1
|
Sharma S, Gone GB, Roychowdhury P, Kim HS, Chung SJ, Kuppusamy G, De A. Photodynamic and sonodynamic therapy synergy: mechanistic insights and cellular responses against glioblastoma multiforme. J Drug Target 2025; 33:458-472. [PMID: 39556529 DOI: 10.1080/1061186x.2024.2431676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
Glioblastoma multiforme (GBM), the most aggressive form of brain cancer, poses substantial challenges to effective treatment due to its complex and infiltrative nature, making it difficult to manage. Photodynamic therapy (PDT) and sonodynamic therapy (SDT), have emerged as promising individual treatment options against GBM due to their least-invasive approach. However, both PDT and SDT have drawbacks that require careful consideration. A combination therapy using light and sound waves has gained attention, offering new avenues to overcome challenges from individual therapies. Sono-photodynamic therapy (SPDT) has been used against various tumours. Researchers are considering SPDT as a favourable alternative to the conventional therapies for GBM. SPDT offers complementary mechanisms of action, including the production of ROS, disruption of cellular structures, and induction of apoptosis, leading to enhanced tumour cell death. This review gives an insight about PDT/SDT and their limitations in GBM treatment and the need for combination therapy. We try to unveil the process of SPDT and explore the mechanism behind improved SPDT-meditated cell death in GBM cells by focusing on the ROS-mediated cell response occurring as a result of SPDT and discussing current modifications in the existing sensitisers for their optimal use in SPDT for GBM therapy.
Collapse
Affiliation(s)
- Swati Sharma
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Geetanjali B Gone
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Parikshit Roychowdhury
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sang Jeon Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Gowthmarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Anindita De
- Department of Pharmaceutics, School of Pharmacy, JSS University, Noida, Uttar Pradesh, India
- Department of Pharmacy, Ajou University, Suwon-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
Alagha HZ, Gülsoy M. An In vitro Study on the Antibacterial Effect of a Combined Photodynamic and Sonodynamic Therapy Using IR780 Iodide-loaded Mesoporous Silica Nanoparticles Against P. aeruginosa and Multi-Drug Resistant P. aeruginosa. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2025; 20:64-76. [PMID: 40302549 DOI: 10.2174/0127724344309438240529064221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/07/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2025]
Abstract
BACKGROUND The aim of this study was to investigate the antimicrobial photodynamic, sonodynamic, and combined photodynamic and sonodynamic potentials of IR780 iodide loaded mesoporous silica nanoparticles against gram-negative Pseudomonas aeruginosa (P. aeruginosa) and multi drug resistant Pseudomonas aeruginosa (MDR P. aeruginosa). METHODS IR780 iodide loaded mesoporous silica nanoparticles were synthesized, and their antimicrobial photodynamic and sonodynamic potentials against one P. aeruginosa strain, and one MDR P. aeruginosa strain were investigated. Laser irradiation was achieved via a 785 nm diode laser (500 mW/cm2, 5 min). Ultrasound irradiation was achieved via a 1-MHz ultrasound unit (1.5 W/cm2, 50% duty cycle, 3 min). Viable bacterial cells were counted by serial dilution method. Data were analyzed by ANOVA followed by Tukey's test (p ≤ 0.05). RESULTS The results revealed that for P. aeruginosa, the combined photodynamic therapy (PDT) and sonodynamic therapy (SDT) showed a 44% reduction in bacterial cell viability as compared to 18% and 31% when exposed to SDT alone and PDT alone, respectively. For MDR. P. aeruginosa, the combined treatment resulted in a 45% reduction in bacterial cell viability, as compared to 14% and 30% when exposed to SDT alone and PDT alone, respectively. The killing effect was mainly due to the photodynamic and sonodynamic effects of the nanoparticles, mainly caused by singlet oxygen. No photothermal effect was involved in the killing. CONCLUSION The results of this study demonstrated that IR780 iodide-loaded mesoporous silica nanoparticles have the potential to be utilized as photo/sono therapeutic agents for the inactivation of drug-resistant bacteria.
Collapse
Affiliation(s)
- Heba Z Alagha
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Murat Gülsoy
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| |
Collapse
|
3
|
Faghani-Eskandarkolaei P, Heli H, Akbari N, Koohi-Hosseinabadi O, Sari Aslani F, Sattarahmady N. Antibacterial and anti-biofilm activities of gold-curcumin nanohybrids and its polydopamine form upon photo-sonotherapy of Staphylococcus aureus infected implants: In vitro and animal model studies. Int J Biol Macromol 2024; 282:137430. [PMID: 39528199 DOI: 10.1016/j.ijbiomac.2024.137430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/27/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Implant-related infections are among the major post-surgery problems, and treatment of these infections is challenging due to the formation of biofilms by microorganisms such as Staphylococcus aureus. Herein, a novel gold-curcumin nanohybrid (GCNH) was synthesized for the first time and characterized. GCNH had a band gap energy of 2.41 eV, a zeta potential of -15 mV, and comprised uniform spherical particles with a mean diameter of 8 ± 2 nm. The biological macromolecule of polydopamine was then coated on GCNH to prepare a gold-curcumin-polydopamine nanohybrid (GCDNH). The nanohybrids were employed as novel dual photo-sonosensitizers for bacterial eradication by near-infrared (NIR) light and ultrasound (US) irradiations. GCNH and GCDNH represented photothermal conversion efficiencies of 26 and 32 %, respectively, and GCDNH represented a hemolysis rate of 2.3 % under both near-infrared (NIR) light and ultrasound (US) irradiations. NIR light and US irradiations (photo-sonotherapy) of Staphylococcus aureus using GCDNH depicted anti-bacterial and anti-biofilm efficiencies of 98 and 99 %, respectively, in synergistic manners, which are higher or as high as other sensitizers reported previously. The mechanism of photo-sonotherapy was related to generation of high levels of reactive oxygen species (ROS), and protein and nucleic acid leakages. In an in vivo infection model, NIR light and US irradiations annihilated Staphylococcus aureus on GCDNH-covered implants with high efficiency, without causing damage to normal tissues.
Collapse
Affiliation(s)
- P Faghani-Eskandarkolaei
- Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - H Heli
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - N Akbari
- Department of Microbiology, Faculty of Science, Arak Branch, Islamic Azad University, Arak, Iran
| | - O Koohi-Hosseinabadi
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - F Sari Aslani
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - N Sattarahmady
- Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Celep K, Atmaca GY, Aydoğmuş PD, Eroğlu K, Günkara ÖT, Giray G, Tollu G, Özdemir S, Erdoğmuş A. Exploring improved strategies for therapeutic studies and biological activities of novel zinc and indium phthalocyanines. Dalton Trans 2024; 53:17381-17393. [PMID: 39387658 DOI: 10.1039/d4dt02261k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
This study investigates novel zinc and indium phthalocyanines with Schiff base and sulphur moieties, focusing on their potential for cancer therapy and antimicrobial applications. It explores the effectiveness of photochemical and sono-photochemical methods to enhance singlet oxygen production, which is crucial for photodynamic therapy. The synthesized complexes in this study demonstrated high singlet oxygen quantum yields, with D3 (ZnPc) and D4 (InPc) showing ΦΔPDT values of 0.71 and 0.75, and ΦΔSPDT values of 0.91 and 0.94, respectively. Furthermore, the evaluation for biological properties revealed that both D3 and D4 exhibit significant antidiabetic properties, DPPH radical scavenging activity, DNA cleavage, antimicrobial activity, biofilm inhibition, and microbial cell viability impacts, both with and without photodynamic therapy. Notably, D3 and D4 achieved antimicrobial cell viability inhibition rates of 84.67 ± 4.67% and 98.32 ± 5.96%, respectively, showcasing their effectiveness in photodynamic antimicrobial therapy. Overall, the study highlights the potential of these phthalocyanine complexes as advanced photosensitizers, with strong singlet oxygen generation and promising biological activities, paving the way for future therapeutic applications.
Collapse
Affiliation(s)
- Kevser Celep
- Department of Chemistry, Yildiz Technical University, 34210 Esenler, Istanbul, Turkey.
| | - Göknur Yaşa Atmaca
- Department of Chemistry, Yildiz Technical University, 34210 Esenler, Istanbul, Turkey.
| | - Pelin Demir Aydoğmuş
- Department of Chemistry, Yildiz Technical University, 34210 Esenler, Istanbul, Turkey.
| | - Kumsal Eroğlu
- Department of Chemistry, Yildiz Technical University, 34210 Esenler, Istanbul, Turkey.
| | - Ömer Tahir Günkara
- Department of Chemistry, Yildiz Technical University, 34210 Esenler, Istanbul, Turkey.
| | - Gülay Giray
- Department of Veterinary Medicine, Ihsangazi Technical Science Vocational School, Ihsangazi, Kastamonu, Turkey
| | - Gülşah Tollu
- Laboratory and Veterinary Health, Technical Science Vocational School, Mersin University, TR-33343 Yenisehir, Mersin, Turkey
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, TR-33343 Yenisehir, Mersin, Turkey
| | - Ali Erdoğmuş
- Department of Chemistry, Yildiz Technical University, 34210 Esenler, Istanbul, Turkey.
| |
Collapse
|
5
|
Zhao R, Zhao P, Zhou Z, Liu D, Zhou Y, Zheng M, Asakawa T, Kuang X. Evaluation of the value of Synechococcus 7942 as a sensitizer for photo-sonodynamic therapy against breast cancer. Biosci Trends 2024; 18:335-342. [PMID: 39168611 DOI: 10.5582/bst.2024.01211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
This study was conducted to investigate the value of Synechococcus 7942 (Syne) as a sensitizer for photo-sonodynamic therapy (PSDT). Syne was characterized. The efficacy of Syne-mediated PSDT were verified in vitro (in 4T1 breast cancer cells) and in vivo (in a breast tumor-bearing mouse model). The safety of Syne-mediated PSDT was verified in vivo. Results indicated that Syne triggered the generation of oxygen and ROS during PSDT, thereby inducing cell death in 4T1 cells. Syne-mediated PSDT induced the death of tumor cells both in vitro and in vivo. The speed of tumor growth was delayed in animals receiving PSDT. Syne-mediated PSDT was more effective than photodynamic therapy or sonodynamic therapy alone. In addition, administration of a Syne monomer resulted in satisfactory tumor targeting. Syne-mediated PSDT affected neither the animal body weight nor the major organs, indicating satisfactory safety. Accordingly, Syne is an efficient, safe, and readily available sensitizer that is ideal for potential clinical use of PSDT to treat breast cancer. The findings of this study are useful for exploration of a novel sensitizer for PSDT, which might be a promising alternative therapy against breast cancer.
Collapse
Affiliation(s)
- Ruimei Zhao
- Department of Anesthesiology, People's Hospital of Longhua, Shenzhen, Guangdong Province, China
- Department of Anesthesiology, Hunan Aerospace Hospital, Changsha, Hunan Provence, China
| | - Pengfei Zhao
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province, China
| | - Ziyuan Zhou
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong Province, China
| | - Deliang Liu
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province, China
| | - Yang Zhou
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province, China
| | - Mingbin Zheng
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province, China
- Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan, Guangdong, Guangdong Province, China
| | - Tetsuya Asakawa
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province, China
| | - Xin Kuang
- Department of Anesthesiology, People's Hospital of Longhua, Shenzhen, Guangdong Province, China
| |
Collapse
|
6
|
Fang K, Zhang H, Kong Q, Ma Y, Xiong T, Qin T, Li S, Zhu X. Recent Progress in Photothermal, Photodynamic and Sonodynamic Cancer Therapy: Through the cGAS-STING Pathway to Efficacy-Enhancing Strategies. Molecules 2024; 29:3704. [PMID: 39125107 PMCID: PMC11314065 DOI: 10.3390/molecules29153704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Photothermal, photodynamic and sonodynamic cancer therapies offer opportunities for precise tumor ablation and reduce side effects. The cyclic guanylate adenylate synthase-stimulator of interferon genes (cGAS-STING) pathway has been considered a potential target to stimulate the immune system in patients and achieve a sustained immune response. Combining photothermal, photodynamic and sonodynamic therapies with cGAS-STING agonists represents a newly developed cancer treatment demonstrating noticeable innovation in its impact on the immune system. Recent reviews have concentrated on diverse materials and their function in cancer therapy. In this review, we focus on the molecular mechanism of photothermal, photodynamic and sonodynamic cancer therapies and the connected role of cGAS-STING agonists in treating cancer.
Collapse
Affiliation(s)
- Kelan Fang
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Huiling Zhang
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- Department of Medicine and Pharmacy, Shizhen College of Guizhou University of Traditional Chinese Medicine, Guiyang 550000, China
| | - Qinghong Kong
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Yunli Ma
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
| | - Tianchan Xiong
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Tengyao Qin
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Sanhua Li
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Xinting Zhu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
7
|
Huang Y, Ouyang W, Lai Z, Qiu G, Bu Z, Zhu X, Wang Q, Yu Y, Liu J. Nanotechnology-enabled sonodynamic therapy against malignant tumors. NANOSCALE ADVANCES 2024; 6:1974-1991. [PMID: 38633037 PMCID: PMC11019498 DOI: 10.1039/d3na00738c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/09/2024] [Indexed: 04/19/2024]
Abstract
Sonodynamic therapy (SDT) is an emerging approach for malignant tumor treatment, offering high precision, deep tissue penetration, and minimal side effects. The rapid advancements in nanotechnology, particularly in cancer treatment, have enhanced the efficacy and targeting specificity of SDT. Combining sonodynamic therapy with nanotechnology offers a promising direction for future cancer treatments. In this review, we first systematically discussed the anti-tumor mechanism of SDT and then summarized the common nanotechnology-related sonosensitizers and their recent applications. Subsequently, nanotechnology-related therapies derived using the SDT mechanism were elaborated. Finally, the role of nanomaterials in SDT combined therapy was also introduced.
Collapse
Affiliation(s)
- Yunxi Huang
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital 77 He Di Road 530021 Nanning China
| | - Wenhao Ouyang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Yat-sen Supercomputer Intelligent Medical Joint Research Institute, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University 510120 Guangzhou China
| | - Zijia Lai
- First Clinical Medical College, Guangdong Medical University 524000 Zhanjiang China
| | - Guanhua Qiu
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital 77 He Di Road 530021 Nanning China
| | - Zhaoting Bu
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital 77 He Di Road 530021 Nanning China
| | - Xiaoqi Zhu
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital 77 He Di Road 530021 Nanning China
| | - Qin Wang
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital 77 He Di Road 530021 Nanning China
| | - Yunfang Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Yat-sen Supercomputer Intelligent Medical Joint Research Institute, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University 510120 Guangzhou China
- Faculty of Medicine, Macau University of Science and Technology Taipa Macao PR China
| | - Junjie Liu
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital 77 He Di Road 530021 Nanning China
| |
Collapse
|
8
|
Cao X, Li M, Liu Q, Zhao J, Lu X, Wang J. Inorganic Sonosensitizers for Sonodynamic Therapy in Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303195. [PMID: 37323087 DOI: 10.1002/smll.202303195] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/30/2023] [Indexed: 06/17/2023]
Abstract
The rapid development of nanomedicine and nanobiotechnology has allowed the emergence of various therapeutic modalities with excellent therapeutic efficiency and biosafety, among which, the sonodynamic therapy (SDT), a combination of low-intensity ultrasound and sonosensitizers, is emerging as a promising noninvasive treatment modality for cancer treatment due to its deeper penetration, good patient compliance, and minimal damage to normal tissue. The sonosensitizers are indispensable components in the SDT process because their structure and physicochemical properties are decisive for therapeutic efficacy. Compared to the conventional and mostly studied organic sonosensitizers, inorganic sonosensitizers (noble metal-based, transition metal-based, carbon-based, and silicon-based sonosensitizers) display excellent stability, controllable morphology, and multifunctionality, which greatly expand their application in SDT. In this review, the possible mechanisms of SDT including the cavitation effect and reactive oxygen species generation are briefly discussed. Then, the recent advances in inorganic sonosensitizers are systematically summarized and their formulations and antitumor effects, particularly highlighting the strategies for optimizing the therapeutic efficiency, are outlined. The challenges and future perspectives for developing state-of-the-art sonosensitizers are also discussed. It is expected that this review will shed some light on future screening of decent inorganic sonosensitizers for SDT.
Collapse
Affiliation(s)
- Xianshuo Cao
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Minxing Li
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Qiyu Liu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jingjing Zhao
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xihong Lu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jianwei Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
9
|
ÖZÇEŞMECİ M, CAN KARANLIK C, ERDOĞMUŞ A, HAMURYUDAN E. Comparatively sonophotochemical and photochemical studies of phthalocyanines with cationic substituents on nonperipheral positions. Turk J Chem 2023; 47:1160-1168. [PMID: 38173756 PMCID: PMC10760847 DOI: 10.55730/1300-0527.3602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 10/31/2023] [Accepted: 09/26/2023] [Indexed: 01/05/2024] Open
Abstract
The term sonophotodynamic therapy (SPDT) refers to a combination of sonodynamic therapy (SDT) and photodynamic therapy (PDT), in which the efficacy of the treatment is boosted by utilizing the proper amount of a sensitizer that is responsive to both light and ultrasound. Although it has been proven in photophysicochemical studies that SPDT enhances singlet oxygen production, related studies in the literature are very limited. Considering this situation, this study aims to investigate the efficacy of synthesized phthalocyanines in terms of PDT and SPDT. The singlet oxygen quantum values calculated as 0.13 for 5, 0.44 for 6, and 0.61 for 7 in photochemical (PDT) application increased to 0.18, 0.86, and 0.92, respectively, with sonophotochemical (SPDT) application. According to the results, singlet oxygen production was more efficient with SPDT. This work will add to the body of knowledge on employing the SPDT approach to increase singlet oxygen generation.
Collapse
Affiliation(s)
- Mukaddes ÖZÇEŞMECİ
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, İstanbul,
Turkiye
| | - Ceren CAN KARANLIK
- Department of Chemistry, Faculty of Science and Letters, Yıldız Technical University, İstanbul,
Turkiye
| | - Ali ERDOĞMUŞ
- Department of Chemistry, Faculty of Science and Letters, Yıldız Technical University, İstanbul,
Turkiye
| | - Esin HAMURYUDAN
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, İstanbul,
Turkiye
| |
Collapse
|
10
|
Atmaca GY, Aksel M, Bilgin MD, Erdoğmuş A. Comparison of sonodynamic, photodynamic and sonophotodynamic therapy activity of fluorinated pyridine substituted silicon phthalocyanines on PC3 prostate cancer cell line. Photodiagnosis Photodyn Ther 2023; 42:103339. [PMID: 36781009 DOI: 10.1016/j.pdpdt.2023.103339] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
BACKGROUND Sonophotodynamic therapy (SPDT), a combination of photodynamic therapy (PDT) and sonodynamic therapy (SDT), may offer theraputic advantage. The therapeutic effects of sonodynamic, photodynamic, and sonophotodynamic of 5-(trifluoromethyl)-2-thiopyridine substituted silicon phthalocyanine (gy3) and its quaternized derivative (gy3q) were examined in vitro on prostate cancer using PC3 cells. METHODS The SDT, PDT and SPDT efficiency was determined by using MTT test.Apoptosis mechanism was evaluated by HOPI staining. RESULTS AND DISCUSSIONS According to MTT results, the phthalocyanines decreased cell viability when compared with a control group. Also, apoptosis measurement data represents that the phthalocyanines would produce much better therapeutic outcomes compare to PDT and SDT by utilizing SPDT. Further studies should be performed to understand the effectiveness of SPDT.
Collapse
Affiliation(s)
- Göknur Yaşa Atmaca
- Department of Chemistry, Yildiz Technical University, Esenler, Istanbul 34210, Turkey
| | - Mehran Aksel
- Department of Biophysic, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| | - Mehmet Dinçer Bilgin
- Department of Biophysic, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| | - Ali Erdoğmuş
- Department of Chemistry, Yildiz Technical University, Esenler, Istanbul 34210, Turkey.
| |
Collapse
|
11
|
Karaoğlan GK. Synthesis of a novel zinc phthalocyanine with peripherally coordinated Ru(II) complexes; sono-photochemical, photochemical and photophysical studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Ju Y, Shi X, Xu S, Ma X, Wei R, Hou H, Chu C, Sun D, Liu G, Tan Y. Atomically Precise Water-Soluble Graphene Quantum Dot for Cancer Sonodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105034. [PMID: 35038238 PMCID: PMC9259723 DOI: 10.1002/advs.202105034] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/05/2021] [Indexed: 05/05/2023]
Abstract
Although water-soluble graphene quantum dots (GQDs) have shown various promising bio-applications due to their intriguing optical and chemical properties, the large heterogeneity in compositions, sizes, and shapes of these GQDs hampers the better understanding of their structure-properties correlation and further uses in terms of large-scale manufacturing practices and safety concerns. It is shown here that a water-soluble atomically-precise GQD (WAGQD-C96 ) is synthesized and exhibits a deep-red emission and excellent sonodynamic sensitization. By decorating sterically hindered water-soluble functional groups, WAGQD-C96 can be monodispersed in water without further aggregation. The deep-red emission of WAGQD-C96 facilitates the tracking of its bio-process, showing a good cell-uptake and long-time retention in tumor tissue. Compared to traditional molecular sonosensitizers, WAGQD-C96 generates superior reactive oxygen species and demonstrates excellent tumor inhibition potency as an anti-cancer sonosensitizer in in vivo studies. A good biosafety of WAGQD-C96 is validated in both in vitro and in vivo assays.
Collapse
Affiliation(s)
- Yang‐Yang Ju
- State Key Laboratory for Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Xiao‐Xiao Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361005China
| | - Shu‐Yu Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361005China
| | - Xiao‐Hui Ma
- State Key Laboratory for Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Rong‐Jing Wei
- State Key Laboratory for Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Hao Hou
- State Key Laboratory for Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Cheng‐Chao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361005China
| | - Di Sun
- School of Chemistry and Chemical EngineeringState Key Laboratory of Crystal MaterialsShandong UniversityJi'nan250100China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361005China
| | - Yuan‐Zhi Tan
- State Key Laboratory for Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| |
Collapse
|
13
|
Karges J. Clinical Development of Metal Complexes as Photosensitizers for Photodynamic Therapy of Cancer. Angew Chem Int Ed Engl 2022; 61:e202112236. [PMID: 34748690 DOI: 10.1002/anie.202112236] [Citation(s) in RCA: 199] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 12/12/2022]
Abstract
Cancer has emerged over the last decades as one of the deadliest diseases in the world. Among the most commonly used techniques (i.e. surgery, immunotherapy, radiotherapy or chemotherapy), increasing attention has been devoted towards photodynamic therapy. However, the vast majority of clinically applied photosensitizers are not ideal and associated with several limitations including poor aqueous solubility, poor photostability and slow clearance from the body, causing photosensitivity. In an effort to overcome these drawbacks, much attention has been devoted towards the incorporation of a metal ion. Herein, the clinical development of metal-containing compounds including Purlytin® , Lutrin® /Antrin® , Photosens® , TOOKAD® soluble or TLD-1433 is critically reviewed.
Collapse
Affiliation(s)
- Johannes Karges
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
14
|
Karges J. Klinische Entwicklung von Metallkomplexen als Photosensibilisatoren für die photodynamische Therapie von Krebs. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Johannes Karges
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| |
Collapse
|
15
|
Roy J, Pandey V, Gupta I, Shekhar H. Antibacterial Sonodynamic Therapy: Current Status and Future Perspectives. ACS Biomater Sci Eng 2021; 7:5326-5338. [PMID: 34714638 DOI: 10.1021/acsbiomaterials.1c00587] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Multidrug-resistant bacteria have emerged in both community and hospital settings, partly due to the misuse of antibiotics. The inventory of viable antibiotics is rapidly declining, and efforts toward discovering newer antibiotics are not yielding the desired outcomes. Therefore, alternate antibacterial therapies based on physical mechanisms such as light and ultrasound are being explored. Sonodynamic therapy (SDT) is an emerging therapeutic approach that involves exposing target tissues to a nontoxic sensitizing chemical and low-intensity ultrasound. SDT can enable site-specific cytotoxicity by producing reactive oxygen species (ROS) in response to ultrasound, which can be harnessed for treating bacterial infections. This approach can potentially be used for both superficial and deep-seated microbial infections. The majority of the sonosensitizers reported are nonpolar, exhibiting limited bioavailability and a high clearance rate in the body. Therefore, targeted delivery agents such as nanoparticle composites, liposomes, and microbubbles are being investigated. This article reviews recent developments in antibacterial sonodynamic therapy, emphasizing biophysical and chemical mechanisms, novel delivery agents, ultrasound exposure and image guidance strategies, and the challenges in the pathway to clinical translation.
Collapse
Affiliation(s)
- Jayishnu Roy
- Discipline of Biological Engineering, Indian Institute of Technology (IIT) Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Vijayalakshmi Pandey
- Discipline of Chemistry, Indian Institute of Technology (IIT) Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Iti Gupta
- Discipline of Chemistry, Indian Institute of Technology (IIT) Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Himanshu Shekhar
- Discipline of Electrical Engineering, Indian Institute of Technology (IIT) Gandhinagar, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
16
|
Hypericin and Pheophorbide a Mediated Photodynamic Therapy Fighting MRSA Wound Infections: A Translational Study from In Vitro to In Vivo. Pharmaceutics 2021; 13:pharmaceutics13091399. [PMID: 34575478 PMCID: PMC8472478 DOI: 10.3390/pharmaceutics13091399] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/17/2021] [Accepted: 08/27/2021] [Indexed: 01/14/2023] Open
Abstract
High prevalence rates of methicillin-resistant Staphylococcus aureus (MRSA) and lack of effective antibacterial treatments urge discovery of alternative therapeutic modalities. The advent of antibacterial photodynamic therapy (aPDT) is a promising alternative, composing rapid, nonselective cell destruction without generating resistance. We used a panel of clinically relevant MRSA to evaluate hypericin (Hy) and pheophobide a (Pa)-mediated PDT with clinically approved methylene blue (MB). We translated the promising in vitro anti-MRSA activity of selected compounds to a full-thick MRSA wound infection model in mice (in vivo) and the interaction of aPDT innate immune system (cytotoxicity towards neutrophils). Hy-PDT consistently displayed lower minimum bactericidal concentration (MBC) values (0.625-10 µM) against ATCC RN4220/pUL5054 and a whole panel of community-associated (CA)-MRSA compared to Pa or MB. Interestingly, Pa-PDT and Hy-PDT topical application demonstrated encouraging in vivo anti-MRSA activity (>1 log10 CFU reduction). Furthermore, histological analysis showed wound healing via re-epithelization was best in the Hy-PDT group. Importantly, the dark toxicity of Hy was significantly lower (p < 0.05) on neutrophils compared to Pa or MB. Overall, Hy-mediated PDT is a promising alternative to treat MRSA wound infections, and further rigorous mechanistic studies are warranted.
Collapse
|
17
|
Zheng Y, Ye J, Li Z, Chen H, Gao Y. Recent progress in sono-photodynamic cancer therapy: From developed new sensitizers to nanotechnology-based efficacy-enhancing strategies. Acta Pharm Sin B 2021; 11:2197-2219. [PMID: 34522584 PMCID: PMC8424231 DOI: 10.1016/j.apsb.2020.12.016] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/27/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022] Open
Abstract
Many sensitizers have not only photodynamic effects, but also sonodynamic effects. Therefore, the combination of sonodynamic therapy (SDT) and photodynamic therapy (PDT) using sensitizers for sono-photodynamic therapy (SPDT) provides alternative opportunities for clinical cancer therapy. Although significant advances have been made in synthesizing new sensitizers for SPDT, few of them are successfully applied in clinical settings. The anti-tumor effects of the sensitizers are restricted by the lack of tumor-targeting specificity, incapability in deep intratumoral delivery, and the deteriorating tumor microenvironment. The application of nanotechnology-based drug delivery systems (NDDSs) can solve the above shortcomings, thereby improving the SPDT efficacy. This review summarizes various sensitizers as sono/photosensitizers that can be further used in SPDT, and describes different strategies for enhancing tumor treatment by NDDSs, such as overcoming biological barriers, improving tumor-targeted delivery and intratumoral delivery, providing stimuli-responsive controlled-release characteristics, stimulating anti-tumor immunity, increasing oxygen supply, employing different therapeutic modalities, and combining diagnosis and treatment. The challenges and prospects for further development of intelligent sensitizers and translational NDDSs for SPDT are also discussed.
Collapse
Affiliation(s)
- Yilin Zheng
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jinxiang Ye
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China
| | - Ziying Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Haijun Chen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350116, China
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
18
|
Uddin SMZ, Komatsu DE, Motyka T, Petterson S. Low-Intensity Continuous Ultrasound Therapies—A Systematic Review of Current State-of-the-Art and Future Perspectives. J Clin Med 2021; 10:2698. [PMID: 34207333 PMCID: PMC8235587 DOI: 10.3390/jcm10122698] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 01/02/2023] Open
Abstract
Therapeutic ultrasound has been studied for over seven decades for different medical applications. The versatility of ultrasound applications are highly dependent on the frequency, intensity, duration, duty cycle, power, wavelength, and form. In this review article, we will focus on low-intensity continuous ultrasound (LICUS). LICUS has been well-studied for numerous clinical disorders, including tissue regeneration, pain management, neuromodulation, thrombosis, and cancer treatment. PubMed and Google Scholar databases were used to conduct a comprehensive review of all research studying the application of LICUS in pre-clinical and clinical studies. The review includes articles that specify intensity and duty cycle (continuous). Any studies that did not identify these parameters or used high-intensity and pulsed ultrasound were not included in the review. The literature review shows the vast implication of LICUS in many medical fields at the pre-clinical and clinical levels. Its applications depend on variables such as frequency, intensity, duration, and type of medical disorder. Overall, these studies show that LICUS has significant promise, but conflicting data remain regarding the parameters used, and further studies are required to fully realize the potential benefits of LICUS.
Collapse
Affiliation(s)
- Sardar M. Z. Uddin
- Department of Orthopaedics and Rehabilitation, Stony Brook University, Stony Brook, NY 11794, USA;
| | - David E. Komatsu
- Department of Orthopaedics and Rehabilitation, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Thomas Motyka
- Department of Osteopathic Manipulative Medicine, Campbell University, Buies Creek, NC 27506, USA;
| | | |
Collapse
|
19
|
Gong Z, Dai Z. Design and Challenges of Sonodynamic Therapy System for Cancer Theranostics: From Equipment to Sensitizers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002178. [PMID: 34026428 PMCID: PMC8132157 DOI: 10.1002/advs.202002178] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 12/24/2020] [Indexed: 05/04/2023]
Abstract
As a novel noninvasive therapeutic modality combining low-intensity ultrasound and sonosensitizers, sonodynamic therapy (SDT) is promising for clinical translation due to its high tissue-penetrating capability to treat deeper lesions intractable by photodynamic therapy (PDT), which suffers from the major limitation of low tissue penetration depth of light. The effectiveness and feasibility of SDT are regarded to rely on not only the development of stable and flexible SDT apparatus, but also the screening of sonosensitizers with good specificity and safety. To give an outlook of the development of SDT equipment, the key technologies are discussed according to five aspects including ultrasonic dose settings, sonosensitizer screening, tumor positioning, temperature monitoring, and reactive oxygen species (ROS) detection. In addition, some state-of-the-art SDT multifunctional equipment integrating diagnosis and treatment for accurate SDT are introduced. Further, an overview of the development of sonosensitizers is provided from small molecular sensitizers to nano/microenhanced sensitizers. Several types of nanomaterial-augmented SDT are in discussion, including porphyrin-based nanomaterials, porphyrin-like nanomaterials, inorganic nanomaterials, and organic-inorganic hybrid nanomaterials with different strategies to improve SDT therapeutic efficacy. There is no doubt that the rapid development and clinical translation of sonodynamic therapy will be promoted by advanced equipment, smart nanomaterial-based sonosensitizer, and multidisciplinary collaboration.
Collapse
Affiliation(s)
- Zhuoran Gong
- Department of Biomedical EngineeringCollege of EngineeringPeking UniversityBeijing100871China
| | - Zhifei Dai
- Department of Biomedical EngineeringCollege of EngineeringPeking UniversityBeijing100871China
| |
Collapse
|
20
|
Ponce Ayala ET, Alves Dias de Sousa F, Vollet-Filho JD, Rodrigues Garcia M, de Boni L, Salvador Bagnato V, Pratavieira S. Photodynamic and Sonodynamic Therapy with Protoporphyrin IX: In Vitro and In Vivo Studies. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1032-1044. [PMID: 33446374 DOI: 10.1016/j.ultrasmedbio.2020.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 05/25/2023]
Abstract
Sono-photodynamic therapy is a promising anticancer technique based on the combination of sonodynamic and photodynamic therapy to improve the cancer treatment effectiveness. This study was aimed at analyzing the effects of the sono-photodynamic (SPD) activity on protoporphyrin IX (PpIX) solution and PpIX-loaded rat liver. In vitro, PpIX 5 μM solutions were irradiated with light (635 nm, 30-50 mW/cm2), ultrasound (1 MHz, 1-2 W/cm2) and both. The PpIX absorption spectra recorded over exposure time revealed that the PpIX decay rate induced by SPD activity (combined irradiation) was approximately the sum of those induced by photodynamic and sonodynamic activity. In vivo, rats were intraperitoneally injected with 5-aminolevulinic acid at the dose of 500 mg/kg weight. After 3 h of injection, the PpIX-loaded livers were irradiated with light (635 nm, 180 ± 9 J/cm2), ultrasound (1.0 MHz, 770 ± 40 J/cm2) and both using a single probe capable of illuminating and sonicating the liver simultaneously. After 30 h, the liver damage induced by each protocol was analyzed histologically. It was found that a greater necrosis depth was induced by the SPD activity. These results suggest that the SPD activity could improve the PpIX decay rate and have greater scope than photodynamic or sonodynamic activity. Further studies should be performed to gain a better understanding of this protocol.
Collapse
Affiliation(s)
| | | | | | | | - Leonardo de Boni
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| | | | - Sebastião Pratavieira
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| |
Collapse
|
21
|
Atmaca GY. Measurement of singlet oxygen generation of 9(Hydroxymethyl)anthracene substituted silicon phthalocyanine by sono-photochemical and photochemical studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
22
|
Yaşa Atmaca G. Investigation of singlet oxygen efficiency of di-axially substituted silicon phthalocyanine with sono-photochemical and photochemical studies. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114894] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Investigation of the differences between sono-photochemical and photochemical studies for singlet oxygen generation of indium phthalocyanine. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
24
|
Zhu J, Wang Y, Yang P, Liu Q, Hu J, Yang W, Liu P, He F, Bai Y, Gai S, Xie R, Li C. GPC3-targeted and curcumin-loaded phospholipid microbubbles for sono-photodynamic therapy in liver cancer cells. Colloids Surf B Biointerfaces 2021; 197:111358. [DOI: 10.1016/j.colsurfb.2020.111358] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/10/2020] [Accepted: 08/28/2020] [Indexed: 12/16/2022]
|
25
|
Hong L, Pliss AM, Zhan Y, Zheng W, Xia J, Liu L, Qu J, Prasad PN. Perfluoropolyether Nanoemulsion Encapsulating Chlorin e6 for Sonodynamic and Photodynamic Therapy of Hypoxic Tumor. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2058. [PMID: 33086490 PMCID: PMC7603101 DOI: 10.3390/nano10102058] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 01/10/2023]
Abstract
Sonodynamic therapy (SDT) has emerged as an important modality for cancer treatment. SDT utilizes ultrasound excitation, which overcomes the limitations of light penetration in deep tumors, as encountered by photodynamic therapy (PDT) which uses optical excitations. A comparative study of these modalities using the same sensitizer drug can provide an assessment of their effects. However, the efficiency of SDT and PDT is low in a hypoxic tumor environment, which limits their applications. In this study, we report a hierarchical nanoformulation which contains a Food and Drug Administration (FDA) approved sensitizer chlorin, e6, and a uniquely stable high loading capacity oxygen carrier, perfluoropolyether. This oxygen carrier possesses no measurable cytotoxicity. It delivers oxygen to overcome hypoxia, and at the same time, boosts the efficiency of both SDT and PDT. Moreover, we comparatively analyzed the efficiency of SDT and PDT for tumor treatment throughout the depth of the tissue. Our study demonstrates that the strengths of PDT and SDT could be combined into a single multifunctional nanoplatform, which works well in the hypoxia environment and overcomes the limitations of each modality. The combination of deep tissue penetration by ultrasound and high spatial activation by light for selective treatment of single cells will significantly enhance the scope for therapeutic applications.
Collapse
Affiliation(s)
- Liang Hong
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Artem M. Pliss
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, New York, NY 14260, USA;
| | - Ye Zhan
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, NY 14260, USA; (Y.Z.); (W.Z.); (J.X.)
| | - Wenhan Zheng
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, NY 14260, USA; (Y.Z.); (W.Z.); (J.X.)
| | - Jun Xia
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, NY 14260, USA; (Y.Z.); (W.Z.); (J.X.)
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Paras N. Prasad
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, New York, NY 14260, USA;
| |
Collapse
|
26
|
Zhu JX, Zhu WT, Hu JH, Yang W, Liu P, Liu QH, Bai YX, Xie R. Curcumin-Loaded Poly(L-lactide-co-glycolide) Microbubble-Mediated Sono-photodynamic Therapy in Liver Cancer Cells. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2030-2043. [PMID: 32475714 DOI: 10.1016/j.ultrasmedbio.2020.03.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 03/07/2020] [Accepted: 03/27/2020] [Indexed: 05/08/2023]
Abstract
Sono-photodynamic therapy (SPDT) activates the same photo-/sonosensitizer and exerts more marked antitumor effects than sonodynamic therapy or photodynamic therapy. We aimed to explore the utilization of curcumin (CUR)-loaded poly(L-lactide-co-glycolide) microbubble (MB)-mediated SPDT (CUR-PLGA-MB-SPDT) in HepG2 liver cancer cells. The cytotoxicity and intracellular accumulation of CUR were determined. We used 40 µM CUR as the photo-/sonosensitizer for 3 h. In a comparison of CUR-SDT or CUR-PDT, HepG2 cell viability decreased and apoptotic rate increased in CUR-SPDT. The CUR-PLGA MBs had round spheres with smooth surfaces and an average size of 3.7 µm. In CUR-PLGA MBs, drug entrapment efficiency and drug-loading capacity were 74.29 ± 2.60% and 17.14 ± 0.60%, respectively. CUR-loaded PLGA MBs (CUR-PLGA MBs) had good biocompatibility with normal L02 cells and were almost non-cytotoxic to HepG2 cells. Among CUR-SDT, CUR-PDT, CUR-SPDT or CUR-PLGA-MB-SDT, the cell CUR-PLGA-MB-SPDT had the lowest viability. Transmission electron microscopy revealed pyroptosis and apoptosis in the CUR-PLGA-MB-SPDT group; the potential mechanism was related to the mitochondrial membrane potential loss and increased production of intracellular reactive oxygen species. These findings suggested that CUR-PLGA-MB-SPDT may be a promising treatment for liver cancer.
Collapse
Affiliation(s)
- Jiu-Xin Zhu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Wen-Ting Zhu
- Harbin Medical University Cancer Hospital, Harbin, China; Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jia-He Hu
- Harbin Medical University Cancer Hospital, Harbin, China
| | - Wei Yang
- Harbin Medical University Cancer Hospital, Harbin, China
| | - Ping Liu
- Harbin Medical University Cancer Hospital, Harbin, China
| | - Qing-Hao Liu
- Harbin Medical University Cancer Hospital, Harbin, China
| | - Yu-Xian Bai
- Harbin Medical University Cancer Hospital, Harbin, China
| | - Rui Xie
- Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
27
|
Pheophorbide a-mediated sonodynamic, photodynamic and sonophotodynamic therapies against prostate cancer. Photodiagnosis Photodyn Ther 2020; 31:101909. [PMID: 32619716 DOI: 10.1016/j.pdpdt.2020.101909] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/07/2020] [Accepted: 06/26/2020] [Indexed: 12/25/2022]
Abstract
Anticancer efficiencies and mechanisms of Pheophorbide-a-mediated photodynamic, sonodynamic and sonophotodynamic therapies were investigated in vitro using androgen-sensitive (LNCaP) and androgen insensitive (PC3) prostate cancer cell lines. The cells were incubated in RPMI-1640 media at various concentrations of Pheophorbide-a. The media was treated with 0.5 W/cm2 ultrasound and/or 0.5 mJ/cm2 light irradiation. Cell proliferation in both cell lines was inhibited most effectively by sonophotodynamic therapy in comparison to that of both monotherapies. LNCaP cells were more sensitive to the applied treatments and the cell survival in LNCaP cell line was observed to be less than that of PC3 cell line. The results of histochemical analysis showed that there were more apoptotic cells in the treatment groups in comparison to control group. Additionally, the treatments induced apoptosis deduced by the overexpressed levels of caspase-3, caspase-8, PARP, and Bax proteins, while the expression levels of caspase-9 and Bcl-2 proteins were observed to be lower than those of control group. Treatments led to an increase in the oxidative stress markers, ROS and MDA, but a decrease in the activities of antioxidant enzymes, SOD, CAT and GSH. The results of this study revealed that Pheophorbide a-mediated sonophotodynamic therapy more efficiently activates the apoptotic mechanisms in prostate cancer cells and thus may provide a promising approach for treatment.
Collapse
|
28
|
Li XY, Tan LC, Dong LW, Zhang WQ, Shen XX, Lu X, Zheng H, Lu YG. Susceptibility and Resistance Mechanisms During Photodynamic Therapy of Melanoma. Front Oncol 2020; 10:597. [PMID: 32528867 PMCID: PMC7247862 DOI: 10.3389/fonc.2020.00597] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
Melanoma is the most aggressive malignant skin tumor and arises from melanocytes. The resistance of melanoma cells to various treatments results in rapid tumor growth and high mortality. As a local therapeutic modality, photodynamic therapy has been successfully applied for clinical treatment of skin diseases. Photodynamic therapy is a relatively new treatment method for various types of malignant tumors in humans and, compared to conventional treatment methods, has fewer side effects, and is more accurate and non-invasive. Although several in vivo and in vitro studies have shown encouraging results regarding the potential benefits of photodynamic therapy as an adjuvant treatment for melanoma, its clinical application remains limited owing to its relative inefficiency. This review article discusses the use of photodynamic therapy in melanoma treatment as well as the latest progress made in deciphering the mechanism of tolerance. Lastly, potential targets are identified that may improve photodynamic therapy against melanoma cells.
Collapse
Affiliation(s)
- Xin-Ying Li
- Department of Plastic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Liu-Chang Tan
- Department of Plastic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Li-Wen Dong
- Department of Plastic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Wan-Qi Zhang
- Department of Plastic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiao-Xiao Shen
- Department of Plastic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiao Lu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuan-Gang Lu
- Department of Plastic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
29
|
Yang Y, Tu J, Yang D, Raymond JL, Roy RA, Zhang D. Photo- and Sono-Dynamic Therapy: A Review of Mechanisms and Considerations for Pharmacological Agents Used in Therapy Incorporating Light and Sound. Curr Pharm Des 2020; 25:401-412. [PMID: 30674248 DOI: 10.2174/1381612825666190123114107] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/15/2019] [Indexed: 01/06/2023]
Abstract
As irreplaceable energy sources of minimally invasive treatment, light and sound have, separately, laid solid foundations in their clinic applications. Constrained by the relatively shallow penetration depth of light, photodynamic therapy (PDT) typically involves involves superficial targets such as shallow seated skin conditions, head and neck cancers, eye disorders, early-stage cancer of esophagus, etc. For ultrasound-driven sonodynamic therapy (SDT), however, to various organs is facilitated by the superior... transmission and focusing ability of ultrasound in biological tissues, enabling multiple therapeutic applications including treating glioma, breast cancer, hematologic tumor and opening blood-brain-barrier (BBB). Considering the emergence of theranostics and precision therapy, these two classic energy sources and corresponding sensitizers are worth reevaluating. In this review, three typical therapies using light and sound as a trigger, PDT, SDT, and combined PDT and SDT are introduced. The therapeutic dynamics and current designs of pharmacological sensitizers involved in these therapies are presented. By introducing both the history of the field and the most up-to-date design strategies, this review provides a systemic summary on the development of PDT and SDT and fosters inspiration for researchers working on 'multi-modal' therapies involving light and sound.
Collapse
Affiliation(s)
- Yanye Yang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Dongxin Yang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Jason L Raymond
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom.,Oxford-Suzhou Centre for Advanced Research, Suzhou, China
| | - Ronald A Roy
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.,Department of Engineering Science, University of Oxford, Oxford, United Kingdom.,Oxford-Suzhou Centre for Advanced Research, Suzhou, China
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| |
Collapse
|
30
|
Mai B, Wang X, Liu Q, Zhang K, Wang P. The Application of DVDMS as a Sensitizing Agent for Sono-/Photo-Therapy. Front Pharmacol 2020; 11:19. [PMID: 32116698 PMCID: PMC7020569 DOI: 10.3389/fphar.2020.00019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 01/08/2020] [Indexed: 01/01/2023] Open
Abstract
Both photodynamic therapy (PDT) and sonodynamic therapy (SDT) are fast growing activated therapies by using light or ultrasound to initiate catalytic reaction of sensitizing agents, showing great potentials in clinics because of high safety and noninvasiveness. Sensitizers are critical components in PDT and SDT. Sinoporphyrin sodium (DVDMS) is an effective constituent derived from Photofrin that has been approved by FDA. This review is based on previous articles that explore the applications of DVDMS mediated photodynamic/sonodynamic cancer therapy and antimicrobial chemotherapy. Researchers utilize different cell lines, distinct treatment protocols to explore the enhanced therapeutic response of neoplastic lesion. Moreover, by designing a series of nanoparticles for loading DVDMS to improve the cellular uptake and antitumor efficacy of PDT/SDT, which integrates diagnostics into therapeutics for precision medical applications. During the sono-/photo-activated process, the balance between oxidation and antioxidation, numerous signal transduction and cell death pathways are also involved. In addition, DVDMS mediated photodynamic antimicrobial chemotherapy (PACT) can effectively suppress bacteria and multidrug resistant bacteria proliferation, promote the healing of wounds in burn infection. In brief, these efficient preclinical studies indicate a good promise for DVDMS application in the activated sono-/photo-therapy.
Collapse
Affiliation(s)
- Bingjie Mai
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiaobing Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Quanhong Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Kun Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
31
|
Sonodynamic therapy (SDT): a novel strategy for cancer nanotheranostics. SCIENCE CHINA-LIFE SCIENCES 2018; 61:415-426. [PMID: 29666990 DOI: 10.1007/s11427-017-9262-x] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/15/2017] [Indexed: 12/14/2022]
Abstract
Sonodynamic therapy (SDT) is a promising non-invasive therapeutic modality. Compared to photo-inspired therapy, SDT provides many opportunities and benefits, including deeper tissue penetration, high precision, less side effects, and good patient compliance. Thanks to the facile engineerable nature of nanotechnology, nanoparticles-based sonosensitizers exhibit predominant advantages, such as increased SDT efficacy, binding avidity, and targeting specificity. This review aims to summarize the possible mechanisms of SDT, which can be expected to provide the theoretical basis for SDT development in the future. We also extensively discuss nanoparticle-assisted sonosensitizers to enhance the outcome of SDT. Additionally, we focus on the potential strategy of combinational SDT with other therapeutic modalities and discuss the limitations and challenges of SDT toward clinical applications.
Collapse
|
32
|
Chen HJ, Zhou XB, Wang AL, Zheng BY, Yeh CK, Huang JD. Synthesis and biological characterization of novel rose bengal derivatives with improved amphiphilicity for sono-photodynamic therapy. Eur J Med Chem 2018; 145:86-95. [DOI: 10.1016/j.ejmech.2017.12.091] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/07/2017] [Accepted: 12/28/2017] [Indexed: 12/22/2022]
|
33
|
Enhancement of cancerous cells treatment by applying cold atmospheric plasma and photo dynamic therapy simultaneously. CLINICAL PLASMA MEDICINE 2017. [DOI: 10.1016/j.cpme.2017.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Xie R, Xu T, Zhu J, Wei X, Zhu W, Li L, Wang Y, Han Y, Zhou J, Bai Y. The Combination of Glycolytic Inhibitor 2-Deoxyglucose and Microbubbles Increases the Effect of 5-Aminolevulinic Acid-Sonodynamic Therapy in Liver Cancer Cells. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2640-2650. [PMID: 28843620 DOI: 10.1016/j.ultrasmedbio.2017.06.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/16/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
Sonodynamic therapy (SDT) overcomes the shortcoming of photodynamic therapy in the treatment of cancer. Previous studies indicated that the glycolysis inhibitor 2-deoxyglucose (2-DG) potentiated photodynamic therapy induced tumor cell death and microbubbles (MBs) improved the SDT performance. We hypothesized that the combination of 2-DG and MBs will increase the effect of 5-aminolevulinic acid (ALA)-SDT in HepG2 liver cancer cells. When cells were treated with 5-min ALA-SDT and 2-mmol/L 2-DG, the cell survival rate decreased to 73.0 ± 7.1% and 75.2 ± 7.9%, respectively. Furthermore, 2 mmol/L 2-DG increased 5-min ALA-SDT induced growth inhibition and augmented ALA-SDT induced cell apoptotic rate from 9.8 ± 0.7% to 17.4 ± 2.2%. In the combination group (2-DG and ALA-SDT group), HepG2 cells possessed typical apoptotic characters. 2-DG also increased ALA-SDT associated intracellular reactive oxygen species generation and loss of mitochondrial membrane potential. Moreover, SonoVue MBs had stimulatory function on cell viability inhibition, apoptosis, reactive oxygen species production and mitochondrial membrane potential loss for combination treatment. This study suggests a promising therapeutic strategy using a combination of 2-DG, MBs and ALA-SDT for treating liver cancer.
Collapse
Affiliation(s)
- Rui Xie
- Department of Digestive Internal Medicine & Photodynamic Therapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tongying Xu
- Department of Digestive Internal Medicine & Photodynamic Therapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jiuxin Zhu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Xiaoli Wei
- Department of Digestive Internal Medicine & Photodynamic Therapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenting Zhu
- Department of Digestive Internal Medicine & Photodynamic Therapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Longmin Li
- Department of Digestive Internal Medicine & Photodynamic Therapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yufeng Wang
- Department of Digestive Internal Medicine & Photodynamic Therapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yu Han
- Department of Digestive Internal Medicine & Photodynamic Therapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jianhua Zhou
- Department of Digestive Internal Medicine & Photodynamic Therapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuxian Bai
- Department of Digestive Internal Medicine & Photodynamic Therapy Center, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
35
|
HOXC6 regulates the antitumor effects of pheophorbide a-based photodynamic therapy in multidrug-resistant oral cancer cells. Int J Oncol 2016; 49:2421-2430. [DOI: 10.3892/ijo.2016.3766] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/02/2016] [Indexed: 11/05/2022] Open
|
36
|
Qian X, Zheng Y, Chen Y. Micro/Nanoparticle-Augmented Sonodynamic Therapy (SDT): Breaking the Depth Shallow of Photoactivation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:8097-8129. [PMID: 27384408 DOI: 10.1002/adma.201602012] [Citation(s) in RCA: 543] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/28/2016] [Indexed: 05/08/2023]
Abstract
The fast development of photoactivation for cancer treatment provides an efficient photo-therapeutic strategy for cancer treatment, but traditional photodynamic or photothermal therapy suffers from the critical issue of low in vivo penetration depth of tissues. As a non-invasive therapeutic modality, sonodynamic therapy (SDT) can break the depth barrier of photoactivation because ultrasound has an intrinsically high tissue-penetration performance. Micro/nanoparticles can efficiently augment the SDT efficiency based on nanobiotechnology. The state-of-art of the representative achievements on micro/nanoparticle-enhanced SDT is summarized, and specific functions of micro/nanoparticles for SDT are discussed, from the different viewpoints of ultrasound medicine, material science and nanobiotechnology. Emphasis is put on the relationship of structure/composition-SDT performance of micro/nanoparticle-based sonosensitizers. Three types of micro/nanoparticle-augmented SDT are discussed, including organic and inorganic sonosensitizers and micro/nanoparticle-based but sonosensitizer-free strategies to enhance the SDT outcome. SDT-based synergistic cancer therapy augmented by micro/nanoparticles and their biosafety are also included. Some urgent critical issues and potential developments of micro/nanoparticle-augmented SDT for efficient cancer treatment are addressed. It is highly expected that micro/nanoparticle-augmented SDT will be quickly developed as a new and efficient therapeutic modality which will find practical applications in cancer treatment. At the same time, fundamental disciplines regarding materials science, chemistry, medicine and nanotechnology will be advanced.
Collapse
Affiliation(s)
- Xiaoqin Qian
- Department of Ultrasound, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, P. R. China
| | - Yuanyi Zheng
- Sixth Affiliated Hospital of Shanghai Jiaotong University & Shanghai Institute of Ultrasound in Medicine, Shanghai, 200233, P. R. China.
| | - Yu Chen
- State Key Laboratory of High Performance Ceramic and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
| |
Collapse
|
37
|
Liu Y, Wang P, Liu Q, Wang X. Sinoporphyrin sodium triggered sono-photodynamic effects on breast cancer both in vitro and in vivo. ULTRASONICS SONOCHEMISTRY 2016; 31:437-48. [PMID: 26964970 DOI: 10.1016/j.ultsonch.2016.01.038] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/23/2016] [Accepted: 01/29/2016] [Indexed: 05/10/2023]
Abstract
Sono-photodynamic therapy (SPDT) is a promising anti-cancer strategy. Briefly, SPDT combines ultrasound and light to activate sensitizers that produce mechanical, sonochemical and photochemical activities. Sinoporphyrin sodium (DVDMS) is a newly identified sensitizer that shows great potential in both sonodynamic therapy (SDT) and photodynamic therapy (PDT). In this study, we primarily evaluated the combined effects of SDT and PDT by using DVDMS on breast cancer both in vitro and in vivo. In vitro, DVDMS-SPDT elicits much serious cytotoxicity compared with either SDT or PDT alone by MTT and colony formation assays. 2',7'-Dichlorodihydrofluo-rescein-diacetate (DCFH-DA) and dihydroethidium (DHE) staining revealed that intracellular reactive oxygen species (ROS) were significantly increased in groups given combined therapy. Terephthalic acid (TA) method and FD500-uptake assay reflected that cavitational effects and cell membrane permeability changes after ultrasound irradiation were also involved in the enhancement of combination therapy. In vivo, DVDMS-SPDT markedly inhibits the tumor volume and tumor weight growth. Hematoxylin-eosin staining and immunohistochemistry analysis show DVDMS-SPDT greatly suppressed tumor proliferation. Further, DVDMS-SPDT significantly inhibits tumor lung metastasis in the highly metastatic 4T1 mouse xenograft model, which is consistent well with the in vitro findings evaluated by transwell assay. Moreover, DVDMS-SPDT did not produces obvious effect on body weight and major organs in 4T1 xenograft model. The results suggest that by combination SDT and PDT, the sensitizer DVDMS would produce much better therapeutic effects, and DVDMS-SPDT may be a potential strategy against highly metastatic breast cancer.
Collapse
Affiliation(s)
- Yichen Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Pan Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Quanhong Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Xiaobing Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| |
Collapse
|
38
|
Abstract
Sonodynamic therapy (SDT) is an emerging approach that involves a combination of low-intensity ultrasound and specialized chemical agents known as sonosensitizers. Ultrasound can penetrate deeply into tissues and can be focused into a small region of a tumor to activate a sonosensitizer which offers the possibility of non-invasively eradicating solid tumors in a site-directed manner. In this article, we critically reviewed the currently accepted mechanisms of sonodynamic action and summarized the classification of sonosensitizers. At the same time, the breath of evidence from SDT-based studies suggests that SDT is promising for cancer treatment.
Collapse
Affiliation(s)
- Guo-Yun Wan
- Research Center of Basic Medical Science & School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Yang Liu
- Research Center of Basic Medical Science & School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China; Laboratory of Cancer Cell Biology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Bo-Wei Chen
- Research Center of Basic Medical Science & School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Yuan-Yuan Liu
- Research Center of Basic Medical Science & School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Yin-Song Wang
- Research Center of Basic Medical Science & School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Ning Zhang
- Research Center of Basic Medical Science & School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China; Laboratory of Cancer Cell Biology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| |
Collapse
|
39
|
Wang H, Wang P, Li L, Zhang K, Wang X, Liu Q. Microbubbles Enhance the Antitumor Effects of Sinoporphyrin Sodium Mediated Sonodynamic Therapy both In Vitro and In Vivo. Int J Biol Sci 2015; 11:1401-9. [PMID: 26681919 PMCID: PMC4671997 DOI: 10.7150/ijbs.12802] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/20/2015] [Indexed: 11/29/2022] Open
Abstract
Objectives: To evaluate the anti-cancer effect of sonodynamic therapy combined with microbubbles both in vitro and in vivo. Methods: Cell viability was measured by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide and guava viacount assays. Annexin V-FITC/PI staining was adopted to analyze cell apoptosis rate. FD500 uptake assay was performed to assess cell membrane permeability changes. Tumor weight, mice weight and the visual image of tumor size were used to reflect the anti-tumor effect of this combined method. Histological change of tumor tissue after different treatments was measured through hematoxylin and eosin (H&E) staining. Results: Microbubbles can significantly enhance the cytotoxicity and necrocytosis rate induced by SDT treatment. Increased cell membrane permeability and more uptake of DVDMS were founded in SDT combined with microbubbles group. For in vivo experiments, SDT with microbubbles can significantly reduce tumor weight and size with pimping difference of mice weight compare with other treatment groups. In addition, microbubbles notably improved tumor tissue destruction caused by ultrasound and SDT treatment. Conclusion: The results suggest that microbubbles can markedly improve the anti-cancer effect of DVDMS mediate sonodynamic therapy both in vitro and in vivo.
Collapse
Affiliation(s)
- Haiping Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Pan Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Li Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Kun Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Xiaobing Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Quanhong Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| |
Collapse
|
40
|
Enhanced efficacy of photodynamic therapy by inhibiting ABCG2 in colon cancers. BMC Cancer 2015; 15:504. [PMID: 26149077 PMCID: PMC4494642 DOI: 10.1186/s12885-015-1514-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 06/25/2015] [Indexed: 12/31/2022] Open
Abstract
Background Photodynamic therapy (PDT) contains a photosensitizing process, which includes cellular uptake of photosensitizer and delivery of light to the target. ATP-binding cassette subfamily G2 (ABCG2) regulates endogenous protoporphyrin levels. In human colon cancers, it is not fully examined the role of ABCG2 in porphyrin-based photodynamic therapy. Methods SW480 and HT29 cells were selected because they showed low and high ABCG2 expression levels, respectively. Pyropheophorbid-a (PPa) was used as a photosensitizer. Cells were exposed to a 670 nm diod laser. Cell viability and necrosi apoptosis was examined. Production level of singlet oxygen was detected with the photomultiplier-tube s/ -based singlet oxygen detection system. Results SW480 cells, which expressed lower level of ABCG2, showed the higher uptake of PPa than HT-29 cells. The uptake level of PPa was significantly correlated with the decreased cell viability after PDT. Pretreatment with a ABCG2 inhibitor, Ko-143, significantly enhanced the PDT efficacy in HT29 cells compared to vehicle-pretreated cells. To confirm the ABCG2 effect on PDT, we established ABCG2 over-expressing stable cells in SW480 cells (SW480/ABCG2). Furthermore, SW480/ABCG2 cells showed significantly decreased PDT effect compared to the control cells. The increased or decreased cell survival was significantly correlated with the production level of singlet oxygen after PDT. Conclusion ABCG2 plays an important role in determining the PDT efficacy by controlling the photosensitizer efflux rate. This implies the control of ABCG2 expression may be a potential solution to enhance photosensitivity.
Collapse
|
41
|
Wood AKW, Sehgal CM. A review of low-intensity ultrasound for cancer therapy. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:905-28. [PMID: 25728459 PMCID: PMC4362523 DOI: 10.1016/j.ultrasmedbio.2014.11.019] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 11/13/2014] [Accepted: 11/24/2014] [Indexed: 05/05/2023]
Abstract
The literature describing the use of low-intensity ultrasound in four major areas of cancer therapy-sonodynamic therapy, ultrasound-mediated chemotherapy, ultrasound-mediated gene delivery and anti-vascular ultrasound therapy-was reviewed. Each technique consistently resulted in the death of cancer cells, and the bio-effects of ultrasound were attributed primarily to thermal actions and inertial cavitation. In each therapeutic modality, theranostic contrast agents composed of microbubbles played a role in both therapy and vascular imaging. The development of these agents is important as it establishes a therapeutic-diagnostic platform that can monitor the success of anti-cancer therapy. Little attention, however, has been given either to the direct assessment of the mechanisms underlying the observed bio-effects or to the viability of these therapies in naturally occurring cancers in larger mammals; if such investigations provided encouraging data, there could be prompt application of a therapy technique in the treatment of cancer patients.
Collapse
Affiliation(s)
- Andrew K W Wood
- Department Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chandra M Sehgal
- Department of Radiology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
42
|
Wang P, Li C, Wang X, Xiong W, Feng X, Liu Q, Leung AW, Xu C. Anti-metastatic and pro-apoptotic effects elicited by combination photodynamic therapy with sonodynamic therapy on breast cancer both in vitro and in vivo. ULTRASONICS SONOCHEMISTRY 2015; 23:116-27. [PMID: 25465095 DOI: 10.1016/j.ultsonch.2014.10.027] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 05/10/2023]
Abstract
Sono-Photodynamic therapy (SPDT), a new modality for cancer treatment, is aimed at enhancing anticancer effects by the combination of sonodynamic therapy (SDT) and photodynamic therapy (PDT). In this study, we investigated the antitumor effect and possible mechanisms of Chlorin e6 (Ce6) mediated SPDT (Ce6-SPDT) on breast cancer both in vitro and in vivo. MTT assay revealed that the combined therapy markedly enhanced cell viability loss of breast cancer cell lines (MDA-MB-231, MCF-7 and 4T1) compared with SDT and PDT alone. Propidium iodide/hoechst33342 double staining reflected that 4T1 cells with apoptotic morphological characteristics were significantly increased in groups given combined therapy. Besides, the combined therapy caused obvious mitochondrial membrane potential (MMP) loss at early 1 h post SPDT treatment. The generation of intracellular reactive oxygen species (ROS) detected by flow cytometry was greatly increased in 4T1 cells treated with the combination therapy, and the loss of cell viability and MMP could be effectively rescued by pre-treatment with the ROS scavenger N-acetylcysteine (NAC). Further, Ce6-SPDT markedly inhibited the tumor growth (volume and weight) and lung metastasis in 4T1 tumor-bearing mice, but had no effect on the body weight. Hematoxylin and eosin staining revealed obvious tissue destruction with large spaces in the Ce6-SPDT groups, and TUNEL staining indicated tumor cell apoptosis after treatment. Immunohistochemistry analysis showed that the expression level of VEGF and MMP were significantly decreased in the combined groups. These results indicated that Ce6-mediated SPDT enhanced the antitumor efficacy on 4T1 cells compared with SDT and PDT alone, loss of MMP and generation of ROS might be involved. In addition, Ce6-mediated SPDT significantly inhibited tumor growth and metastasis in mouse breast cancer 4T1 xenograft model, in which MMP-9 and VEGF may play a crucial role.
Collapse
|
43
|
Svenskaya YI, Navolokin NA, Bucharskaya AB, Terentyuk GS, Kuz’mina AO, Burashnikova MM, Maslyakova GN, Lukyanets EA, Gorin DA. Calcium carbonate microparticles containing a photosensitizer photosens: Preparation, ultrasound stimulated dye release, and in vivo application. ACTA ACUST UNITED AC 2014. [DOI: 10.1134/s1995078014040181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
44
|
Harris F, Dennison SR, Phoenix DA. Using sound for microbial eradication - light at the end of the tunnel? FEMS Microbiol Lett 2014; 356:20-2. [DOI: 10.1111/1574-6968.12484] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/15/2014] [Accepted: 05/19/2014] [Indexed: 11/28/2022] Open
Affiliation(s)
- Frederick Harris
- School of Forensic and Investigative Science; University of Central Lancashire; Preston UK
| | - Sarah R. Dennison
- School of Pharmacy and Biomedical Sciences; University of Central Lancashire; Preston UK
| | - David A. Phoenix
- Office of the Vice Chancellor; London South Bank University; London UK
| |
Collapse
|
45
|
Li Q, Liu Q, Wang P, Feng X, Wang H, Wang X. The effects of Ce6-mediated sono-photodynamic therapy on cell migration, apoptosis and autophagy in mouse mammary 4T1 cell line. ULTRASONICS 2014; 54:981-989. [PMID: 24321299 DOI: 10.1016/j.ultras.2013.11.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 11/06/2013] [Accepted: 11/20/2013] [Indexed: 06/03/2023]
Abstract
PURPOSE Sono-Photodynamic therapy (SPDT) is an alternative therapy which claims to enhance the anti-cancer effects by combining sonodynamic therapy (SDT) with photodynamic therapy (PDT). In the present study, we investigated the effects of chlorin e6 (Ce6) mediated SPDT on migration, apoptosis and autophagy in mouse mammary 4T1 cancer cells, and its underlying mechanisms. MATERIALS Cell migration was determined by wound healing assay. Apoptosis was analyzed using annexin V-PE/7-ADD staining as well as Hoechst 33342 staining. Changes of mitochondria membrane potential (MMP) was evaluated by flow cytometry. Formation of acidic vesicular organelles (AVOs) during autophagy was observed with fluorescence microscope by MDC staining. Immunofluorescence assays were performed to detect the co-localization of LC3 and Lamp2. Western blotting was employed to analyze the activity of the apoptosis related proteins Caspase-3, PARP, Bax and Bcl-2, as well as the autophagy associated processing of LC3-I to LC3-II and Beclin-1 expression. RESULTS Ce6 mediated SPDT further enhanced cell migration inhibition, significantly triggered cell apoptosis, nuclear condensation and MMP drop. Cleaved Caspase-3 and PARP increased dramatically after Ce6-SPDT, accompanied by decreased Bcl-2 expression, while the expression of Bax remained stable. Additionally, AVOs formation, co-localization of LC3 and Lamp2 occurred following Ce6-SPDT and simultaneously accompanied by LC3-II processing and increased Beclin-1 expression. CONCLUSIONS Ce6-SPDT could enhance cell migration inhibition, and induce mitochondria-dependent apoptosis as well as autophagy in 4T1 cells.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China; College of Life Sciences, LuDong University, Yantai, Shandong, China
| | - Quanhong Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Pan Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiaolan Feng
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Haiping Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiaobing Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| |
Collapse
|
46
|
Yoon HE, Oh SH, Kim SA, Yoon JH, Ahn SG. Pheophorbide a-mediated photodynamic therapy induces autophagy and apoptosis via the activation of MAPKs in human skin cancer cells. Oncol Rep 2013; 31:137-44. [PMID: 24253565 DOI: 10.3892/or.2013.2856] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 10/24/2013] [Indexed: 11/06/2022] Open
Abstract
Pheophorbide a (Pa), a chlorophyll derivative, is a photosensitizer that can induce significant antitumor effects in several types of tumor cells. The present study investigated the mechanism of Pa-mediated photodynamic therapy (Pa-PDT) in the human skin cancer cell lines A431 and G361. PDT significantly inhibited the cell growth in a Pa-concentration-dependent manner. We observed increased expression of Beclin-1, LC3B and ATG5, which are markers of autophagy, after PDT treatment in A431 cells but not in G361 cells. In G361 cells, Pa-PDT strongly induced PARP cleavage and subsequent apoptosis, which was confirmed using Annexin V/Propidium iodide double staining. Pa-PDT predominantly exhibited its antitumor effects via activation of ERK1/2 and p38 in A431 and G361 cells, respectively. An in vivo study using the CAM xenograft model demonstrated that Pa-PDT strongly induced autophagy and apoptosis in A431-transplanted tumors and/or apoptosis in G361-transplanted tumors. These results may provide a basis for understanding the underlying mechanisms of Pa-PDT and for developing Pa-PDT as a therapy for skin cancer.
Collapse
Affiliation(s)
- Hyo-Eun Yoon
- Department of Pathology, College of Dentistry, Chosun University, Gwangju 501-759, Republic of Korea
| | | | | | | | | |
Collapse
|
47
|
Li Q, Wang X, Wang P, Zhang K, Wang H, Feng X, Liu Q. Efficacy of chlorin e6-mediated sono-photodynamic therapy on 4T1 cells. Cancer Biother Radiopharm 2013; 29:42-52. [PMID: 24206161 DOI: 10.1089/cbr.2013.1526] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE The present study aims to investigate the antitumor effect and possible mechanisms of chlorin e6 (Ce6)-mediated sono-photodynamic therapy (Ce6-SPDT) on murine 4T1 mammary cancer cells in vitro. MATERIALS Cellular uptake and intracellular distribution of Ce6 in 4T1 cells were detected by flow cytometry and confocal microscope. Cells after loading with 1 μg/mL Ce6 were exposed to ultrasound at 1.0 MHz for up to 1 minute with an intensity of 0.36 W/cm2 and laser light with total radiation dose of 1.2 J/cm2. Cell viability and clonogenicity were determined by MTT assay and colony formation assay. Apoptosis was analyzed by DAPI staining, Western blots were used to detect the activity of Caspase-3. DNA damage, mitochondrial membrane potential (MMP), and intracellular reactive oxygen species (ROS) of 4T1 cells were also evaluated by flow cytometry. FD500 was employed to detect changes of membrane permeability after ultrasound. RESULTS Ce6 rapidly entered 4T1 cells within 4 hours after it has been added and displayed a mitochondria-localization pattern. Compared with sonodynamic therapy (SDT) and photodynamic therapy (PDT) alone, the combined SPDT treatment further enhanced cell viability loss, DNA damage, and clonogenicity inhibition. DAPI staining and western blots analysis reflected that cells with apoptotic morphological characteristics and the activity of Caspase-3 were apparently increased in the combined group. Besides, SPDT caused obvious MMP loss and intracellular ROS generation at early 1 hour post treatment. Interestingly, the SPDT induced cell viability loss and cell apoptosis was greatly inhibited by pre-treatment with ROS scavenger N-acetylcysteine and Caspase inhibitor z-VAD-fmk. FD500 detection showed that ultrasound enhanced cell membrane permeability, implying much higher uptake of Ce6 might be involved in PDT therapy by pre-ultrasound treatment. CONCLUSIONS The findings demonstrated that Ce6-mediated SPDT enhanced the antitumor efficacy on 4T1 cells compared with SDT and PDT alone, a Caspase-dependent apoptosis and loss of MMP, generation of ROS may be involved.
Collapse
Affiliation(s)
- Qing Li
- 1 Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University , Xi'an, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Wang H, Wang X, Wang P, Zhang K, Yang S, Liu Q. Ultrasound enhances the efficacy of chlorin E6-mediated photodynamic therapy in MDA-MB-231 cells. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:1713-1724. [PMID: 23830103 DOI: 10.1016/j.ultrasmedbio.2013.03.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 03/12/2013] [Accepted: 03/13/2013] [Indexed: 06/02/2023]
Abstract
Sono-photodynamic therapy (SPDT) is a new modality for cancer treatment. Some studies have reported enhanced tumor cytotoxicity when sonodynamic therapy (SDT) is combined with photodynamic therapy (PDT). In this study, we investigated the cytotoxic effect of SPDT-activated chlorin e6 (Ce6) on MDA-MB-231 cells. Ce6 was found to localize mainly in mitochondria, with maximal uptake within 4 h. Cell survival was estimated by MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltertrazolium bromide tetrazolium) assay 24 h after irradiation; the combined therapy enhanced cytotoxicity to a greater extent. Apoptosis was analyzed using annexin V-PE/7-ADD (7-aminoactinomycin D) staining as well as DAPI (4', 6-diamidino-2-phenylindole) staining, and the results indicated that the cells with apoptotic characteristics were significantly increased in groups given combined therapy. Rhodamine-123 staining and cytochrome c release revealed more serious damage of mitochondria after combined treatment. The generation of reactive oxygen species detected by flow cytometry was greatly increased in cells treated with the combination therapy, and the loss in cell viability could be effectively rescued with the reactive oxygen species inhibitor N-acetylcysteine. Moreover, enhancement of cell membrane permeability after ultrasound treatment was evaluated using FD-500, and it was found that the much higher uptake of Ce6 might be involved in PDT therapy with pre-treatment ultrasound. These results suggest that ultrasound enhances the cytotoxicity of Ce6-mediated PDT, possibly because of the increased intracellular Ce6 level and ROS formation by ultrasound pre-treatment.
Collapse
Affiliation(s)
- Haiping Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Shaanxi, China
| | | | | | | | | | | |
Collapse
|
49
|
Sazgarnia A, Shanei A, Eshghi H, Hassanzadeh-Khayyat M, Esmaily H, Shanei MM. Detection of sonoluminescence signals in a gel phantom in the presence of Protoporphyrin IX conjugated to gold nanoparticles. ULTRASONICS 2013; 53:29-35. [PMID: 22560541 DOI: 10.1016/j.ultras.2012.03.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/14/2012] [Accepted: 03/19/2012] [Indexed: 05/31/2023]
Abstract
The particles in a liquid decrease the ultrasonic intensity threshold required for cavitation onset. In this study, a new nanoconjugate composed of Protoporphyrin IX and gold nanoparticles (Au-PpIX) was used as a nucleation site for cavitation. The nonradiative relaxation time of Protoporphyrin IX in the presence of gold nanoparticles is longer than the similar time without gold nanoparticles. The acoustic cavitation activity was investigated via recording of the integrated sonoluminescence signal in the wavelength range of 220-700nm in a gel phantom by a cooled charge coupled device (CCD) at different intensities of 1MHz ultrasound. In order to confirm these results, a chemical dosimetric method was utilized, too. The recorded sonoluminescence signal in the gel phantom containing Au-PpIX was higher than the other phantoms. These records have been confirmed by the chemical dosimetric data. Therefore, we anticipate that a new nanoconjugate composed of Protoporphyrin IX and gold nanoparticles can act as an efficient sonoluminescence agent and could be introduced as a novel sonosensitizer for sonodynamic therapy.
Collapse
Affiliation(s)
- Ameneh Sazgarnia
- Research Center and Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Vakil Abad Blvd., Mashhad, Iran
| | | | | | | | | | | |
Collapse
|
50
|
Li JH, Chen ZQ, Huang Z, Zhan Q, Ren FB, Liu JY, Yue W, Wang Z. In vitro study of low intensity ultrasound combined with different doses of PDT: Effects on C6 glioma cells. Oncol Lett 2012; 5:702-706. [PMID: 23420417 PMCID: PMC3573141 DOI: 10.3892/ol.2012.1060] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 10/16/2012] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to study the effects of killing C6 glioma cells induced by hematoporphyrin monomethyl ether (HMME)-mediated sonodynamic therapy combined with photodynamic therapy (SPDT). In the SPDT group, the cells were treated with sonication at an intensity of 0.5 W/cm2 and a frequency of 1 MHz, followed by different doses of light irradiation. The growth inhibition rate following treatment was determined by MTT assay. The apoptotic rate was examined by a flow cytometry. Cleavage of caspase 3, 8 and 9 was investigated by immunoblotting. Reactive oxygen species (ROS) were measured by a fluorescence microplate reader. The effect of SPDT on the glioma cells was also studied in the absence or presence of various ROS scavengers. The growth inhibition rate of C6 glioma cells treated with SPDT was significantly higher compared with sonodynamic therapy (SDT) or photodynamic therapy (PDT) alone at light doses <200 J/cm2. The growth inhibition rate of C6 glioma cells treated with SPDT did not rise significantly when the light dose increased to >120 J/cm2. The apoptosis rate was the highest in the SPDT group, when the light dose was at 80 J/cm2. A greater amount of ROS were generated in the SPDT group than in the groups treated with SDT or PDT alone. The addition of NaN3 or mannitol resulted in a decrease in the growth inhibition rate with SPDT. In conclusion, our data indicate that SPDT powerfully kills C6 glioma cells in vitro through the synergistic effects of SDT and PDT. The pathway of PDT inducing C6 glioma cell apoptosis includes both the mitochondrial and death receptor pathways. Furthermore, ROS may play an important role in SPDT.
Collapse
Affiliation(s)
- Jian-Hua Li
- Department of Neurosurgery, The Fourth College Hospital of Harbin Medical University, Harbin, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|