tsang
- Research and Clinical Trials Unit, University Veterinary Teaching Hospital Camden, University of Sydney, 410 Werombi Road, Camden, New South Wales, 2570, Australia
| | - N Horadagoda
- Research and Clinical Trials Unit, University Veterinary Teaching Hospital Camden, University of Sydney, 410 Werombi Road, Camden, New South Wales, 2570, Australia
| | - C M Dart
- Research and Clinical Trials Unit, University Veterinary Teaching Hospital Camden, University of Sydney, 410 Werombi Road, Camden, New South Wales, 2570, Australia
| | - N R Perkins
- Ausvet Animal Health Services, Toowoomba, QLD, Australia
| | - L B Jeffcott
- Research and Clinical Trials Unit, University Veterinary Teaching Hospital Camden, University of Sydney, 410 Werombi Road, Camden, New South Wales, 2570, Australia
| | - C J Jackson
- Sutton Arthritis Research Laboratories, Kolling Institute of Medical Research, University of Sydney at Royal North Shore Hospital, NSW, Australia
| | - A J Dart
- Research and Clinical Trials Unit, University Veterinary Teaching Hospital Camden, University of Sydney, 410 Werombi Road, Camden, New South Wales, 2570, Australia.
| |
Collapse
|
27
|
Edwards-Milewski ML, Morello SL, Zhao Q, Mattan-Bell C. The Effect of Intravenous Regional Perfusion of the Distal Limb With Amikacin Sulfate on Wounds Healing by Second Intention in Horses. Vet Surg 2016; 45:125-32. [DOI: 10.1111/vsu.12435] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | | | - Qianqian Zhao
- Department of Biostatistics and Medical Informatics; School of Medicine and Public Health
| | - Cynthia Mattan-Bell
- Department of Pathobiological Sciences; School of Veterinary Medicine; University of Wisconsin; Madison Wisconsin
| |
Collapse
|
28
|
Abstract
AIM To determine the frequency and type of skin wounds encountered by New Zealand veterinarians in their equine patients, the duration and estimated costs of treatment as well as the expected outcomes for these wounds. METHODS An online survey was sent to all veterinarians registered with the New Zealand Equine Veterinary Association. The survey comprised questions on the location and experience of respondents, the number of wound-related cases in relation to the total equine caseload, the type and anatomical location of wounds treated, the frequency, duration and costs of treatments, the outcome of wound treatment and an estimate of the most common causes of death or euthanasia in their equine patients. RESULTS The survey response rate was 110/262 (41.9%). The median number of equine cases seen by respondents was 20 (interquartile range (IQR) 6-60) per month; of these, five (IQR 2-10) were wound related. Wounds ranked third after lameness and respiratory disease for the relative frequency with which respondents encountered them. Of 102 respondents 59 (58%) reported that their clients frequently treated wounds incurred by their horse without consulting a veterinarian. Wounds on the distal limb, whether involving only the skin or also deeper structures, were reported by 86/101 (85%) respondents as the most frequently encountered. Wounds in this location also incurred the longest treatment period and were the most prone to develop complications. Finally, wounds ranked second, after colic, as the most common cause of death/euthanasia in the veterinary respondents' equine patients. CONCLUSIONS The data obtained via the survey indicate that skin wounds, particularly on the distal limb, are a common occurrence in horses in New Zealand and, when they involve structures underlying the skin, are costly and time-consuming to manage and may lead to decreased performance, retirement or euthanasia. Consequently, we recommend that more effort be devoted to the education of equine veterinarians and owners, and that appropriate research funds be allocated to help improve patient outcomes.
Collapse
Affiliation(s)
- C L Theoret
- a Equine Research Centre, Institute of Veterinary, Animal and Biomedical Sciences , Massey University , Palmerston North 4442 , New Zealand
| | - C F Bolwell
- a Equine Research Centre, Institute of Veterinary, Animal and Biomedical Sciences , Massey University , Palmerston North 4442 , New Zealand
| | - C B Riley
- a Equine Research Centre, Institute of Veterinary, Animal and Biomedical Sciences , Massey University , Palmerston North 4442 , New Zealand
| |
Collapse
|
29
|
|
30
|
Miragliotta V, Pirone A, Donadio E, Abramo F, Ricciardi MP, Theoret CL. Osteopontin expression in healing wounds of horses and in human keloids. Equine Vet J 2014; 48:72-7. [PMID: 25290989 DOI: 10.1111/evj.12372] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/30/2014] [Indexed: 01/20/2023]
Abstract
REASONS FOR PERFORMING STUDY Convincing evidence shows that persistent or excessive expression of osteopontin (OPN) is linked to fibroproliferation of various organs in laboratory animals and in man, such that its downregulation is a logical therapeutic objective. OBJECTIVES To investigate OPN expression in an equine model of wound healing and in clinical specimens of equine exuberant granulation tissue and human keloids in an effort to better understand the contribution of this protein to inflammation-associated skin fibrosis. STUDY DESIGN Description of gene and protein expression in an experimental equine model of wound healing and clinical specimens in horse and man. METHODS Osteopontin gene expression was evaluated by quantitative PCR, while protein expression was investigated by means of immunohistochemical staining. RESULTS Quantitative PCR showed that the OPN gene is expressed in normal intact skin of horses and continues to be expressed during the wound-healing process. An increase in gene expression was observed throughout the phases of wound healing, with a final decrease at wound closure. The protein was not detected in normal skin. Keratinocytes in wound-edge samples did not express the protein, whereas dermal immunoreactivity was confined to inflammatory cells. Healed wounds were devoid of staining. Equine exuberant granulation tissue showed immunoreactivity of the surrounding epidermis, infiltrating neutrophils, mononuclear cells, endothelial cells and fibroblasts. Human keloids showed OPN immunoreactivity throughout the epidermis as well as in mononuclear cells and scattered fibroblasts. CONCLUSIONS Immunohistochemical data show a different pattern of expression between normally healing and fibrotic wounds (exuberant granulation tissue and keloids), thus suggesting a role in fibroproliferation in horses and man.
Collapse
Affiliation(s)
- V Miragliotta
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - A Pirone
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - E Donadio
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - F Abramo
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - M P Ricciardi
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - C L Theoret
- Department of Veterinary Biomedicine, University of Montreal, Quebec, Canada
| |
Collapse
|
31
|
Sørensen MA, Petersen LJ, Bundgaard L, Toft N, Jacobsen S. Regional disturbances in blood flow and metabolism in equine limb wound healing with formation of exuberant granulation tissue. Wound Repair Regen 2014; 22:647-53. [DOI: 10.1111/wrr.12207] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 06/05/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Mette A. Sørensen
- Department of Large Animal Sciences; Faculty of Health and Medical Sciences; University of Copenhagen; Taastrup Denmark
| | - Lars J. Petersen
- Department of Nuclear Medicine; Clinical Cancer Research Center; Aalborg University Hospital; Aalborg Denmark
- Department of Clinical Medicine, Imaging and Informatics Center; Aalborg University; Aalborg Denmark
| | - Louise Bundgaard
- Department of Large Animal Sciences; Faculty of Health and Medical Sciences; University of Copenhagen; Taastrup Denmark
| | - Nils Toft
- National Veterinary Institute; Technical University of Denmark; Frederiksberg C Denmark
| | - Stine Jacobsen
- Department of Large Animal Sciences; Faculty of Health and Medical Sciences; University of Copenhagen; Taastrup Denmark
| |
Collapse
|
32
|
Healed porcine incisions previously treated with a surgical incision management system: mechanical, histomorphometric, and gene expression properties. Aesthetic Plast Surg 2014; 38:767-78. [PMID: 24912426 DOI: 10.1007/s00266-014-0339-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 04/18/2014] [Indexed: 01/14/2023]
Abstract
BACKGROUND Computer and bench models have shown previously that surgical incision management with negative pressure (SIM) immediately decreases lateral tissue tension and increases incisional apposition. Better apposition is known to improve healing. Thus, SIM was hypothesized to improve the quality of incisional healing. This study evaluated the impact that 5 days of SIM had on mechanical properties and associated changes in the histology/histomorphometry and gene expression of healed porcine incisions. METHODS One incision in each of the 4 pairs of contralateral, sutured, full-thickness incisions in each of 6 Yucatan swine were treated with either SIM (Prevena™ Incision Management System; n = 24 incisions/treatment group) or standard of care (SOC; sterile absorbent abdominal pads; n = 24/group) for 5 days, after which both groups received SOC for an additional 5 days. Biopsies for gene-expression analyses were collected on days 5 (n = 6 pairs/group), 20 (n = 6 pairs/group), and 40 (n = 12 pairs/group). On day 40, the animals were killed, after which healed incisions were harvested for mechanical testing (n = 12/group) and histologic/histomorphometric evaluation (n = 12/group). RESULTS Compared with SOC-treated incisions, SIM-treated incisions had significantly improved (p < 0.05) mechanical properties (strain energy density, peak strain) and a narrower scar/healed area in the deep dermis on day 40. Differences in gene expression between SOC- and SIM-treated specimens were observed primarily on day 5. The SIM-treated specimens had significantly fewer genes, which were differentially expressed and showed reduced upregulation of genes associated with inflammation, hypoxia, retardation of reepithelialization, impaired wound healing, and scarring. CONCLUSION Early application of SIM improved the quality of healed porcine incisions in terms of mechanical, histomorphometric, and gene-expression properties. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
33
|
Theoret CL, Olutoye OO, Parnell LKS, Hicks J. Equine exuberant granulation tissue and human keloids: a comparative histopathologic study. Vet Surg 2013; 42:783-9. [PMID: 24015864 DOI: 10.1111/j.1532-950x.2013.12055.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 07/21/2013] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To compare histopathologic features of a fibroproliferative disorder in horses (exuberant granulation tissue-EGT) and people (keloid). SAMPLE POPULATION Archival tissue samples of EGT (n = 8) and keloid (12). METHODS After automated hematoxylin and eosin, histochemical (Gomori trichrome, Verhoeff-van Gieson elastin) and immunohistochemical (vimentin, α-smooth muscle actin, CD34, CD68, CD117) stainings, tissue sections were evaluated using a semi-quantitative grading scale for presence or absence of ulceration, keloidal collagen, myofibroblasts, and elastic fibers as well as degree of inflammation, fibrosis, vascularity, and orientation of collagen fibers. RESULTS Superficial dermis and deep dermis of both horses and people had increased numbers of haphazardly oriented thickened collagen fibers; however, only keloids contained "keloidal" collagen. Fibroblast numbers were markedly increased in both groups but only EGT had myofibroblasts. Minimal vascularity was observed in the deep dermis of both groups. The superficial dermis in EGT was characterized by small vessels within immature granulation tissue. Macrophages and mast cells were infrequently found in both groups but polymorphonuclear cells were markedly increased in EGT. CONCLUSIONS Humans and horses are the only mammals known to naturally develop excessive granulation during wound healing; however, similarities and differences between fibroblast populations and associated collagen have not been reported. Inflammatory response may contribute to observed differences in the cellular populations, with EGT possessing markedly increased myofibroblasts, small vessels, and acute inflammatory cells compared with keloids. Further work is warranted to develop common treatment strategies for these fibroproliferative conditions.
Collapse
|
34
|
Volk SW, Bohling MW. Comparative wound healing--are the small animal veterinarian's clinical patients an improved translational model for human wound healing research? Wound Repair Regen 2013; 21:372-81. [PMID: 23627643 DOI: 10.1111/wrr.12049] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 02/28/2013] [Indexed: 11/28/2022]
Abstract
Despite intensive research efforts into understanding the pathophysiology of both chronic wounds and scar formation, and the development of wound care strategies to target both healing extremes, problematic wounds in human health care remain a formidable challenge. Although valuable fundamental information regarding the pathophysiology of problematic wounds can be gained from in vitro investigations and in vivo studies performed in laboratory animal models, the lack of concordance with human pathophysiology has been cited as a major impediment to translational research in human wound care. Therefore, the identification of superior clinical models for both chronic wounds and scarring disorders should be a high priority for scientists who work in the field of human wound healing research. To be successful, translational wound healing research should function as an intellectual ecosystem in which information flows from basic science researchers using in vitro and in vivo models to clinicians and back again from the clinical investigators to the basic scientists. Integral to the efficiency of this process is the incorporation of models which can accurately predict clinical success. The aim of this review is to describe the potential advantages and limitations of using clinical companion animals (primarily dogs and cats) as translational models for cutaneous wound healing research by describing comparative aspects of wound healing in these species, common acute and chronic cutaneous wounds in clinical canine and feline patients, and the infrastructure that currently exists in veterinary medicine which may facilitate translational studies and simultaneously benefit both veterinary and human wound care patients.
Collapse
Affiliation(s)
- Susan W Volk
- Department of Clinical Studies and Animal Biology, School of Veterinary Medicine, The University of Pennsylvania, Philadelphia 19104-4539, USA.
| | | |
Collapse
|
35
|
Theoret CL, Wilmink JM. Aberrant wound healing in the horse: naturally occurring conditions reminiscent of those observed in man. Wound Repair Regen 2013; 21:365-71. [PMID: 23441750 DOI: 10.1111/wrr.12018] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 11/14/2012] [Indexed: 01/30/2023]
Abstract
Impaired wound healing represents an enormous clinical and financial problem for companion animals and humans alike. Unfortunately, most models used to study healing rely on rodents, which have significant differences in the healing and scarring process and rarely develop complications. In order to better simulate impaired healing, the model should strive to reproduce the natural processes of healing and delayed healing. Wounds on the limbs of horses display similarities to wounds in humans in their epithelialization/contraction ratio, genetic influence as well as dysregulated cytokine profile and the spontaneous development of fibroproliferative disorders. Veterinarians have access to advanced wound therapies that are often identical to those provided to human patients. Wound research in large animals has resulted in new wound models as well as a better understanding of the physiology, immunology, and local environmental impact on both normal and aberrant wound healing. One such model reproduces the naturally occurring fibroproliferative disorder of horses known as exuberant granulation tissue. Comparisons between the normally healing and impaired wounds provide insight into the repair process and can facilitate product development. A better understanding of the wound healing physiopathology based on clinically accurate animal models should lead to the development of novel therapies thereby improving outcomes in both human and veterinary patients.
Collapse
|
36
|
Link KA, Koenig JB, Silveira A, Plattner BL, Lillie BN. Effect of unfocused extracorporeal shock wave therapy on growth factor gene expression in wounds and intact skin of horses. Am J Vet Res 2013; 74:324-32. [DOI: 10.2460/ajvr.74.2.324] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Celeste CJ, Deschesne K, Riley CB, Theoret CL. Skin Temperature during Cutaneous Wound Healing in an Equine Model of Cutaneous Fibroproliferative Disorder: Kinetics and Anatomic-Site Differences. Vet Surg 2012; 42:147-53. [DOI: 10.1111/j.1532-950x.2012.00966.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christophe J. Celeste
- Comparative Tissue Healing Laboratory; Département de Biomédecine; Faculté de Médecine Vétérinaire; Université de Montréal; Saint-Hyacinthe; Canada
| | - Karine Deschesne
- Comparative Tissue Healing Laboratory; Département de Biomédecine; Faculté de Médecine Vétérinaire; Université de Montréal; Saint-Hyacinthe; Canada
| | - Christopher B. Riley
- School of Animal and Veterinary Sciences; University of Adelaide; Roseworthy Campus; Roseworthy; Australia
| | - Christine L. Theoret
- Comparative Tissue Healing Laboratory; Département de Biomédecine; Faculté de Médecine Vétérinaire; Université de Montréal; Saint-Hyacinthe; Canada
| |
Collapse
|
38
|
Extracellular matrix expression by equine oral and limb fibroblasts in in vitro culture. Res Vet Sci 2012; 92:213-8. [DOI: 10.1016/j.rvsc.2011.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 02/28/2011] [Accepted: 03/18/2011] [Indexed: 11/17/2022]
|
39
|
Deschene K, Céleste C, Boerboom D, Theoret CL. Hypoxia regulates the expression of extracellular matrix associated proteins in equine dermal fibroblasts via HIF1. J Dermatol Sci 2011; 65:12-8. [PMID: 21999945 DOI: 10.1016/j.jdermsci.2011.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/05/2011] [Accepted: 09/15/2011] [Indexed: 01/20/2023]
Abstract
BACKGROUND Exuberant granulation tissue (EGT), a fibrotic healing disorder resembling the human keloid, occurs almost exclusively in limb wounds of horses and may be caused in part by a relative state of hypoxia within the wound. OBJECTIVE The objectives of this study were therefore to (1) assess the effects of hypoxia on equine dermal fibroblast (EDF) proliferation and apoptosis, (2) study the effects of hypoxia on the expression of key extracellular matrix (ECM) associated proteins and determine if such effects are dependent on hypoxia-inducible factor (HIF), and (3) determine if EDFs from the body or limb respond differently to hypoxia. METHODS EDFs were isolated and cultured from skin from body or limb under normoxic or hypoxic conditions for up to 7days. RESULTS Hypoxia significantly stimulated EDF proliferation, but had no effect on cell survival. The hypoxia-mimetic agent CoCl(2) up-regulated COL1A1 expression and down-regulated MMP2 expression, suggesting an increase in ECM synthesis and a decrease in turnover. Both regulatory effects were inhibited by the addition of echinomycin, indicating that they are mediated by the transcriptional regulatory activity of HIF. No differences were observed between EDFs originating from body or limb for any effect of hypoxia or CoCl(2), suggesting that EGT development does not depend on intrinsic properties of limb fibroblasts. CONCLUSIONS We conclude that hypoxia regulates ECM remodeling via HIF1 in EDFs, and that this may be an important determinant in the pathogenesis of equine EGT.
Collapse
Affiliation(s)
- Karine Deschene
- Université de Montréal, Département de biomédecine vétérinaire, Canada
| | | | | | | |
Collapse
|
40
|
Deschene K, Céleste C, Boerboom D, Theoret CL. Constitutive expression of hypoxia-inducible factor-1 α in keratinocytes during the repair of skin wounds in horses. Wound Repair Regen 2011; 19:250-9. [DOI: 10.1111/j.1524-475x.2010.00663.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Lepherd ML, Canfield PJ, Hunt GB, Thomson PC, Bosward KL. Wound healing after mulesing and other options for controlling breech flystrike in Merino lambs: quantitative and semiquantitative analysis of wound healing and wound bed contraction. Aust Vet J 2011; 89:61-9. [PMID: 21323649 DOI: 10.1111/j.1751-0813.2010.00670.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND A two-part study examined wound healing and contraction occurring after mulesing and two alternative methods of preventing breech flystrike in sheep. OBJECTIVE To quantify wound healing using a scoring system and to assess the contractility of the wound bed of the breech after mulesing, cetrimide-intradermal treatment and application of clips. METHOD The study group of 30 mulesed, 30 cetrimide-intradermal treated, 30 control and 10 clip-treated sheep were humanely killed at six time points from 3 to 47 days after each treatment. Wound healing post treatment was assessed using a scoring system, and contractility was assessed by the quantification of myofibroblast expression. Statistical analyses allowed comparisons of temporal wound healing and contraction between treatment groups. RESULTS Mulesing wounds healed faster in the first 11 days, but by 19 days wound healing was similar between the mulesing and cetrimide-intradermal groups. By 32 days, all three treatment groups had similar wound healing scores. There was greater myofibroblast expression in the mulesing group in the first 11 days after treatment, but by 19 days expression was similar in both the mulesing and cetrimide-intradermal groups. The clip group had significantly less myofibroblast expression from 32 days after treatment. CONCLUSION Wound healing is initially most rapid after mulesing, but there are similar wound healing scores in the mulesing and cetrimide-intradermal treatment groups by 19 days. Both mulesing and the cetrimide-intradermal treatment induce a similar amount of wound bed contraction, with less contraction observed after application of clips.
Collapse
Affiliation(s)
- M L Lepherd
- Faculty of Veterinary Science, The University of Sydney, New South Wales, Australia.
| | | | | | | | | |
Collapse
|
42
|
Celeste CJ, Deschene K, Riley CB, Theoret CL. Regional differences in wound oxygenation during normal healing in an equine model of cutaneous fibroproliferative disorder. Wound Repair Regen 2010; 19:89-97. [PMID: 20955347 DOI: 10.1111/j.1524-475x.2010.00639.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Wound repair in horse limbs is often complicated by the development of exuberant granulation tissue (EGT) and excessive scarring while body wounds tend to repair uneventfully. EGT resembles the human keloid. While the events leading to keloid formation are not fully elucidated, tissue hypoxia has been proposed as a major contributing factor. The objective of this study was to investigate tissue oxygen saturation in healing full-thickness wounds created on the horse limb and body, using near-infrared spectroscopy. Spectroscopic reflectance data were collected from both anatomic sites at specific times following wounding. The oxygen saturation values of limb wounds were significantly inferior to those of body wounds during the early period of healing, indicating a temporary, relative state of hypoxia in the former during the inflammatory phase of repair. Horses present a weak, persistent inflammatory response to wounding, especially at the limb level. The relative hypoxia present acutely in limb wounds of horses may promote a feeble yet prolonged inflammatory response, which could interfere with and retard the subsequent phases of healing. Ongoing low-grade inflammation in horse wounds is accompanied by up-regulation of various inflammatory and profibrotic mediators, which might ultimately promote the development of fibroproliferative disorders such as EGT.
Collapse
Affiliation(s)
- Christophe J Celeste
- Comparative Tissue Healing Laboratory, Département de Biomédecine, Faculté de Médecine Vétérinaire, Université de Montréal, Québec, Canada.
| | | | | | | |
Collapse
|
43
|
Silveira A, Koenig JB, Arroyo LG, Trout D, Moens NMM, LaMarre J, Brooks A. Effects of unfocused extracorporeal shock wave therapy on healing of wounds of the distal portion of the forelimb in horses. Am J Vet Res 2010; 71:229-34. [DOI: 10.2460/ajvr.71.2.229] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
|
45
|
Miragliotta V, Raphäel K, Lussier JG, Theoret CL. Equine lumican (LUM) cDNA sequence and spatio-temporal expression in an experimental model of normal and pathological wound healing. Vet Dermatol 2009; 20:243-8. [DOI: 10.1111/j.1365-3164.2009.00748.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Miragliotta V, Raphaël K, Ipiña Z, Lussier JG, Theoret CL. Equine thrombospondin II and secreted protein acidic and cysteine-rich in a model of normal and pathological wound repair. Physiol Genomics 2009; 38:149-57. [PMID: 19401403 DOI: 10.1152/physiolgenomics.90383.2008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Wound healing in horses is complicated, particularly when wounds are on the limb. The objectives of this study were to clone equine thrombospondin II (THBS2) and secreted protein acidic and cysteine-rich (SPARC) cDNAs and to compare the spatiotemporal expression of mRNAs and proteins during repair of body and limb wounds. These molecules were targeted in view of their potential biological contribution to angiogenesis, which is exacerbated during the repair of limb wounds in horses. Cloning was achieved by screening size-selected cDNA libraries previously derived from 7-day-old wounds. Expression was studied in unwounded skin and in samples from 1, 2, 3, 4, and 6 wk old wounds of the body and limb. Temporal gene expression was determined by semiquantitative RT-PCR, while protein expression was mapped immunohistochemically. The temporal pattern of expression for both genes was similar; wounding caused immediate upregulation of mRNA, which did not return to baseline by the end of the study, and overexpression was noted in body relative to limb wounds. Immunostaining for THBS2 and SPARC was induced by wounding, though no differences in stain location or intensity were detected between body and limb wounds. This study is the first to characterize equine cDNA for THBS2 and SPARC and to document mRNA expression over the different phases of repair. THBS2 and SPARC might modulate angiogenesis during wound healing in the horse, which could protect against the disproportionate fibroplasia commonly afflicting limb wounds and leading to the development of exuberant granulation tissue.
Collapse
Affiliation(s)
- Vincenzo Miragliotta
- Department of Veterinary Anatomy, Biochemistry and Physiology, University of Pisa, Pisa, Italy
| | | | | | | | | |
Collapse
|
47
|
Monteiro SO, Lepage OM, Theoret CL. Effects of platelet-rich plasma on the repair of wounds on the distal aspect of the forelimb in horses. Am J Vet Res 2009; 70:277-82. [PMID: 19231962 DOI: 10.2460/ajvr.70.2.277] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the effect of platelet-rich plasma on wounds on the distal aspect of the forelimb in horses. ANIMALS 6 mixed-breed 10- to 15-year-old mares. PROCEDURES 3 wounds were created on metacarpal regions in each of 6 horses (n = 36 wounds total). Eighteen wounds were treated with platelet-rich plasma and bandaged, whereas 18 control wounds were similarly bandaged with no prior topical treatment. Decrease in wound surface area and the required number of excisions of exuberant granulation tissue were recorded until complete healing. Tissue specimens were taken from wounds at 1 week for histologic examination and measurement of transforming growth factor-beta1 concentrations and at closure for histologic examination, biomechanical evaluation, and measurement of collagen type I and type III mRNA. RESULTS Platelet-rich plasma favored excessive development of granulation tissue and significantly slowed wound healing at 1, 2, and 3 weeks after surgery. Transforming growth factor-beta1 had a 1.6-fold higher concentration in treated wounds, compared with untreated wounds. Histologic, biomechanical, and gene expression data did not differ significantly between treated and control wounds. CONCLUSIONS AND CLINICAL RELEVANCE Topical application of autologous platelet-rich plasma did not accelerate or improve the quality of repair of small granulating wounds on limbs of horses. This treatment may better suit wounds with massive tissue loss or, alternatively, chronic wounds that would benefit from a fresh source of mediators to accelerate the healing process.
Collapse
Affiliation(s)
- Susana O Monteiro
- Ecole Nationale Vétérinaire de Lyon, Département Hippique, Marcy L'Etoile, F-69280, France
| | | | | |
Collapse
|
48
|
Miragliotta V, Lussier JG, Theoret CL. Laminin receptor 1 is differentially expressed in thoracic and limb wounds in the horse. Vet Dermatol 2009; 20:27-34. [DOI: 10.1111/j.1365-3164.2008.00718.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
49
|
Ipiña Z, Lussier JG, Theoret CL. Nucleotide structure and expression of equine pigment epithelium-derived factor during repair of experimentally induced wounds in horses. Am J Vet Res 2009; 70:112-7. [DOI: 10.2460/ajvr.70.1.112] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Tablin F, Walker NJ, Hogle SE, Pratt SM, Norris JW. Assessment of platelet growth factors in supernatants from rehydrated freeze-dried equine platelets and their effects on fibroblasts in vitro. Am J Vet Res 2008; 69:1512-9. [DOI: 10.2460/ajvr.69.11.1512] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|