1
|
Yukilevich R, Aoki F, Egan S, Zhang L. Coevolutionary Interactions between Sexual and Habitat Isolation during Reinforcement. Cold Spring Harb Perspect Biol 2024; 16:a041431. [PMID: 38316551 PMCID: PMC11065176 DOI: 10.1101/cshperspect.a041431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Speciation often involves the evolution of multiple genetic-based barriers to gene flow (i.e., "coupling"). However, barriers may exhibit a diversity of evolutionary interactions during speciation. These dynamics are important in reinforcement, where selection may favor different prezygotic isolating barriers to avoid maladaptive hybridization. Here we study the interaction between evolution of sexual and habitat isolation. We first review the empirical literature where both barriers were explicitly considered, and then develop a population genetic model of reinforcement. Most studies of both sexual and habitat isolation were found in phytophagous insect systems. In 76% of these studies, both barriers coevolved; the remaining cases either showed only habitat isolation (21%) or only sexual isolation (3%). Our two-allele genetic mechanism model of each barrier also found that these often coevolved, but habitat isolation was generally more effective during reinforcement. Depending on the fitness of hybrids (e.g., Dobzhansky-Muller incompatibilities) and initial migration rate, these barriers could either facilitate, curtail, or have no effect on each other. This indicates that basic parameters will alter the underlying evolutionary dynamics, and thus the nature of "speciation coupling" will be highly variable in natural systems. Finally, we studied initially asymmetrical migration rates and found that populations with higher initial emigration evolved stronger habitat isolation, while populations that initially received more immigrants exhibited stronger sexual isolation. These results are in line with observations in some empirical studies, but more data is needed to test their generality.
Collapse
Affiliation(s)
- Roman Yukilevich
- Department of Biology, Union College, Integrated Science and Engineering Complex, Schenectady, New York 12308, USA
| | - Fumio Aoki
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York 11794, USA
| | - Scott Egan
- Department of Biosciences, Rice University, Houston, Texas 77005, USA
| | - Linyi Zhang
- Department of Biological Sciences, George Washington University, Washington, D.C. 20052, USA
| |
Collapse
|
2
|
Jarrett BJM, Miller CW. Host Plant Effects on Sexual Selection Dynamics in Phytophagous Insects. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:41-57. [PMID: 37562047 DOI: 10.1146/annurev-ento-022823-020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Natural selection is notoriously dynamic in nature, and so, too, is sexual selection. The interactions between phytophagous insects and their host plants have provided valuable insights into the many ways in which ecological factors can influence sexual selection. In this review, we highlight recent discoveries and provide guidance for future work in this area. Importantly, host plants can affect both the agents of sexual selection (e.g., mate choice and male-male competition) and the traits under selection (e.g., ornaments and weapons). Furthermore, in our rapidly changing world, insects now routinely encounter new potential host plants. The process of adaptation to a new host may be hindered or accelerated by sexual selection, and the unexplored evolutionary trajectories that emerge from these dynamics are relevant to pest management and insect conservation strategies. Examining the effects of host plants on sexual selection has the potential to advance our fundamental understanding of sexual conflict, host range evolution, and speciation, with relevance across taxa.
Collapse
Affiliation(s)
- Benjamin J M Jarrett
- School of Natural Sciences, Bangor University, Bangor, United Kingdom;
- Department of Biology, Lund University, Lund, Sweden
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA;
| | - Christine W Miller
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA;
| |
Collapse
|
3
|
Noguerales V, Ortego J. Genomic evidence of speciation by fusion in a recent radiation of grasshoppers. Evolution 2022; 76:2618-2633. [PMID: 35695020 PMCID: PMC9796961 DOI: 10.1111/evo.14508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/22/2022] [Accepted: 04/02/2022] [Indexed: 01/22/2023]
Abstract
Postdivergence gene flow can trigger a number of creative evolutionary outcomes, ranging from the transfer of beneficial alleles across species boundaries (i.e., adaptive introgression) to the formation of new species (i.e., hybrid speciation). Although neutral and adaptive introgression has been broadly documented in nature, hybrid speciation is assumed to be rare and the evolutionary and ecological context facilitating this phenomenon still remains controversial. Through combining genomic and phenotypic data, we evaluate the hypothesis that the dual feeding regime (based on both scrub legumes and gramineous herbs) of the taxonomically controversial grasshopper Chorthippus saulcyi algoaldensis resulted from hybridization between the sister taxa C. binotatus (that exclusively feeds on scrub legumes) and C. saulcyi (that only feeds on gramineous herbs). Genetic clustering analyses and inferences from coalescent-based demographic simulations confirm that C. s. algoaldensis represents an independently evolving lineage and support the ancient hybrid origin of this taxon (about 1.4 Ma), which sheds light on its uncertain phylogenetic position and might explain its broader trophic niche. We propose a Pleistocene hybrid speciation model where range shifts resulting from climatic oscillations can promote the formation of hybrid swarms and facilitate their long-term persistence through geographic isolation from parental forms in topographically complex landscapes.
Collapse
Affiliation(s)
- Víctor Noguerales
- Department of Biological SciencesUniversity of CyprusNicosia1678Cyprus,Island Ecology and Evolution GroupInstituto de Productos Naturales y Agrobiología (IPNA‐CSIC)San Cristóbal de La Laguna38206Spain
| | - Joaquín Ortego
- Department of Integrative EcologyEstación Biológica de Doñana (EBD‐CSIC)Sevilla41092Spain
| |
Collapse
|
4
|
Nakano M, Morgan-Richards M, Trewick SA, Clavijo-McCormick A. Chemical Ecology and Olfaction in Short-Horned Grasshoppers (Orthoptera: Acrididae). J Chem Ecol 2022; 48:121-140. [PMID: 35001201 DOI: 10.1007/s10886-021-01333-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 01/26/2023]
Abstract
Chemoreception plays a crucial role in the reproduction and survival of insects, which often rely on their sense of smell and taste to find partners, suitable habitats, and food sources, and to avoid predators and noxious substances. There is a substantial body of work investigating the chemoreception and chemical ecology of Diptera (flies) and Lepidoptera (moths and butterflies); but less is known about the Orthoptera (grasshoppers, locusts, crickets, and wēta). Within the Orthoptera, the family Acrididae contains about 6700 species of short-horned grasshoppers. Grasshoppers are fascinating organisms to study due to their significant taxonomic and ecological divergence, however, most chemoreception and chemical ecology studies have focused on locusts because they are agricultural pests (e.g., Schistocerca gregaria and Locusta migratoria). Here we review studies of chemosensory systems and chemical ecology of all short-horned grasshoppers. Applications of genome editing tools and entomopathogenic microorganism to control locusts in association with their chemical ecology are also discussed. Finally, we identify gaps in the current knowledge and suggest topics of interest for future studies.
Collapse
Affiliation(s)
- Mari Nakano
- Wildlife & Ecology, Massey University, Private Bag 11-222, Palmerston North, 4410, New Zealand.
| | - Mary Morgan-Richards
- Wildlife & Ecology, Massey University, Private Bag 11-222, Palmerston North, 4410, New Zealand
| | - Steven A Trewick
- Wildlife & Ecology, Massey University, Private Bag 11-222, Palmerston North, 4410, New Zealand
| | | |
Collapse
|
5
|
Tonzo V, Papadopoulou A, Ortego J. Genomic footprints of an old affair: Single nucleotide polymorphism data reveal historical hybridization and the subsequent evolution of reproductive barriers in two recently diverged grasshoppers with partly overlapping distributions. Mol Ecol 2020; 29:2254-2268. [DOI: 10.1111/mec.15475] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Vanina Tonzo
- Department of Integrative Ecology Estación Biológica de Doñana (EBD‐CSIC) Seville Spain
| | - Anna Papadopoulou
- Department of Biological Sciences University of Cyprus Nicosia Cyprus
| | - Joaquín Ortego
- Department of Integrative Ecology Estación Biológica de Doñana (EBD‐CSIC) Seville Spain
| |
Collapse
|
6
|
Noguerales V, García-Navas V, Cordero PJ, Ortego J. The role of environment and core-margin effects on range-wide phenotypic variation in a montane grasshopper. J Evol Biol 2016; 29:2129-2142. [DOI: 10.1111/jeb.12915] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/04/2016] [Accepted: 06/06/2016] [Indexed: 12/31/2022]
Affiliation(s)
- V. Noguerales
- Grupo de Investigación de la Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM); Ciudad Real Spain
- Department of Integrative Ecology; Estación Biológica de Doñana (EBD-CSIC); Sevilla Spain
| | - V. García-Navas
- Department of Integrative Ecology; Estación Biológica de Doñana (EBD-CSIC); Sevilla Spain
| | - P. J. Cordero
- Grupo de Investigación de la Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM); Ciudad Real Spain
| | - J. Ortego
- Department of Integrative Ecology; Estación Biológica de Doñana (EBD-CSIC); Sevilla Spain
| |
Collapse
|
7
|
Noguerales V, Cordero PJ, Ortego J. Hierarchical genetic structure shaped by topography in a narrow-endemic montane grasshopper. BMC Evol Biol 2016; 16:96. [PMID: 27149952 PMCID: PMC4858822 DOI: 10.1186/s12862-016-0663-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/21/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Understanding the underlying processes shaping spatial patterns of genetic structure in free-ranging organisms is a central topic in evolutionary biology. Here, we aim to disentangle the relative importance of neutral (i.e. genetic drift) and local adaptation (i.e. ecological divergence) processes in the evolution of spatial genetic structure of the Morales grasshopper (Chorthippus saulcyi moralesi), a narrow-endemic taxon restricted to the Central Pyrenees. More specifically, we analysed range-wide patterns of genetic structure and tested whether they were shaped by geography (isolation-by-distance, IBD), topographic complexity and present and past habitat suitability models (isolation-by-resistance, IBR), and environmental dissimilarity (isolation-by-environment, IBE). RESULTS Different clustering analyses revealed a deep genetic structure that was best explained by IBR based on topographic complexity. Our analyses did not reveal a significant role of IBE, a fact that may be due to low environmental variation among populations and/or consequence of other ecological factors not considered in this study are involved in local adaptation processes. IBR scenarios informed by current and past climate distribution models did not show either a significant impact on genetic differentiation after controlling for the effects of topographic complexity, which may indicate that they are not capturing well microhabitat structure in the present or the genetic signal left by dispersal routes defined by habitat corridors in the past. CONCLUSIONS Overall, these results indicate that spatial patterns of genetic variation in our study system are primarily explained by neutral divergence and migration-drift equilibrium due to limited dispersal across abrupt reliefs, whereas environmental variation or spatial heterogeneity in habitat suitability associated with the complex topography of the region had no significant effect on genetic discontinuities after controlling for geography. Our study highlights the importance of considering a comprehensive suite of potential isolating mechanisms and analytical approaches in order to get robust inferences on the processes promoting genetic divergence of natural populations.
Collapse
Affiliation(s)
- Víctor Noguerales
- Grupo de Investigación de la Biodiversidad Genética y Cultural, Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM), Ronda de Toledo 12, E-13071, Ciudad Real, Spain.
| | - Pedro J Cordero
- Grupo de Investigación de la Biodiversidad Genética y Cultural, Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM), Ronda de Toledo 12, E-13071, Ciudad Real, Spain
| | - Joaquín Ortego
- Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), Avda. Américo Vespucio s/n, E-41092, Seville, Spain
| |
Collapse
|
8
|
Xue HJ, Wei JN, Magalhães S, Zhang B, Song KQ, Liu J, Li WZ, Yang XK. Contact pheromones of 2 sympatric beetles are modified by the host plant and affect mate choice. Behav Ecol 2016. [DOI: 10.1093/beheco/arv238] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
9
|
Etges WJ, de Oliveira CC. Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. X. Age-specific dynamics of adult epicuticular hydrocarbon expression in response to different host plants. Ecol Evol 2014; 4:2033-45. [PMID: 25360246 PMCID: PMC4201419 DOI: 10.1002/ece3.1088] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 02/28/2014] [Accepted: 04/03/2014] [Indexed: 12/03/2022] Open
Abstract
Analysis of sexual selection and sexual isolation in Drosophila mojavensis and its relatives has revealed a pervasive role of rearing substrates on adult courtship behavior when flies were reared on fermenting cactus in preadult stages. Here, we assessed expression of contact pheromones comprised of epicuticular hydrocarbons (CHCs) from eclosion to 28 days of age in adults from two populations reared on fermenting tissues of two host cacti over the entire life cycle. Flies were never exposed to laboratory food and showed significant reductions in average CHC amounts consistent with CHCs of wild-caught flies. Overall, total hydrocarbon amounts increased from eclosion to 14–18 days, well past age at sexual maturity, and then declined in older flies. Most flies did not survive past 4 weeks. Baja California and mainland populations showed significantly different age-specific CHC profiles where Baja adults showed far less age-specific changes in CHC expression. Adults from populations reared on the host cactus typically used in nature expressed more CHCs than on the alternate host. MANCOVA with age as the covariate for the first six CHC principal components showed extensive differences in CHC composition due to age, population, cactus, sex, and age × population, age × sex, and age × cactus interactions. Thus, understanding variation in CHC composition as adult D. mojavensis age requires information about population and host plant differences, with potential influences on patterns of mate choice, sexual selection, and sexual isolation, and ultimately how these pheromones are expressed in natural populations. Studies of drosophilid aging in the wild are badly needed.
Collapse
Affiliation(s)
- William J Etges
- Department of Biological Sciences, Program in Ecology and Evolutionary Biology 1 University of Arkansas, Fayetteville, Arkansas, 72701
| | - Cassia C de Oliveira
- Department of Biological Sciences, Program in Ecology and Evolutionary Biology 1 University of Arkansas, Fayetteville, Arkansas, 72701
| |
Collapse
|
10
|
Schwander T, Arbuthnott D, Gries R, Gries G, Nosil P, Crespi BJ. Hydrocarbon divergence and reproductive isolation in Timema stick insects. BMC Evol Biol 2013; 13:151. [PMID: 23855797 PMCID: PMC3728149 DOI: 10.1186/1471-2148-13-151] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 07/12/2013] [Indexed: 01/06/2023] Open
Abstract
Background Individuals commonly prefer certain trait values over others when choosing their mates. If such preferences diverge between populations, they can generate behavioral reproductive isolation and thereby contribute to speciation. Reproductive isolation in insects often involves chemical communication, and cuticular hydrocarbons, in particular, serve as mate recognition signals in many species. We combined data on female cuticular hydrocarbons, interspecific mating propensity, and phylogenetics to evaluate the role of cuticular hydrocarbons in diversification of Timema walking-sticks. Results Hydrocarbon profiles differed substantially among the nine analyzed species, as well as between partially reproductively-isolated T. cristinae populations adapted to different host plants. In no-choice trials, mating was more likely between species with similar than divergent hydrocarbon profiles, even after correcting for genetic divergences. The macroevolution of hydrocarbon profiles, along a Timema species phylogeny, fits best with a punctuated model of phenotypic change concentrated around speciation events, consistent with change driven by selection during the evolution of reproductive isolation. Conclusion Altogether, our data indicate that cuticular hydrocarbon profiles vary among Timema species and populations, and that most evolutionary change in hydrocarbon profiles occurs in association with speciation events. Similarities in hydrocarbon profiles between species are correlated with interspecific mating propensities, suggesting a role for cuticular hydrocarbon profiles in mate choice and speciation in the genus Timema.
Collapse
Affiliation(s)
- Tanja Schwander
- Center for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
11
|
Stauffer TW, Hatle JD, Whitman DW. Divergent egg physiologies in two closely related grasshopper species: Taeniopoda eques versus Romalea microptera (Orthoptera: Romaleidae). ENVIRONMENTAL ENTOMOLOGY 2011; 40:157-166. [PMID: 22182625 PMCID: PMC3755351 DOI: 10.1603/en10200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We compared egg survivorship and egg development time at different soil moistures for two closely related grasshopper species from divergent habitats: marsh-inhabiting Romalea microptera (Beauvois) versus desert-inhabiting Taeniopoda eques (Burmeister). These two species can interbreed and produce viable offspring. In nature, both species have a similar 8-9 mo subterranean egg stage, but their soil environments differ dramatically in water content. We predicted that the eggs of the two species would exhibit differential survivorship and development times under different moisture levels. Our laboratory results show that the eggs of both species survived a wide range of soil moistures (≈ 0.5 to 90%), maintained for 3 mo. However, the eggs of the marsh grasshopper, R. microptera, better tolerated the highest soil moistures (95 and 100%), whereas the eggs of the desert species, T. eques, better tolerated the lowest soil moistures (0.0 and 0.1%). Sixty-five percent of marsh-inhabiting R. microptera eggs, but no desert T. eques eggs, survived 3 mo submersion under water. In contrast, 49% of desert T. eques eggs, but only 3.5% of R. microptera eggs, survived after being laid into oven-dried sand and then maintained with no additional water until hatch. In the laboratory at 26 °C, the two species differed significantly in the mean length of the oviposition-to-hatch interval: 176 d for R. microptera versus 237 d for T. eques. These divergent traits presumably benefit these insects in their divergent habitats. Our results suggest the evolution of physiological divergence that is consistent with adaptations to local environments.
Collapse
Affiliation(s)
- Timothy W Stauffer
- Biology Department, Bradley University, 1501 West Bradley Avenue, Peoria, IL 61625, USA.
| | | | | |
Collapse
|
12
|
Apple JL, Grace T, Joern A, St Amand P, Wisely SM. Comparative genome scan detects host-related divergent selection in the grasshopper Hesperotettix viridis. Mol Ecol 2010; 19:4012-28. [PMID: 20735740 DOI: 10.1111/j.1365-294x.2010.04792.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jennifer L Apple
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | |
Collapse
|