1
|
Heude E, Dutel H, Sanchez-Garrido F, Prummel KD, Lalonde R, Lam F, Mosimann C, Herrel A, Tajbakhsh S. Co-option of neck muscles supported the vertebrate water-to-land transition. Nat Commun 2024; 15:10564. [PMID: 39632846 PMCID: PMC11618326 DOI: 10.1038/s41467-024-54724-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
A major event in vertebrate evolution was the separation of the skull from the pectoral girdle and the acquisition of a functional neck, transitions that required profound developmental rearrangements of the musculoskeletal system. The neck is a hallmark of the tetrapod body plan and allows for complex head movements on land. While head and trunk muscles arise from distinct embryonic mesoderm populations, the origins of neck muscles remain elusive. Here, we combine comparative embryology and anatomy to reconstruct the mesodermal contribution to neck evolution. We demonstrate that head/trunk-connecting muscle groups have conserved mesodermal origins in fishes and tetrapods and that the neck evolved from muscle groups present in fishes. We propose that expansions of mesodermal populations into head and trunk domains during embryonic development underpinned the emergence and adaptation of the tetrapod neck. Our results provide evidence for the exaptation of archetypal muscle groups in ancestral fishes, which were co-opted to acquire novel functions adapted to a terrestrial lifestyle.
Collapse
Affiliation(s)
- Eglantine Heude
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS UMR5242 Université Claude Bernard Lyon-1, Lyon, France.
- PHYMA, Département Adaptations du Vivant, Muséum national d'Histoire naturelle, CNRS UMR 7221, Paris, France.
| | - Hugo Dutel
- Bristol Palaeobiology Research Group, School of Earth Sciences, University of Bristol, Bristol, UK
- Université de Bordeaux, CNRS, MCC, PACEA, UMR 5199, Pessac, France
- Craniofacial Growth and Form, Hôpital Necker - Enfants Malades, Paris, France
| | - Frida Sanchez-Garrido
- PHYMA, Département Adaptations du Vivant, Muséum national d'Histoire naturelle, CNRS UMR 7221, Paris, France
| | - Karin D Prummel
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Robert Lalonde
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Yale University, New Haven, USA
| | - France Lam
- Core Facilities - Institut de Biologie Paris Seine (IBPS), Sorbonne Universités, Paris, France
| | - Christian Mosimann
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Anthony Herrel
- MECADEV, Département Adaptations du Vivant, Muséum national d'Histoire naturelle, CNRS UMR 7179, Paris, France
- Department of Biology, Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium
- Department of Biology, University of Antwerp, Wilrijk, Belgium
- Naturhistorisches Museum Bern, Bern, Switzerland
| | - Shahragim Tajbakhsh
- Department of Developmental & Stem Cell Biology, Stem Cells & Development Unit, Institut Pasteur, Université Paris Cité, Paris, France
- CNRS UMR3738, Institut Pasteur, Paris, France
| |
Collapse
|
2
|
Romanov AV, Shakhparonov VV, Gerasimov KB, Korzun LP. Occipital-synarcual joint mobility in ratfishes (Chimaeridae) and its possible adaptive role. J Morphol 2024; 285:e21740. [PMID: 38858850 DOI: 10.1002/jmor.21740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 06/12/2024]
Abstract
The neurocranial elevation generated by axial muscles is widespread among aquatic gnathostomes. The mechanism has two functions: first, it contributes to the orientation of the mouth gape, and second, it is involved in suction feeding. To provide such mobility, anatomical specialization of the anterior part of the vertebral column has evolved in many fish species. In modern chimaeras, the anterior part of the vertebral column develops into the synarcual. Possible biological roles of the occipital-synarcual joint have not been discussed before. Dissections of the head of two species of ratfishes (Chimaera monstrosa and Chimaera phantasma) confirmed the heterocoely of the articulation surface between the synarcual and the neurocranium, indicating the possibility of movements in the sagittal and frontal planes. Muscles capable of controlling the movements of the neurocranium were described. The m. epaxialis is capable of elevating the head, the m. coracomandibularis is capable of lowering it if the mandible is anchored by the adductor. Lateral flexion is performed by the m. lateroventralis, for which this function was proposed for the first time. The first description of the m. epaxialis profundus is given, its function is to be elucidated in the future. Manipulations with joint preparations revealed a pronounced amplitude of movement in the sagittal and frontal planes. Since chimaeras generate weak decrease in pressure in the oropharyngeal cavity when sucking in prey, we hypothesised the primary effect of neurocranial elevation, in addition to the evident lateral head mobility, is accurate prey targeting.
Collapse
Affiliation(s)
- Alexey V Romanov
- Department of Vertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir V Shakhparonov
- Department of Vertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Kyrill B Gerasimov
- Department of Vertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Leonid P Korzun
- Department of Vertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
3
|
Deakin WJ, Anderson PSL, den Boer W, Smith TJ, Hill JJ, Rücklin M, Donoghue PCJ, Rayfield EJ. Increasing morphological disparity and decreasing optimality for jaw speed and strength during the radiation of jawed vertebrates. SCIENCE ADVANCES 2022; 8:eabl3644. [PMID: 35302857 PMCID: PMC8932669 DOI: 10.1126/sciadv.abl3644] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/28/2022] [Indexed: 05/25/2023]
Abstract
The Siluro-Devonian adaptive radiation of jawed vertebrates, which underpins almost all living vertebrate biodiversity, is characterized by the evolutionary innovation of the lower jaw. Multiple lines of evidence have suggested that the jaw evolved from a rostral gill arch, but when the jaw took on a feeding function remains unclear. We quantified the variety of form in the earliest jaws in the fossil record from which we generated a theoretical morphospace that we then tested for functional optimality. By drawing comparisons with the real jaw data and reconstructed jaw morphologies from phylogenetically inferred ancestors, our results show that the earliest jaw shapes were optimized for fast closure and stress resistance, inferring a predatory feeding function. Jaw shapes became less optimal for these functions during the later radiation of jawed vertebrates. Thus, the evolution of jaw morphology has continually explored previously unoccupied morphospace and accumulated disparity through time, laying the foundation for diverse feeding strategies and the success of jawed vertebrates.
Collapse
Affiliation(s)
- William J. Deakin
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Philip S. L. Anderson
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana-Champaign, IL, USA
| | - Wendy den Boer
- Swedish Museum of Natural History, Department of Palaeobiology, Frescativägen 40, 114 18 Stockholm, Sweden
| | - Thomas J. Smith
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Jennifer J. Hill
- Smithsonian Institution, National Museum of Natural History, Washington, DC 20013-7012, USA
| | - Martin Rücklin
- Naturalis Biodiversity Center, Postbus 9517, 2300 RA Leiden, Netherlands
| | - Philip C. J. Donoghue
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Emily J. Rayfield
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
4
|
Elias-Costa AJ, Araujo-Vieira K, Faivovich J. Evolution of the strikingly diverse submandibular muscles in Anura. Cladistics 2021; 37:489-517. [PMID: 34570935 DOI: 10.1111/cla.12451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2020] [Indexed: 01/22/2023] Open
Abstract
The most ventral muscles of the head (the mm. submentalis, intermandibularis, and interhyoideus) provide support to the gular region and lift the buccal floor during ventilation and feeding. These muscles show limited variation in most gnathostomes, but in Anura they exhibit a surprising diversity. The few studies that have explored this character system highlighted its potential as a source of phylogenetic information. In this paper we explored the diversity of this character system studying specimens of 567 anuran species and reviewing published data to cover a total of 1321 species, belonging to 53 of the 54 currently recognized anuran families, as well as caudates and caecilians. We defined 27 discrete characters including the number of muscle bellies, supplementary layers, hypertrophy and diversity of elastic fibres, and pigmentation, among others, and optimized them on a comprehensive phylogenetic hypothesis. We recognized 223 unambiguously optimized synapomorphies for numerous clades on different scales, including three for Anura and many for suprafamiliar clades with poor phenotypic support. Finally, we discussed the evolution of this highly diverse character system, including homology, development, and its functional role in vocalization and feeding. Interestingly, the striking levels of variation in some structures contrast with the amount of phylogenetic inertia, allowing us to recognize several general patterns. Supplementary elements of the m. intermandibularis evolved first as broad layers occuring in more than half of extant anuran species and then concentrated forming discreet bellies in several clades. The anterior portion of the gular region is not sexually dimorphic, and is likely related to ventilation and tongue protraction. Conversely, the diversity of the m. interhyoideus is strongly linked to vocal sacs, which are present only in adult males, suggesting the presence of two independent modules.
Collapse
Affiliation(s)
- Agustín J Elias-Costa
- División Herpetología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" - CONICET, Av. Ángel Gallardo 470, Buenos Aires, C1405DJR, Argentina
| | - Katyuscia Araujo-Vieira
- División Herpetología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" - CONICET, Av. Ángel Gallardo 470, Buenos Aires, C1405DJR, Argentina
| | - Julián Faivovich
- División Herpetología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" - CONICET, Av. Ángel Gallardo 470, Buenos Aires, C1405DJR, Argentina.,Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
| |
Collapse
|
5
|
Dearden RP, Mansuit R, Cuckovic A, Herrel A, Didier D, Tafforeau P, Pradel A. The morphology and evolution of chondrichthyan cranial muscles: A digital dissection of the elephantfish Callorhinchus milii and the catshark Scyliorhinus canicula. J Anat 2021; 238:1082-1105. [PMID: 33415764 PMCID: PMC8053583 DOI: 10.1111/joa.13362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/25/2020] [Accepted: 10/29/2020] [Indexed: 11/30/2022] Open
Abstract
The anatomy of sharks, rays, and chimaeras (chondrichthyans) is crucial to understanding the evolution of the cranial system in vertebrates due to their position as the sister group to bony fishes (osteichthyans). Strikingly different arrangements of the head in the two constituent chondrichthyan groups-holocephalans and elasmobranchs-have played a pivotal role in the formation of evolutionary hypotheses targeting major cranial structures such as the jaws and pharynx. However, despite the advent of digital dissections as a means of easily visualizing and sharing the results of anatomical studies in three dimensions, information on the musculoskeletal systems of the chondrichthyan head remains largely limited to traditional accounts, many of which are at least a century old. Here, we use synchrotron tomographic data to carry out a digital dissection of a holocephalan and an elasmobranch widely used as model species: the elephantfish, Callorhinchus milii, and the small-spotted catshark, Scyliorhinus canicula. We describe and figure the skeletal anatomy of the head, labial, mandibular, hyoid, and branchial cartilages in both taxa as well as the muscles of the head and pharynx. In Callorhinchus, we make several new observations regarding the branchial musculature, revealing several previously unreported or ambiguously characterized muscles, likely homologous to their counterparts in the elasmobranch pharynx. We also identify a previously unreported structure linking the pharyngohyal of Callorhinchus to the neurocranium. Finally, we review what is known about the evolution of chondrichthyan cranial muscles from their fossil record and discuss the implications for muscle homology and evolution, broadly concluding that the holocephalan pharynx is likely derived from a more elasmobranch-like form which is plesiomorphic for the chondrichthyan crown group. This dataset has great potential as a resource, particularly for researchers using these model species for zoological research, functional morphologists requiring models of musculature and skeletons, as well as for palaeontologists seeking comparative models for extinct taxa.
Collapse
Affiliation(s)
- Richard P Dearden
- CR2P, Centre de Recherche en Paléontologie-Paris, Muséum national d'Histoire naturelle, Sorbonne Université, Centre National de la Recherche Scientifique, Paris cedex 05, France
| | - Rohan Mansuit
- CR2P, Centre de Recherche en Paléontologie-Paris, Muséum national d'Histoire naturelle, Sorbonne Université, Centre National de la Recherche Scientifique, Paris cedex 05, France.,UMR 7179 (MNHN-CNRS) MECADEV, Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, Paris, France
| | | | - Anthony Herrel
- UMR 7179 (MNHN-CNRS) MECADEV, Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, Paris, France
| | - Dominique Didier
- Department of Biology, Millersville University, Millersville, PA, USA
| | - Paul Tafforeau
- European Synchrotron Radiation Facility, Grenoble, France
| | - Alan Pradel
- CR2P, Centre de Recherche en Paléontologie-Paris, Muséum national d'Histoire naturelle, Sorbonne Université, Centre National de la Recherche Scientifique, Paris cedex 05, France
| |
Collapse
|
6
|
Ziermann JM, Clement AM, Ericsson R, Olsson L. Cephalic muscle development in the Australian lungfish,Neoceratodus forsteri. J Morphol 2017; 279:494-516. [DOI: 10.1002/jmor.20784] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/29/2017] [Accepted: 11/20/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Janine M. Ziermann
- Department of Anatomy; Howard University College of Medicine; Washington DC 20059
| | - Alice M. Clement
- Department of Organismal Biology; Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A; Uppsala 752 36 Sweden
- School of Biological Sciences, College of Science and Engineering; Flinders University; Adelaide South Australia 5042 Australia
| | - Rolf Ericsson
- Laboratory for the Study of Craniofacial Evolution & Development, Vinicna 7; Charles University in Prague; Prague 128 44 Czech Republic
| | - Lennart Olsson
- Institut für Zoologie und Evolutionsforschung; Friedrich-Schiller-Universität Jena; Jena Germany
| |
Collapse
|
7
|
Ziermann JM, Miyashita T, Diogo R. Cephalic muscles of Cyclostomes (hagfishes and lampreys) and Chondrichthyes (sharks, rays and holocephalans): comparative anatomy and early evolution of the vertebrate head muscles. Zool J Linn Soc 2014. [DOI: 10.1111/zoj.12186] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Janine M. Ziermann
- Department of Anatomy; Howard University College of Medicine; Washington DC 20059 USA
| | - Tetsuto Miyashita
- Department of Biological Sciences; University of Alberta; Edmonton AB T6E 2N4 Canada
| | - Rui Diogo
- Department of Anatomy; Howard University College of Medicine; Washington DC 20059 USA
| |
Collapse
|
8
|
Diogo R, Ziermann J. Muscles of Chondrichthyan Paired Appendages: Comparison With Osteichthyans, Deconstruction of the Fore-Hindlimb Serial Homology Dogma, and New Insights on the Evolution of the Vertebrate Neck. Anat Rec (Hoboken) 2014; 298:513-30. [DOI: 10.1002/ar.23047] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 07/30/2014] [Indexed: 11/11/2022]
Affiliation(s)
- R. Diogo
- Department of Anatomy; Howard University College of Medicine; Washington DC
| | - J.M. Ziermann
- Department of Anatomy; Howard University College of Medicine; Washington DC
| |
Collapse
|
9
|
Brazeau MD, Friedman M. The characters of Palaeozoic jawed vertebrates. Zool J Linn Soc 2014; 170:779-821. [PMID: 25750460 PMCID: PMC4347021 DOI: 10.1111/zoj.12111] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/27/2013] [Indexed: 12/01/2022]
Abstract
Newly discovered fossils from the Silurian and Devonian periods are beginning to challenge embedded perceptions about the origin and early diversification of jawed vertebrates (gnathostomes). Nevertheless, an explicit cladistic framework for the relationships of these fossils relative to the principal crown lineages of the jawed vertebrates (osteichthyans: bony fishes and tetrapods; chondrichthyans: sharks, batoids, and chimaeras) remains elusive. We critically review the systematics and character distributions of early gnathostomes and provide a clearly stated hierarchy of synapomorphies covering the jaw-bearing stem gnathostomes and osteichthyan and chondrichthyan stem groups. We show that character lists, designed to support the monophyly of putative groups, tend to overstate their strength and lack cladistic corroboration. By contrast, synapomorphic hierarchies are more open to refutation and must explicitly confront conflicting evidence. Our proposed synapomorphy scheme is used to evaluate the status of the problematic fossil groups Acanthodii and Placodermi, and suggest profitable avenues for future research. We interpret placoderms as a paraphyletic array of stem-group gnathostomes, and suggest what we regard as two equally plausible placements of acanthodians: exclusively on the chondrichthyan stem, or distributed on both the chondrichthyan and osteichthyan stems.
Collapse
Affiliation(s)
- Martin D Brazeau
- Naturalis Biodiversity CenterP.O. Box 9514, 2300 RA, Leiden, The Netherlands
| | - Matt Friedman
- Department of Earth Sciences, University of OxfordSouth Parks Road, Oxford, OX1 3AN, UK
| |
Collapse
|
10
|
Kolmann MA, Huber DR, Dean MN, Grubbs RD. Myological variability in a decoupled skeletal system: Batoid cranial anatomy. J Morphol 2014; 275:862-81. [DOI: 10.1002/jmor.20263] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 01/28/2014] [Accepted: 02/27/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Matthew A. Kolmann
- Florida State University Coastal and Marine Laboratory; St. Teresa Florida 32358
| | - Daniel R. Huber
- Department of Biology; University of Tampa; Tampa Florida 33606
| | - Mason N. Dean
- Department of Biomaterials; Max Planck Institute of Colloids and Interfaces; Potsdam 14424 Germany
| | - R. Dean Grubbs
- Florida State University Coastal and Marine Laboratory; St. Teresa Florida 32358
| |
Collapse
|
11
|
Abstract
Muscles of the vertebrate neck include the cucullaris and hypobranchials. Although a functional neck first evolved in the lobe-finned fishes (Sarcopterygii) with the separation of the pectoral/shoulder girdle from the skull, the neck muscles themselves have a much earlier origin among the vertebrates. For example, lampreys possess hypobranchial muscles, and may also possess the cucullaris. Recent research in chick has established that these two muscles groups have different origins, the hypobranchial muscles having a somitic origin but the cucullaris muscle deriving from anterior lateral plate mesoderm associated with somites 1-3. Additionally, the cucullaris utilizes genetic pathways more similar to the head than the trunk musculature. Although the latter results are from experiments in the chick, cucullaris homologues occur in a variety of more basal vertebrates such as the sharks and zebrafish. Data are urgently needed from these taxa to determine whether the cucullaris in these groups also derives from lateral plate mesoderm or from the anterior somites, and whether the former or the latter represent the basal vertebrate condition. Other lateral plate mesoderm derivatives include the appendicular skeleton (fins, limbs and supporting girdles). If the cucullaris is a definitive lateral plate-derived structure it may have evolved in conjunction with the shoulder/limb skeleton in vertebrates and thereby provided a greater degree of flexibility to the heads of predatory vertebrates.
Collapse
Affiliation(s)
- Rolf Ericsson
- Department of Palaeontology, Natural History Museum, London, UK.
| | | | | |
Collapse
|
12
|
Dean MN, Summers AP, Ferry LA. Very low pressures drive ventilatory flow in chimaeroid fishes. J Morphol 2011; 273:461-79. [DOI: 10.1002/jmor.11035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/30/2011] [Accepted: 10/04/2011] [Indexed: 11/06/2022]
|
13
|
Johnston P. Cranial muscles of the anurans Leiopelma hochstetteri and Ascaphus truei and the homologies of the mandibular adductors in Lissamphibia and other gnathostomes. J Morphol 2011; 272:1492-512. [PMID: 21845732 DOI: 10.1002/jmor.10998] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 04/08/2011] [Accepted: 05/07/2011] [Indexed: 11/09/2022]
Abstract
The frogs Ascaphus truei and Leiopelma hochstetteri are members of the most basal lineages of extant anurans. Their cranial muscles have not been previously described in full and are investigated here by dissection. Comparison of these taxa is used to review a controversy regarding the homologies of the jaw adductor muscles in Lissamphibia, to place these homologies in a wider gnathostome context, and to define features that may be useful for cladistic analysis of Anura. A new muscle is defined in Ascaphus and is designated m. levator anguli oris. The differences noted between Ascaphus and Leiopelma are in the penetration of the jaw adductor muscles by the mandibular nerve (V3). In the traditional view of this anatomy, the paths of the trigeminal nerve branches define homologous muscles. This scheme results in major differences among frogs, salamanders, and caecilians. The alternative view is that the topology of origins, insertions, and fiber directions are defining features, and the nerves penetrate the muscle mass in a variable way. The results given here support the latter view. A new model is proposed for Lissamphibia, whereby the adductor posterior (levator articularis) is a separate entity, and the rest of the adductor mass is configured around it as a folded sheet. This hypothesis is examined in other gnathostomes, including coelacanth and lungfish, and a possible sequence for the evolution of the jaw muscles is demonstrated. In this system, the main jaw adductor in teleost fish is not considered homologous with that of tetrapods. This hypothesis is consistent with available data on the domain of expression of the homeobox gene engrailed 2, which has previously not been considered indicative of homology. Terminology is discussed, and "adductor mandibulae" is preferred to "levator mandibulae" to align with usage in other gnathostomes.
Collapse
Affiliation(s)
- Peter Johnston
- Department of Anatomy with Radiology, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
14
|
Konow N, Herrel A, Ross CF, Williams SH, German RZ, Sanford CPJ, Gintof C. Evolution of muscle activity patterns driving motions of the jaw and hyoid during chewing in Gnathostomes. Integr Comp Biol 2011; 51:235-46. [PMID: 21705368 DOI: 10.1093/icb/icr040] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although chewing has been suggested to be a basal gnathostome trait retained in most major vertebrate lineages, it has not been studied broadly and comparatively across vertebrates. To redress this imbalance, we recorded EMG from muscles powering anteroposterior movement of the hyoid, and dorsoventral movement of the mandibular jaw during chewing. We compared muscle activity patterns (MAP) during chewing in jawed vertebrate taxa belonging to unrelated groups of basal bony fishes and artiodactyl mammals. Our aim was to outline the evolution of coordination in MAP. Comparisons of activity in muscles of the jaw and hyoid that power chewing in closely related artiodactyls using cross-correlation analyses identified reorganizations of jaw and hyoid MAP between herbivores and omnivores. EMG data from basal bony fishes revealed a tighter coordination of jaw and hyoid MAP during chewing than seen in artiodactyls. Across this broad phylogenetic range, there have been major structural reorganizations, including a reduction of the bony hyoid suspension, which is robust in fishes, to the acquisition in a mammalian ancestor of a muscle sling suspending the hyoid. These changes appear to be reflected in a shift in chewing MAP that occurred in an unidentified anamniote stem-lineage. This shift matches observations that, when compared with fishes, the pattern of hyoid motion in tetrapods is reversed and also time-shifted relative to the pattern of jaw movement.
Collapse
Affiliation(s)
- Nicolai Konow
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Anderson PSL. Using linkage models to explore skull kinematic diversity and functional convergence in arthrodire placoderms. J Morphol 2010; 271:990-1005. [PMID: 20623651 DOI: 10.1002/jmor.10850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Biomechanical models offer a powerful set of tools for quantifying the diversity of function across fossil taxa. A computer-based four-bar linkage model previously developed to describe the potential feeding kinematics of Dunkleosteus terrelli is applied here to several other arthrodire placoderm taxa from different lineages. Arthrodire placoderms are a group of basal gnathostomes showing one of the earliest diversifications of jaw structures. The linkage model allows biomechanical variation to be compared across taxa, identify trends in skull morphology among arthrodires that potentially influence function and explore the role of linkage systems in the early evolution of jaw structures. The linkage model calculates various kinematic metrics including gape angle, effective mechanical advantage, and kinematic transmission coefficients. Results indicate that the arthrodire feeding system may be more diverse and complex than previously thought. A range of potential kinematic profiles among arthrodire taxa illustrate a diversity of feeding function comparable with modern teleost fishes. Previous estimates of bite force in Dunkleosteus are revised based on new morphological data. High levels of kinematic transmission among arthrodires suggest the potential for rapid gape expansion and possible suction feeding. Morphological comparisons indicate that there were several morphological solutions for obtaining these fast kinematics, which allowed different taxa to achieve similar kinematic profiles while varying other aspects of the feeding apparatus. Mapping of key morphological components of the linkage system on a general placoderm phylogeny illustrates the potential importance of four-bar systems to the early evolution of jaw structures.
Collapse
Affiliation(s)
- Philip S L Anderson
- Geophysical Sciences Department, University of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
16
|
Kenaley CP. Comparative innervation of cephalic photophores of the loosejaw dragonfishes (Teleostei: Stomiiformes: Stomiidae): evidence for parallel evolution of long-wave bioluminescence. J Morphol 2010; 271:418-37. [PMID: 19924766 DOI: 10.1002/jmor.10807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Four genera of the teleost family Stomiidae, the loosejaw dragonfishes, possess accessory cephalic photophores (AOs). Species of three genera, Aristostomias, Malacosteus, and Pachystomias, are capable of producing far-red, long-wave emissions (>650nm) from their AOs, a character unique among vertebrates. Aristostomias and Malacosteus posses a single far-red AO, while Pachystomias possesses anterior and posterior far-red AOs, each with smaller separate photophores positioned in their ventral margins. The purpose of this study was to establish the primary homology of the loosejaw AOs based on topological similarity of cranial nerve innervation, and subject these homology conjectures to tests of congruence under a phylogenetic hypothesis for the loosejaw dragonfishes. On the basis of whole-mount, triple-stained specimens, innervation of the loosejaw AOs is described. The AO of Aristostomias and the anterior AO of Pachystomias are innervated by the profundal ramus of the trigeminal (Tpr), while the far-red AO of Malacosteus and a small ventral AO of Pachystomias are innervated by the maxillary ramus of the trigeminal (Tmx). The largest far-red AO of Pachystomias, positioned directly below the orbit, and the short-wave AO of Photostomias are innervated by a branch of the mandibular ramus of the trigeminal nerve. Conjectures of primary homology drawn from these neuroanatomical similarities were subjected to tests of congruence on a phylogeny of the loosejaws inferred from a reanalysis of a previously published morphological dataset. Optimized for accelerated transformation, the AO innervated by the Tpr appears as a single transformation on the new topology, thereby establishing secondary homology. The AOs innervated by the Tmd found in Pachystomias and Photostomias appear as two transformations in a reconstruction on the new topology, a result that rejects secondary homology of this structure. The secondary homology of AOs innervated by the Tmx found in Malacosteus and Pachystomias is rejected on the same grounds. Two short-wave cephalic photophores present in all four genera, the suborbital (SO) and the postorbital (PO), positioned in the posteroventral margin of the orbit and directly posterior to the orbit, respectively, are innervated by separate divisions of the Tmd. The primary homologies of the loosejaw PO and SO across loosejaw taxa are proposed on the basis of similar innervation patterns. Because of dissimilar innervation of the loosejaw SO and SO of basal stomiiforms, primary homology of these photophores cannot be established. Because of similar function and position, the PO of all other stomiid taxa is likely homologous with the loosejaw PO. Nonhomology of loosejaw long-wave photophores is corroborated by previously published histological evidence. The totality of evidence suggests that the only known far-red bioluminescent system in vertebrates has evolved as many as three times in a closely related group of deep-sea fishes.
Collapse
Affiliation(s)
- Christopher P Kenaley
- School of Aquatic and Fishery Sciences, College of Ocean and Fishery Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
17
|
Shearman RM, Burke AC. The lateral somitic frontier in ontogeny and phylogeny. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312:603-12. [PMID: 19021255 DOI: 10.1002/jez.b.21246] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The vertebrate musculoskeletal system comprises the axial and appendicular systems. The postcranial axial system consists of the vertebrae, ribs and associated muscles, and the appendicular system comprises the muscles and skeleton of the paired appendages and their respective girdles. The morphology, proportions, and arrangements of these parts have undergone tremendous variation during vertebrate history. Despite this vertebrate diversity, the cells that form all of the key parts of the musculoskeletal system during development arise from two populations of embryonic mesoderm, the somites and somatic lateral plate. Nowicki et al. (2003. Mech Dev 120:227-240) identified two dynamic domains in the developing chick embryo. The primaxial domain is populated exclusively by cells from the somites. The abaxial domain includes muscle and bone that develop within lateral plate-derived connective tissue. The boundary between the two domains is the lateral somitic frontier. We hypothesize that the primaxial and abaxial domains are patterned independently and that morphological evolution of the musculoskeletal system is facilitated by partially independent developmental changes in the abaxial and primaxial domain. Here we present our hypothesis in detail and review recent experimental and comparative studies that use the concept of the lateral somitic frontier in the analysis of the evolution of the highly derived chelonian and limbless squamate body plans.
Collapse
|