1
|
Yadetie F, Zhang X, Reboa A, Noally GSC, Eilertsen M, Fleming MS, Helvik JV, Jonassen I, Goksøyr A, Karlsen OA. Transcriptome analysis reveals effects of ethynylestradiol and bisphenol A on multiple endocrine and metabolic pathways in the pituitary and liver of female Atlantic cod ( Gadus morhua). Front Endocrinol (Lausanne) 2025; 15:1491432. [PMID: 39931438 PMCID: PMC11808150 DOI: 10.3389/fendo.2024.1491432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/20/2024] [Indexed: 02/13/2025] Open
Abstract
Introduction The pituitary and liver are among the main sites of action of estrogens in fish. Years of research has shown that xenoestrogens can interfere with functions of estrogens. There is however incomplete understanding of xenoestrogen targets genes, their molecular mechanisms and potential effects in some of the target organs, particularly the pituitary. Methods We performed a comprehensive analysis of pituitary and liver transcriptome 72 h after injection of ethynylestradiol (EE2: 10, 50 or 250 nmol/kg body weight/bw) and bisphenol A (BPA: 8, 40 or 200 μmol/kg bw) in juvenile female Atlantic cod (Gadus morhua). Results A broad range of reproductive and metabolic pathways were affected in both organs by BPA and EE2. In the pituitary, effects on the expression of many genes associated with reproduction-related hormonal pathways including the gonadotropin system, as well as genes in processes such as cell differentiation and metabolic homeostasis were observed. In the liver, in addition to upregulation of well-known estrogen marker genes, effects on metabolic pathways, in particular, a coordinated downregulation of genes in the triglyceride synthesis pathways were observed. Discussion The results suggest that estrogenic compounds affect a broad range of reproductive and metabolic processes in the pituitary. The alterations in the liver unravel the transcriptional changes underlying metabolic remodeling during estrogen induced vitellogenesis. This study provides new insights into mechanisms of endocrine and metabolic interactions that can be potential targets of environmental estrogens in fish. The study also identifies potential gene expression biomarkers for pituitary and liver effects of xenoestrogens.
Collapse
Affiliation(s)
- Fekadu Yadetie
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Xiaokang Zhang
- Department of Informatics, University of Bergen, Bergen, Norway
| | - Anna Reboa
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Mariann Eilertsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Jon Vidar Helvik
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Inge Jonassen
- Department of Informatics, University of Bergen, Bergen, Norway
| | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Odd André Karlsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
2
|
Wang C, Xiong S, Hu S, Yang L, Huang Y, Chen H, Xu B, Xiao T, Liu Q. Genome-wide identification of Gα family in grass carp (Ctenopharyngodon idella) and reproductive regulation functional characteristics of Cignaq. BMC Genomics 2024; 25:800. [PMID: 39182029 PMCID: PMC11344465 DOI: 10.1186/s12864-024-10717-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND The Gα family plays a crucial role in the complex reproductive regulatory network of teleosts. However, the characterization and function of Gα family members, especially Gαq, remain poorly understood in teleosts. To analyze the characterization, expression, and function of grass carp (Ctenopharyngodon idella) Gαq, we identified the Gα family members in grass carp genome, and analyzed the expression, distribution, and signal transduction of Gαq/gnaq. We also explored the role of Gαq in the reproductive regulation of grass carp. RESULTS Our results showed that the grass carp genome contains 27 Gα genes with 46 isoforms, which are divided into four subfamilies: Gαs, Gαi/o, Gαq/11, and Gα12/13. The expression level of Cignaq in the testis was the highest and significantly higher than in other tissues, followed by the hypothalamus and brain. The luteinizing hormone receptor (LHR) was mainly localized to the nucleus in grass carp oocytes, with signals also present in follicular cells. In contrast, Gαq signal was mainly found in the cytoplasm of oocytes, with no signal in follicular cells. In the testis, Gαq and LHR were co-localized in the cytoplasm. Furthermore, the grass carp Gαq recombinant protein significantly promoted Cipgr expression. CONCLUSIONS These results provided preliminary evidence for understanding the role of Gαq in the reproductive regulation of teleosts.
Collapse
Affiliation(s)
- Chong Wang
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Shuting Xiong
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Shitao Hu
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Le Yang
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Yuhong Huang
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Haitai Chen
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Baohong Xu
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Tiaoyi Xiao
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China.
| | - Qiaolin Liu
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
3
|
Byun JH, Hyeon JY, Hettiarachchi SA, Udagawa S, Mahardini A, Kim JM, Hur SP, Takemura A. Effects of dopamine and melatonin treatment on the expression of the genes associated with artificially induced sexual maturation in Japanese eel, Anguilla japonica. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:389-399. [PMID: 38334250 DOI: 10.1002/jez.2788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
Japanese eel (Anguilla japonica) is a commercially important fish species in Asia. Understanding factors like photoperiod, temperature, and lunar cycles is crucial for successful aquaculture and managing its reproduction. Melatonin and dopamine (DA) are essential for regulating reproduction in vertebrates, including fish. This study investigated the effects of melatonin and DA on the reproductive system of mature male Japanese eels to better understand reproductive regulation in fish. To clarify the effects of these hormones on sexual maturation in eels, a critical stage in the reproductive process, sexual maturation was induced by injecting human chorionic gonadotropin, which stimulates the production of sex hormones. To check the effect of melatonin and DA on sexual maturation, DA, melatonin, and DA + domperidone were intraperitoneally injected into fish from each group (six per treatment) at a dose of 1 mg/kg body weight. The fish were then examined using quantitative RT-PCR by comparing the messenger RNA level of reproduction-related genes (gonadotropin releasing hormone 1; gnrh1, gonadotropin releasing hormone 2; gnrh2, follicle stimulating hormone; fshβ, luteinizing hormone; lhβ and DA receptor 2b; d2b), involved in the gonadotropic axis in eels, to those that received a control injection. The results indicate significant differences in the expression levels of gnrh1, gnrh2 and d2b in the brain and d2b, fshβ, lhβ in the pituitary at different stages of sexual maturation. Melatonin appears to enhance the production of sex gonadotropins, whereas DA inhibits them. These findings suggest an interaction between melatonin and DA in regulating reproduction in Japanese eels.
Collapse
Affiliation(s)
- Jun-Hwan Byun
- Department of Fisheries Biology, College of Fisheries Sciences, Pukyong National University, Busan, South Korea
| | - Ji-Yeon Hyeon
- Division of Polar Life Science, Korea Polar Research Institute, Incheon, South Korea
| | | | - Shingo Udagawa
- Department of Co-Creation Management, Organization for Research Promotion, University of the Ryukyus, Okinawa, Japan
| | - Angka Mahardini
- Department of Marine Science, Faculty of Science, Diponegoro University, Semarang, Indonesia
| | - Jong-Myoung Kim
- Department of Fisheries Biology, College of Fisheries Sciences, Pukyong National University, Busan, South Korea
| | - Sung-Pyo Hur
- Department of Marine Life Science, Jeju National University, Jeju, South Korea
| | - Akihiro Takemura
- Department of Chemistry, Biology, and Marine Science, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
4
|
Rachamalla M, Salahinejad A, Kodzhahinchev V, Niyogi S. Reproductive and Developmental Effects of Sex-Specific Chronic Exposure to Dietary Arsenic in Zebrafish ( Danio rerio). TOXICS 2024; 12:302. [PMID: 38668525 PMCID: PMC11053724 DOI: 10.3390/toxics12040302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
The present study investigated the reproductive and developmental effects of sex-specific chronic exposure to dietary arsenic in zebrafish. Adult zebrafish (Danio rerio) were exposed to environmentally realistic doses of arsenic via diet [0 (control; no added arsenic), 30 (low), 60 (medium), and 100 (high) μg/g dry weight, as arsenite] for 90 days. Following exposure, arsenic-exposed females from each dietary treatment were mated with control males, and similarly, arsenic-exposed males from each dietary treatment were mated with control females. In females, arsenic exposure resulted in a dose-dependent decrease in reproductive performance (fecundity, fertilization success, and hatching success). Moreover, a dose-dependent increase in developmental toxicity (larval deformities and larval mortality) was observed with maternal exposure to arsenic. In contrast, in males, arsenic exposure also induced similar reproductive and developmental toxicity; however, the adverse effects were mainly evident only in the medium and high dietary arsenic treatment groups. We also examined the sex-specific effects of dietary arsenic exposure on the expression of genes that regulate the hypothalamus-pituitary-gonadal-liver (HPG-L) axis in fish. The gene expression results indicated the downregulation of HPG-L axis genes in females irrespective of the arsenic treatment dose; however, the reduced expression of HPG-L axis genes in males was recorded only in the medium and high arsenic treatment groups. These observations suggest that chronic arsenic exposure in either females or males causes reproductive and developmental toxicity in zebrafish. However, these toxic effects are markedly higher in females than in males. Our results also suggest that arsenic can act as an endocrine disruptor and mediate reproductive and developmental toxicity by disrupting the HPG-L axis in zebrafish.
Collapse
Affiliation(s)
- Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (A.S.); (V.K.); (S.N.)
| | - Arash Salahinejad
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (A.S.); (V.K.); (S.N.)
| | - Vladimir Kodzhahinchev
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (A.S.); (V.K.); (S.N.)
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (A.S.); (V.K.); (S.N.)
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| |
Collapse
|
5
|
Porceddu R, Porcu C, Mulas G, Spiga S, Follesa MC. Ontogenetic changes in the tyrosine hydroxylase immunoreactive preoptic area in the small-spotted catshark Scyliorhinus canicula (L., 1758) females: catecholaminergic involvement in sexual maturation. Front Neuroanat 2024; 17:1301651. [PMID: 38239387 PMCID: PMC10794776 DOI: 10.3389/fnana.2023.1301651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/29/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction The catecholaminergic component of the brain-pituitary-gonadal axis, which mediates the influence of external and internal stimuli on the central nervous system and gonad development in vertebrates, is largely unexplored in Chondrichthyes. We considered Scyliorhinus canicula (L., 1758) females as a model for this vertebrate's class, to assess the involvement of the catecholaminergic system of the brain in its reproduction. Along the S. canicula reproductive cycle, we characterized and evaluated differences in somata morphometry and the number of putative catecholaminergic neurons in two brain nuclei: the periventricular preoptic nucleus, hypothesized to be a positive control for ovarian development, and the suprachiasmatic nucleus, examined as a negative control. Materials and methods 16 S. canicula wild females were sampled and grouped in maturity stages (immature, maturing, mature, and mature egg-laying). The ovary was histologically processed for the qualitative description of maturity stages. Anti-tyrosine hydroxylase immunofluorescence was performed on the diencephalic brain sections. The immunoreactive somata were investigated for morphometry and counted using the optical fractionator method, throughout the confocal microscopy. Results and discussions Qualitative and quantitative research confirmed two separate populations of immunoreactive neurons. The modifications detected in the preoptic nucleus revealed that somata were more numerous, significantly smaller in size, and more excitable during the maturing phase but decreased, becoming slightly bigger and less excitable in the egg-laying stage. This may indicate that the catecholaminergic preoptic nucleus is involved in the control of reproduction, regulating both the onset of puberty and the imminent spawning. In contrast, somata in the suprachiasmatic nucleus grew in size and underwent turnover in morphometry, increasing the total number from the immature-virgin to maturing stage, with similar values in the more advanced maturity stages. These changes were not linked to a reproductive role. These findings provide new valuable information on Chondrichthyes, suggesting the existence of an additional brain system implicated in the integration of internal and environmental cues for reproduction.
Collapse
Affiliation(s)
- Riccardo Porceddu
- Sezione di Biologia Animale ed Ecologia, Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
- CoNISMa Consorzio Nazionale Interuniversitario per le Scienze Mare, Rome, Italy
| | - Cristina Porcu
- Sezione di Biologia Animale ed Ecologia, Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
- CoNISMa Consorzio Nazionale Interuniversitario per le Scienze Mare, Rome, Italy
| | - Giovanna Mulas
- Sezione di Biologia Animale ed Ecologia, Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
| | - Saturnino Spiga
- Sezione di Biologia Animale ed Ecologia, Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
| | - Maria Cristina Follesa
- Sezione di Biologia Animale ed Ecologia, Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
- CoNISMa Consorzio Nazionale Interuniversitario per le Scienze Mare, Rome, Italy
| |
Collapse
|
6
|
Closs LE, Royan MR, Sayyari A, Mayer I, Weltzien FA, Baker DM, Fontaine R. Artificial light at night disrupts male dominance relationships and reproductive success in a model fish species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:166406. [PMID: 37597540 DOI: 10.1016/j.scitotenv.2023.166406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Environmental light is perceived and anticipated by organisms to synchronize their biological cycles. Therefore, artificial light at night (ALAN) disrupts both diurnal and seasonal biological rhythms. Reproduction is a complex physiological process involving integration of environmental signals by the brain, and release of endocrine signals by the pituitary that regulate gametogenesis and spawning. In addition, males from many species form a dominance hierarchy that, through a combination of aggressive and protective behavior, influences their reproductive success. In this study, we investigated the effect of ALAN and continuous daylight on the behavior and fitness of male fish within a dominance hierarchy using a model fish, the Japanese medaka. In normal light/dark cycles, male medaka establish a hierarchy with the dominant males being more aggressive and remaining closer to the female thus limiting the access of subordinate males to females during spawning. However, determination of the paternity of the progeny revealed that even though subordinate males spend less time with the females, they are, in normal light conditions, equally successful at producing progeny due to an efficient sneaking behavior. Continuous daylight completely inhibited the establishment of male hierarchy, whereas ALAN did not affect it. Nonetheless, when exposed to ALAN, subordinate males fertilize far fewer eggs. Furthermore, we found that when exposed to ALAN, subordinate males produced lower quality sperm than dominant males. Surprisingly, we found no differences in circulating sex steroid levels, pituitary gonadotropin levels, or gonadosomatic index between dominant and subordinate males, neither in control nor ALAN condition. This study is the first to report an effect of ALAN on sperm quality leading to a modification of male fertilization success in any vertebrate. While this work was performed in a model fish species, our results suggest that in urban areas ALAN may impact the genetic diversity of species displaying dominance behavior.
Collapse
Affiliation(s)
- Lauren E Closs
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| | - Muhammad Rahmad Royan
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| | - Amin Sayyari
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| | - Ian Mayer
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Finn-Arne Weltzien
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| | - Dianne M Baker
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, VA, United States.
| | - Romain Fontaine
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
7
|
Narwal R, Laxmi RK, Rawat VS, Sehgal N. Molecular cloning and bioinformatic characterization of Gonadotropin Inhibitory Hormone (GnIH) and its receptors in the freshwater murrel, Channa punctatus (Bloch, 1793). FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:711-736. [PMID: 37462854 DOI: 10.1007/s10695-023-01211-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/22/2023] [Indexed: 08/11/2023]
Abstract
Gonadotropin inhibitory hormone belonging to the RFamide peptide family, a hypothalamic neuropeptide, regulates Hypothalamus-pituitary-gonadal (HPG) axis and inhibits gonadal development. GnIH polypeptide precursor has an Arg-Phe-NH2 (RFamide) motif at the C-terminal, which has LPXRF (X = Q or L) domain. The actions of GnIH are mediated through G-protein coupled receptors and upto three receptors have been characterized in many teleosts. GnIH exerts its inhibitory effect on the HPG axis through direct interaction with GnRH and Kisspeptin neurons in the brain and acts directly on the pituitary gonadotrophs. To decipher the role of GnIH in Indian freshwater murrel, Channa punctatus, we sequenced the cDNA encoding GnIH and its two receptors. The identified GnIH mRNA encodes three RFamide peptides having -MPMRF, -MPQRF, and -LPQRFamide motifs. In silico analysis of the amino acid sequence of GnIH exhibits its molecular and functional properties and the protein-protein interaction with significant factors regulating the HPG axis. The 3-D structure of GnIH and its receptors, provides more relevant information about the active residues of these proteins which might be involved in their functioning and interaction with other proteins. Molecular dynamic simulation of GnIH protein has provided more insight into its dynamic behavior. The expression of GnIH and its receptors, shows an inverse correlation with gonadal development during the annual reproductive cycle.
Collapse
Affiliation(s)
- Ritu Narwal
- Department of Zoology, University of Delhi, Delhi, India, 110007
| | | | | | - Neeta Sehgal
- Department of Zoology, University of Delhi, Delhi, India, 110007.
| |
Collapse
|
8
|
Rosati L, Chianese T, Mileo A, De Falco M, Capaldo A. Cocaine Effects on Reproductive Behavior and Fertility: An Overview. Vet Sci 2023; 10:484. [PMID: 37624271 PMCID: PMC10458869 DOI: 10.3390/vetsci10080484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Cocaine is one of the most widely used drugs that, due to its molecular properties, causes various behavioral alterations, including sexual behavior. In vivo and in vitro studies conducted mainly in mammals have shown various disorders of sexual activity and morpho-functional dysfunctions of the gonads in both sexes. Although the modalities are still unclear, cocaine has been shown to alter the cell cycle, induce apoptosis, and alter sperm motility. In females, this drug alters the formation of the meiotic spindle as well as may obstruct the ovulation mechanism of mature oocytes. The data provided in this review, in addition to reviewing the current literature on the main effects of cocaine on spermatogenesis and oogenesis mainly in mammals, will hopefully provide a basic overview that may help and support further future studies on the molecular interaction of cocaine and its metabolites with germ cells.
Collapse
Affiliation(s)
- Luigi Rosati
- Department of Biology, University Federico II, Via Cinthia 21, 80126 Naples, Italy; (T.C.); (A.M.); (M.D.F.); (A.C.)
- Centro Interdipartimentale di Ricerca “Ambiente” (CIRAM), University Federico II, 80134 Naples, Italy
| | - Teresa Chianese
- Department of Biology, University Federico II, Via Cinthia 21, 80126 Naples, Italy; (T.C.); (A.M.); (M.D.F.); (A.C.)
| | - Aldo Mileo
- Department of Biology, University Federico II, Via Cinthia 21, 80126 Naples, Italy; (T.C.); (A.M.); (M.D.F.); (A.C.)
| | - Maria De Falco
- Department of Biology, University Federico II, Via Cinthia 21, 80126 Naples, Italy; (T.C.); (A.M.); (M.D.F.); (A.C.)
- Istituto Nazionale Biostrutture e Biosistemi (INBB), 00136 Rome, Italy
| | - Anna Capaldo
- Department of Biology, University Federico II, Via Cinthia 21, 80126 Naples, Italy; (T.C.); (A.M.); (M.D.F.); (A.C.)
| |
Collapse
|
9
|
Perry WB. Sleeping with the fishes: Looking under the bonnet of melatonin synthesis. JOURNAL OF FISH BIOLOGY 2022; 101:1387. [PMID: 36511098 DOI: 10.1111/jfb.15281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
10
|
Song Y, Jiang Y, Chen J, Tao B, Xu W, Huang Y, Li G, Zhu C, Hu W. Effects of Secretoneurin and Gonadotropin-Releasing Hormone Agonist on the Spawning of Captive Greater Amberjack (Seriola dumerili). Life (Basel) 2022; 12:life12091457. [PMID: 36143493 PMCID: PMC9505948 DOI: 10.3390/life12091457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 11/21/2022] Open
Abstract
The greater amberjack (Seriola dumerili), a pelagic marine species with a global distribution, has considerable worldwide potential as an aquaculture species. However, difficulties have been encountered in inducing spontaneous spawning in cultured fish stocks. In this study, we analysed the key regulatory factors, secretoneurin (SN) and gonadotropin-releasing hormone (GnRH), in greater amberjack. Active peptides of SN and GnRH, SdSNa, and SdGnRH, respectively, were obtained by comparative analysis of homologous proteins from different species. Amino acid substitutions of the SdGnRH decapeptide at position 6 with a dextrorotatory (D) amino acid and at position 10 with an ethylamide group yielded a super-active agonist (SdGnRHa). The injection of SdSNa and SdGnRHa elevated luteinizing hormone, thyroid-stimulating hormone, and oxytocin levels in the sera of sexually mature fish, whereas it reduced the level of follicle-stimulating hormone. Furthermore, in response to the SdSNa and SdGnRHa injections, we detected an increase in the expression of genes associated with oocyte development and spermatogenesis. We established that the greater amberjack cultured along the southern coast of China reached sexual maturity at three years of age, and its reproductive season extended from February to April. Spawning of the cultured greater amberjack was successfully induced with a single injection of SdGnRHa/SdSN/DOM/HCG. Our findings indicate that similar to GnRHa, SNa is a potential stimulator of reproduction that can be used to artificially induce spawning in marine fish.
Collapse
Affiliation(s)
- Yanlong Song
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524013, China
- Guangdong Laboratory for Lingnan Modem Agriculture, Guangzhou 510642, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yinjun Jiang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524013, China
- Guangdong Laboratory for Lingnan Modem Agriculture, Guangzhou 510642, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Binbin Tao
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524013, China
- Guangdong Laboratory for Lingnan Modem Agriculture, Guangzhou 510642, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Huang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524013, China
| | - Guangli Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524013, China
| | - Chunhua Zhu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524013, China
- Correspondence: (C.Z.); (W.H.)
| | - Wei Hu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524013, China
- Guangdong Laboratory for Lingnan Modem Agriculture, Guangzhou 510642, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
- Correspondence: (C.Z.); (W.H.)
| |
Collapse
|
11
|
Murugananthkumar R, Sudhakumari CC. Understanding the impact of stress on teleostean reproduction. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Ke T, Santamaria A, Junior FB, Rocha JBT, Bowman AB, Aschner M. Methylmercury exposure-induced reproductive effects are mediated by dopamine in Caenorhabditis elegans. Neurotoxicol Teratol 2022; 93:107120. [PMID: 35987454 DOI: 10.1016/j.ntt.2022.107120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022]
Abstract
Methylmercury (MeHg) is a neurotoxicant that exists in the natural environment, which level can be greatly increased because of human activity. MeHg exposures have the risk of being detrimental to the development of the nervous system. Studies on MeHg toxicity have largely focused on the mechanisms of its neurotoxicity following developmental exposures. Additionally, reproductive toxicity of developmental MeHg exposures has been noted in rodent models. The model organism Caenorhabditis elegans (C. elegans) is a self-fertilizing animal which has a short lifespan around 20 days. Most C. elegans are hermaphrodites that can generate both sperm and oocytes. To investigate the effects of developmental MeHg exposures on the reproduction in C. elegans, larvae stage 1 worms were exposed to MeHg (0, 0.01 or 0.05 μM) for 24 h. The laid eggs and oocytes were compared during each day at adult stages for 6 days. We showed that MeHg exposure significantly induced an increased number of eggs in day 1 adults without an effect on the timing of egg laying or the total number of eggs or oocytes over the 6-day period. The expression of dat-1 and cat-2 and dopamine levels were increased in worms exposed to MeHg. Supplementation with 100 μM dopamine recapitulated the effect of MeHg on the number of eggs present in day 1 adults. Furthermore, the effect of MeHg on the number of eggs was abrogated in the cat-2 mutant worms CB1112. The number of oocytes in the 6-day adult stages was decreased by MeHg in the dat-1 mutant RM2702. MeHg exposures did not change the mating rate or the number of offspring from mating. Combined, these novel findings show that developmental exposure to low levels of MeHg has limited effects on the reproduction in C. elegans. Furthermore, our data support a modulatory role of dopamine in MeHg-induced effects on reproduction in this model system.
Collapse
Affiliation(s)
- Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, 14269 Mexico City, Mexico
| | - Fernando Barbosa Junior
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil
| | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97105900 Santa Maria, RS, Brazil
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| |
Collapse
|
13
|
Aquatic Pollution and Risks to Biodiversity: The Example of Cocaine Effects on the Ovaries of Anguilla anguilla. Animals (Basel) 2022; 12:ani12141766. [PMID: 35883315 PMCID: PMC9312106 DOI: 10.3390/ani12141766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
Pollution is one of the main causes of the loss of biodiversity, currently one of the most important environmental problems. Important sources of aquatic pollution are illicit drugs, whose presence in waters is closely related to human consumption; their psychoactive properties and biological activity suggest potential adverse effects on non-target organisms, such as aquatic biota. In this study, we evaluated the effect of an environmentally relevant concentration of cocaine (20 ng L−1), an illicit drug widely found in surface waters, on the ovaries of Anguilla anguilla, a species critically endangered and able to accumulate cocaine in its tissues following chronic exposure. The following parameters were evaluated: (1) the morphology of the ovaries; (2) the presence and distribution of enzymes involved in oogenesis; (3) serum cortisol, FSH, and LH levels. The eels exposed to cocaine showed a smaller follicular area and a higher percentage of connective tissue than controls (p < 0.05), as well as many previtellogenic oocytes compared with controls having numerous fully vitellogenic and early vitellogenic oocytes. In addition, the presence and location of 3β-hydroxysteroid dehydrogenase, 17β-hydroxysteroid dehydrogenase, and P450 aromatase differed in the two groups. Finally, cocaine exposure decreased FSH and LH levels, while it increased cortisol levels. These findings show that even a low environmental concentration of cocaine affects the ovarian morphology and activity of A. anguilla, suggesting a potential impact on reproduction in this species.
Collapse
|
14
|
Thompson WA, Vijayan MM. Antidepressants as Endocrine Disrupting Compounds in Fish. Front Endocrinol (Lausanne) 2022; 13:895064. [PMID: 35784526 PMCID: PMC9245512 DOI: 10.3389/fendo.2022.895064] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
As antidepressant usage by the global population continues to increase, their persistent detection in aquatic habitats from municipal wastewater effluent release has led to concerns of possible impacts on non-target organisms, including fish. These pharmaceuticals have been marketed as mood-altering drugs, specifically targeting the monoaminergic signaling in the brain of humans. However, the monoaminergic systems are highly conserved and involved in the modulation of a multitude of endocrine functions in vertebrates. While most studies exploring possible impact of antidepressants on fish have focused on behavioural perturbations, a smaller spotlight has been placed on the endocrine functions, especially related to reproduction, growth, and the stress response. The purpose of this review is to highlight the possible role of antidepressants as endocrine disruptors in fish. While studies linking the effects of environmentally relevant levels of antidepressant on the endocrine system in fish are sparse, the emerging evidence suggests that early-life exposure to these compounds have the potential to alter the developmental programming of the endocrine system, which could persist as long-term and multigenerational effects in teleosts.
Collapse
|
15
|
Basu S, Mitra S, Singh O, Chandramohan B, Singru PS. Secretagogin in the brain and pituitary of the catfish, Clarias batrachus: Molecular characterization and regulation by insulin. J Comp Neurol 2022; 530:1743-1772. [PMID: 35322425 DOI: 10.1002/cne.25311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 11/12/2022]
Abstract
Secretagogin (scgn), is a novel hexa EF-hand, phylogenetically conserved calcium-binding protein. It serves as Ca2+ sensor and participates in Ca2+ -signaling and neuroendocrine regulation in mammals. However, its relevance in the brain of non-mammalian vertebrates has largely remained unexplored. To address this issue, we studied the cDNA encoding scgn, scgn mRNA expression, and distribution of scgn-equipped elements in the brain and pituitary of a teleost, Clarias batrachus (cb). The cbscgn cDNA consists of three transcripts (T) variants: T1 (2185 bp), T2 (2151 bp) and T3 (2060 bp). While 816 bp ORF in T1 and T2 encodes highly conserved six EF-hand 272 aa protein fully capable of Ca2+ -binding, 726-bp ORF in T3 encodes 242 aa protein. The T1 showed >90% and >70% identity with scgn of catfishes, and other teleosts and mammals, respectively. The T1-mRNA was widely expressed in the brain and pituitary, while the expression of T3 was restricted to the telencephalon. Application of the anti-scgn antiserum revealed a ∼32 kDa scgn-immunoreactive (scgn-i) band (known molecular weight of scgn) in the forebrain tissue, and immunohistochemically labeled neurons in the olfactory epithelium and bulb, telencephalon, preoptic area, hypothalamus, thalamus, and hindbrain. In the pituitary, scgn-i cells were seen in the pars distalis and intermedia. Insulin is reported to regulate scgn mRNA in the mammalian hippocampus, and feeding-related neuropeptides in the telencephalon of teleost. Intracranial injection of insulin significantly increased T1-mRNA expression and scgn-immunoreactivity in the telencephalon. We suggest that scgn may be an important player in the regulation of olfactory, neuroendocrine system, and energy balance functions in C. batrachus.
Collapse
Affiliation(s)
- Sumela Basu
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Saptarsi Mitra
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Omprakash Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Bathrachalam Chandramohan
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India
| | - Praful S Singru
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
16
|
Tandem Mass Tagging-Based Quantitative Proteomics Analysis Reveals Damage to the Liver and Brain of Hypophthalmichthys molitrix Exposed to Acute Hypoxia and Reoxygenation. Antioxidants (Basel) 2022; 11:antiox11030589. [PMID: 35326239 PMCID: PMC8945220 DOI: 10.3390/antiox11030589] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 12/13/2022] Open
Abstract
Aquaculture environments frequently experience hypoxia and subsequent reoxygenation conditions, which have significant effects on hypoxia-sensitive fish populations. In this study, hepatic biochemical activity indices in serum and the content of major neurotransmitters in the brain were altered markedly after acute hypoxia and reoxygenation exposure in silver carp (Hypophthalmichthys molitrix). Proteomics analysis of the liver showed that a number of immune-related and cytoskeletal organization-related proteins were downregulated, the ferroptosis pathway was activated, and several antioxidant molecules and detoxifying enzymes were upregulated. Proteomics analysis of the brain showed that somatostatin-1A (SST1A) was upregulated, dopamine-degrading enzyme catechol O methyltransferase (COMT) and ferritin, heavy subunit (FerH) were downregulated, and the levels of proteins involved in the nervous system were changed in different ways. In conclusion, these findings highlight that hypoxia–reoxygenation has potential adverse effects on growth, locomotion, immunity, and reproduction of silver carp, and represents a serious threat to liver and brain function, possibly via ferroptosis, oxidative stress, and cytoskeleton destruction in the liver, and abnormal expression of susceptibility genes for neurodegenerative disorders in the brain. Our present findings provide clues to the mechanisms of hypoxia and reoxygenation damage in the brain and liver of hypoxia-sensitive fish. They could also be used to develop methods to reduce hypoxia or reoxygenation injury to fish.
Collapse
|
17
|
Maruska KP, Anselmo CM, King T, Mobley RB, Ray EJ, Wayne R. Endocrine and neuroendocrine regulation of social status in cichlid fishes. Horm Behav 2022; 139:105110. [PMID: 35065406 DOI: 10.1016/j.yhbeh.2022.105110] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 01/07/2023]
Abstract
Position in a dominance hierarchy profoundly impacts group members' survival, health, and reproductive success. Thus, understanding the mechanisms that regulate or are associated with an individuals' social position is important. Across taxa, various endocrine and neuroendocrine signaling systems are implicated in the control of social rank. Cichlid fishes, with their often-limited resources of food, shelter, and mates that leads to competition, have provided important insights on the proximate and ultimate mechanisms related to establishment and maintenance of dominance hierarchies. Here we review the existing information on the relationships between endocrine (e.g., circulating hormones, gonadal and other tissue measures) and neuroendocrine (e.g., central neuropeptides, biogenic amines, steroids) systems and dominant and subordinate social rank in male cichlids. Much of the current literature is focused on only a few representative cichlids, particularly the African Astatotilapia burtoni, and several other African and Neotropical species. Many hormonal regulators show distinct differences at multiple biological levels between dominant and subordinate males, but generalizations are complicated by variations in experimental paradigms, methodological approaches, and in the reproductive and parental care strategies of the study species. Future studies that capitalize on the diversity of hierarchical structures among cichlids should provide insights towards better understanding the endocrine and neuroendocrine mechanisms contributing to social rank. Further, examination of this topic in cichlids will help reveal the selective pressures driving the evolution of endocrine-related phenotypic traits that may facilitate an individual's ability to acquire and maintain a specific social rank to improve survival and reproductive success.
Collapse
Affiliation(s)
- Karen P Maruska
- Department of Biological Sciences, 202 Life Sciences Bldg., Louisiana State University, Baton Rouge, LA 70803, United States of America.
| | - Chase M Anselmo
- Department of Biological Sciences, 202 Life Sciences Bldg., Louisiana State University, Baton Rouge, LA 70803, United States of America
| | - Teisha King
- Department of Biological Sciences, 202 Life Sciences Bldg., Louisiana State University, Baton Rouge, LA 70803, United States of America
| | - Robert B Mobley
- Department of Biological Sciences, 202 Life Sciences Bldg., Louisiana State University, Baton Rouge, LA 70803, United States of America
| | - Emily J Ray
- Department of Biological Sciences, 202 Life Sciences Bldg., Louisiana State University, Baton Rouge, LA 70803, United States of America
| | - Rose Wayne
- Department of Biological Sciences, 202 Life Sciences Bldg., Louisiana State University, Baton Rouge, LA 70803, United States of America
| |
Collapse
|
18
|
Tanaka S, Zmora N, Levavi-Sivan B, Zohar Y. Vasoactive Intestinal Peptide Indirectly Elicits Pituitary LH Secretion Independent of GnRH in Female Zebrafish. Endocrinology 2022; 163:6492622. [PMID: 34978328 DOI: 10.1210/endocr/bqab264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 02/08/2023]
Abstract
Vasoactive intestinal peptide (Vip) regulates luteinizing hormone (LH) release through the direct regulation of gonadotropin-releasing hormone (GnRH) neurons at the level of the brain in female rodents. However, little is known regarding the roles of Vip in teleost reproduction. Although GnRH is critical for fertility through the regulation of LH secretion in vertebrates, the exact role of the hypophysiotropic GnRH (GnRH3) in zebrafish is unclear since GnRH3 null fish are reproductively fertile. This phenomenon raises the possibility of a redundant regulatory pathway(s) for LH secretion in zebrafish. Here, we demonstrate that VipA (homologues of mammalian Vip) both inhibits and induces LH secretion in zebrafish. Despite the observation that VipA axons may reach the pituitary proximal pars distalis including LH cells, pituitary incubation with VipA in vitro, and intraperitoneal injection of VipA, did not induce LH secretion and lhβ mRNA expression in sexually mature females, respectively. On the other hand, intracerebroventricular administration of VipA augmented plasma LH levels in both wild-type and gnrh3-/- females at 1 hour posttreatment, with no observed changes in pituitary GnRH2 and GnRH3 contents and gnrh3 mRNA levels in the brains. While VipA's manner of inhibition of LH secretion has yet to be explored, the stimulation seems to occur via a different pathway than GnRH3, dopamine, and 17β-estradiol in regulating LH secretion. The results indicate that VipA induces LH release possibly by acting with or through a non-GnRH factor(s), providing proof for the existence of functional redundancy of LH release in sexually mature female zebrafish.
Collapse
Affiliation(s)
- Sakura Tanaka
- Institute of Marine and Environmental Technology, Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, MD 21202, USA
| | - Nilli Zmora
- Institute of Marine and Environmental Technology, Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, MD 21202, USA
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Yonathan Zohar
- Institute of Marine and Environmental Technology, Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, MD 21202, USA
| |
Collapse
|
19
|
Badruzzaman M, Goswami C, Sayed MA. Photoperiodic light pulse induces ovarian development in the catfish, Mystus cavasius: Possible roles of dopamine and melatonin in the brain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112941. [PMID: 34710816 DOI: 10.1016/j.ecoenv.2021.112941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/02/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
In the freshwater catfish, Mystus cavasius, locally known as gulsha, ovarian maturation is triggered by long-day conditions. Using dopaminergic neuronal activity in the brain, the purpose of this study was to identify the brain's detection of a nocturnal light pulse that induced ovarian development. Since direct inhibition of pituitary gonadotropin release is exerted by dopamine (DA), it may serve as a neuromodulator of photoperiodic stimulation in teleosts. We studied functional effects of photoperiodicity on dopaminergic rhythmicity in gulsha brain. Nocturnal illumination and Nanda-Hamner photocycles revealed that ovarian development is induced by a 1 h light pulse between zeitgeber time (ZT) 12 and 13. Daily fluctuations in DA, 3, 4-dihydroxyphenylacetic acid (DOPAC) and DOPAC/DA were observed under a 12L:12D photoperiod. Fish exhibited increased levels during the daytime and decreased levels at night. Rhythmic patterns of dopaminergic activity also showed clear circadian oscillations under constant light, but not constant dark conditions. After 7 days of exposure to long photoperiod (14L:10D), DA, DOPAC and DOPAC/DA in the brain at ZT12 and ZT16 were significantly higher than during a short photoperiod (10L:14D). Melatonin-containing water inhibited the release of DA and DOPAC 6 h and 24 h after treatment, respectively, and DOPAC/DA 6 h after treatment. This inhibition was blocked by the melatonin receptor antagonist, luzindole. These results suggest that a 1 h nocturnal light pulse induces ovarian development through alteration of dopaminergic neuronal excitability in the brain, via oscillation in melatonin triggered by photic stimuli, which may interfere with the reproductive endocrine axis in gulsha.
Collapse
Affiliation(s)
- Muhammad Badruzzaman
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Chayon Goswami
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Abu Sayed
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| |
Collapse
|
20
|
Trudeau VL. Neuroendocrine Control of Reproduction in Teleost Fish: Concepts and Controversies. Annu Rev Anim Biosci 2021; 10:107-130. [PMID: 34788545 DOI: 10.1146/annurev-animal-020420-042015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During the teleost radiation, extensive development of the direct innervation mode of hypothalamo-pituitary communication was accompanied by loss of the median eminence typical of mammals. Cells secreting follicle-stimulating hormone and luteinizing hormone cells are directly innervated, distinct populations in the anterior pituitary. So far, ∼20 stimulatory and ∼10 inhibitory neuropeptides, 3 amines, and 3 amino acid neurotransmitters are implicated in the control of reproduction. Positive and negative sex steroid feedback loops operate in both sexes. Gene mutation models in zebrafish and medaka now challenge our general understanding of vertebrate neuropeptidergic control. New reproductive neuropeptides are emerging. These include but are not limited to nesfatin 1, neurokinin B, and the secretoneurins. A generalized model for the neuroendocrine control of reproduction is proposed. Hopefully, this will serve as a research framework on diverse species to help explain the evolution of neuroendocrine control and lead to the discovery of new hormones with novel applications. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada; ,
| |
Collapse
|
21
|
Vissio PG, Di Yorio MP, Pérez-Sirkin DI, Somoza GM, Tsutsui K, Sallemi JE. Developmental aspects of the hypothalamic-pituitary network related to reproduction in teleost fish. Front Neuroendocrinol 2021; 63:100948. [PMID: 34678303 DOI: 10.1016/j.yfrne.2021.100948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/27/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022]
Abstract
The hypothalamic-pituitary-gonadal axis is the main system that regulates reproduction in vertebrates through a complex network that involves different neuropeptides, neurotransmitters, and pituitary hormones. Considering that this axis is established early on life, the main goal of the present work is to gather information on its development and the actions of its components during early life stages. This review focuses on fish because their neuroanatomical characteristics make them excellent models to study neuroendocrine systems. The following points are discussed: i) developmental functions of the neuroendocrine components of this network, and ii) developmental disruptions that may impact adult reproduction. The importance of the components of this network and their susceptibility to external/internal signals that can alter their specific early functions and/or even the establishment of the reproductive axis, indicate that more studies are necessary to understand this complex and dynamic network.
Collapse
Affiliation(s)
- Paula G Vissio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina.
| | - María P Di Yorio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| | - Daniela I Pérez-Sirkin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| | - Gustavo M Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
| | - Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima 739-8521, Japan
| | - Julieta E Sallemi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| |
Collapse
|
22
|
Silla AJ, Calatayud NE, Trudeau VL. Amphibian reproductive technologies: approaches and welfare considerations. CONSERVATION PHYSIOLOGY 2021; 9:coab011. [PMID: 33763231 PMCID: PMC7976225 DOI: 10.1093/conphys/coab011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/29/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
Captive breeding and reintroduction programs have been established for several threatened amphibian species globally, but with varied success. This reflects our relatively poor understanding of the hormonal control of amphibian reproduction and the stimuli required to initiate and complete reproductive events. While the amphibian hypothalamo-pituitary-gonadal (HPG) axis shares fundamental similarities with both teleosts and tetrapods, there are more species differences than previously assumed. As a result, many amphibian captive breeding programs fail to reliably initiate breeding behaviour, achieve high rates of fertilization or generate large numbers of healthy, genetically diverse offspring. Reproductive technologies have the potential to overcome these challenges but should be used in concert with traditional methods that manipulate environmental conditions (including temperature, nutrition and social environment). Species-dependent methods for handling, restraint and hormone administration (including route and frequency) are discussed to ensure optimal welfare of captive breeding stock. We summarize advances in hormone therapies and discuss two case studies that illustrate some of the challenges and successes with amphibian reproductive technologies: the mountain yellow-legged frog (Rana muscosa; USA) and the northern corroboree frog (Pseudophryne pengilleyi; Australia). Further research is required to develop hormone therapies for a greater number of species to boost global conservation efforts.
Collapse
Affiliation(s)
- Aimee J Silla
- Corresponding author: School of Earth, Atmospheric and Life Sciences, University of Wollongong, Northfields Ave, Wollongong, New South Wales 2522, Australia.
| | - Natalie E Calatayud
- Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Taronga, Western Plains Zoo, Obley Rd, Dubbo, New South Wales 2830, Australia
- San Diego Zoo Global-Beckman Center for Conservation Research, San Pasqual Valley Rd, Escondido, CA 92027, USA
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
23
|
Takahashi T, Ogiwara K. Roles of melatonin in the teleost ovary: A review of the current status. Comp Biochem Physiol A Mol Integr Physiol 2021; 254:110907. [PMID: 33482340 DOI: 10.1016/j.cbpa.2021.110907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Melatonin, the neurohormone mainly synthesized in and secreted from the pineal gland of vertebrates following a circadian rhythm, is an important factor regulating various physiological processes, including reproduction. Recent data indicate that melatonin is also synthesized in the ovary and that it acts directly at the level of the ovary to modulate ovarian physiology. In some teleosts, melatonin is reported to affect ovarian steroidogenesis. The direct action of melatonin on the ovary could be a possible factor promoting oocyte maturation in teleosts. A role for melatonin in follicle rupture during ovulation in the teleost medaka has recently emerged. In addition, melatonin is suggested to affect oocyte maturation by its antioxidant activity. However, the molecular mechanisms underlying these direct effects of melatonin are largely unknown.
Collapse
Affiliation(s)
- Takayuki Takahashi
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | - Katsueki Ogiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
24
|
Liu H, Wang J, Zhang L, Zhang Y, Wu L, Wang L, Dong C, Nie G, Li X. Transcriptome analysis of common carp (Cyprinus carpio) provides insights into the ovarian maturation related genes and pathways in response to LHRH-A and dopamine inhibitors induction. Gen Comp Endocrinol 2021; 301:113668. [PMID: 33221312 DOI: 10.1016/j.ygcen.2020.113668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/15/2020] [Accepted: 11/13/2020] [Indexed: 11/20/2022]
Abstract
Luteinizing hormone-releasing hormone analog (LHRH-A) and dopamine inhibitors have been widely used to induce oocyte maturation and ovulation in domesticated fishes. Although this approach represents a reliable method for regulating fish reproduction, the underlying molecular mechanisms mediating LH action are largely unexplored. The objective of this study was to determine the transcriptional profile of gene programming in hormone-treated common carp. In the present study, female common carp were intraperitoneally injected with LHRH-A together with dopamine inhibitors, and control fish were injected with saline. Ovarian morphological changes were analysed by both light microscopy and scanning electron microscopy. Furthermore, gene expression profiling of the brain and ovarian tissues was performed by Illumina sequencing. Compared to the control carp, hormone treatment resulted in morphological changes including disappearance of nuclear membrane, breakdown of germinal vesicle (GVBD), and fusion of yolk globules, reflecting that hormones significantly promoted oocyte maturation. In comparison to control, we have identified 867 and 9,053 differentially expressed genes in the hormone-treated female brain and ovary, respectively. In the brain, most of the identified genes were significantly enriched in 18 KEGG pathways. In the ovarian tissue, the identified genes were significantly involved in 9 pathways. In the hormone-treated carp, genes were involved in calcium signalling pathway, cAMP signalling pathway, insulin secretion, and oxidative phosphorylation pathway, which showed obvious associations with ovarian maturation. The present study provides transcriptomic information for hormone-treated carp, which might be useful for studying the endocrine regulation and mechanisms of ovarian maturation in domesticated fishes.
Collapse
Affiliation(s)
- Huifen Liu
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Jing Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Limin Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Yuru Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Limin Wu
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Lei Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Chuanju Dong
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Xuejun Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China.
| |
Collapse
|
25
|
Badruzzaman M, Shahjahan M, Roy PK, Islam MT. Rotenone alters behavior and reproductive functions of freshwater catfish, Mystus cavasius, through deficits of dopaminergic neurons in the brain. CHEMOSPHERE 2021; 263:128355. [PMID: 33297277 DOI: 10.1016/j.chemosphere.2020.128355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/31/2020] [Accepted: 09/13/2020] [Indexed: 06/12/2023]
Abstract
Rotenone, commonly used as a pesticide in agriculture and as a piscicide in aquaculture, is a toxic compound that causes dopaminergic neuronal cell loss in the substantia nigra pars compacta of the brain. At the neuroendocrine level, dopamine (DA) drives behavioral (locomotion, emotion, feeding, and social interactions, etc.) and reproductive functions of fish. In the current investigation, we examined effects of rotenone toxicity on neurobehavioral and reproductive functions in whole brain and in selected brain regions in an Indian freshwater catfish, locally known as gulsha (Mystus cavasius). After fish were exposed to water containing rotenone at 0, 2.5, 25, and 250 μg/L for 2 days, significant reductions of DA, 3,4-dihydroxyphenylacetic acid (DOPAC; a DA metabolite), and their ratio (DOPAC/DA) were observed in whole brain at 250 μg/L ambient concentrations of rotenone. When fish were treated with rotenone at 250 μg/L concentration for 2 days, there was a significant reduction of DA, DOPAC and DOPAC/DA in diencephalon, DA and DOPAC in pituitary, and only DA in the telencephalon, compared with control fish. In parallel, numbers of tyrosine hydroxylase-positive (TH+) neurons declined significantly in the diencephalon and pituitary after rotenone treatment. Slowed, spontaneous movement and reduced feeding behavior were observed in rotenone-treated fish. Rotenone treatment resulted in a significantly higher gonadosomatic index with many mature vitellogenic oocytes in ovaries and lowered dopaminergic activity in these fish. These results indicate that rotenone influences neurobehavioral and reproductive functions through dopaminergic neuronal cell loss in gulsha brain.
Collapse
Affiliation(s)
- Muhammad Badruzzaman
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Salna, Gazipur, 1706, Bangladesh.
| | - Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Prodip Kumar Roy
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Md Taimur Islam
- Department of Pathobiology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Salna, Gazipur, 1706, Bangladesh
| |
Collapse
|
26
|
Rousseau K, Prunet P, Dufour S. Special features of neuroendocrine interactions between stress and reproduction in teleosts. Gen Comp Endocrinol 2021; 300:113634. [PMID: 33045232 DOI: 10.1016/j.ygcen.2020.113634] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/10/2020] [Accepted: 09/20/2020] [Indexed: 02/08/2023]
Abstract
Stress and reproduction are both essential functions for vertebrate survival, ensuring on one side adaptative responses to environmental changes and potential life threats, and on the other side production of progeny. With more than 25,000 species, teleosts constitute the largest group of extant vertebrates, and exhibit a large diversity of life cycles, environmental conditions and regulatory processes. Interactions between stress and reproduction are a growing concern both for conservation of fish biodiversity in the frame of global changes and for the development of sustainability of aquaculture including fish welfare. In teleosts, as in other vertebrates, adverse effects of stress on reproduction have been largely documented and will be shortly overviewed. Unexpectedly, stress notably via cortisol, may also facilitate reproductive function in some teleost species in relation to their peculiar life cyles and this review will provide some examples. Our review will then mainly address the neuroendocrine axes involved in the control of stress and reproduction, namely the corticotropic and gonadotropic axes, as well as their interactions. After reporting some anatomo-functional specificities of the neuroendocrine systems in teleosts, we will describe the major actors of the corticotropic and gonadotropic axes at the brain-pituitary-peripheral glands (interrenals and gonads) levels, with a special focus on the impact of teleost-specific whole genome duplication (3R) on the number of paralogs and their potential differential functions. We will finally review the current knowledge on the neuroendocrine mechanisms of the various interactions between stress and reproduction at different levels of the two axes in teleosts in a comparative and evolutionary perspective.
Collapse
Affiliation(s)
- Karine Rousseau
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - Patrick Prunet
- INRAE, UR1037, Laboratoire de Physiologie et de Génomique des Poissons (LPGP), Rennes, France
| | - Sylvie Dufour
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France.
| |
Collapse
|
27
|
Fontaine R, Royan MR, von Krogh K, Weltzien FA, Baker DM. Direct and Indirect Effects of Sex Steroids on Gonadotrope Cell Plasticity in the Teleost Fish Pituitary. Front Endocrinol (Lausanne) 2020; 11:605068. [PMID: 33365013 PMCID: PMC7750530 DOI: 10.3389/fendo.2020.605068] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/12/2020] [Indexed: 12/26/2022] Open
Abstract
The pituitary gland controls many important physiological processes in vertebrates, including growth, homeostasis, and reproduction. As in mammals, the teleost pituitary exhibits a high degree of plasticity. This plasticity permits changes in hormone production and secretion necessary to meet the fluctuating demands over the life of an animal. Pituitary plasticity is achieved at both cellular and population levels. At the cellular level, hormone synthesis and release can be regulated via changes in cell composition to modulate both sensitivity and response to different signals. At the cell population level, the number of cells producing a given hormone can change due to proliferation, differentiation of progenitor cells, or transdifferentiation of specific cell types. Gonadotropes, which play an important role in the control of reproduction, have been intensively investigated during the last decades and found to display plasticity. To ensure appropriate endocrine function, gonadotropes rely on external and internal signals integrated at the brain level or by the gonadotropes themselves. One important group of internal signals is the sex steroids, produced mainly by the gonadal steroidogenic cells. Sex steroids have been shown to exert complex effects on the teleost pituitary, with differential effects depending on the species investigated, physiological status or sex of the animal, and dose or method of administration. This review summarizes current knowledge of the effects of sex steroids (androgens and estrogens) on gonadotrope cell plasticity in teleost anterior pituitary, discriminating direct from indirect effects.
Collapse
Affiliation(s)
- Romain Fontaine
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Muhammad Rahmad Royan
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Kristine von Krogh
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Finn-Arne Weltzien
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Dianne M. Baker
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, VA, United States
| |
Collapse
|
28
|
The stress - Reproductive axis in fish: The involvement of functional neuroanatomical systems in the brain. J Chem Neuroanat 2020; 112:101904. [PMID: 33278567 DOI: 10.1016/j.jchemneu.2020.101904] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/23/2020] [Accepted: 11/30/2020] [Indexed: 01/26/2023]
Abstract
The neuroendocrine-stress axis of nonmammalian species is evolutionarily conserved, which makes them useful to serve as important model systems for elucidating the function of the vertebrate stress response. The involvement of hypothalamo-pituitary-adrenal (HPA) axis hormones in regulation of stress and reproduction is well described in different vertebrates. However, the stress response is a complex process, which appears to be controlled by a number of neurochemicals in association with hypothalamo-pituitary-interrenal (HPI) axis or independent of HPI axis in fish. In recent years, the participation of neurohormones other than HPI axis in regulation of stress and reproduction is gaining more attention. This review mainly focuses on the involvement of functional neuroanatomical systems such as the catecholaminergic neurotransmitter dopamine (DA) and opioid peptides in regulation of the stress-reproductive axis in fish. Occurrences of DA and opioid peptides like β-endorphin, enkephalins, dynorphin, and endomorphins have been demonstrated in fish brain, and diverse roles such as pain modulation, social behaviour and reproduction are implicated for these hormones. Neuroanatomical studies using retrograde tracing, immunohistochemical staining and lesion methods have demonstrated that the neurons originating in the preoptic region and the nucleus lateralis tuberis directly innervate the pituitary gland and, therefore, the hypophysiotrophic role of these hormones. In addition, heightened synthetic and secretory activity of the opioidergic and the dopaminergic neurons in hypothalamic areas of the brain during stress exposure suggest potentially intricate relationship with the stress-reproductive axis in fish. Current evidence in early vertebrates like fish provides a novel insight into the underlying neuroendocrine mechanisms as additional pathways along the stress-reproductive axis that seem to be conserved during the course of evolution.
Collapse
|
29
|
Torati LS, Taylor JF, Mesquita PEC, Migaud H. GnRHa implants and size pairing effects on plasma and cephalic secretion sex steroids in Arapaima gigas. Gen Comp Endocrinol 2020; 299:113614. [PMID: 32950585 DOI: 10.1016/j.ygcen.2020.113614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/26/2020] [Accepted: 09/09/2020] [Indexed: 11/29/2022]
Abstract
Arapaima gigas, one of the world's largest freshwater fish, is considered an emerging species for aquaculture development in Brazil given its high growth rate and meat quality. However, the lack of reproductive control in captivity has limited the expansion of Arapaima farming. This study aimed to test the effects of hormonal induction using mGnRHa implants and size pairing on broodstock reproduction through the analyses of sex steroids. To do so, broodstock of different sizes (large, small or mixed) were paired and implanted. Plasma and cephalic secretion profiles of testosterone (T), 11-ketotestosterone (11-KT) and 17β-oestradiol (E2) were analysed. Compared to control (non-implanted), implanted broodstock showed a significant increase in plasma 11-KT (large and small males) and T (large and mixed females) post GnRHa implantation. In females, a significant increase in plasma T levels was shown, however, E2 remained unchanged after implantation. Despite the lack of clear spawning induction, this study showed the potency of GnRHa on sex steroid production regardless of pairing groups. Interestingly, significant correlations between blood plasma and cephalic secretion levels of 11-KT in males and T in females were observed, indicating the possible release of pheromones through the cephalic canals of A. gigas.
Collapse
Affiliation(s)
- Lucas S Torati
- EMBRAPA Fisheries and Aquaculture, 77022-000 Palmas, TO, Brazil; Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA Scotland, UK.
| | - John F Taylor
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA Scotland, UK.
| | - Pedro E C Mesquita
- Center of Research in Aquaculture Rodolpho von Ihering-CPA/DNOCS - Ombreira Direita, s/n. Pentecoste-CE, Brazil.
| | - Hervé Migaud
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA Scotland, UK.
| |
Collapse
|
30
|
Somoza GM, Mechaly AS, Trudeau VL. Kisspeptin and GnRH interactions in the reproductive brain of teleosts. Gen Comp Endocrinol 2020; 298:113568. [PMID: 32710898 DOI: 10.1016/j.ygcen.2020.113568] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 02/09/2023]
Abstract
It is well known that gonadotropin-releasing hormone (Gnrh) has a key role in reproduction by regulating the synthesis and release of gonadotropins from the anterior pituitary gland of all vertebrates. About 25 years ago, another neuropeptide, kisspeptin (Kiss1) was discovered as a metastasis suppressor of melanoma cell lines and then found to be essential for mammalian reproduction as a stimulator of hypothalamic Gnrh and regulator of puberty onset. Soon after, a kisspeptin receptor (kissr) was found in the teleost brain. Nowadays, it is known that in most teleosts the kisspeptin system is composed of two ligands, kiss1 and kiss2, and two receptors, kiss2r and kiss3r. Even though both kisspeptin peptides, Kiss1 and Kiss2, have been demonstrated to stimulate gonadotropin synthesis and secretion in different fish species, their actions appear not to be mediated by Gnrh neurons as in mammalian models. In zebrafish and medaka, at least, hypophysiotropic Gnrh neurons do not express Kiss receptors. Furthermore, kisspeptinergic nerve terminals reach luteinizing hormone cells in some fish species, suggesting a direct pituitary action. Recent studies in zebrafish and medaka with targeted mutations of kiss and/or kissr genes reproduce relatively normally. In zebrafish, single gnrh mutants and additionally those having the triple gnrh3 plus 2 kiss mutations can reproduce reasonably well. In these fish, other neuropeptides known to affect gonadotropin secretion were up regulated, suggesting that they may be involved in compensatory responses to maintain reproductive processes. In this context, the present review explores and presents different possibilities of interactions between Kiss, Gnrh and other neuropeptides known to affect reproduction in teleost fish. Our intention is to stimulate a broad discussion on the relative roles of kisspeptin and Gnrh in the control of teleost reproduction.
Collapse
Affiliation(s)
- Gustavo M Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires B7130IWA, Argentina.
| | - Alejandro S Mechaly
- Instituto de Investigaciones en Biodiversidad y Biotecnología (CONICET), Mar del Plata, Buenos Aires 7600, Argentina.
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
31
|
Guellard T, Kalamarz-Kubiak H, Arciszewski B. Effect of short-term intermittent exposure to waterborne estradiol on the reproductive physiology of the round goby (Neogobius melanostomus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:36799-36815. [PMID: 32572740 PMCID: PMC7456417 DOI: 10.1007/s11356-020-09702-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
The objective of this study was to determine how the short-term exposure to a supraphysiological concentration of waterborne 17β-estradiol (E2) influences on melatonin (Mel) and thyroxine (T4) concentrations in plasma and E2 and 11-ketotestosterone (11-KT) concentrations in plasma and gonads in both sexes of round goby (Neogobius melanostomus) during the pre-spawning, spawning, late spawning and non-spawning phases. The experimental protocol was based on short-term, repeated exposures of fish to a supraphysiological dose of waterborne E2. Mel level was unchanged on exposure to E2 during the investigated phases, and its role in determining a time frame for spawning in both sexes of round goby seems to be stable in those conditions. T4 and sex steroids (E2 and 11-KT) were sensitive to the exposure of E2, and those changes influence gonads by accelerating oocyte development, ovulation and regression and inhibiting spermatogenesis in this species. The results demonstrate that the physiological responses of fish in all investigated phases were altered over a short window of exposure, indicating that short-term exposure to a supraphysiological dose of E2 may impact fish in the wild. Furthermore, round goby can be recommended as a very suitable model for studying endocrine disruptors, which is sensitive to even short exposure to E2.
Collapse
Affiliation(s)
- Tatiana Guellard
- Genetics and Marine Biotechnology Department, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland.
| | - Hanna Kalamarz-Kubiak
- Genetics and Marine Biotechnology Department, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Bartłomiej Arciszewski
- Prof. Krzysztof Skóra Hel Marine Station, Institute of Oceanography, Faculty of Oceanography and Geography University of Gdańsk, Hel, Poland
| |
Collapse
|
32
|
Udagawa S, Hur SP, Byun JH, Takekata H, Takeuchi Y, Takemura A. Verification of differentially expressed genes in relation to hydrostatic pressure in the brain of two wrasse species with high-tide preference in spawning. JOURNAL OF FISH BIOLOGY 2020; 97:1027-1038. [PMID: 32648600 DOI: 10.1111/jfb.14458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Fish that inhabit shallow water are exposed to periodic changes in tidal cues, including hydrostatic pressure (HP). The present study aimed at verifying differentially expressed genes (DEGs) in the brain of the threespot wrasse Halichoeres trimaculatus (tropical species) and the honbera wrasse Halichoeres tenuispinis (temperate species), both of which were exposed to HP at 30 kPa (possible high-tide stimuli in the field) or 1 kPa (low tide) for 3 or 6 h. A de novo assembly yielded 174,710 contigs (63,530 contigs were annotated) from the brain of threespot wrasse. Following RNA sequencing, quantitative PCR confirmed DEGs that were upregulated [AT atypical cadherin 2 (FAT2)] and downregulated [neuronal leucine-rich repeat protein 3 (LRRN3), dual specificity tyrosine phosphorylation-regulated kinase 1 (DYRK), mitogen-activated protein kinase kinase 1 (MAP2K1) and phosphoinositide 3 kinase (PI3K)]. The effect of HP on the transcription of these DEGs (except for MAP2K1) disappeared within 6 h, suggesting that HP is a transitory stimulus occurring at the beginning of the tidal cycle. Similar DEG transcription was observed in the brain of honbera wrasse maintained under HP for 6 h. In situ hybridization of the brain of the threespot wrasse revealed that strong signals of MPA2K1 were seen in the telencephalon, diencephalon and pituitary, whereas those of PI3K were seen in the telencephalon, diencephalon and medulla oblongata. This result suggests that these kinases are involved in sensory function (telencephalon), somatic and visceral function (medullar oblongata) and the neuroendocrine system (diencephalon and pituitary), all of which were related to changes in HP stimuli. Following HP exposure, the transcription of c-fos increased in the pituitary of honbera wrasse, suggesting that external stimuli directly or indirectly activate hormone synthesis at the hypothalamic-pituitary-gonadal axis. It is concluded that HP alters gene expression in relation to neural development and function in the central nervous system and plays a role in exerting tidal-related reproduction and feeding in wrasses.
Collapse
Affiliation(s)
- Shingo Udagawa
- Department of Marine and Environmental Science, Graduate School of Engineering and Science, University of the Ryukyus, Okinawa, Japan
| | - Sung-Pyo Hur
- Jeju Marine Research Center, Korea Institute of Ocean Science & Technology, Jeju, Republic of Korea
| | - Jun-Hwan Byun
- Department of Marine and Environmental Science, Graduate School of Engineering and Science, University of the Ryukyus, Okinawa, Japan
| | - Hiroki Takekata
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Yuki Takeuchi
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Akihiro Takemura
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
33
|
First identification of dopamine receptors in pikeperch, Sander lucioperca, during the pre-ovulatory period. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100747. [PMID: 32987329 DOI: 10.1016/j.cbd.2020.100747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/28/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
Abstract
Dopamine (DA) is a ubiquitous neurotransmitter exerting a range of pleiotropic actions through two DA receptor families, the D1 and the D2. To date in vertebrates, a maximum of four receptor subtypes have been identified within the D1 family, D1 (former D1A), D5 (former D1B), D6 (former D1C and D1D) and D7 (former D1E), while the D2 family encloses five subtypes, D2, D3, D4, D8 (former D2like or D2l) and D9 (former D4-related sequence or D4-rs). In teleosts, no study has investigated in parallel all the DA receptors to identify and localize the whole receptor repertoire from both families. In pikeperch, Sander lucioperca, a species of interest for aquaculture development, the existence, number and location of the DA receptors are totally unknown. To address these questions, RNA-seq with de novo transcriptome reconstruction, functional annotation and phylogenetic analysis were performed to characterize the transcript repertoire of DA receptors in the brain of female pikeperch at the pre-ovulatory period. Ten different cDNA were identified and showed to belong to the D1 family: two D1, one D5a, one D6a and one D6b and to the D2 family: two spliced variants of D2, one D3, one D8 and one D9. Unlike zebrafish, the subtypes D4 and D7 have not yet been isolated in pikeperch. As expected D1, D3, D8 and D9 are mostly expressed in brain parts except for the cerebellum (D1 and D3). The inter-species differences in the number of DA receptors and the inter-organ differences in the gene expression of all receptors support the complexity of the dopaminergic actions in vertebrate.
Collapse
|
34
|
Mamta SK, Sudhakumari C, Kagawa H, Dutta-Gupta A, Senthilkumaran B. Controlled release of sex steroids through osmotic pump alters brain GnRH1 and catecholaminergic system dimorphically in the catfish, Clarias gariepinus. Brain Res Bull 2020; 164:325-333. [PMID: 32860867 DOI: 10.1016/j.brainresbull.2020.08.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 10/23/2022]
Abstract
The present study aimed to evaluate osmotic pump-mediated controlled release of estrogen in males and androgen in females to analyze the impact on gonadotropin-releasing hormone (GnRH1), catecholamines (CAs) and other associated genes in the catfish, Clarias gariepinus. During pre-spawning phase, catfish were separately implanted osmotic pumps loaded with 17β-estradiol (E2) in males and 17α-methyltestosterone (MT) in females at a dose of 10 μg/100 μl or saline (100 μl) controls into both sexes to release for 21 days and all fishes were maintained as per the duration. Further, GnRH1 expression levels were analysed in the discrete regions of brain after E2 and MT treatments in male and female catfish, respectively using qPCR which revealed that GnRH1 expression was significantly higher in E2 treated male as compared to the control. On the other hand, GnRH1 expression was lower in MT treated female when compared to the control in the discrete regions of brain. In addition, certain brain and monoaminergic system related genes showed a differential response. Catfish GnRH1 could be localized in preoptic area-hypothalamus (POA-HYP) that correlated with the expression profile in the discrete regions of catfish brain. Serum levels of sex steroids in the treated male fish indicated that the treatment of E2 could maintain and impart feminization effect even in the presence of endogenous androgen during gonadal recrudescence while such an effect was not seen in females with androgen treatment. Measurement of CAs, L-3,4-dihydroxyphenylalanine, dopamine and norepinephrine levels in the male and female brain after the controlled release of E2 and MT, respectively confirmed the modulation of neurotransmitters in the E2treated male than MT treated female fish. These results collectively suggest the severity of estrogenic over androgenic compounds to alter reproductive status even at a minimal dose by targeting CAs and GnRH1 at the level of brain of catfish. This study provides insights into the reproductive toxicity of sex steroid analogues at the level of brain GnRH1 and CA-ergic system in addition to serum T, 11-KT and E2 levels during gonadal recrudescence, which is a crucial period of gametogenesis preceding spawning.
Collapse
Affiliation(s)
- Sajwan-Khatri Mamta
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, Telangana, India
| | - Chenichery Sudhakumari
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, Telangana, India
| | - Hirohiko Kagawa
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Aparna Dutta-Gupta
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, Telangana, India
| | - Balasubramanian Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
35
|
Servili A, Canario AVM, Mouchel O, Muñoz-Cueto JA. Climate change impacts on fish reproduction are mediated at multiple levels of the brain-pituitary-gonad axis. Gen Comp Endocrinol 2020; 291:113439. [PMID: 32061640 DOI: 10.1016/j.ygcen.2020.113439] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 11/30/2022]
Abstract
Anthropogenic emissions of carbon dioxide in the atmosphere have generated rapid variations in atmospheric composition which drives major climate changes. Climate change related effects include changes in physico-chemical proprieties of sea and freshwater, such as variations in water temperature, salinity, pH/pCO2 and oxygen content, which can impact fish critical physiological functions including reproduction. In this context, the main aim of the present review is to discuss how climate change related effects (variation in water temperature and salinity, increases in duration and frequency of hypoxia events, water acidification) would impact reproduction by affecting the neuroendocrine axis (brain-pituitary-gonad axis). Variations in temperature and photoperiod regimes are known to strongly affect sex differentiation and the timing and phenology of spawning period in several fish species. Temperature mainly acts at the level of gonad by interfering with steroidogenesis, (notably on gonadal aromatase activity) and gametogenesis. Temperature is also directly involved in the quality of released gametes and embryos development. Changes in salinity or water acidification are especially associated with reduction of sperm quality and reproductive output. Hypoxia events are able to interact with gonad steroidogenesis by acting on the steroids precursor cholesterol availability or directly on aromatase action, with an impact on the quality of gametes and reproductive success. Climate change related effects on water parameters likely influence also the reproductive behavior of fish. Although the precise mechanisms underlying the regulation of these effects are not always understood, in this review we discuss different hypothesis and propose future research perspectives.
Collapse
Affiliation(s)
- Arianna Servili
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, F-29280 Plouzane, France.
| | - Adelino V M Canario
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Olivier Mouchel
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, F-29280 Plouzane, France
| | - José Antonio Muñoz-Cueto
- Faculty of Marine and Environmental Sciences, INMAR, Department of Biology, University of Cádiz, Marine Campus of International Excellence (CEIMAR), Agrifood Campus of International Excellence (ceiA3) and European University of the Seas (SEA-EU), E11510 Puerto Real, Spain
| |
Collapse
|
36
|
Maugars G, Pasquier J, Atkinson C, Lafont AG, Campo A, Kamech N, Lefranc B, Leprince J, Dufour S, Rousseau K. Gonadotropin-inhibitory hormone in teleosts: New insights from a basal representative, the eel. Gen Comp Endocrinol 2020; 287:113350. [PMID: 31794732 DOI: 10.1016/j.ygcen.2019.113350] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022]
Abstract
Since its discovery in birds, gonadotropin-inhibitory hormone (GnIH) has triggered investigation in the other groups of vertebrates. In the present study, we have identified a single gnih gene in the European eel (Anguilla anguilla), a representative species of a basal group of teleosts (Elopomorphs). We have also retrieved a single gnih gene in Osteoglossomorphs, as well as in more recently emerged teleosts, Clupeocephala. Phylogeny and synteny analyses allowed us to infer that one of the two gnih paralogs emerged from the teleost-specific whole genome duplication (TWGD or 3R), would have been lost shortly after the 3R, before the emergence of the basal groups of teleosts. This led to the presence of a single gnih in extant teleosts as in other vertebrates. Two gnih paralogs were still found in some teleost species, such as in salmonids, but resulting from the additional whole genome duplication that specifically occurred in this lineage (4R). Eel gnih was mostly expressed in the diencephalon part of the brain, as analyzed by quantitative real-time PCR. Cloning of eel gnih cDNA confirmed that the sequence of the GnIH precursor encoded three putative mature GnIH peptides (aaGnIH-1, aaGnIH-2 and aaGnIH-3), which were synthesized and tested for their direct effects on eel pituitary cells in vitro. Eel GnIH peptides inhibited the expression of gonadotropin subunits (lhβ, fshβ, and common a-subunit) as well as of GnRH receptor (gnrh-r2), with no effect on tshβ and gh expression. The inhibitory effect of GnIH peptides on gonadotropic function in a basal teleost is in agreement with an ancestral inhibitory role of GnIH in the neuroendocrine control of reproduction in vertebrates.
Collapse
Affiliation(s)
- G Maugars
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - J Pasquier
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - C Atkinson
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - A-G Lafont
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - A Campo
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - N Kamech
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - B Lefranc
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U1239, Normandy University, Rouen, France
| | - J Leprince
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U1239, Normandy University, Rouen, France
| | - S Dufour
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - K Rousseau
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France.
| |
Collapse
|
37
|
Ciani E, Haug TM, Maugars G, Weltzien FA, Falcón J, Fontaine R. Effects of Melatonin on Anterior Pituitary Plasticity: A Comparison Between Mammals and Teleosts. Front Endocrinol (Lausanne) 2020; 11:605111. [PMID: 33505357 PMCID: PMC7831660 DOI: 10.3389/fendo.2020.605111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/12/2020] [Indexed: 01/01/2023] Open
Abstract
Melatonin is a key hormone involved in the photoperiodic signaling pathway. In both teleosts and mammals, melatonin produced in the pineal gland at night is released into the blood and cerebrospinal fluid, providing rhythmic information to the whole organism. Melatonin acts via specific receptors, allowing the synchronization of daily and annual physiological rhythms to environmental conditions. The pituitary gland, which produces several hormones involved in a variety of physiological processes such as growth, metabolism, stress and reproduction, is an important target of melatonin. Melatonin modulates pituitary cellular activities, adjusting the synthesis and release of the different pituitary hormones to the functional demands, which changes during the day, seasons and life stages. It is, however, not always clear whether melatonin acts directly or indirectly on the pituitary. Indeed, melatonin also acts both upstream, on brain centers that control the pituitary hormone production and release, as well as downstream, on the tissues targeted by the pituitary hormones, which provide positive and negative feedback to the pituitary gland. In this review, we describe the known pathways through which melatonin modulates anterior pituitary hormonal production, distinguishing indirect effects mediated by brain centers from direct effects on the anterior pituitary. We also highlight similarities and differences between teleosts and mammals, drawing attention to knowledge gaps, and suggesting aims for future research.
Collapse
Affiliation(s)
- Elia Ciani
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Trude M. Haug
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Gersende Maugars
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Finn-Arne Weltzien
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Jack Falcón
- Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS FRE 2030, SU, IRD 207, UCN, UA, Paris, France
| | - Romain Fontaine
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
- *Correspondence: Romain Fontaine,
| |
Collapse
|
38
|
Cohen Y, Hausken K, Bonfil Y, Gutnick M, Levavi-Sivan B. Spexin and a Novel Cichlid-Specific Spexin Paralog Both Inhibit FSH and LH Through a Specific Galanin Receptor (Galr2b) in Tilapia. Front Endocrinol (Lausanne) 2020; 11:71. [PMID: 32153508 PMCID: PMC7044129 DOI: 10.3389/fendo.2020.00071] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/03/2020] [Indexed: 12/15/2022] Open
Abstract
Spexin (SPX) is a 14 amino acid peptide hormone that has pleiotropic functions across vertebrates, one of which is involvement in the brain-pituitary-gonad axis of fish. SPX(1) has been identified in each class of vertebrates, and a second SPX (named SPX2) has been found in some non-mammalian species. We have cloned two spexin paralogs, designated as Spx1a and Spx1b, from Nile tilapia (Oreochromis niloticus) that have varying tissue distribution patterns. Spx1b is a novel peptide only identified in cichlid fish, and is more closely related to Spx1 than Spx2 homologs as supported by phylogenetic, synteny, and functional analyses. Kisspeptin, Spx, and galanin (Gal) peptides and their corresponding kiss receptors and Gal receptors (Galrs), respectively, are evolutionarily related. Cloning of six tilapia Galrs (Galr1a, Galr1b, Galr2a, Galr2b, Galr type 1, and Galr type 2) and subsequent in vitro second-messenger reporter assays for Gαs, Gαq, and Gαi suggests that Gal and Spx activate Galr1a/Galr2a and Galr2b, respectively. A decrease in plasma follicle stimulating hormone and luteinizing hormone concentrations was observed with injections of Spx1a or Spx1b in vivo. Additionally, application of Spx1a and Spx1b to pituitary slices decreased the firing rate of LH cells, suggesting that the peptides can act directly at the level of the pituitary. These data collectively suggest an inhibitory mechanism of action against the secretion of gonadotropins for a traditional and a novel spexin paralog in cichlid species.
Collapse
Affiliation(s)
- Yaron Cohen
- Department of Animal Sciences, Hebrew University of Jerusalem, Rehovot, Israel
| | - Krist Hausken
- Department of Animal Sciences, Hebrew University of Jerusalem, Rehovot, Israel
| | - Yoav Bonfil
- Department of Animal Sciences, Hebrew University of Jerusalem, Rehovot, Israel
| | - Michael Gutnick
- The Robert H. Smith Faculty of Agriculture, Food, and Environment, Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Berta Levavi-Sivan
- Department of Animal Sciences, Hebrew University of Jerusalem, Rehovot, Israel
- *Correspondence: Berta Levavi-Sivan
| |
Collapse
|
39
|
Dufour S, Quérat B, Tostivint H, Pasqualini C, Vaudry H, Rousseau K. Origin and Evolution of the Neuroendocrine Control of Reproduction in Vertebrates, With Special Focus on Genome and Gene Duplications. Physiol Rev 2019; 100:869-943. [PMID: 31625459 DOI: 10.1152/physrev.00009.2019] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In humans, as in the other mammals, the neuroendocrine control of reproduction is ensured by the brain-pituitary gonadotropic axis. Multiple internal and environmental cues are integrated via brain neuronal networks, ultimately leading to the modulation of the activity of gonadotropin-releasing hormone (GnRH) neurons. The decapeptide GnRH is released into the hypothalamic-hypophysial portal blood system and stimulates the production of pituitary glycoprotein hormones, the two gonadotropins luteinizing hormone and follicle-stimulating hormone. A novel actor, the neuropeptide kisspeptin, acting upstream of GnRH, has attracted increasing attention in recent years. Other neuropeptides, such as gonadotropin-inhibiting hormone/RF-amide related peptide, and other members of the RF-amide peptide superfamily, as well as various nonpeptidic neuromediators such as dopamine and serotonin also provide a large panel of stimulatory or inhibitory regulators. This paper addresses the origin and evolution of the vertebrate gonadotropic axis. Brain-pituitary neuroendocrine axes are typical of vertebrates, the pituitary gland, mediator and amplifier of brain control on peripheral organs, being a vertebrate innovation. The paper reviews, from molecular and functional perspectives, the evolution across vertebrate radiation of some key actors of the vertebrate neuroendocrine control of reproduction and traces back their origin along the vertebrate lineage and in other metazoa before the emergence of vertebrates. A focus is given on how gene duplications, resulting from either local events or from whole genome duplication events, and followed by paralogous gene loss or conservation, might have shaped the evolutionary scenarios of current families of key actors of the gonadotropic axis.
Collapse
Affiliation(s)
- Sylvie Dufour
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Bruno Quérat
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hervé Tostivint
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Catherine Pasqualini
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hubert Vaudry
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Karine Rousseau
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| |
Collapse
|
40
|
Paullada-Salmerón JA, Cowan ME, Loentgen GH, Aliaga-Guerrero M, Zanuy S, Mañanós EL, Muñoz-Cueto JA. The gonadotropin-inhibitory hormone system of fish: The case of sea bass (Dicentrarchus labrax). Gen Comp Endocrinol 2019; 279:184-195. [PMID: 30923006 DOI: 10.1016/j.ygcen.2019.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/12/2019] [Accepted: 03/23/2019] [Indexed: 11/21/2022]
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide belonging to the RFamide peptide family that was first discovered in quail by Tsutsui and co-workers in the year 2000. Since then, different GnIH orthologues have been identified in all vertebrate groups, from agnathans to mammals. These GnIH genes synthesize peptide precursors that encompass two to four C-terminal LPXRFamide peptides. Functional and behavioral studies carried out in birds and mammals have demonstrated a clear inhibitory role of GnIH on GnRH and gonadotropin synthesis and secretion as well as on aggressive and sexual behavior. However, the effects of Gnih orthologues in reproduction remain controversial in fish with both stimulatory and inhibitory actions being reported. In this paper, we will review the main findings obtained in our laboratory on the Gnih system of the European sea bass, Dicentrarchus labrax. The sea bass gnih gene encodes two putative Gnih peptides (sbGnih1 and sbGnih2), and is expressed in the olfactory bulbs/telencephalon, diencephalon, midbrain tegmentum, rostral rhombencephalon, retina and testis. The immunohistochemical study performed using specific antibodies developed in our laboratory revealed Gnih-immunoreactive (ir) perikarya in the same central areas and Gnih-ir fibers that profusely innervated the brain and pituitary of sea bass. Moreover, in vivo studies revealed the inhibitory role of centrally- and peripherally-administered Gnih in the reproductive axis of male sea bass, by acting at the brain (on gnrh and kisspeptin expression), pituitary (on gnrh receptors and gonadotropin synthesis and release) and gonadal (on androgen secretion and gametogenesis) levels. Our results have revealed the existence of a functional Gnih system in sea bass, and have provided evidence of the differential actions of the two Gnih peptides on the reproductive axis of this species, the main inhibitory role in the brain and pituitary being exerted by the sbGnih2 peptide. Recent studies developed in our laboratory also suggest that Gnih might be involved in the transduction of photoperiod and temperature information to the reproductive axis, as well as in the modulation of daily and seasonal rhythmic processes in sea bass.
Collapse
Affiliation(s)
- José Antonio Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, Puerto Real (Cádiz), Spain.
| | - Mairi E Cowan
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, Puerto Real (Cádiz), Spain
| | - Guillaume H Loentgen
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, Puerto Real (Cádiz), Spain
| | - María Aliaga-Guerrero
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, Puerto Real (Cádiz), Spain
| | - Silvia Zanuy
- Institute of Aquaculture of Torre de la Sal, CSIC, Castellón, Spain
| | | | - José Antonio Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, Puerto Real (Cádiz), Spain.
| |
Collapse
|
41
|
Batalhão IG, Lima D, Russi APM, Boscolo CNP, Silva DGH, Pereira TSB, Bainy ACD, de Almeida EA. Effects of methylphenidate on the aggressive behavior, serotonin and dopamine levels, and dopamine-related gene transcription in brain of male Nile tilapia (Oreochromis niloticus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1377-1391. [PMID: 31054043 DOI: 10.1007/s10695-019-00645-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
The occurrence of pharmaceuticals in the aquatic environment has increased considerably in the last decades, causing negative biochemical, physiological, and behavioral effects in aquatic organisms. In this study, we evaluated the effects of methylphenidate (MPH) on the aggressive behavior, dopamine-related gene transcript levels, monoamine levels, and carboxylesterase transcript levels and activity in the brain of male Nile tilapia (Oreochromis niloticus). Carboxylesterase activity was also measured in the liver and gills. Fish were exposed for 5 days to MPH at 20 and 100 ng L-1. Fish exposed to 100 ng L-1 of MPH showed increased aggressiveness and decreased dopamine (DA) and serotonin (5-HT) levels. No changes were observed in plasma testosterone levels and in the transcript levels of D1 and D2 dopamine receptors, dopamine transporter (DAT), and carboxylesterase 2 (CES2). Exposure to 100 ng L-1 of MPH caused a decrease in the transcript levels of carboxylesterase 3 (CES3) and an increase in tyrosine hydroxylase (TH), while exposure to 20 ng L-1 of MPH increased the transcript levels of D5 dopamine receptor. Carboxylesterase activity was unchanged in the brain and liver and increased in the gills of fish exposed to 20 ng L-1. These results indicate that MPH at 100 ng L-1 increases aggressiveness in Nile tilapia, possibly due to a decrease in 5-HT levels in the brain and alterations in dopamine levels and dopamine-related genes.
Collapse
Affiliation(s)
- Isabela Gertrudes Batalhão
- Department of Chemistry and Environmental Sciences, UNESP - Sao Paulo State University, São Paulo, Brazil
| | - Daína Lima
- Department of Biochemistry, UFSC - Federal University of Santa Catarina, Florianópolis, SP, Brazil
| | - Ana Paula Montedor Russi
- Department of Physiology, UNESP - Sao Paulo State University, Jaboticabal, São Paulo, SP, Brazil
| | | | | | - Thiago Scremin Boscolo Pereira
- UNIRP - University Center of Rio Preto, São José do Rio Preto, SP, Brazil
- FACERES - Morphofunctional Laboratory, FACERES Medical School, São José do Rio Preto, SP, Brazil
| | - Afonso Celso Dias Bainy
- Department of Biochemistry, UFSC - Federal University of Santa Catarina, Florianópolis, SP, Brazil
| | - Eduardo Alves de Almeida
- Department of Natural Sciences, FURB Fundação Universidade Regional de Blumenau, Blumenau, SC, Brazil.
| |
Collapse
|
42
|
Jéhannet P, Kruijt L, Damsteegt EL, Swinkels W, Heinsbroek LTN, Lokman PM, Palstra AP. A mechanistic model for studying the initiation of anguillid vitellogenesis by comparing the European eel (Anguilla anguilla) and the shortfinned eel (A. australis). Gen Comp Endocrinol 2019; 279:129-138. [PMID: 30796898 DOI: 10.1016/j.ygcen.2019.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 12/20/2022]
Abstract
An inverse relation exists between the maturation stage at the start of the oceanic reproductive migration and the migration distance to the spawning grounds for the various eel species. The European eel Anguilla anguilla migrates up to 5-6000 km and leaves in a previtellogenic state. The shortfinned eel A. australis migrates 2-4000 km and leaves in an early vitellogenic state. In this study, we compared the early pubertal events in European silver eels with those in silver shortfinned eels to gain insights into the initiation of vitellogenesis. Immediately after being caught, yellow and silver eels of both species were measured and sampled for blood and tissues. Eye index (EI), gonadosomatic index (GSI) and hepatosomatic index (HSI) were calculated. Plasma 11-ketotestosterone (11-KT) and 17β-estradiol (E2) levels were measured by radioimmunoassay. Pituitary, liver and ovaries were dissected for quantitative real-time PCR analyses (pituitary dopamine 2b receptor d2br, gonadotropin-releasing hormone receptors 1 and 2 gnrhr1 and gnrhr2, growth hormone gh and follicle-stimulating hormone-β fshb; liver estrogen receptor 1 esr1; gonad follicle-stimulating hormone receptor fshr, androgen receptors α and β ara and arb, vitellogenin receptor vtgr and P450 aromatase cyp19). Silver eels of both species showed a drop in pituitary gh expression, progressing gonadal development (GSI of ∼1.5 in European eels and ∼3.0 in shortfinned eels) and steroid level increases. In shortfinned eels, but not European eels, expression of fshb, gnrhr1 and gnrhr2, and d2br in the pituitary was up-regulated in the silver-stage as compared to yellow-stage females, as was expression of fshr, ara and arb in the ovaries. Expression of esr1 in European eels remained low while esr1 expression was up-regulated over 100-fold in silver shortfinned eels. The mechanistic model for anguillid vitellogenesis that we present suggests a first step that involves a drop in Gh and a second step that involves Fsh increase when switching in the life history trade-off from growth to reproduction. The drop in Gh is associated with gonadal development and plasma steroid increase but precedes brain-pituitary-gonad axis (BPG) activation. The Fsh increase marks BPG activation and increased sensitivity of the liver to estrogenic stimulation, but also an increase in D2br-mediated dopaminergic signaling to the pituitary.
Collapse
Affiliation(s)
- P Jéhannet
- Wageningen University & Research Animal Breeding and Genomics, Wageningen Livestock Research, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - L Kruijt
- Wageningen University & Research Animal Breeding and Genomics, Wageningen Livestock Research, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - E L Damsteegt
- Department of Zoology, University of Otago, 340 Great King Street, PO Box 56, Dunedin 9054, New Zealand
| | - W Swinkels
- DUPAN Foundation, Bronland 12-D, 6700 AE Wageningen, The Netherlands
| | - L T N Heinsbroek
- Wageningen University & Research Animal Breeding and Genomics, Wageningen Livestock Research, PO Box 338, 6700 AH Wageningen, The Netherlands; Wageningen Eel Reproduction Experts B.V., Mennonietenweg 13, 6702 AB Wageningen, The Netherlands
| | - P M Lokman
- Department of Zoology, University of Otago, 340 Great King Street, PO Box 56, Dunedin 9054, New Zealand
| | - A P Palstra
- Wageningen University & Research Animal Breeding and Genomics, Wageningen Livestock Research, PO Box 338, 6700 AH Wageningen, The Netherlands.
| |
Collapse
|
43
|
Álvarez-Campos P, Kenny NJ, Verdes A, Fernández R, Novo M, Giribet G, Riesgo A. Delegating Sex: Differential Gene Expression in Stolonizing Syllids Uncovers the Hormonal Control of Reproduction. Genome Biol Evol 2019; 11:295-318. [PMID: 30535381 PMCID: PMC6350857 DOI: 10.1093/gbe/evy265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2018] [Indexed: 12/31/2022] Open
Abstract
Stolonization in syllid annelids is a unique mode of reproduction among animals. During the breeding season, a structure resembling the adult but containing only gametes, called stolon, is formed generally at the posterior end of the animal. When stolons mature, they detach from the adult and gametes are released into the water column. The process is synchronized within each species, and it has been reported to be under environmental and endogenous control, probably via endocrine regulation. To further understand reproduction in syllids and to elucidate the molecular toolkit underlying stolonization, we generated Illumina RNA-seq data from different tissues of reproductive and nonreproductive individuals of Syllis magdalena and characterized gene expression during the stolonization process. Several genes involved in gametogenesis (ovochymase, vitellogenin, testis-specific serine/threonine-kinase), immune response (complement receptor 2), neuronal development (tyrosine-protein kinase Src42A), cell proliferation (alpha-1D adrenergic receptor), and steroid metabolism (hydroxysteroid dehydrogenase 2) were found differentially expressed in the different tissues and conditions analyzed. In addition, our findings suggest that several neurohormones, such as methyl farnesoate, dopamine, and serotonin, might trigger stolon formation, the correct maturation of gametes and the detachment of stolons when gametogenesis ends. The process seems to be under circadian control, as indicated by the expression patterns of r-opsins. Overall, our results shed light into the genes that orchestrate the onset of gamete formation and improve our understanding of how some hormones, previously reported to be involved in reproduction and metamorphosis processes in other invertebrates, seem to also regulate reproduction via stolonization.
Collapse
Affiliation(s)
- Patricia Álvarez-Campos
- Facultad de Ciencias, Departamento de Biología (Zoología), Universidad Autónoma de Madrid, Spain
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
- Department of Life Sciences, The Natural History Museum of London, London, United Kingdom
- Department of Biological & Medical Sciences, Oxford Brookes University, Headington Campus, Gipsy Lane, Oxford, United Kingdom
| | - Nathan J Kenny
- Department of Life Sciences, The Natural History Museum of London, London, United Kingdom
| | - Aida Verdes
- Facultad de Ciencias, Departamento de Biología (Zoología), Universidad Autónoma de Madrid, Spain
- Department of Biology, The Graduate Center, City University of New York
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York
| | - Rosa Fernández
- Bioinformatics & Genomics Unit, Center for Genomic Regulation, Barcelona, Spain
| | - Marta Novo
- Facultad de Biología, Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, Spain
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Ana Riesgo
- Department of Biology, The Graduate Center, City University of New York
| |
Collapse
|
44
|
Singh O, Pradhan DR, Nagalakashmi B, Kumar S, Mitra S, Sagarkar S, Sakharkar AJ, Lechan RM, Singru PS. Thyrotropin-releasing hormone (TRH) in the brain and pituitary of the teleost, Clarias batrachus and its role in regulation of hypophysiotropic dopamine neurons. J Comp Neurol 2018; 527:1070-1101. [PMID: 30370602 DOI: 10.1002/cne.24570] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/18/2018] [Accepted: 10/23/2018] [Indexed: 11/11/2022]
Abstract
Thyrotropin-releasing hormone (TRH) regulates the hypothalamic-pituitary-thyroid axis in mammals and also regulates prolactin secretion, directly or indirectly via tuberoinfundibular dopamine neurons. Although TRH is abundantly expressed in teleost brain and believed to mediate neuronal communication, empirical evidence is lacking. We analyzed pro-TRH-mRNA expression, mapped TRH-immunoreactive elements in the brain and pituitary, and explored its role in regulation of hypophysiotropic dopamine (DA) neurons in the catfish, Clarias batrachus. Partial pro-TRH transcript from C. batrachus transcriptome showed six TRH progenitors repeats. Quantitative real-time polymerase chain reaction (qRT-PCR) identified pro-TRH transcript in a number of different brain regions and immunofluorescence showed TRH-immunoreactive cells/fibers in the olfactory bulb, telencephalon, preoptic area (POA), hypothalamus, midbrain, hindbrain, and spinal cord. In the pituitary, TRH-immunoreactive fibers were seen in the neurohypophysis, proximal pars distalis, and pars intermedia but not rostral pars distalis. In POA, distinct TRH-immunoreactive cells/fibers were seen in nucleus preopticus periventricularis anterior (NPPa) that demonstrated a significant increase in TRH-immunoreactivity when collected during preparatory and prespawning phases, reaching a peak in the spawning phase. Although tyrosine hydroxylase (TH)-immunoreactive neurons in NPPa are hypophysiotropic, none of the TRH-immunoreactive neurons in NPPa accumulated neuronal tracer DiI following implants into the pituitary. However, 87 ± 1.6% NPPa TH-immunoreactive neurons were surrounded by TRH-immunoreactive axons that were seen in close proximity to the somata. Superfused POA slices treated with TRH (0.5-2 μM) significantly reduced TH concentration in tissue homogenates and the percent TH-immunoreactive area in the NPPa. We suggest that TRH in the brain of C. batrachus regulates a range of physiological functions but in particular, serves as a potential regulator of hypophysiotropic DA neurons and reproduction.
Collapse
Affiliation(s)
- Omprakash Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, India
| | - Dipti R Pradhan
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, India
| | - B Nagalakashmi
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Santosh Kumar
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, India
| | - Saptarsi Mitra
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, India
| | - Sneha Sagarkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Amul J Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Ronald M Lechan
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts.,Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| | - Praful S Singru
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, India
| |
Collapse
|
45
|
Geraudie P, Gerbron M, Lockyer AE, Jobling S, Minier C. Molecular isolation and characterization of the kisspeptin system, KISS and GPR54 genes in roach Rutilus rutilus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:36759-36764. [PMID: 30293106 DOI: 10.1007/s11356-018-3299-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
The reproduction of vertebrates is regulated by endocrine and neuro-endocrine signaling molecules acting along the brain-pituitary-gonad (BPG) axis. The understanding of the neuroendocrine role played in reproductive function has been recently revolutionized since the KiSS1/GPR54 (KiSS1r) system was discovered in 2003 in human and mice. Kisspeptins, neuropeptides that are encoded by the KiSS genes, have been recognized as essential in the regulation of the gonadotropic axis. They have been shown to play key roles in puberty onset and reproduction by regulating the gonadotropin secretion in mammals while physiological roles in vertebrates are still poorly known. In order to provide new knowledge on basic reproductive physiology in fish as well as new tools to assess impacts of endocrine disrupting compounds (EDCs), the neurotransmitter system, i.e., gene/receptor, KISS/GPR54 might constitute an appropriate biomarker. This study provides new understandings on the neuroendocrine regulation of roach reproduction as well as new molecular tools to be used as biomarkers of endocrine disruption. This work completes the set of biomarkers already validated in this species.
Collapse
Affiliation(s)
- Perrine Geraudie
- Akvaplan-Niva, Environmental and Petroleum Research Department, Framsenteret, Tromsø, Norway.
| | - Marie Gerbron
- Laboratory of Ecotoxicology, UMR-I 02 SEBIO-Normandie University, Le Havre, France
| | - Anne E Lockyer
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Susan Jobling
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Christophe Minier
- Laboratory of Ecotoxicology, UMR-I 02 SEBIO-Normandie University, Le Havre, France
| |
Collapse
|
46
|
GDNF family receptor α-1 in the catfish: Possible implication to brain dopaminergic activity. Brain Res Bull 2018; 140:270-280. [PMID: 29758254 DOI: 10.1016/j.brainresbull.2018.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/28/2018] [Accepted: 05/08/2018] [Indexed: 02/03/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF)is a potent trophic factor that preferentially binds to GDNF family receptor α-1 (GFRα-1)by regulating dopaminergic (DA-ergic) neuronsin brain. Present study aimed to evaluate the significance of GFRα-1 expression during early brain development in catfish. Initially, the full-length cDNA of GFRα-1 was cloned from adult brain which showed high homology with other vertebrate counterparts. Quantitative PCR analysis of tissue distribution revealed ubiquitous expression of GFRα-1 in the tissues analyzed with high levels in female brain and ovary. Significant high expression was evident in brain at 75 and 100 days post hatch females than the respective age-match males. Expression of GFRα-1 was high in brain during the spawning phase when compared to other reproductive phases. Localization of GFRα-1 revealed its presence in preoptic area-hypothalamus which correlated well with the expression profile in discrete areas of brain in adult catfish. Transient silencing of GFRα-1through siRNA lowered expression levels of GFRα-1, which further down regulated the expression of certain brain-specific genes. Expression of GFRα-1 in brain declined significantly upon treatment with the 1-methyl-1,2,3,6-tetrahydropyridinecausing neurodegeneration which further correlated with catecholamines (CA), L-3,4-dihydroxyphenylalanine, DA and norepinephrine levels. Taken together, GFRα-1 plausibly entrains gonadotropin-releasing hormone and gonadotropin axiseither directly or indirectly, at least by partially targeting CA-ergic activity.
Collapse
|
47
|
Graziano M, Benito R, Planas JV, Palstra AP. Swimming exercise to control precocious maturation in male seabass (Dicentrarchus labrax). BMC DEVELOPMENTAL BIOLOGY 2018; 18:10. [PMID: 29649968 PMCID: PMC5897932 DOI: 10.1186/s12861-018-0170-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 04/08/2018] [Indexed: 01/19/2023]
Abstract
Background Male European seabass, already predominant (~ 70%) in cultured stocks, show a high incidence (20–30%) of precocious sexual maturation under current aquaculture practices, leading to important economic losses for the industry. In view of the known modulation of reproductive development by swimming exercise in other teleost species, we aimed at investigating the effects of sustained swimming on reproductive development in seabass males during the first year of life in order to determine if swimming could potentially reduce precocious sexual maturation. Methods Pre-pubertal seabass (3.91 ± 0.22 g of body weight (BW)) were subjected to a 10 week swimming regime at their optimal swimming speed (Uopt) in an oval-shaped Brett-type flume or kept at rest during this period. Using Blazka-type swim tunnels, Uopt was determined three times during the course of the experiment: 0.66 m s− 1 at 19 ± 1 g BW, 10.2 ± 0.2 cm of standard length (SL) (week 1); 0.69 m s− 1 at 38 ± 3 g BW, 12.7 ± 0.3 cm SL (week 5), and also 0.69 m s− 1 at 77 ± 7 g BW, 15.7 ± 0.5 cm SL (week 9). Every 2 weeks, size and gonadal weight were monitored in the exercised (N = 15) and non-exercised fish (N = 15). After 10 weeks, exercised and non-exercised males were sampled to determine plasma 11-ketotestosterone levels, testicular mRNA expression levels of genes involved in steroidogenesis and gametogenesis by qPCR, as well as the relative abundance of germ cells representing the different spermatogenic stages by histological examination. Results Our results indicate that sustained swimming exercise at Uopt delays testicular development in male European seabass as evidenced by decreased gonado-somatic index, slower progression of testicular development and by reduced mRNA expression levels of follicle stimulating hormone receptor (fshR), 3-beta-hydroxysteroid dehydrogenase (3βhsd), 11-beta hydroxysteroid dehydrogenase (11βhsd), estrogen receptor-beta (erβ2), anti-mullerian hormone (amh), structural maintenance of chromosomes protein 1B (smc1β), inhibin beta A (inhba) and gonado-somal derived factor 1 (gsdf1) in exercised males as compared with the non-exercised males. Conclusions Swimming exercise may represent a natural and non-invasive tool to reduce the incidence of sexually precocious males in seabass aquaculture.
Collapse
Affiliation(s)
- Marco Graziano
- Department of Physiology and Immunology, School of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain.,Wageningen Marine Research, Wageningen University & Research, Korringaweg 5, 4401, NT, Yerseke, The Netherlands
| | - Raul Benito
- Department of Physiology and Immunology, School of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain.,Wageningen Marine Research, Wageningen University & Research, Korringaweg 5, 4401, NT, Yerseke, The Netherlands
| | - Josep V Planas
- Department of Physiology and Immunology, School of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain
| | - Arjan P Palstra
- Wageningen Marine Research, Wageningen University & Research, Korringaweg 5, 4401, NT, Yerseke, The Netherlands. .,Wageningen Livestock Research, Wageningen University & Research Animal Breeding and Genomics, PO Box 338, 6700, AH, Wageningen, The Netherlands.
| |
Collapse
|
48
|
Veilleux HD, Donelson JM, Munday PL. Reproductive gene expression in a coral reef fish exposed to increasing temperature across generations. CONSERVATION PHYSIOLOGY 2018; 6:cox077. [PMID: 29326840 PMCID: PMC5757642 DOI: 10.1093/conphys/cox077] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/28/2017] [Accepted: 12/07/2017] [Indexed: 05/12/2023]
Abstract
Reproduction in marine fish is generally tightly linked with water temperature. Consequently, when adults are exposed to projected future ocean temperatures, reproductive output of many species declines precipitously. Recent research has shown that in the common reef fish, Acanthochromis polyacanthus, step-wise exposure to higher temperatures over two generations (parents: +1.5°C, offspring: +3.0°C) can improve reproductive output in the F2 generation compared to F2 fish that have experienced the same high temperatures over two generations (F1 parents: +3.0°C, F2 offspring: +3.0°C). To investigate how a step-wise increase in temperature between generations improved reproductive capacity, we tested the expression of well-known teleost reproductive genes in the brain and gonads of F2 fish using quantitative reverse transcription PCR and compared it among control (+0.0°C for two generations), developmental (+3.0°C in second generation only), step (+1.5°C in first generation and +3.0°C in second generation), and transgenerational (+3.0°C for two generations) treatments. We found that levels of gonadotropin receptor gene expression (Fshr and Lhcgr) in the testes were reduced in developmental and transgenerational temperature treatments, but were similar to control levels in the step treatment. This suggests Fshr and Lhcgr may be involved in regulating male reproductive capacity in A. polyacanthus. In addition, lower Fshb expression in the brain of females in all temperature treatments compared to control, suggests that Fshb expression, which is involved in vitellogenesis, is sensitive to high temperatures. Our results help elucidate key genes that facilitate successful reproduction in reef fishes when they experience a gradual increase in temperature across generations consistent with the trajectory of climate change.
Collapse
Affiliation(s)
- Heather D Veilleux
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville QLD 4811, Australia
- Corresponding author: ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville QLD 4811, Australia. Tel: +61 7 4781 4850.
| | - Jennifer M Donelson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville QLD 4811, Australia
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Philip L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville QLD 4811, Australia
| |
Collapse
|
49
|
Campo A, Lafont AG, Lefranc B, Leprince J, Tostivint H, Kamech N, Dufour S, Rousseau K. Tachykinin-3 Genes and Peptides Characterized in a Basal Teleost, the European Eel: Evolutionary Perspective and Pituitary Role. Front Endocrinol (Lausanne) 2018; 9:304. [PMID: 29942283 PMCID: PMC6004781 DOI: 10.3389/fendo.2018.00304] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022] Open
Abstract
In mammals, neurokinin B (NKB) is a short peptide encoded by the gene tac3. It is involved in the brain control of reproduction by stimulating gonadotropin-releasing hormone (GnRH) neurons, mainly via kisspeptin. We investigated tac3 genes and peptides in a basal teleost, the European eel, which shows an atypical blockade of the sexual maturation at a prepubertal stage. Two tac3 paralogous genes (tac3a and tac3b) were identified in the eel genome, each encoding two peptides (NKBa or b and NKB-related peptide NKB-RPa or b). Amino acid sequence of eel NKBa is identical to human NKB, and the three others are novel peptide sequences. The four eel peptides present the characteristic C-terminal tachykinin sequence, as well as a similar alpha helix 3D structure. Tac3 genes were identified in silico in 52 species of vertebrates, and a phylogeny analysis was performed on the predicted TAC3 pre-pro-peptide sequences. A synteny analysis was also done to further assess the evolutionary history of tac3 genes. Duplicated tac3 genes in teleosts likely result from the teleost-specific whole genome duplication (3R). Among teleosts, TAC3b precursor sequences are more divergent than TAC3a, and a loss of tac3b gene would have even occurred in some teleost lineages. NKB-RP peptide, encoded beside NKB by tac3 gene in actinopterygians and basal sarcopterygians, would have been lost in ancestral amniotes. Tissue distribution of eel tac3a and tac3b mRNAs showed major expression of both transcripts in the brain especially in the diencephalon, as analyzed by specific qPCRs. Human NKB has been tested in vitro on primary culture of eel pituitary cells. Human NKB dose-dependently inhibited the expression of lhβ, while having no effect on other glycoprotein hormone subunits (fshβ, tshβ, and gpα) nor on gh. Human NKB also dose-dependently inhibited the expression of GnRH receptor (gnrh-r2). The four eel peptides have been synthesized and also tested in vitro. They all inhibited the expression of both lhβ and of gnrh-r2. This reveals a potential dual inhibitory role of the four peptides encoded by the two tac3 genes in eel reproduction, exerted at the pituitary level on both luteinizing hormone and GnRH receptor.
Collapse
Affiliation(s)
- Aurora Campo
- Muséum National d’Histoire Naturelle, Research Unit BOREA (Biology of Aquatic Organisms and Ecosystems), CNRS 7208, IRD 207, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Paris, France
| | - Anne-Gaëlle Lafont
- Muséum National d’Histoire Naturelle, Research Unit BOREA (Biology of Aquatic Organisms and Ecosystems), CNRS 7208, IRD 207, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Paris, France
| | - Benjamin Lefranc
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U1239, Normandy University, Rouen, France
| | - Jérôme Leprince
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U1239, Normandy University, Rouen, France
| | - Hervé Tostivint
- Muséum National d’Histoire Naturelle, UMR7221 CNRS/MNHN Evolution des Régulations Endocriniennes, Paris, France
| | - Nédia Kamech
- Muséum National d’Histoire Naturelle, Research Unit BOREA (Biology of Aquatic Organisms and Ecosystems), CNRS 7208, IRD 207, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Paris, France
| | - Sylvie Dufour
- Muséum National d’Histoire Naturelle, Research Unit BOREA (Biology of Aquatic Organisms and Ecosystems), CNRS 7208, IRD 207, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Paris, France
| | - Karine Rousseau
- Muséum National d’Histoire Naturelle, Research Unit BOREA (Biology of Aquatic Organisms and Ecosystems), CNRS 7208, IRD 207, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Paris, France
- *Correspondence: Karine Rousseau,
| |
Collapse
|
50
|
Chen J, Cao M, Zhang A, Shi M, Tao B, Li Y, Wang Y, Zhu Z, Trudeau VL, Hu W. Growth Hormone Overexpression Disrupts Reproductive Status Through Actions on Leptin. Front Endocrinol (Lausanne) 2018; 9:131. [PMID: 29636726 PMCID: PMC5880896 DOI: 10.3389/fendo.2018.00131] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/13/2018] [Indexed: 01/02/2023] Open
Abstract
Growth and reproduction are closely related. Growth hormone (GH)-transgenic common carp exhibit accelerated growth and delayed reproductive development, which provides an amenable model to study hormone cross talk between the growth and reproductive axes. We analyzed the energy status and reproductive development in GH-transgenic common carp by using multi-tissue RNA sequencing, real-time-PCR, Western blotting, ELISA, immunofluorescence, and in vitro incubation. The expression of gys (glycogen synthase) and igfbp1 (insulin-like growth factor binding protein) as well as blood glucose concentrations are lower in GH-transgenic carp. Agrp1 (agouti-related protein 1) and sla (somatolactin a), which are related to appetite and lipid catabolism, are significantly higher in GH-transgenic carp. Low glucose content and increased appetite indicate disrupted metabolic and energy deprivation status in GH-transgenic carp. Meanwhile, the expression of genes, such as gnrhr2 (gonadotropin-releasing hormone receptor 2), gthα (gonadotropin hormone, alpha polypeptide), fshβ (follicle stimulating hormone, beta polypeptide), lhβ [luteinizing hormone, beta polypeptide] in the pituitary, cyp19a1a (aromatase A) in the gonad, and cyp19a1b (aromatase B) in the hypothalamus, are decreased in GH-transgenic carp. In contrast, pituitary gnih (gonadotropin inhibitory hormone), drd1 (dopamine receptor D1), drd3 (dopamine receptor D3), and drd4 (dopamine receptor D4) exhibit increased expression, which were associated with the retarded reproductive development. Leptin receptor mRNA was detected by fluorescence in situ hybridization in the pituitary including the pars intermedia and proximal pars distalis, suggesting a direct effect of leptin on LH. Recombinant carp Leptin protein was shown to stimulate pituitary gthα, fshβ, lhβ expression, and ovarian germinal vesicle breakdown in vitro. In addition to neuroendocrine factors, we suggest that reduced hepatic leptin signaling to the pituitary might be part of the response to overexpression of GH and the resulting delay in puberty onset.
Collapse
Affiliation(s)
- Ji Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Mengxi Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Institute of Environment and Health, Jianghan University, Wuhan, China
| | - Aidi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Mijuan Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Binbin Tao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Vance L. Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Vance L. Trudeau, ; Wei Hu,
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Vance L. Trudeau, ; Wei Hu,
| |
Collapse
|