1
|
Foote BC, Seyer LD, Martinelli L, Betbeze C, Newkirk K, Terio K, Zhu X, Johnson JG, Durrett J, Buckner C, Barrett CE, Sheldon JD. CLINICAL AND HISTOPATHOLOGIC OCULAR FINDINGS IN AQUARIUM-HOUSED COWNOSE RAYS ( RHINOPTERA BONASUS). J Zoo Wildl Med 2024; 54:692-703. [PMID: 38251992 DOI: 10.1638/2023-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 01/23/2024] Open
Abstract
Cownose rays (Rhinoptera bonasus) are susceptible to ocular disease with their prominent globes, but despite being popular animals housed in aquaria, there is little published information about their normal ocular anatomy and common pathologic ocular findings. A total of 63 live cownose rays (CNR) from three unrelated, separately housed groups had ocular examinations, and 5 adult rays were selected for ocular ultrasound. All examinations were performed out of the water, and most without anesthesia. Clinical findings were described, categorized, and scored by severity. Sixty-two of 63 rays (123 eyes) had clinical abnormalities, including 110 eyes with corneal pathology (mild = 76, moderate/severe = 34) and 74 eyes with intraocular pathology (mild = 44, moderate/severe = 30). Grey-to-white corneal opacities were the most common pathology (n = 58 rays/100 eyes) followed by cataracts (n = 41 rays/58 eyes), then persistent (or dysplastic) pupillary membranes (n = 14 rays/15 eyes). Most pathologic findings appeared inactive, but one aquarium had several CNR with active ocular pathology. There was a significant association between the diagnosis of moderate/severe corneal and intraocular pathology with age (P = 0.008 and P = 0.014, respectively) and weight (P = 0.001 and P = 0.039, respectively), as well as moderate/severe corneal pathology and group sampled (P = 0.03). There were no other significant variables identified. Additionally, histopathology of 14 eyes (11 rays) from two different facilities were examined, with keratitis (n = 8) and uveitis (n = 2) as the most common lesions. This study shows a high prevalence of pathologic ocular findings in cownose ray eyes with heavier adults more likely to be affected than lighter juveniles. Comprehensive ocular evaluation is important in this species and serial ocular exams and future studies should be pursued to monitor ocular disease progression and better understand possible etiologies.
Collapse
Affiliation(s)
- Braidee C Foote
- Department of Small Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996, USA,
| | - Lindsay D Seyer
- College of Veterinary Medicine and Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi 39762, USA
| | - Laura Martinelli
- Department of Small Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996, USA
| | - Caroline Betbeze
- College of Veterinary Medicine and Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi 39762, USA
| | - Kim Newkirk
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville TN 37996, USA
| | - Karen Terio
- University of Illinois, Zoological Pathology Program, Brookfield IL 60513, USA
| | - Xiaojuan Zhu
- The Office of Information Technology, University of Tennessee, Knoxville TN 37919 USA
| | - James G Johnson
- Living Exhibits, Inc, Denver, CO 80206, USA
- Animal Health Department, Denver Zoological Foundation, Denver, CO 80205 USA
| | - Jared Durrett
- Ripley's Aquarium of the Smokies, Gatlinburg, TN 37738, USA
| | - Chris Buckner
- Ripley's Aquarium of the Smokies, Gatlinburg, TN 37738, USA
| | - Christa E Barrett
- College of Veterinary Medicine and Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi 39762, USA
| | - Julie D Sheldon
- Department of Small Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996, USA
| |
Collapse
|
2
|
Magaña-Hernández L, Wagh AS, Fathi JG, Robles JE, Rubio B, Yusuf Y, Rose EE, Brown DE, Perry PE, Hamada E, Anastassov IA. Ultrastructural Characteristics and Synaptic Connectivity of Photoreceptors in the Simplex Retina of Little Skate ( Leucoraja erinacea). eNeuro 2023; 10:ENEURO.0226-23.2023. [PMID: 37827837 PMCID: PMC10614115 DOI: 10.1523/eneuro.0226-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/06/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023] Open
Abstract
The retinas of the vast majority of vertebrate species are termed "duplex," that is, they contain both rod and cone photoreceptor neurons in different ratios. The retina of little skate (Leucoraja erinacea) is a rarity among vertebrates because it contains only a single photoreceptor cell type and is thus "simplex." This unique retina provides us with an important comparative model and an exciting opportunity to study retinal circuitry within the context of a visual system with a single photoreceptor cell type. What is perhaps even more intriguing is the fact that the Leucoraja retina is able use that single photoreceptor cell type to function under both scotopic and photopic ranges of illumination. Although some ultrastructural characteristics of skate photoreceptors have been examined previously, leading to a general description of them as "rods" largely based on outer segment (OS) morphology and rhodopsin expression, a detailed study of the fine anatomy of the entire cell and its synaptic connectivity is still lacking. To address this gap in knowledge, we performed serial block-face electron microscopy imaging and examined the structure of skate photoreceptors and their postsynaptic partners. We find that skate photoreceptors exhibit unusual ultrastructural characteristics that are either common to rods or cones in other vertebrates (e.g., outer segment architecture, synaptic ribbon number, terminal extensions), or are somewhere in between those of a typical vertebrate rod or cone (e.g., number of invaginating contacts, clustering of multiple ribbons over a single synaptic invagination). We suggest that some of the ultrastructural characteristics we observe may play a role in the ability of the skate retina to function across scotopic and photopic ranges of illumination. Our findings have the potential to reveal as yet undescribed principles of vertebrate retinal design.
Collapse
Affiliation(s)
| | - Abhiniti S Wagh
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Jessamyn G Fathi
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Julio E Robles
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Beatriz Rubio
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Yaqoub Yusuf
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Erin E Rose
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Daniel E Brown
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Priscilla E Perry
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Elizabeth Hamada
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Ivan A Anastassov
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| |
Collapse
|
3
|
Rutledge KM. Sniffing out Stingray Noses: The Functional Morphology of Batoid Olfaction. Integr Org Biol 2022; 4:obac043. [PMCID: PMC9633280 DOI: 10.1093/iob/obac043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/21/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Batoid fishes (rays, skates, sawfishes, and guitarfishes) are macrosmatic, meaning they rely on their sense of smell as one of the primary senses for survival and reproduction. Olfaction is important for long-distance tracking and navigation, predator and prey recognition, and conspecific signaling. However, the mechanisms by which batoids harness odorants is unknown. Without a direct pump-like system, it is hypothesized that batoids irrigate their nostrils via one or a combination of the following: the motion pump, buccopharyngeal pump, pressure (ex. pitot-like mechanism), or a shearing force (ex. viscous entrainment). These mechanisms rely on the size, shape, and position of the nostrils with respect to the head and to each other. Batoids are united as a group by their dorsoventrally compressed body plans, with nostrils on the ventral side of their body. This position presents several challenges for odor capture and likely limits the effectivity of the motion pump. Batoid fishes display an expansive nasal morphology, with inlet nostrils ranging from thin, vertical slits to wide, horizontal ovals to protruding, tube-like funnels, and more. In this paper, a morphometric model is developed to quantify the vast diversity in batoid nose shapes, sizes, and positions on the head in an ecological and functional framework. Specifically, swimming mode, lifestyle, habitat, and diet are examined for correlations with observed nasal morphotypes. Morphometric measurements were taken on all 4 orders present in Batoidea to broadly encompass batoid nasal diversity (Rhinopristiformes 4/5 families; Rajiformes 2/4 families; Torpediniformes 4/4 families; Myliobatiformes 8/11 families). All batoid external nasal diversity was found to be categorized into 5 major morphological groups and were termed: flush nare [circle, comma, intermediate], open nare, and protruding nare. Several morphometric traits remained significant when accounting for shared ancestry, including the position and angle of the nostril on the head, the width of the inlet hole, and the spacing of the nostrils from each other. These measurements were found to be closely correlated and statistically significant with the swimming mode of the animal. This study provides the first crucial step in understanding batoid olfaction, by understanding the diversity of the morphology of the system. Because odor capture is a strictly hydrodynamic process, it may be that factors relating more directly to the fluid dynamics (i.e., swimming mode, velocity, Reynolds number) may be more important in shaping the evolution of the diversity of batoid noses than other ecological factors like habitat and diet.
Collapse
|
4
|
Orlov AM, Rabazanov NI, Nikiforov AI. Ontogenic Changes in Coloration of Rare Deepwater Richardson’s Ray Bathyraja richardsoni (Arhynchobatidae, Rajiformes, Chondrichthyes). Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
The features of the coloration of the dorsal and ventral surfaces of the rare deep-sea Richardson’s ray Bathyraja richardsoni (Arhynchobatidae) in the length range from 14 to 146 cm have been studied and its ontogenetic changes have been traced. New data on the coloration of embryos, immature, maturing, and sexually mature individuals are presented. It is shown that variations in the coloration of the dorsal surface are insignificant, while the coloration of the ventral surface can vary significantly. The data obtained can be used in taxonomic and population studies, in the development of keys for species identification, in the preparation of faunal overviews and field guides, to facilitate understanding the features of coloration and its changes in deep-sea animals living in permanent darkness, and to expand knowledge about certain aspects of macro- and microevolution of deep-sea skates.
Collapse
|
5
|
Rangel BS, Viegas R, Bettcher VB, Garla RC. Eye healing in a free-ranging whitespotted eagle ray (Aetobatus narinari) following shark-inflicted bite injuries. JOURNAL OF FISH BIOLOGY 2022; 100:590-593. [PMID: 34817876 DOI: 10.1111/jfb.14961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Here we provide the first photographic records of the eye healing of a free-ranging whitespotted eagle ray (Aetobatus narinari) following shark-inflicted bite injuries on the cephalic region. The whitespotted eagle ray with fresh wounds on the cephalic region close to its right orbit, upper jaw and the anterior margin of its right pectoral fin was photographed on 19 July 2017 at the Fernando de Noronha Archipelago. Two subsequent photographs of the whitespotted eagle ray with a blind right eye were taken on 29 March 2018 and 18 April 2018. These records show the whitespotted eagle ray had the capacity to recover from the wounds, although they have led to the blindness of the eye. These findings also demonstrate this individual was able to survive for at least 9 months with a nonfunctional eye.
Collapse
Affiliation(s)
- Bianca S Rangel
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Roberta Viegas
- Centro de mergulho Mar de Noronha, Fernando de Noronha, Brazil
| | - Vanessa B Bettcher
- Programa de Pós-Graduação em Ecologia e Evolução, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Ictiologia Aplicada, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo C Garla
- Departamento de Botânica e Ecologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
6
|
Ryan LA, Slip DJ, Chapuis L, Collin SP, Gennari E, Hemmi JM, How MJ, Huveneers C, Peddemors VM, Tosetto L, Hart NS. A shark's eye view: testing the 'mistaken identity theory' behind shark bites on humans. J R Soc Interface 2021; 18:20210533. [PMID: 34699727 PMCID: PMC8548079 DOI: 10.1098/rsif.2021.0533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Shark bites on humans are rare but are sufficiently frequent to generate substantial public concern, which typically leads to measures to reduce their frequency. Unfortunately, we understand little about why sharks bite humans. One theory for bites occurring at the surface, e.g. on surfers, is that of mistaken identity, whereby sharks mistake humans for their typical prey (pinnipeds in the case of white sharks). This study tests the mistaken identity theory by comparing video footage of pinnipeds, humans swimming and humans paddling surfboards, from the perspective of a white shark viewing these objects from below. Videos were processed to reflect how a shark's retina would detect the visual motion and shape cues. Motion cues of humans swimming, humans paddling surfboards and pinnipeds swimming did not differ significantly. The shape of paddled surfboards and human swimmers was also similar to that of pinnipeds with their flippers abducted. The difference in shape between pinnipeds with abducted versus adducted flippers was bigger than between pinnipeds with flippers abducted and surfboards or human swimmers. From the perspective of a white shark, therefore, neither visual motion nor shape cues allow an unequivocal visual distinction between pinnipeds and humans, supporting the mistaken identity theory behind some bites.
Collapse
Affiliation(s)
- Laura A Ryan
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - David J Slip
- Taronga Conservation Society Australia, Bradley's Head Road, Mosman, New South Wales 2088, Australia
| | - Lucille Chapuis
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Shaun P Collin
- School of Life Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Enrico Gennari
- Oceans Research Institute, Mossel Bay 6500, South Africa.,South African Institute for Aquatic Biodiversity, Private Bag 1015, Grahamstown 6140, South Africa.,Department of Ichthyology and Fisheries Science, Rhodes University, Grahamstown 6140, South Africa
| | - Jan M Hemmi
- School of Biological Sciences and The UWA Oceans Institute, M092, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Martin J How
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Charlie Huveneers
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Victor M Peddemors
- New South Wales Department of Primary Industries, Sydney Institute of Marine Science, Mosman, New South Wales 2088, Australia
| | - Louise Tosetto
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Nathan S Hart
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| |
Collapse
|
7
|
Schluessel V, Rick IP, Seifert FD, Baumann C, Lee Davies WI. Not just shades of grey: life is full of colour for the ocellate river stingray (Potamotrygon motoro). J Exp Biol 2021; 224:237826. [PMID: 33771913 DOI: 10.1242/jeb.226142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Previous studies have shown that marine stingrays have the anatomical and physiological basis for colour vision, with cone spectral sensitivity in the blue to green range of the visible spectrum. Behavioural studies on Glaucostegus typus also showed that blue and grey can be perceived and discriminated. The present study is the first to assess visual opsin genetics in the ocellate river stingray (Potamotrygon motoro) and test whether individuals perceive colour in two alternative forced choice experiments. Retinal transcriptome profiling using RNA-Seq and quantification demonstrated the presence of lws and rh2 cone opsin genes and a highly expressed single rod (rh1) opsin gene. Spectral tuning analysis predicted these vitamin A1-based visual photopigments to exhibit spectral absorbance maxima at 461 nm (rh2), 496 nm (rh1) and 555 nm (lws); suggesting the presence of dichromacy in this species. Indeed, P. motoro demonstrates the potential to be equally sensitive to wavelengths from 380 to 600 nm of the visible spectrum. Behavioural results showed that red and green plates, as well as blue and yellow plates, were readily discriminated based on colour; however, brightness differences also played a part in the discrimination of blue and yellow. Red hues of different brightness were distinguished significantly above chance level from one another. In conclusion, the genetic and behavioural results support prior data on marine stingrays. However, this study suggests that freshwater stingrays of the family Potamotrygonidae may have a visual colour system that has ecologically adapted to a riverine habitat.
Collapse
Affiliation(s)
- Vera Schluessel
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany
| | - Ingolf P Rick
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany
| | - Friederike Donata Seifert
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany
| | - Christina Baumann
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany
| | - Wayne Iwan Lee Davies
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany.,Umeå Centre for Molecular Medicine (UCMM), Umeå University, 901 87 Umeå, Sweden.,School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne Campus, Melbourne, VIC 3086, Australia
| |
Collapse
|
8
|
Mäthger LM, Zhao K, Herbst L. Photoreceptors in skate are arranged to allow for a broad horizontal field of view. J Comp Neurol 2021; 529:1184-1197. [PMID: 32840869 DOI: 10.1002/cne.25014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 11/10/2022]
Abstract
Studying retinal specializations offers insights into eye functionality and visual ecology. Using light microscopic techniques, including retinal whole-mounts, we investigated photoreceptor densities in the retina of the skate Leucoraja erinacea. We show that photoreceptors are not sized or oriented in the same way, and that they are not evenly distributed across the retina. There was a dorsally located horizontal visual streak with increased photoreceptor density, with additional local maxima in which densities were highest. Photoreceptors were longest and thinnest inside this visual streak, becoming shorter and thicker toward the periphery and toward the ventral retina. Furthermore, in the peripheral retinal parts, photoreceptors (particularly the outer segments) were noticeably tilted with respect to the retinal long axis. In order to understand how photoreceptors are tilted inside the eye, we used computerized tomography (CT) and micro-CT, to obtain geometrical dimensions of the whole skate eye. These CT/micro-CT data provided us with the outlines of the skate eye and the location of the retina and this enabled us to reconstruct how photoreceptors tilt in an intact eye. Findings were analyzed relative to previously published ganglion cell distributions in this species, showing a posteriorly located retinal area with photoreceptor: ganglion cell convergence as low as 39:1. Some peripheral areas showed ratios as high as 391:1. We frame our findings in terms of the animal's anatomy: body and eye shape, specifically the location of the tapetum, as well as the visual demands associated with lifestyle and habitat type. A speculative function in polarization sensitivity is discussed.
Collapse
Affiliation(s)
- Lydia M Mäthger
- Marine Biological Laboratory, Bell Center, Woods Hole, Massachusetts, USA
| | - Kevin Zhao
- Marine Biological Laboratory, Bell Center, Woods Hole, Massachusetts, USA.,Biological Sciences Division, University of Chicago, Chicago, Illinois, USA
| | - Lena Herbst
- Marine Biological Laboratory, Bell Center, Woods Hole, Massachusetts, USA.,Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
9
|
Perryman RJ, Carpenter M, Lie E, Sofronov G, Marshall AD, Brown C. Reef manta ray cephalic lobe movements are modulated during social interactions. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-02973-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Vision in sharks and rays: Opsin diversity and colour vision. Semin Cell Dev Biol 2020; 106:12-19. [PMID: 32331993 DOI: 10.1016/j.semcdb.2020.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 01/11/2023]
Abstract
The visual sense of elasmobranch fishes is poorly studied compared to their bony cousins, the teleosts. Nevertheless, the elasmobranch eye features numerous specialisations that have no doubt facilitated the diversification and evolutionary success of this fascinating taxon. In this review, I highlight recent discoveries on the nature and phylogenetic distribution of visual pigments in sharks and rays. Whereas most rays appear to be cone dichromats, all sharks studied to date are cone monochromats and, as a group, have likely abandoned colour vision on multiple occasions. This situation in sharks mirrors that seen in other large marine predators, the pinnipeds and cetaceans, which leads us to reassess the costs and benefits of multiple cone pigments and wavelength discrimination in the marine environment.
Collapse
|
11
|
Peel LR, Collin SP, Hart NS. Retinal topography and spectral sensitivity of the Port Jackson shark (
Heterodontus portusjacksoni
). J Comp Neurol 2020; 528:2831-2847. [DOI: 10.1002/cne.24911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Lauren R. Peel
- School of Biological Sciences University of Western Australia Crawley Western Australia Australia
- The Oceans Institute University of Western Australia Crawley Western Australia Australia
- The Oceans Graduate School University of Western Australia Crawley Western Australia Australia
| | - Shaun P. Collin
- School of Biological Sciences University of Western Australia Crawley Western Australia Australia
- The Oceans Institute University of Western Australia Crawley Western Australia Australia
- The Oceans Graduate School University of Western Australia Crawley Western Australia Australia
- School of Life Sciences, La Trobe University Bundoora Victoria Australia
| | - Nathan S. Hart
- School of Biological Sciences University of Western Australia Crawley Western Australia Australia
- Department of Biological Sciences Macquarie University Sydney New South Wales Australia
| |
Collapse
|
12
|
|
13
|
Frau S, Novales Flamarique I, Keeley PW, Reese BE, Muñoz-Cueto JA. Straying from the flatfish retinal plan: Cone photoreceptor patterning in the common sole (Solea solea) and the Senegalese sole (Solea senegalensis). J Comp Neurol 2020; 528:2283-2307. [PMID: 32103501 DOI: 10.1002/cne.24893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 11/09/2022]
Abstract
The retinas of nonmammalian vertebrates have cone photoreceptor mosaics that are often organized as highly patterned lattice-like distributions. In fishes, the two main lattice-like patterns are composed of double cones and single cones that are either assembled as interdigitized squares or as alternating rows. The functional significance of such orderly patterning is unknown. Here, the cone mosaics in two species of Soleidae flatfishes, the common sole and the Senegalese sole, were characterized and compared to those from other fishes to explore variability in cone patterning and how it may relate to visual function. The cone mosaics of the common sole and the Senegalese sole consisted of single, double, and triple cones in formations that differed from the traditional square mosaic pattern reported for other flatfishes in that no evidence of higher order periodicity was present. Furthermore, mean regularity indices for single and double cones were conspicuously lower than those of other fishes with "typical" square and row mosaics, but comparable to those of goldfish, a species with lattice-like periodicity in its cone mosaic. Opsin transcripts detected by quantitative polymerase chain reaction (sws1, sws2, rh2.3, rh2.4, lws, and rh1) were uniformly expressed across the retina of the common sole but, in the Senegalese sole, sws2, rh2.4, and rh1 were more prevalent in the dorsal retina. Microspectrophotometry revealed five visual pigments in the retina of the common sole [S(472), M(523), M(536), L(559), and rod(511)] corresponding to the repertoire of transcripts quantified except for sws1. Overall, these results indicate a loss of cone mosaic patterning in species that are primarily nocturnal or dwell in low light environments as is the case for the common sole and the Senegalese sole. The corollary is that lattice-like patterning of the cone mosaic may improve visual acuity. Ecological and physiological correlates derived from observations across multiple fish taxa that live in low light environments and do not possess lattice-like cone mosaics are congruent with this claim.
Collapse
Affiliation(s)
- Sara Frau
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, The European University of the Seas (SEA-EU), Puerto Real, Spain
| | - Iñigo Novales Flamarique
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.,Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Patrick W Keeley
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
| | - Benjamin E Reese
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA.,Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California, USA
| | - José A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, The European University of the Seas (SEA-EU), Puerto Real, Spain
| |
Collapse
|
14
|
Warraich N, Wyneken J, Blume N. Feeding behavior and visual field differences in loggerhead and leatherback sea turtles may explain differences in longline fisheries interactions. ENDANGER SPECIES RES 2020. [DOI: 10.3354/esr01012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
15
|
Kelly M, Collin S, Hemmi J, Lesku J. Evidence for Sleep in Sharks and Rays: Behavioural, Physiological, and Evolutionary Considerations. BRAIN, BEHAVIOR AND EVOLUTION 2019; 94:37-50. [DOI: 10.1159/000504123] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 11/19/2022]
Abstract
Sleep is widespread across the animal kingdom. However, most comparative sleep data exist for terrestrial vertebrates, with much less known about sleep in amphibians, bony fishes, and invertebrates. There is an absence of knowledge on sleep in cartilaginous fishes. Sharks and rays are amongst the earliest vertebrates, and may hold clues to the evolutionary history of sleep and sleep states found in more derived animals, such as mammals and birds. Here, we review the literature concerning activity patterns, sleep behaviour, and electrophysiological evidence for sleep in cartilaginous (and bony) fishes following an exhaustive literature search that found more than 80 relevant studies in laboratory and field environments. Evidence for sleep in sharks and rays that respire without swimming is preliminary; evidence for sleep in continuously swimming fishes is currently absent. We discuss ways in which the latter group might sleep concurrent with sustained movement, and conclude with suggestions for future studies in order to provide more comprehensive data on when, how, and why sharks and rays sleep.
Collapse
|
16
|
|
17
|
Collin SP. Scene through the eyes of an apex predator: a comparative analysis of the shark visual system. Clin Exp Optom 2018; 101:624-640. [PMID: 30066959 DOI: 10.1111/cxo.12823] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022] Open
Abstract
The eyes of apex predators, such as the shark, have fascinated comparative visual neuroscientists for hundreds of years with respect to how they perceive the dark depths of their ocean realm or the visual scene in search of prey. As the earliest representatives of the first stage in the evolution of jawed vertebrates, sharks have an important role to play in our understanding of the evolution of the vertebrate eye, including that of humans. This comprehensive review covers the structure and function of all the major ocular components in sharks and how they are adapted to a range of underwater light environments. A comparative approach is used to identify: species-specific diversity in the perception of clear optical images; photoreception for various visual behaviours; the trade-off between image resolution and sensitivity; and visual processing under a range of levels of illumination. The application of this knowledge is also discussed with respect to the conservation of this important group of cartilaginous fishes.
Collapse
Affiliation(s)
- Shaun P Collin
- The Oceans Institute and the Oceans Graduate School, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
18
|
Bedore CN, Kajiura SM, Johnsen S. Freezing behaviour facilitates bioelectric crypsis in cuttlefish faced with predation risk. Proc Biol Sci 2017; 282:20151886. [PMID: 26631562 DOI: 10.1098/rspb.2015.1886] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cephalopods, and in particular the cuttlefish Sepia officinalis, are common models for studies of camouflage and predator avoidance behaviour. Preventing detection by predators is especially important to this group of animals, most of which are soft-bodied, lack physical defences, and are subject to both visually and non-visually mediated detection. Here, we report a novel cryptic mechanism in S. officinalis in which bioelectric cues are reduced via a behavioural freeze response to a predator stimulus. The reduction of bioelectric fields created by the freeze-simulating stimulus resulted in a possible decrease in shark predation risk by reducing detectability. The freeze response may also facilitate other non-visual cryptic mechanisms to lower predation risk from a wide range of predator types.
Collapse
Affiliation(s)
| | - Stephen M Kajiura
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Sönke Johnsen
- Biology Department, Duke University, Durham, NC 27708, USA
| |
Collapse
|
19
|
Gruber DF, Loew ER, Deheyn DD, Akkaynak D, Gaffney JP, Smith WL, Davis MP, Stern JH, Pieribone VA, Sparks JS. Biofluorescence in Catsharks (Scyliorhinidae): Fundamental Description and Relevance for Elasmobranch Visual Ecology. Sci Rep 2016; 6:24751. [PMID: 27109385 PMCID: PMC4843165 DOI: 10.1038/srep24751] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/05/2016] [Indexed: 01/01/2023] Open
Abstract
Biofluorescence has recently been found to be widespread in marine fishes, including sharks. Catsharks, such as the Swell Shark (Cephaloscyllium ventriosum) from the eastern Pacific and the Chain Catshark (Scyliorhinus retifer) from the western Atlantic, are known to exhibit bright green fluorescence. We examined the spectral sensitivity and visual characteristics of these reclusive sharks, while also considering the fluorescent properties of their skin. Spectral absorbance of the photoreceptor cells in these sharks revealed the presence of a single visual pigment in each species. Cephaloscyllium ventriosum exhibited a maximum absorbance of 484 ± 3 nm and an absorbance range at half maximum (λ1/2max) of 440-540 nm, whereas for S. retifer maximum absorbance was 488 ± 3 nm with the same absorbance range. Using the photoreceptor properties derived here, a "shark eye" camera was designed and developed that yielded contrast information on areas where fluorescence is anatomically distributed on the shark, as seen from other sharks' eyes of these two species. Phylogenetic investigations indicate that biofluorescence has evolved at least three times in cartilaginous fishes. The repeated evolution of biofluorescence in elasmobranchs, coupled with a visual adaptation to detect it; and evidence that biofluorescence creates greater luminosity contrast with the surrounding background, highlights the potential importance of biofluorescence in elasmobranch behavior and biology.
Collapse
Affiliation(s)
- David F. Gruber
- Baruch College, City University of New York, Department of Natural Sciences, New York, NY 10010, USA
- City University of New York, The Graduate Center, Program in Biology, New York, NY 10016, USA
- American Museum of Natural History, Sackler Institute for Comparative Genomics, New York, NY 10024, USA
| | - Ellis R. Loew
- College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Dimitri D. Deheyn
- University of California, San Diego, Scripps Institution of Oceanography, La Jolla, CA 92093, USA
| | - Derya Akkaynak
- University of Haifa, Charney School of Marine Sciences, Haifa, 3498838, Israel
- Interuniversity Institute of Marine Sciences, Eilat, 88103, Israel
| | - Jean P. Gaffney
- Baruch College, City University of New York, Department of Natural Sciences, New York, NY 10010, USA
| | - W. Leo Smith
- University of Kansas, Biodiversity Institute and Department of Ecology and Evolutionary Biology, Lawrence, KS 66049, USA
| | - Matthew P. Davis
- St. Cloud State University, Department of Biological Sciences, St. Cloud, MN 56301, USA
| | - Jennifer H. Stern
- University of Kansas, Biodiversity Institute and Department of Ecology and Evolutionary Biology, Lawrence, KS 66049, USA
| | - Vincent A. Pieribone
- The John B. Pierce Laboratory, Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - John S. Sparks
- American Museum of Natural History, Sackler Institute for Comparative Genomics, New York, NY 10024, USA
- American Museum of Natural History, Division of Vertebrate Zoology, Department of Ichthyology, New York, NY 10024, USA
| |
Collapse
|
20
|
Schweikert LE, Fasick JI, Grace MS. Evolutionary loss of cone photoreception in balaenid whales reveals circuit stability in the mammalian retina. J Comp Neurol 2016; 524:2873-85. [DOI: 10.1002/cne.23996] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Lorian E. Schweikert
- Department of Biological SciencesFlorida Institute of TechnologyMelbourne Florida32901
| | - Jeffry I. Fasick
- Department of Biological SciencesThe University of TampaTampa Florida33606
| | - Michael S. Grace
- Department of Biological SciencesFlorida Institute of TechnologyMelbourne Florida32901
| |
Collapse
|
21
|
Johnson MS, Kraver DW, Renshaw GMC, Rummer JL. Will ocean acidification affect the early ontogeny of a tropical oviparous elasmobranch (Hemiscyllium ocellatum)? CONSERVATION PHYSIOLOGY 2016; 4:cow003. [PMID: 27293755 PMCID: PMC4784014 DOI: 10.1093/conphys/cow003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/22/2015] [Accepted: 01/25/2016] [Indexed: 06/06/2023]
Abstract
Atmospheric CO2 is increasing due to anthropogenic causes. Approximately 30% of this CO2 is being absorbed by the oceans and is causing ocean acidification (OA). The effects of OA on calcifying organisms are starting to be understood, but less is known about the effects on non-calcifying organisms, notably elasmobranchs. One of the few elasmobranch species that has been studied with respect to OA is the epaulette shark, Hemiscyllium ocellatum. Mature epaulette sharks can physiologically and behaviourally tolerate prolonged exposure to elevated CO2, and this is thought to be because they are routinely exposed to diurnal decreases in O2 and probably concomitant increases in CO2 in their coral reef habitats. It follows that H. ocellatum embryos, while developing in ovo on the reefs, would have to be equally if not more tolerant than adults because they would not be able to escape such conditions. Epaulette shark eggs were exposed to either present-day control conditions (420 µatm) or elevated CO2 (945 µatm) and observed every 3 days from 10 days post-fertilization until 30 days post-hatching. Growth (in square centimetres per day), yolk usage (as a percentage), tail oscillations (per minute), gill movements (per minute) and survival were not significantly different in embryos reared in control conditions when compared with those reared in elevated CO2 conditions. Overall, these findings emphasize the importance of investigating early life-history stages, as the consequences are expected to transfer not only to the success of an individual but also to populations and their distribution patterns.
Collapse
Affiliation(s)
- Martijn S Johnson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
- College of Marine and Environmental Science, James Cook University, Townsville, Queensland 4811, Australia
| | - Daniel W Kraver
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
- College of Marine and Environmental Science, James Cook University, Townsville, Queensland 4811, Australia
| | - Gillian M C Renshaw
- Hypoxia and Ischemia Research Unit, School of Allied Health Science, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Jodie L Rummer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
22
|
Affiliation(s)
- Nathan S. HART
- School of Animal Biology and the Oceans Institute; The University of Western Australia; Crawley Perth Australia
| | - Shaun P. COLLIN
- School of Animal Biology and the Oceans Institute; The University of Western Australia; Crawley Perth Australia
| |
Collapse
|
23
|
|
24
|
Field Studies of Elasmobranch Physiology. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/b978-0-12-801289-5.00008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
25
|
Spectral sensitivity, luminous sensitivity, and temporal resolution of the visual systems in three sympatric temperate coastal shark species. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:997-1013. [DOI: 10.1007/s00359-014-0950-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 09/23/2014] [Accepted: 10/01/2014] [Indexed: 01/04/2023]
|
26
|
Schluessel V, Rick IP, Plischke K. No rainbow for grey bamboo sharks: evidence for the absence of colour vision in sharks from behavioural discrimination experiments. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:939-47. [DOI: 10.1007/s00359-014-0940-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 11/28/2022]
|
27
|
Affiliation(s)
- Csilla Ari
- Foundation for the Oceans of the Future; Budapest 1108 Hungary
- Hyperbaric Biomedical Research Laboratory; Department of Molecular Pharmacology and Physiology; University of South Florida; Tampa FL 33612 USA
| |
Collapse
|
28
|
Not all sharks are "swimming noses": variation in olfactory bulb size in cartilaginous fishes. Brain Struct Funct 2014; 220:1127-43. [PMID: 24435575 DOI: 10.1007/s00429-014-0705-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 01/04/2014] [Indexed: 10/25/2022]
Abstract
Olfaction is a universal modality by which all animals sample chemical stimuli from their environment. In cartilaginous fishes, olfaction is critical for various survival tasks including localizing prey, avoiding predators, and chemosensory communication with conspecifics. Little is known, however, about interspecific variation in olfactory capability in these fishes, or whether the relative importance of olfaction in relation to other sensory systems varies with regard to ecological factors, such as habitat and lifestyle. In this study, we have addressed these questions by directly examining interspecific variation in the size of the olfactory bulbs (OB), the region of the brain that receives the primary sensory projections from the olfactory nerve, in 58 species of cartilaginous fishes. Relative OB size was compared among species occupying different ecological niches. Our results show that the OBs maintain a substantial level of allometric independence from the rest of the brain across cartilaginous fishes and that OB size is highly variable among species. These findings are supported by phylogenetic generalized least-squares models, which show that this variability is correlated with ecological niche, particularly habitat. The relatively largest OBs were found in pelagic-coastal/oceanic sharks, especially migratory species such as Carcharodon carcharias and Galeocerdo cuvier. Deep-sea species also possess large OBs, suggesting a greater reliance on olfaction in habitats where vision may be compromised. In contrast, the smallest OBs were found in the majority of reef-associated species, including sharks from the families Carcharhinidae and Hemiscyllidae and dasyatid batoids. These results suggest that there is great variability in the degree to which these fishes rely on olfactory cues. The OBs have been widely used as a neuroanatomical proxy for olfactory capability in vertebrates, and we speculate that differences in olfactory capabilities may be the result of functional rather than phylogenetic adaptations.
Collapse
|
29
|
Bedore CN, Loew ER, Frank TM, Hueter RE, McComb DM, Kajiura SM. A physiological analysis of color vision in batoid elasmobranchs. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:1129-41. [DOI: 10.1007/s00359-013-0855-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/18/2013] [Accepted: 09/11/2013] [Indexed: 11/30/2022]
|
30
|
Carson HS. The incidence of plastic ingestion by fishes: from the prey's perspective. MARINE POLLUTION BULLETIN 2013; 74:170-174. [PMID: 23896402 DOI: 10.1016/j.marpolbul.2013.07.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 07/01/2013] [Accepted: 07/04/2013] [Indexed: 06/02/2023]
Abstract
One of the primary threats to ocean ecosystems from plastic pollution is ingestion by marine organisms. Well-documented in seabirds, turtles, and marine mammals, ingestion by fish and sharks has received less attention until recently. We suggest that fishes of a variety of sizes attack drifting plastic with high frequency, as evidenced by the apparent bite marks commonly left behind. We examined 5518 plastic items from random plots on Kamilo Point, Hawai'i Island, and found 15.8% to have obvious signs of attack. Extrapolated to the entire amount of debris removed from the 15 km area, over 1.3 tons of plastic is attacked each year. Items with a bottle shape, or those blue or yellow in color, were attacked with a higher frequency. The triangular edges or punctures left by teeth ranged from 1 to 20 mm in width suggesting a variety of species attack plastic items. More research is needed to document the specific fishes and rates of plastic ingestion.
Collapse
Affiliation(s)
- Henry S Carson
- Marine Science Department, University of Hawai'i, Hilo, 200 W. Kawili St., Hilo, HI 96720, USA.
| |
Collapse
|
31
|
Meredith RW, Gatesy J, Emerling CA, York VM, Springer MS. Rod monochromacy and the coevolution of cetacean retinal opsins. PLoS Genet 2013; 9:e1003432. [PMID: 23637615 PMCID: PMC3630094 DOI: 10.1371/journal.pgen.1003432] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/15/2013] [Indexed: 01/02/2023] Open
Abstract
Cetaceans have a long history of commitment to a fully aquatic lifestyle that extends back to the Eocene. Extant species have evolved a spectacular array of adaptations in conjunction with their deployment into a diverse array of aquatic habitats. Sensory systems are among those that have experienced radical transformations in the evolutionary history of this clade. In the case of vision, previous studies have demonstrated important changes in the genes encoding rod opsin (RH1), short-wavelength sensitive opsin 1 (SWS1), and long-wavelength sensitive opsin (LWS) in selected cetaceans, but have not examined the full complement of opsin genes across the complete range of cetacean families. Here, we report protein-coding sequences for RH1 and both color opsin genes (SWS1, LWS) from representatives of all extant cetacean families. We examine competing hypotheses pertaining to the timing of blue shifts in RH1 relative to SWS1 inactivation in the early history of Cetacea, and we test the hypothesis that some cetaceans are rod monochomats. Molecular evolutionary analyses contradict the "coastal" hypothesis, wherein SWS1 was pseudogenized in the common ancestor of Cetacea, and instead suggest that RH1 was blue-shifted in the common ancestor of Cetacea before SWS1 was independently knocked out in baleen whales (Mysticeti) and in toothed whales (Odontoceti). Further, molecular evidence implies that LWS was inactivated convergently on at least five occasions in Cetacea: (1) Balaenidae (bowhead and right whales), (2) Balaenopteroidea (rorquals plus gray whale), (3) Mesoplodon bidens (Sowerby's beaked whale), (4) Physeter macrocephalus (giant sperm whale), and (5) Kogia breviceps (pygmy sperm whale). All of these cetaceans are known to dive to depths of at least 100 m where the underwater light field is dim and dominated by blue light. The knockout of both SWS1 and LWS in multiple cetacean lineages renders these taxa rod monochromats, a condition previously unknown among mammalian species.
Collapse
Affiliation(s)
- Robert W. Meredith
- Department of Biology, University of California Riverside, Riverside, California, United States of America
- Department of Biology and Molecular Biology, Montclair State University, Montclair, New Jersey, United States of America
| | - John Gatesy
- Department of Biology, University of California Riverside, Riverside, California, United States of America
| | - Christopher A. Emerling
- Department of Biology, University of California Riverside, Riverside, California, United States of America
| | - Vincent M. York
- Department of Biology, University of California Riverside, Riverside, California, United States of America
- Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Mark S. Springer
- Department of Biology, University of California Riverside, Riverside, California, United States of America
| |
Collapse
|
32
|
Jordan LK, Mandelman JW, McComb DM, Fordham SV, Carlson JK, Werner TB. Linking sensory biology and fisheries bycatch reduction in elasmobranch fishes: a review with new directions for research. CONSERVATION PHYSIOLOGY 2013; 1:cot002. [PMID: 27293586 PMCID: PMC4732448 DOI: 10.1093/conphys/cot002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 05/08/2023]
Abstract
Incidental capture, or bycatch, in fisheries represents a substantial threat to the sustainability of elasmobranch populations worldwide. Consequently, researchers are increasingly investigating elasmobranch bycatch reduction methods, including some focused on these species' sensory capabilities, particularly their electrosensory systems. To guide this research, we review current knowledge of elasmobranch sensory biology and feeding ecology with respect to fishing gear interactions and include examples of bycatch reduction methods used for elasmobranchs as well as other taxonomic groups. We discuss potential elasmobranch bycatch reduction strategies for various fishing gear types based on the morphological, physiological, and behavioural characteristics of species within this diverse group. In select examples, we indicate how an understanding of the physiology and sensory biology of vulnerable, bycatch-prone, non-target elasmobranch species can help in the identification of promising options for bycatch reduction. We encourage collaboration among researchers studying bycatch reduction across taxa to provide better understanding of the broad effects of bycatch reduction methods.
Collapse
Affiliation(s)
- Laura K. Jordan
- Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Corresponding author: Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA. Tel: +1 909 240 9703.
| | - John W. Mandelman
- John H. Prescott Marine Laboratory, New England Aquarium, Boston, MA 02110, USA
| | | | - Sonja V. Fordham
- Shark Advocates International, a project of The Ocean Foundation, Washington, DC 20036, USA
| | - John K. Carlson
- Southeast Fisheries Science Center, NOAA Fisheries Service, Panama City, FL 32408, USA
| | - Timothy B. Werner
- Consortium for Wildlife Bycatch Reduction, New England Aquarium, Boston, MA 02110, USA
| |
Collapse
|
33
|
Yopak KE, Lisney TJ. Allometric scaling of the optic tectum in cartilaginous fishes. BRAIN, BEHAVIOR AND EVOLUTION 2012; 80:108-26. [PMID: 22986827 DOI: 10.1159/000339875] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In cartilaginous fishes (Chondrichthyes; sharks, skates and rays (batoids), and holocephalans), the midbrain or mesencephalon can be divided into two parts, the dorsal tectum mesencephali or optic tectum (analogous to the superior colliculus of mammals) and the ventral tegmentum mesencephali. Very little is known about interspecific variation in the relative size and organization of the components of the mesencephalon in these fishes. This study examined the relative development of the optic tectum and the tegmentum in 75 chondrichthyan species representing 32 families. This study also provided a critical assessment of attempts to quantify the size of the optic tectum in these fishes volumetrically using an idealized half-ellipsoid approach (method E), by comparing this method to measurements of the tectum from coronal cross sections (method S). Using species as independent data points and phylogenetically independent contrasts, relationships between the two midbrain structures and both brain and mesencephalon volume were assessed and the relative volume of each brain area (expressed as phylogenetically corrected residuals) was compared among species with different ecological niches (as defined by primary habitat and lifestyle). The relatively largest tecta and tegmenta were found in pelagic coastal/oceanic and oceanic sharks, benthopelagic reef sharks, and benthopelagic coastal sharks. The smallest tecta were found in all benthic sharks and batoids and the majority of bathyal (deep-sea) species. These results were consistent regardless of which method of estimating tectum volume was used. We found a highly significant correlation between optic tectum volume estimates calculated using method E and method S. Taxon-specific variation in the difference between tectum volumes calculated using the two methods appears to reflect variation in both the shape of the optic tectum relative to an idealized half-ellipsoid and the volume of the ventricular cavity. Because the optic tectum is the principal termination site for retinofugal fibers arising from the retinal ganglion cells, the relative size of this brain region has been associated with an increased reliance on vision in other vertebrate groups, including bony fishes. The neuroecological relationships between the relative size of the optic tectum and primary habitat and lifestyle we present here for cartilaginous fishes mirror those established for bony fishes; we speculate that the relative size of the optic tectum and tegmentum similarly reflects the importance of vision and sensory processing in cartilaginous fishes.
Collapse
Affiliation(s)
- Kara E Yopak
- School of Animal Biology, University of Western Australia, Crawley, Australia.
| | | |
Collapse
|
34
|
White WT, Blaber SJM, Craig JF. The current status of elasmobranchs: biology, fisheries and conservation. JOURNAL OF FISH BIOLOGY 2012; 80:897-900. [PMID: 22497366 DOI: 10.1111/j.1095-8649.2012.03268.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
35
|
Collin SP. The Neuroecology of Cartilaginous Fishes: Sensory Strategies for Survival. BRAIN, BEHAVIOR AND EVOLUTION 2012; 80:80-96. [DOI: 10.1159/000339870] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|