1
|
Zhou P, Li Z, Liu F, Kwon E, Hsieh TC, Ye S, Vasudevan S, Lee JA, Tran KV, Zhou C. BAMBI integrates biostatistical and artificial intelligence methods to improve RNA biomarker discovery. Brief Bioinform 2025; 26:bbaf073. [PMID: 40121554 PMCID: PMC11929966 DOI: 10.1093/bib/bbaf073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/09/2025] [Accepted: 01/26/2025] [Indexed: 03/25/2025] Open
Abstract
RNA biomarkers enable early and precise disease diagnosis, monitoring, and prognosis, facilitating personalized medicine and targeted therapeutic strategies. However, identification of RNA biomarkers is hindered by the challenge of analyzing relatively small yet high-dimensional transcriptomics datasets, typically comprising fewer than 1000 biospecimens but encompassing hundreds of thousands of RNAs, especially noncoding RNAs. This complexity leads to several limitations in existing methods, such as poor reproducibility on independent datasets, inability to directly process omics data, and difficulty in identifying noncoding RNAs as biomarkers. Additionally, these methods often yield results that lack biological interpretation and clinical utility. To overcome these challenges, we present BAMBI (Biostatistical and Artificial-intelligence Methods for Biomarker Identification), a computational tool integrating biostatistical approaches and machine-learning algorithms. By initially reducing high dimensionality through biologically informed statistical methods followed by machine learning-based feature selection, BAMBI significantly enhances the accuracy and clinical utility of identified RNA biomarkers and also includes noncoding RNA biomarkers that existing methods may overlook. BAMBI outperformed existing methods on both real and simulated datasets by identifying individual and panel biomarkers with fewer RNAs while still ensuring superior prediction accuracy. BAMBI was benchmarked on multiple transcriptomics datasets across diseases, including breast cancer, psoriasis, and leukemia. The prognostic biomarkers for acute myeloid leukemia discovered by BAMBI showed significant correlations with patient survival rates in an independent cohort, highlighting its potential for enhancing clinical outcomes. The software is available on GitHub (https://github.com/CZhouLab/BAMBI).
Collapse
Affiliation(s)
- Peng Zhou
- Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, United States
| | - Zixiu Li
- Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, United States
| | - Feifan Liu
- Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, United States
| | - Euijin Kwon
- Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, United States
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, United States
| | - Tien-Chan Hsieh
- Division of Hematology-Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, United States
| | - Shangyuan Ye
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health and Science University, 2720 S Moody Ave, Portland, OR 97201, United States
| | - Shobha Vasudevan
- Brown RNA Center, Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02903, United States
| | - Jung Ae Lee
- Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, United States
| | - Khanh-Van Tran
- Division of Cardiology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, United States
| | - Chan Zhou
- Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, United States
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, United States
- The RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, United States
- UMass Cancer Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, United States
| |
Collapse
|
2
|
Wang Q, Luo X, Su Y, Jin Y, Kuang Q, Li S, Shen W, Zhu Y. Tanshinone I Ameliorates Psoriasis-Like Dermatitis by Suppressing Inflammation and Regulating Keratinocyte Differentiation. Drug Des Devel Ther 2025; 19:539-552. [PMID: 39876988 PMCID: PMC11774251 DOI: 10.2147/dddt.s504485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/16/2025] [Indexed: 01/31/2025] Open
Abstract
Background Psoriasis is an immune-related inflammatory systemic condition characterized by dysregulated keratinocyte proliferation and chronic inflammation. Tanshinone I (Tan-I) has recently been discovered to have immunomodulatory properties, but its role and mechanisms in treating psoriasis remain unclear. Objective To evaluate the efficacy of Tan-I in the treatment of psoriasis and to determine the mechanisms involved. Methods An imiquimod (IMQ)-induced psoriasis-like mouse model was treated topically with Tan-I (7.5 mg/kg/d) or a vehicle. Disease severity was evaluated using the Psoriasis Area and Severity Index (PASI), and histological changes were assessed via H&E staining and Ki67 immunofluorescence. TNF-α-stimulated HaCaT keratinocytes were used for in vitro analyses, including apoptosis, cell cycle progression, and inflammatory gene expression via RT-qPCR. RNA sequencing (RNA-seq) was performed to investigate Tan-I's mechanisms in vivo and in vitro, while keratin expression was analyzed by immunofluorescence and Western blot. Results Tan-I treatment significantly alleviated psoriasis-like lesions in the IMQ mouse model, improving skin pathology and reducing Ki67-positive cells. RNA-seq revealed that Tan-I modulated immune pathways, keratinocyte differentiation, and barrier function. In TNF-α-stimulated HaCaT cells, Tan-I induced G1-phase cell cycle arrest, reduced apoptosis, and suppressed inflammatory gene expression. RNA-seq further showed that Tan-I normalized cell cycle signaling and apoptosis pathways disrupted by TNF-α. Additionally, Tan-I restored keratin expression patterns, increasing K1 and decreasing K6 and K17 levels in both mouse skin and HaCaT cells. Conclusion Tan-I is a promising therapeutic candidate for psoriasis, effectively mitigating inflammation, normalizing keratinocyte differentiation, and inhibiting abnormal keratinocyte apoptosis.
Collapse
Affiliation(s)
- Qiao Wang
- Department of Dermatology, Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Central South University, Changsha, Hunan, People’s Republic of China
| | - Xin Luo
- Department of Dermatology, Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Central South University, Changsha, Hunan, People’s Republic of China
| | - Yuwen Su
- Department of Dermatology, Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Central South University, Changsha, Hunan, People’s Republic of China
| | - Yi Jin
- Department of Dermatology, Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Central South University, Changsha, Hunan, People’s Republic of China
| | - Qiqi Kuang
- Department of Dermatology, Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Central South University, Changsha, Hunan, People’s Republic of China
| | - Siying Li
- Department of Dermatology, Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Central South University, Changsha, Hunan, People’s Republic of China
| | - Weiyun Shen
- Department of Anesthesiology, Second Xiangya Hospital, Anesthesiology Research Institute of Central South University, Changsha, Hunan, People’s Republic of China
| | - Yanshan Zhu
- Department of Dermatology, Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
3
|
Abhale K, Veeranjaneyulu A, Desai S. A Snapshot of Biomarkers in Psoriasis. Curr Drug Discov Technol 2025; 22:e180324228068. [PMID: 38500289 DOI: 10.2174/0115701638278470240312075112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
A persistent long-standing, inflammatory skin condition that is brought on by a variety of factors is psoriasis. It is distinguished by itchy, scaly, reddish plaques, particularly on areas of the body that are frequently chafed, including the extensor sites of the limbs. Recent developments in molecular-targeted therapy that use biologics or small-molecule inhibitors can effectively cure even the worst psoriatic indications. The outstanding clinical outcomes of treatment help to clarify the disease's detrimental consequences on quality of life. Biomarkers that identify deep remission are essential for developing uniform treatment plans. Blood protein markers such as AMPs that are consistently quantifiable can be very helpful in routine clinical practice. The metabolic pathways involve biomarkers that can not only help diagnose psoriasis in a clinical setting but also indicate its severity based on the levels present in the body. Machine learning and AI have made a diagnosis of the expression of genes as biomarkers more accessible. In this article, biomarkers, as well as their key role in psoriasis, are discussed.
Collapse
Affiliation(s)
- Krushna Abhale
- Department of Pharmacology, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| | | | - Shivani Desai
- Clinical Research and Pharmacovigilance, Serum Institute of India Pvt. Ltd., Hadapsar, Pune, India
| |
Collapse
|
4
|
Eyermann CE, Chen X, Somuncu OS, Li J, Joukov AN, Chen J, Alexandrova EM. ΔNp63 Regulates Homeostasis, Stemness, and Suppression of Inflammation in the Adult Epidermis. J Invest Dermatol 2024; 144:73-83.e10. [PMID: 37543242 DOI: 10.1016/j.jid.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 08/07/2023]
Abstract
The p63 transcription factor is critical for epidermis formation in embryonic development, but its role in the adult epidermis is poorly understood. In this study, we show that acute genetic ablation of ΔNp63, the main p63 isoform, in adult epidermis disrupts keratinocyte proliferation and self-maintenance and, unexpectedly, triggers an inflammatory psoriasis-like condition. Mechanistically, single-cell RNA sequencing revealed the downregulation of cell cycle genes, upregulation of differentiation markers, and induction of several proinflammatory pathways in ΔNp63-ablated keratinocytes. Intriguingly, ΔNp63-ablated cells disappear by 3 weeks after ablation, at the expense of the remaining nonablated cells. This is not associated with active cell death and is likely due to reduced self-maintenance and enhanced differentiation. Indeed, in vivo wound healing, a physiological readout of the epidermal stem cell function, is severely impaired upon ΔNp63 ablation. We found that the Wnt signaling pathway (Wnt10A, Fzd6, Fzd10) and the activator protein 1 (JunB, Fos, FosB) factors are the likely ΔNp63 effectors responsible for keratinocyte proliferation/stemness and suppression of differentiation, respectively, whereas IL-1a, IL-18, IL-24, and IL-36γ are the likely negative effectors responsible for suppression of inflammation. These data establish ΔNp63 as a critical node that coordinates epidermal homeostasis, stemness, and suppression of inflammation, upstream of known regulatory pathways.
Collapse
Affiliation(s)
- Christopher E Eyermann
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Xi Chen
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Ozge S Somuncu
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Jinyu Li
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | | | - Jiang Chen
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Evguenia M Alexandrova
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA.
| |
Collapse
|
5
|
James JP, Nielsen BS, Christensen IJ, Langholz E, Malham M, Poulsen TS, Holmstrøm K, Riis LB, Høgdall E. Mucosal expression of PI3, ANXA1, and VDR discriminates Crohn's disease from ulcerative colitis. Sci Rep 2023; 13:18421. [PMID: 37891214 PMCID: PMC10611705 DOI: 10.1038/s41598-023-45569-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Differential diagnosis of inflammatory bowel disease (IBD) to Crohn's disease (CD) or ulcerative colitis (UC) is crucial for treatment decision making. With the aim of generating a clinically applicable molecular-based tool to classify IBD patients, we assessed whole transcriptome analysis on endoscopy samples. A total of 408 patient samples were included covering both internal and external samples cohorts. Whole transcriptome analysis was performed on an internal cohort of FFPE IBD samples (CD, n = 16 and UC, n = 17). The 100 most significantly differentially expressed genes (DEG) were tested in two external cohorts. Ten of the DEG were further processed by functional enrichment analysis from which seven were found to show consistent significant performance in discriminating CD from UC: PI3, ANXA1, VDR, MTCL1, SH3PXD2A-AS1, CLCF1, and CD180. Differential expression of PI3, ANXA1, and VDR was reproduced by RT-qPCR, which was performed on an independent sample cohort of 97 patient samples (CD, n = 44 and UC, n = 53). Gene expression levels of the three-gene profile, resulted in an area under the curve of 0.84 (P = 0.02) in discriminating CD from UC, and therefore appear as an attractive molecular-based diagnostic tool for clinicians to distinguish CD from UC.
Collapse
Affiliation(s)
| | | | - Ib Jarle Christensen
- Department of Pathology, Herlev University Hospital, Borgmester Ib Juuls Vej 73, 2730, Herlev, Denmark
| | - Ebbe Langholz
- Gastroenheden D, Herlev University Hospital, 2730, Herlev, Denmark
- Institute for Clinical Medicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Mikkel Malham
- The Department of Pediatric and Adolescence Medicine, Copenhagen University Hospital-Amager and Hvidovre, 2650, Hvidovre, Denmark
- Copenhagen Center for Inflammatory Bowel Disease in Children, Adolescents and Adults, Hvidovre Hospital, University of Copenhagen, 2650, Hvidovre, Denmark
| | - Tim Svenstrup Poulsen
- Department of Pathology, Herlev University Hospital, Borgmester Ib Juuls Vej 73, 2730, Herlev, Denmark
| | - Kim Holmstrøm
- Bioneer A/S, Hørsholm, Kogle Allé 2, 2970, Hørsholm, Denmark
| | - Lene Buhl Riis
- Department of Pathology, Herlev University Hospital, Borgmester Ib Juuls Vej 73, 2730, Herlev, Denmark
- Institute for Clinical Medicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Estrid Høgdall
- Department of Pathology, Herlev University Hospital, Borgmester Ib Juuls Vej 73, 2730, Herlev, Denmark
- Institute for Clinical Medicine, University of Copenhagen, 2200, Copenhagen, Denmark
| |
Collapse
|
6
|
Hasköylü ME, Gökalsin B, Tornaci S, Sesal C, Öner ET. Exploring the potential of Halomonas levan and its derivatives as active ingredients in cosmeceutical and skin regenerating formulations. Int J Biol Macromol 2023; 240:124418. [PMID: 37080400 DOI: 10.1016/j.ijbiomac.2023.124418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 04/22/2023]
Abstract
Demand on natural products that contain biological ingredients mimicking growth factors and cytokines made natural polysaccharides popular in pharmaceutical and cosmetic industries. Levan is the β-(2-6) linked, nontoxic, biocompatible, water-soluble, film former fructan polymer that has diverse applications in pharmacy and cosmeceutical industries with its moisturizing, whitening, anti-irritant, anti-aging and slimming activities. Driven by the limited reports on few structurally similar levan polymers, this study presents the first systematic investigation on the effects of structurally different extremophilic Halomonas levan polysaccharides on human skin epidermis cells. In-vitro experiments with microbially produced linear Halomonas levan (HL), its hydrolyzed, (hHL) and sulfonated (ShHL) derivatives as well as enzymatically produced branched levan (EL) revealed increased keratinocyte and fibroblast proliferation (113-118 %), improved skin barrier function through induced expressions of involucrin (2.0 and 6.43 fold changes for HL and EL) and filaggrin (1.74 and 3.89 fold changes for hHL and ShHL) genes and increased type I collagen (2.63 for ShHL) and hyaluronan synthase 3 (1.41 for HL) gene expressions together with fast wound healing ability within 24 h (100 %, HL) on 2D wound models clearly showed that HL and its derivatives have high potential to be used as natural active ingredients in cosmeceutical and skin regenerating formulations.
Collapse
Affiliation(s)
- Merve Erginer Hasköylü
- Istanbul University-Cerrahpaşa, Institute of Nanotechnology and Biotechnology, Istanbul, Turkey.
| | - Barış Gökalsin
- Marmara University, Department of Biology, Istanbul, Turkey
| | - Selay Tornaci
- IBSB, Marmara University, Department of Bioengineering, Istanbul, Turkey
| | - Cenk Sesal
- Marmara University, Department of Biology, Istanbul, Turkey
| | - Ebru Toksoy Öner
- IBSB, Marmara University, Department of Bioengineering, Istanbul, Turkey
| |
Collapse
|
7
|
Song JK, Zhang Y, Fei XY, Chen YR, Luo Y, Jiang JS, Ru Y, Xiang YW, Li B, Luo Y, Kuai L. Classification and biomarker gene selection of pyroptosis-related gene expression in psoriasis using a random forest algorithm. Front Genet 2022; 13:850108. [PMID: 36110207 PMCID: PMC9468882 DOI: 10.3389/fgene.2022.850108] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Psoriasis is a chronic and immune-mediated skin disorder that currently has no cure. Pyroptosis has been proved to be involved in the pathogenesis and progression of psoriasis. However, the role pyroptosis plays in psoriasis remains elusive. Methods: RNA-sequencing data of psoriasis patients were obtained from the Gene Expression Omnibus (GEO) database, and differentially expressed pyroptosis-related genes (PRGs) between psoriasis patients and normal individuals were obtained. A principal component analysis (PCA) was conducted to determine whether PRGs could be used to distinguish the samples. PRG and immune cell correlation was also investigated. Subsequently, a novel diagnostic model comprising PRGs for psoriasis was constructed using a random forest algorithm (ntree = 400). A receiver operating characteristic (ROC) analysis was used to evaluate the classification performance through both internal and external validation. Consensus clustering analysis was used to investigate whether there was a difference in biological functions within PRG-based subtypes. Finally, the expression of the kernel PRGs were validated in vivo by qRT-PCR. Results: We identified a total of 39 PRGs, which could distinguish psoriasis samples from normal samples. The process of T cell CD4 memory activated and mast cells resting were correlated with PRGs. Ten PRGs, IL-1β, AIM2, CASP5, DHX9, CASP4, CYCS, CASP1, GZMB, CHMP2B, and CASP8, were subsequently screened using a random forest diagnostic model. ROC analysis revealed that our model has good diagnostic performance in both internal validation (area under the curve [AUC] = 0.930 [95% CI 0.877–0.984]) and external validation (mean AUC = 0.852). PRG subtypes indicated differences in metabolic processes and the MAPK signaling pathway. Finally, the qRT-PCR results demonstrated the apparent dysregulation of PRGs in psoriasis, especially AIM2 and GZMB. Conclusion: Pyroptosis may play a crucial role in psoriasis and could provide new insights into the diagnosis and underlying mechanisms of psoriasis.
Collapse
Affiliation(s)
- Jian-Kun Song
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ying Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Ya Fei
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi-Ran Chen
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jing-Si Jiang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yan-Wei Xiang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yue Luo
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yue Luo, ; Le Kuai,
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yue Luo, ; Le Kuai,
| |
Collapse
|
8
|
Simard M, Morin S, Ridha Z, Pouliot R. Current knowledge of the implication of lipid mediators in psoriasis. Front Immunol 2022; 13:961107. [PMID: 36091036 PMCID: PMC9459139 DOI: 10.3389/fimmu.2022.961107] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
The skin is an organ involved in several biological processes essential to the proper functioning of the organism. One of these essential biological functions of the skin is its barrier function, mediated notably by the lipids of the stratum corneum, and which prevents both penetration from external aggression, and transepidermal water loss. Bioactive lipid mediators derived from polyunsaturated fatty acids (PUFAs) constitute a complex bioactive lipid network greatly involved in skin homeostasis. Bioactive lipid mediators derived from n-3 and n-6 PUFAs have well-documented anti- and pro-inflammatory properties and are recognized as playing numerous and complex roles in the behavior of diverse skin diseases, including psoriasis. Psoriasis is an inflammatory autoimmune disease with many comorbidities and is associated with enhanced levels of pro-inflammatory lipid mediators. Studies have shown that a high intake of n-3 PUFAs can influence the development and progression of psoriasis, mainly by reducing the severity and frequency of psoriatic plaques. Herein, we provide an overview of the differential effects of n-3 and n-6 PUFA lipid mediators, including prostanoids, hydroxy-fatty acids, leukotrienes, specialized pro-resolving mediators, N-acylethanolamines, monoacylglycerols and endocannabinoids. This review summarizes current findings on lipid mediators playing a role in the skin and their potential as therapeutic targets for psoriatic patients.
Collapse
Affiliation(s)
- Mélissa Simard
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/Laboratoire d’Organogénèse EXpérimentale (LOEX), Axe Médecine Régénératrice, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Québec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Sophie Morin
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/Laboratoire d’Organogénèse EXpérimentale (LOEX), Axe Médecine Régénératrice, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Québec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Zainab Ridha
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/Laboratoire d’Organogénèse EXpérimentale (LOEX), Axe Médecine Régénératrice, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Québec, QC, Canada
| | - Roxane Pouliot
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/Laboratoire d’Organogénèse EXpérimentale (LOEX), Axe Médecine Régénératrice, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Québec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
- *Correspondence: Roxane Pouliot,
| |
Collapse
|
9
|
Causal Biological Network Model for Inflammasome Signaling Applied for Interpreting Transcriptomic Changes in Various Inflammatory States. Int J Inflam 2022; 2022:4071472. [PMID: 35126992 PMCID: PMC8813300 DOI: 10.1155/2022/4071472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
Virtually any stressor that alters the cellular homeostatic state may result in an inflammatory response. As a critical component of innate immunity, inflammasomes play a prominent role in the inflammatory response. The information on inflammasome biology is rapidly growing, thus creating the need for structuring it into a model that can help visualize and enhance the understanding of underlying biological processes. Causal biological network (CBN) models provide predictive power for novel disease mechanisms and treatment outcomes. We assembled the available literature information on inflammasome activation into the CBN model and scored it with publicly available transcriptomic datasets that address viral infection of the lungs, osteo- and rheumatoid arthritis, psoriasis, and aging. The scoring inferred pathway activation leading to NLRP3 inflammasome activation in these diverse conditions, demonstrating that the CBN model provides a platform for interpreting transcriptomic data in the context of inflammasome activation.
Collapse
|
10
|
Rioux G, Simard M, Morin S, Lorthois I, Guérin SL, Pouliot R. Development of a 3D psoriatic skin model optimized for infiltration of IL-17A producing T cells: Focus on the crosstalk between T cells and psoriatic keratinocytes. Acta Biomater 2021; 136:210-222. [PMID: 34547515 DOI: 10.1016/j.actbio.2021.09.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/20/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022]
Abstract
Psoriasis is a chronic inflammatory skin disease involving several cell types, including T cells, via the IL-23/IL-17 axis. IL-17A acts on the surrounding epithelial cells thus resulting in an inflammatory feedback loop. The development of immunocompetent models that correctly recapitulate the complex phenotype of psoriasis remains challenging, which also includes both the T cell isolation and activation methods. The purpose of this work was to develop an advanced in vitro 3D psoriatic skin model that enables the study of the impact of T cells on psoriatic epithelial cells. To reach that aim, healthy and psoriatic fibroblasts and keratinocytes were used to reproduce this tissue-engineered skin model in which activated T cells, isolated beforehand from human whole blood, have been incorporated. Our study showed that isolation of T cells with the EasySep procedure, followed by activation with PMA/ionomycin, mimicked the psoriatic characteristics in an optimal manner with the production of inflammatory cytokines important in the pathogenesis of psoriasis, as well as increased expression of Ki67, S100A7, elafin and involucrin. This psoriatic model enriched in activated T cells displayed enhanced production of IL-17A, IFN-ƴ, CCL2, CXCL10, IL-1ra, IL-6 and CXCL8 compared with the healthy model and whose increased secretion was maintained over time. In addition, anti-IL17A treatment restored some psoriatic features, including epidermal thickness and basal keratinocytes proliferation, as well as a downregulation of S100A7, elafin and involucrin expression. Altogether, our study demonstrated that this model reflects a proper psoriatic inflammatory environment and is effective for the investigation of epidermal and T cell interaction over time. STATEMENT OF SIGNIFICANCE: The aim of this study was to provide an innovative 3D immunocompetent human psoriatic skin model. To our knowledge, this is the first immunocompetent model that uses skin cells from psoriatic patients to study the impact of IL-17A on pathological cells. Through the use of this model, we demonstrated that the T-cell enriched psoriatic model differs from T-cell enriched healthy model, highlighting efficient crosstalk between pathologic epithelial cells and T cells. This advanced preclinical model further mimics the original psoriatic skin and will prove relevant in predicting clinical outcomes, thereby decreasing inaccurate predictions of compound effects.
Collapse
|
11
|
Molecular Pathogenesis of Psoriasis and Biomarkers Reflecting Disease Activity. J Clin Med 2021; 10:jcm10153199. [PMID: 34361983 PMCID: PMC8346978 DOI: 10.3390/jcm10153199] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease induced by multifactorial causes and is characterized by bothersome, scaly reddish plaques, especially on frequently chafed body parts, such as extensor sites of the extremities. The latest advances in molecular-targeted therapies using biologics or small-molecule inhibitors help to sufficiently treat even the most severe psoriatic symptoms and the extra cutaneous comorbidities of psoriatic arthritis. The excellent clinical effects of these therapies provide a deeper understanding of the impaired quality of life caused by this disease and the detailed molecular mechanism in which the interleukin (IL)-23/IL-17 axis plays an essential role. To establish standardized therapeutic strategies, biomarkers that define deep remission are indispensable. Several molecules, such as cytokines, chemokines, antimicrobial peptides, and proteinase inhibitors, have been recognized as potent biomarker candidates. In particular, blood protein markers that are repeatedly measurable can be extremely useful in daily clinical practice. Herein, we summarize the molecular mechanism of psoriasis, and we describe the functions and induction mechanisms of these biomarker candidates.
Collapse
|
12
|
Expression pattern of WNT5A among Egyptian patients with psoriasis treated with platelet-rich plasma versus conventional therapy: Toward a better understanding of the disease. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Martin P, Goldstein JD, Mermoud L, Diaz-Barreiro A, Palmer G. IL-1 Family Antagonists in Mouse and Human Skin Inflammation. Front Immunol 2021; 12:652846. [PMID: 33796114 PMCID: PMC8009184 DOI: 10.3389/fimmu.2021.652846] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
Interleukin (IL)-1 family cytokines initiate inflammatory responses, and shape innate and adaptive immunity. They play important roles in host defense, but excessive immune activation can also lead to the development of chronic inflammatory diseases. Dysregulated IL-1 family signaling is observed in a variety of skin disorders. In particular, IL-1 family cytokines have been linked to the pathogenesis of psoriasis and atopic dermatitis. The biological activity of pro-inflammatory IL-1 family agonists is controlled by the natural receptor antagonists IL-1Ra and IL-36Ra, as well as by the regulatory cytokines IL-37 and IL-38. These four anti-inflammatory IL-1 family members are constitutively and highly expressed at steady state in the epidermis, where keratinocytes are a major producing cell type. In this review, we provide an overview of the current knowledge concerning their regulatory roles in skin biology and inflammation and their therapeutic potential in human inflammatory skin diseases. We further highlight some common misunderstandings and less well-known observations, which persist in the field despite recent extensive interest for these cytokines.
Collapse
Affiliation(s)
- Praxedis Martin
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jérémie D. Goldstein
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Loïc Mermoud
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alejandro Diaz-Barreiro
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gaby Palmer
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
14
|
The antinuclear antibody dense fine speckled pattern and possible clinical associations: An indication of a proinflammatory microenvironment. J Immunol Methods 2020; 488:112904. [PMID: 33121975 DOI: 10.1016/j.jim.2020.112904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/30/2020] [Accepted: 10/21/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Indirect immunofluorescence (IIF) is the most prevalent screening antinuclear antibody test for systemic autoimmune rheumatic disease (SARD). Certain IIF patterns have known antibody and disease associations, but the dense fine speckled (ANA-DFS) pattern has no confirmed clinical associations. Our objective was to determine the prevalence of SARD among a group of ANA-DFS positive individuals and to identify final diagnoses among non-SARD individuals in order to determine possible clinical associations with the ANA-DFS pattern. METHODS A retrospective study of 425 patients from a university health care system with a positive ANA-DFS pattern consecutively between August 2017 and September 2018. Sera samples underwent ANA testing by IIF on HEp-2 cell substrates (Euroimmun, Germany). Clinical information was retrieved from electronic health records and stored in a de-identified database. RESULTS The prevalence of SARD was 24%. Undetermined diagnosis (17%), skin disorders (12.1%), and fibromyalgia/chronic pain syndrome/chronic fatigue syndrome (11.8%) were the most common non-SARD diagnoses. Taking into account past medical history, the most common non-SARD were atopic disorders (21.2%), fibromyalgia/chronic pain syndrome/chronic fatigue syndrome (17.6%), and skin disorders (16.7%). CONCLUSIONS The ANA-DFS pattern may be indicative of an underlying antigen-antibody interaction that plays a role in either the initiation or propagation of immunologic reactions. DFS70/LEDGF is a transcription factor involved in cell survival and stress protection, and autoantibodies may inhibit its function. It is likely that there are other antibodies producing the ANA-DFS pattern besides anti-DFS70/LEDGF, and more research is necessary to identify additional antibody specificities. The ANA-DFS pattern may be an indicator of a proinflammatory microenvironment given the high frequency of symptomatic patients and disease processes with an immunologic basis (including SARD).
Collapse
|
15
|
Liu SG, Luo GP, Qu YB, Chen YF. Indirubin inhibits Wnt/β-catenin signal pathway via promoter demethylation of WIF-1. BMC Complement Med Ther 2020; 20:250. [PMID: 32795328 PMCID: PMC7427955 DOI: 10.1186/s12906-020-03045-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Background Psoriasis is a common inflammatory skin disease. Abnormal proliferation of keratinocytes is one of the psoriatic histopathological features. Indirubin has an essential effect on the proliferation and activation of keratinocytes; however, in psoriasis, the specific mechanism of action of indirubin on keratinocytes is unclear. In the present study, we revealed the effects of indirubin on DNA methyltransferase 1 (DNMT1), wnt inhibitory factor 1 (wif-1), and wnt/β-catenin signal pathway, in the meantime, we explored the effects of indirubin on proliferation, cell cycle and the apoptosis of HaCaT cells. Methods The expression of DNMT1, wif-1, Frizzled2, Frizzled5, and β-catenin in HaCaT cells treated with different concentrations of indirubin were detected by Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR). The expression levels of DNMT1 and wif-1 were observed after treated with different concentrations of indirubin by enzyme-linked immunosorbent assay (ELISA). The wif-1 promoter methylation status was detected by DNA methylation-specific PCR (MSP). The transcriptional activities of wif-1 and β-catenin were discovered by a luciferase reporter gene system. Cell viability was determined by Cell Counting Kit-8 (CCK8) method. The cell cycle was detected by flow cytometry. The apoptotic cells were surveyed by the apoptosis kit. The expression of Inolucrin, Loricrin, Filaggrin, Keratin 17, and transcriptional activation of transglutaminase 1(TGase1) were detected by Western blotting. Results Indirubin inhibited the expression of DNMT1 and the methylation of the wif-1 promoter. In the wnt signal pathway, indirubin restored the protein expression of wif-1 and inhibited expression of Frizzled2, Frizzled5, and β-catenin. Besides, indirubin inhibited the proliferation of HaCaT cells, induced apoptosis, and arrest cell cycle. We also reported that indirubin could down-regulate the expression of Involucrin, TGase 1, and keratin 17, but the expression of Filaggrin and Loricrin had no significant effect. Conclusion Our research showed that indirubin promoted the demethylation of wif-1 and suppressed the wnt/β-catenin signal pathway, thereby exerted an anti-proliferative effect. This study reveals the anti-proliferation mechanism of indirubin, which may provide an effective option for the treatment of proliferative diseases.
Collapse
Affiliation(s)
- Shou Gang Liu
- Dermatology Hospital, Southern Medical University, 2, lujing Road, Yuexiu District, Guangzhou, Guangdong, 510091, People's Republic of China
| | - Guang Pu Luo
- Dermatology Hospital, Southern Medical University, 2, lujing Road, Yuexiu District, Guangzhou, Guangdong, 510091, People's Republic of China
| | - Yong Bin Qu
- Dermatology Hospital, Southern Medical University, 2, lujing Road, Yuexiu District, Guangzhou, Guangdong, 510091, People's Republic of China
| | - Yong Feng Chen
- Dermatology Hospital, Southern Medical University, 2, lujing Road, Yuexiu District, Guangzhou, Guangdong, 510091, People's Republic of China.
| |
Collapse
|
16
|
Wang C, Wang H, Peng Y, Zeng B, Zhang Y, Tang X, Mi L, Pan Y, Yang Z. CTNNBIP1 modulates keratinocyte proliferation through promoting the transcription of β‐catenin/TCF complex downstream genes. J Eur Acad Dermatol Venereol 2020; 35:368-379. [PMID: 32531088 DOI: 10.1111/jdv.16725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/30/2020] [Indexed: 01/12/2023]
Affiliation(s)
- C. Wang
- Department of Dermatology The Second Affiliated Hospital, The Domestic First‐class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine Changsha Hunan China
| | - H. Wang
- Department of Dermatology The Second Affiliated Hospital, The Domestic First‐class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine Changsha Hunan China
| | - Y. Peng
- Department of Dermatology The Second Affiliated Hospital, The Domestic First‐class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine Changsha Hunan China
| | - B. Zeng
- Department of Dermatology The Second Affiliated Hospital, The Domestic First‐class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine Changsha Hunan China
| | - Y. Zhang
- Department of Dermatology The Second Affiliated Hospital, The Domestic First‐class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine Changsha Hunan China
| | - X. Tang
- Department of Dermatology The Second Affiliated Hospital, The Domestic First‐class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine Changsha Hunan China
| | - L. Mi
- Department of Dermatology The Second Affiliated Hospital, The Domestic First‐class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine Changsha Hunan China
| | - Y. Pan
- Department of Dermatology The Second Affiliated Hospital, The Domestic First‐class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine Changsha Hunan China
| | - Z. Yang
- Department of Dermatology The Second Affiliated Hospital, The Domestic First‐class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine Changsha Hunan China
| |
Collapse
|
17
|
Utsunomiya A, Chino T, Utsunomiya N, Luong VH, Tokuriki A, Naganuma T, Arita M, Higashi K, Saito K, Suzuki N, Ohara A, Sugai M, Sugawara K, Tsuruta D, Oyama N, Hasegawa M. Homeostatic Function of Dermokine in the Skin Barrier and Inflammation. J Invest Dermatol 2019; 140:838-849.e9. [PMID: 31669414 DOI: 10.1016/j.jid.2019.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/06/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
Dermokine is a chiefly skin-specific secreted glycoprotein localized in the upper epidermis, and its family consists of three splice variants in mice and five in humans. To investigate the pathophysiological impact of dermokine, we generated mice deficient for two (βγ) or all dermokine isoforms (αβγ). Both variants, especially dermokine αβγ-deficient mice exhibited scale and wrinkle formation resembling ichthyosis accompanied by transepidermal water imbalance at the neonatal stage. Several dermokine αβγ-deficient mice died by postnatal day 21 when reared under low humidity. Moreover, the cornified envelope was vulnerable, and skin barrier lipid ceramides were reduced in the epidermis of dermokine αβγ-deficient mice. cDNA microarray and quantitative reverse transcriptase-PCR assays of the epidermis revealed the upregulation of small proline-rich protein and late cornified envelope family members, as well as antimicrobial peptides in the dermokine αβγ-deficient mice. These barrier gene signatures were similar to that seen in psoriasis, whereas recent studies demonstrated that congenital ichthyosis has gene profiles resembling psoriasis. In line with these findings, adult dermokine αβγ-deficient mice exhibited aggravated phenotypes in psoriasis-like dermatitis models but not in allergic dermatitis models. Dermokine may play a regulatory role in inflammatory dyskeratotic diseases, such as congenital ichthyosis and psoriasis, in the crosstalk between barrier dysfunction and inflammation.
Collapse
Affiliation(s)
- Akira Utsunomiya
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Takenao Chino
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Natsuko Utsunomiya
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Vu Huy Luong
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Atsushi Tokuriki
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tatsuro Naganuma
- Division of Physiological Chemistry and Metabolism, Keio University Faculty of Pharmacy, Tokyo, Japan; Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Makoto Arita
- Division of Physiological Chemistry and Metabolism, Keio University Faculty of Pharmacy, Tokyo, Japan; Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kiyoshi Higashi
- Sumitomo Chemical Co., Ltd. Cell Science Group Environmental Health Science Laboratory, Osaka, Japan
| | - Koichi Saito
- Sumitomo Chemical Co., Ltd. Cell Science Group Environmental Health Science Laboratory, Osaka, Japan
| | - Noriyuki Suzuki
- Sumitomo Chemical Co., Ltd. Cell Science Group Environmental Health Science Laboratory, Osaka, Japan
| | - Ayako Ohara
- Sumitomo Chemical Co., Ltd. Cell Science Group Environmental Health Science Laboratory, Osaka, Japan
| | - Manabu Sugai
- Division of Molecular Genetics, Department of Biochemistry and Bioinformative Sciences, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Koji Sugawara
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Daisuke Tsuruta
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Noritaka Oyama
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Minoru Hasegawa
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.
| |
Collapse
|
18
|
Prieux R, Eeman M, Rothen-Rutishauser B, Valacchi G. Mimicking cigarette smoke exposure to assess cutaneous toxicity. Toxicol In Vitro 2019; 62:104664. [PMID: 31669394 DOI: 10.1016/j.tiv.2019.104664] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/19/2019] [Accepted: 09/22/2019] [Indexed: 12/24/2022]
Abstract
Cigarette smoke stands among the most toxic environmental pollutants and is composed of thousands of chemicals including polycyclic aromatic hydrocarbons (PAHs). Despite restrict cigarette smoking ban in indoor or some outdoor locations, the risk of non-smokers to be exposed to environmental cigarette smoke is not yet eliminated. Beside the well-known effects of cigarette smoke to the respiratory and cardiovascular systems, a growing literature has shown during the last 3 decades its noxious effects also on cutaneous tissues. Being the largest organ as well as the interface between the outer environment and the body, human skin acts as a natural shield which is continuously exposed to harmful exogenous agents. Thus, a prolonged and/or repetitive exposure to significant levels of toxic smoke pollutants may have detrimental effects on the cutaneous tissue by disrupting the epidermal barrier function and by exacerbating inflammatory skin disorders (i.e. psoriasis, atopic dermatitis). With the development of very complex skin tissue models and sophisticated cigarette smoke exposure systems it has become important to better understand the toxicity pathways induced by smoke pollutants in more realistic laboratory conditions to find solutions for counteracting their effects. This review provides an update on the skin models currently available to study cigarette smoke exposure and the known pathways involved in cutaneous toxicity. In addition, the article will briefly cover the inflammatory skin pathologies potentially induced and/or exacerbated by cigarette smoke exposure.
Collapse
Affiliation(s)
- Roxane Prieux
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Marc Eeman
- Home & Personal Care, Dow Silicones Belgium, Seneffe, Belgium
| | | | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy; Plants for Human Health Institute, North Carolina State University, Kannapolis, United States; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
19
|
Wang WM, Wu C, Yu XL, Jin HZ. IL-36 β Promotes Inflammatory Activity and Inhibits Differentiation of Keratinocytes In Vitro. ACTA ACUST UNITED AC 2019; 34:199-204. [PMID: 31601303 DOI: 10.24920/003489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objective Psoriasis is an immune-mediated inflammatory disease. Despite advances in the study of its pathogenesis, the exact development mechanism of psoriasis remains to be fully elucidated. Hyperproliferative epidermis plays a crucial role in psoriasis. This study aimed to investigate the effects of interleukin-36β (IL-36β) on keratinocyte dysfunction in vitro. Methods Human keratinocyte cell lines, HaCaT cells, were treated with 0 (control), 50 or 100 ng/ml IL-36β respectively for 24 h. Cell viability was determined with a cell counting kit-8 assay. Flow cytometry was used to assess the effects of IL-36β on apoptosis and cell cycle distribution. Expressions of the differentiation markers, such as keratin 10 and involucrin, were evaluated by quantitative real-time polymerase chain reaction (RT-qPCR). Expressions of the inflammatory cytokines, IL-1β and IL-6 were tested by ELISA. Results CCK8 assay showed the survival rate had no significant difference between the control and treated group (P > 0.05). Flow cytometry analysis showed cell cycle arrest at S phase in the IL-36β-treated groups compared with the control group (P < 0.05). RT-qPCR verified the decreased mRNA expressions of keratin 10 and involucrin in the IL-36β-treated groups compared with the negative control (P < 0.01). ELISA showed 100 ng/ml IL-36β enhanced levels of IL-1β and IL-6 in culture supernatants of HaCaT cells compared with the negative control (P < 0.05). Conclusion Taken together, these findings suggest that IL-36β could induce cell cycle arrest at S phase, inhibit keratin 10 and involucrin expressions and promote inflammatory activity in HaCaT cell lines.
Collapse
Affiliation(s)
- Wen-Ming Wang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Chao Wu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xiao-Ling Yu
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangdong Provincial Dermatology Hospital, Guangdong 510080, China
| | - Hong-Zhong Jin
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
20
|
Lorthois I, Simard M, Morin S, Pouliot R. Infiltration of T Cells into a Three-Dimensional Psoriatic Skin Model Mimics Pathological Key Features. Int J Mol Sci 2019; 20:ijms20071670. [PMID: 30987186 PMCID: PMC6479293 DOI: 10.3390/ijms20071670] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 11/16/2022] Open
Abstract
Psoriasis is an autoimmune chronic dermatosis that is T cell-mediated, characterized by epidermal thickening, aberrant epidermal differentiation and inflammatory infiltrates, with a dominant Th1 and Th17 profile. Additional in vitro models are required to study the complex interactions between activated T cells and skin cells, and to develop new, more effective treatments. We have therefore sought to model this psoriatic inflammation by the generation of tissue-engineered immunocompetent tissues, and we have investigated the response of activated T-cell infiltration in models produced with lesional psoriatic skin cells on major hallmarks of psoriasis. The immunocompetent lesional skin model displayed a delayed onset of epidermal differentiation, an hyperproliferation of the basal keratinocytes, a drastic increase in the secretion of proinflammatory cytokines, and a disturbed expression of key transcription factors, as observed in lesional plaques, suggesting a crucial importance of combining the pathological phenotype of cutaneous cells to T cells in order to generate a relevant model for psoriasis. Finally, we found this skin model to be responsive to methotrexate treatment, making it a valuable tool for drug development.
Collapse
Affiliation(s)
- Isabelle Lorthois
- Centre de recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1J 1Z4, Canada.
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Mélissa Simard
- Centre de recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1J 1Z4, Canada.
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Sophie Morin
- Centre de recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1J 1Z4, Canada.
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Roxane Pouliot
- Centre de recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1J 1Z4, Canada.
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
21
|
Muhsen M, Protschka M, Schneider LE, Müller U, Köhler G, Magin TM, Büttner M, Alber G, Siegemund S. Orf virus (ORFV) infection in a three-dimensional human skin model: Characteristic cellular alterations and interference with keratinocyte differentiation. PLoS One 2019; 14:e0210504. [PMID: 30699132 PMCID: PMC6353139 DOI: 10.1371/journal.pone.0210504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/24/2018] [Indexed: 01/01/2023] Open
Abstract
ORF virus (ORFV) is the causative agent of contagious ecthyma, a pustular dermatitis of small ruminants and humans. Even though the development of lesions caused by ORFV was extensively studied in animals, only limited knowledge exists about the lesion development in human skin. The aim of the present study was to evaluate a three-dimensional (3D) organotypic culture (OTC) as a human skin model for ORFV infection considering lesion development, replication of the virus, viral gene transcription and modulation of differentiation of human keratinocytes by ORFV. ORFV infection of OTC was performed using the ORFV isolate B029 derived from a human patient. The OTC sections showed a similar structure of stratified epidermal keratinocytes as human foreskin and a similar expression profile of the differentiation markers keratin 1 (K1), K10, and loricrin. Upon ORFV infection, OTCs exhibited histological cytopathic changes including hyperkeratosis and ballooning degeneration of the keratinocytes. ORFV persisted for 10 days and was located in keratinocytes of the outer epidermal layers. ORFV-specific early, intermediate and late genes were transcribed, but limited viral spread and restricted cell infection were noticed. ORFV infection resulted in downregulation of K1, K10, and loricrin at the transcriptional level without affecting proliferation as shown by PCNA or Ki-67 expression. In conclusion, OTC provides a suitable model to study the interaction of virus with human keratinocytes in a similar structural setting as human skin and reveals that ORFV infection downregulates several differentiation markers in the epidermis of the human skin, a hitherto unknown feature of dermal ORFV infection in man.
Collapse
Affiliation(s)
- Mahmod Muhsen
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Martina Protschka
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Laura E. Schneider
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Uwe Müller
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | | | - Thomas M. Magin
- Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, Leipzig, Germany
| | - Mathias Büttner
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Gottfried Alber
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Sabine Siegemund
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
22
|
Three Constituents of Moringa oleifera Seeds Regulate Expression of Th17-Relevant Cytokines and Ameliorate TPA-Induced Psoriasis-Like Skin Lesions in Mice. Molecules 2018; 23:molecules23123256. [PMID: 30544700 PMCID: PMC6320828 DOI: 10.3390/molecules23123256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 12/20/2022] Open
Abstract
As a folk medicine, Moringa oleifera L. is used effectively to treat inflammatory conditions and skin diseases. However, its mechanism of action is not well understood, limiting its medical use. We isolated and identified three compounds, namely niazirin, marumoside A and sitosterol-3-O-β-d-glucoside, from the seeds of Moringa oleifera, and studied their effects on the expression of Th17-relevant cytokines (IL-12/IL-23 p40, IL-17A, IL-22 and IL-23 p19) using lipopolysaccharide-stimulated THP-1 cells. Additionally, as Th17 plays a critical role in the pathogenesis of psoriasis, we used a 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced psoriasis-like skin lesion mouse model to study their potential therapeutic application in vivo. The compounds suppressed the expression of IL-12/IL-23 p40, IL-17A, IL-22 and IL-23 p19 in vitro, and in vivo they ameliorated psoriasis-like skin lesions, decreased IL-17A mRNA expression, and increased the expression of keratinocyte differentiation markers. To our knowledge, this is the first report regarding the mechanism and therapeutic application of Moringa oleifera seeds to treat psoriasis-like lesions in vivo.
Collapse
|
23
|
Kim IW, Jeong HS, Kwon NS, Baek KJ, Yun HY, Kim DS. LGI3 promotes human keratinocyte differentiation via the Akt pathway. Exp Dermatol 2018; 27:1224-1229. [DOI: 10.1111/exd.13766] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/23/2018] [Accepted: 08/06/2018] [Indexed: 01/01/2023]
Affiliation(s)
- In Wook Kim
- Department of Biochemistry; Chung-Ang University College of Medicine; Seoul Korea
| | - Hyo-Soon Jeong
- Department of Biochemistry; Chung-Ang University College of Medicine; Seoul Korea
| | - Nyoun Soo Kwon
- Department of Biochemistry; Chung-Ang University College of Medicine; Seoul Korea
| | - Kwang Jin Baek
- Department of Biochemistry; Chung-Ang University College of Medicine; Seoul Korea
| | - Hye-Young Yun
- Department of Biochemistry; Chung-Ang University College of Medicine; Seoul Korea
| | - Dong-Seok Kim
- Department of Biochemistry; Chung-Ang University College of Medicine; Seoul Korea
| |
Collapse
|
24
|
Peng J, Sun SB, Yang PP, Fan YM. Is Ki-67, keratin 16, involucrin, and filaggrin immunostaining sufficient to diagnose inflammatory linear verrucous epidermal nevus? A report of eight cases and a comparison with psoriasis vulgaris. An Bras Dermatol 2018; 92:682-685. [PMID: 29166506 PMCID: PMC5674702 DOI: 10.1590/abd1806-4841.20176263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 12/24/2016] [Indexed: 01/06/2023] Open
Abstract
Inflammatory linear verrucous epidermal nevus and linear psoriasis are sometimes
hard to differentiate clinically and pathologically. Although
immunohistochemical expression of keratin 10 (K10), K16, Ki-67, and involucrin
may be useful for differentiating both entities, these results have been
reported in only a few cases. We collected data from 8 patients with
inflammatory linear verrucous epidermal nevus, 11 with psoriasis vulgaris, and 8
healthy controls and evaluated immunohistochemical expression of Ki-67, K16,
involucrin, and filaggrin among them. Ki-67 and K16 overexpression was similar
in inflammatory linear verrucous epidermal nevus and psoriasis vulgaris compared
with normal skin. Although staining for involucrin showed discontinuous
expression in parakeratotic regions in 4 inflammatory linear verrucous epidermal
nevus cases, it was continuous in the other 4 cases and in all psoriasis
vulgaris cases. Filaggrin expression was present in hyperkeratotic regions but
scarce in parakeratotic areas in both inflammatory linear verrucous epidermal
nevus and psoriasis vulgaris. The immunostaining pattern of Ki-67, K16,
involucrin, and filaggrin may be insufficient to discriminate inflammatory
linear verrucous epidermal nevus from psoriasis vulgaris.
Collapse
Affiliation(s)
- Jing Peng
- Department of Dermatology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Shu-Bin Sun
- Department of Dermatology, Dongguan 3rd People's Hospital - Dongguan, Guangdong, China
| | - Pei-Pei Yang
- Department of Dermatology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yi-Ming Fan
- Department of Dermatology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
25
|
Ogawa E, Sato Y, Minagawa A, Okuyama R. Pathogenesis of psoriasis and development of treatment. J Dermatol 2017; 45:264-272. [DOI: 10.1111/1346-8138.14139] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/20/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Eisaku Ogawa
- Department of Dermatology; Shinshu University School of Medicine; Matsumoto Japan
| | - Yuki Sato
- Department of Dermatology; Shinshu University School of Medicine; Matsumoto Japan
| | - Akane Minagawa
- Department of Dermatology; Shinshu University School of Medicine; Matsumoto Japan
| | - Ryuhei Okuyama
- Department of Dermatology; Shinshu University School of Medicine; Matsumoto Japan
| |
Collapse
|
26
|
Melero JL, Andrades S, Arola L, Romeu A. Deciphering psoriasis. A bioinformatic approach. J Dermatol Sci 2017; 89:120-126. [PMID: 29239787 DOI: 10.1016/j.jdermsci.2017.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/25/2017] [Accepted: 11/18/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Psoriasis is an immune-mediated, inflammatory and hyperproliferative disease of the skin and joints. The cause of psoriasis is still unknown. The fundamental feature of the disease is the hyperproliferation of keratinocytes and the recruitment of cells from the immune system in the region of the affected skin, which leads to deregulation of many well-known gene expressions. OBJECTIVE Based on data mining and bioinformatic scripting, here we show a new dimension of the effect of psoriasis at the genomic level. METHODS Using our own pipeline of scripts in Perl and MySql and based on the freely available NCBI Gene Expression Omnibus (GEO) database: DataSet Record GDS4602 (Series GSE13355), we explore the extent of the effect of psoriasis on gene expression in the affected tissue. RESULTS We give greater insight into the effects of psoriasis on the up-regulation of some genes in the cell cycle (CCNB1, CCNA2, CCNE2, CDK1) or the dynamin system (GBPs, MXs, MFN1), as well as the down-regulation of typical antioxidant genes (catalase, CAT; superoxide dismutases, SOD1-3; and glutathione reductase, GSR). We also provide a complete list of the human genes and how they respond in a state of psoriasis. CONCLUSION Our results show that psoriasis affects all chromosomes and many biological functions. If we further consider the stable and mitotically inheritable character of the psoriasis phenotype, and the influence of environmental factors, then it seems that psoriasis has an epigenetic origin. This fit well with the strong hereditary character of the disease as well as its complex genetic background.
Collapse
Affiliation(s)
- Juan L Melero
- Department of Biochemistry and Biotechnology, Rovira i Virgili University, Tarragona, Spain
| | - Sergi Andrades
- Department of Biochemistry and Biotechnology, Rovira i Virgili University, Tarragona, Spain
| | - Lluís Arola
- Department of Biochemistry and Biotechnology, Rovira i Virgili University, Tarragona, Spain
| | - Antoni Romeu
- Department of Biochemistry and Biotechnology, Rovira i Virgili University, Tarragona, Spain.
| |
Collapse
|
27
|
Desmet E, Van Gele M, Grine L, Remaut K, Lambert J. Towards the development of a RNAi-based topical treatment for psoriasis: Proof-of-concept in a 3D psoriasis skin model. Exp Dermatol 2017; 27:463-469. [DOI: 10.1111/exd.13414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Eline Desmet
- Department of Dermatology; Ghent University Hospital; Ghent Belgium
| | | | - Lynda Grine
- Department of Dermatology; Ghent University Hospital; Ghent Belgium
| | - Katrien Remaut
- Department of Pharmaceutics; Ghent University; Ghent Belgium
| | - Jo Lambert
- Department of Dermatology; Ghent University Hospital; Ghent Belgium
| |
Collapse
|
28
|
Desmet E, Ramadhas A, Lambert J, Van Gele M. In vitro psoriasis models with focus on reconstructed skin models as promising tools in psoriasis research. Exp Biol Med (Maywood) 2017; 242:1158-1169. [PMID: 28585891 DOI: 10.1177/1535370217710637] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Psoriasis is a complex chronic immune-mediated inflammatory cutaneous disease associated with the development of inflammatory plaques on the skin. Studies proved that the disease results from a deregulated interplay between skin keratinocytes, immune cells and the environment leading to a persisting inflammatory process modulated by pro-inflammatory cytokines and activation of T cells. However, a major hindrance to study the pathogenesis of psoriasis more in depth and subsequent development of novel therapies is the lack of suitable pre-clinical models mimicking the complex phenotype of this skin disorder. Recent advances in and optimization of three-dimensional skin equivalent models have made them attractive and promising alternatives to the simplistic monolayer cultures, immunological different in vivo models and scarce ex vivo skin explants. Moreover, human skin equivalents are increasing in complexity level to match human biology as closely as possible. Here, we critically review the different types of three-dimensional skin models of psoriasis with relevance to their application potential and advantages over other models. This will guide researchers in choosing the most suitable psoriasis skin model for therapeutic drug testing (including gene therapy via siRNA molecules), or to examine biological features contributing to the pathology of psoriasis. However, the addition of T cells (as recently applied to a de-epidermized dermis-based psoriatic skin model) or other immune cells would make them even more attractive models and broaden their application potential. Eventually, the ultimate goal would be to substitute animal models by three-dimensional psoriatic skin models in the pre-clinical phases of anti-psoriasis candidate drugs. Impact statement The continuous development of novel in vitro models mimicking the psoriasis phenotype is important in the field of psoriasis research, as currently no model exists that completely matches the in vivo psoriasis skin or the disease pathology. This work provides a complete overview of the different available in vitro psoriasis models and suggests improvements for future models. Moreover, a focus was given to psoriatic skin equivalent models, as they offer several advantages over the other models, including commercial availability and validity. The potential and reported applicability of these models in psoriasis pre-clinical research is extensively discussed. As such, this work offers a guide to researchers in their choice of pre-clinical psoriasis model depending on their type of research question.
Collapse
Affiliation(s)
- Eline Desmet
- Department of Dermatology, Ghent University Hospital, Ghent 9000, Belgium
| | - Anesh Ramadhas
- Department of Dermatology, Ghent University Hospital, Ghent 9000, Belgium
| | - Jo Lambert
- Department of Dermatology, Ghent University Hospital, Ghent 9000, Belgium
| | - Mireille Van Gele
- Department of Dermatology, Ghent University Hospital, Ghent 9000, Belgium
| |
Collapse
|
29
|
Méhul B, Laffet G, Séraïdaris A, Russo L, Fogel P, Carlavan I, Pernin C, Andres P, Queille-Roussel C, Voegel J. Noninvasive proteome analysis of psoriatic stratum corneum reflects pathophysiological pathways and is useful for drug profiling. Br J Dermatol 2017; 177:470-488. [DOI: 10.1111/bjd.15346] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2016] [Indexed: 12/22/2022]
Affiliation(s)
- B. Méhul
- Galderma R&D; 2400 route des colles 06410 Biot France
| | - G. Laffet
- Galderma R&D; 2400 route des colles 06410 Biot France
| | - A. Séraïdaris
- Galderma R&D; 2400 route des colles 06410 Biot France
| | - L. Russo
- Galderma R&D; 2400 route des colles 06410 Biot France
| | - P. Fogel
- 132 rue d'Assas 75006 Paris France
| | - I. Carlavan
- Galderma R&D; 2400 route des colles 06410 Biot France
| | - C. Pernin
- Galderma R&D; 2400 route des colles 06410 Biot France
| | - P. Andres
- Galderma R&D; 2400 route des colles 06410 Biot France
| | - C. Queille-Roussel
- Centre de Pharmacologie Clinique Appliquée à la Dermatologie (CPCAD); University Hospital of Nice; 5 rue Pierre Devoluy 06000 Nice France
| | - J.J. Voegel
- Galderma R&D; 2400 route des colles 06410 Biot France
| |
Collapse
|
30
|
Oshima N, Ishihara S, Fukuba N, Mishima Y, Kawashima K, Ishimura N, Ishikawa N, Maruyama R, Kinoshita Y. Epidermal differentiation complex protein involucrin is down-regulated in eosinophilic esophagitis. Esophagus 2017; 14:171-177. [DOI: 10.1007/s10388-016-0568-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
31
|
Wang W, Yu X, Wu C, Jin H. IL-36γ inhibits differentiation and induces inflammation of keratinocyte via Wnt signaling pathway in psoriasis. Int J Med Sci 2017; 14:1002-1007. [PMID: 28924372 PMCID: PMC5599924 DOI: 10.7150/ijms.20809] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/06/2017] [Indexed: 01/10/2023] Open
Abstract
Psoriasis is a common inflammatory skin disease characterized by abnormal keratinocyte inflammation and differentiation that has a major impact on patients' quality of life. IL-36γ, a member of IL-36 cytokine family, is highly expressed in psoriasis and plays an important role in inflammation response and differentiation. However, the function of IL-36γ in differentiation and inflammation of keratinocyte in psoriasis has not been clearly identified. Thus, this study aimed to investigate the role of IL-36γ on differentiation and inflammation in HaCaT cells. HaCaT cells were divided into three groups: (1) Control group; (2) IL-36γ (100 ng/mL) group; (3) IL-36γ (100 ng/mL) + IWP-2 (1μM) group. Real time PCR was used to detect gene expression; the inflammation cytokines were examined by ELISA. We showed that treatment of HaCaT cells with IL-36γ significantly upregulated the expression levels of β-catenin, cyclin D1, and ki-67. IL-36γ also promoted the production of the inflammatory cytokines IFN-γ, IL-1β and IL-6, suppressed the expression of filaggrin, involucrin, keratin 1 and keratin 5. Meanwhile, we demonstrated the role of IWP-2, an inhibitor of the Wnt signaling pathway, in IL-36γ-treated HaCaT cells. Collectively, our findings suggest that IL-36γ inhibits differentiation and induces inflammation of keratinocyte via Wnt signaling pathway in psoriasis, this indicated that downregulation of IL-36γ may be a potential therapeutic option in psoriasis.
Collapse
Affiliation(s)
- Wenming Wang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaoling Yu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Chao Wu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hongzhong Jin
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
32
|
Luo X, Jin R, Wang F, Jia B, Luan K, Cheng FW, Li L, Sun LD, Yang S, Zhang SQ, Zhang XJ. Interleukin-15 inhibits the expression of differentiation markers induced by Ca2+in keratinocytes. Exp Dermatol 2016; 25:544-7. [PMID: 26914593 DOI: 10.1111/exd.12992] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Xin Luo
- Department of Biochemistry and Molecular Biology; Anhui Medical University; Hefei Anhui China
| | - Rui Jin
- Department of Biochemistry and Molecular Biology; Anhui Medical University; Hefei Anhui China
| | - Fang Wang
- Department of Biochemistry and Molecular Biology; Anhui Medical University; Hefei Anhui China
| | - Bo Jia
- Department of Biochemistry and Molecular Biology; Anhui Medical University; Hefei Anhui China
| | - Kang Luan
- Department of Biochemistry and Molecular Biology; Anhui Medical University; Hefei Anhui China
| | - Feng-Wei Cheng
- Department of Biochemistry and Molecular Biology; Anhui Medical University; Hefei Anhui China
| | - Lei Li
- Department of Biochemistry and Molecular Biology; Anhui Medical University; Hefei Anhui China
| | - Liang-Dan Sun
- Institute of Dermatology at the 1st Hospital; Anhui Medical University; Hefei Anhui China
| | - Sen Yang
- Institute of Dermatology at the 1st Hospital; Anhui Medical University; Hefei Anhui China
| | - Sheng-Quan Zhang
- Department of Biochemistry and Molecular Biology; Anhui Medical University; Hefei Anhui China
- Institute of Dermatology at the 1st Hospital; Anhui Medical University; Hefei Anhui China
| | - Xue-Jun Zhang
- Institute of Dermatology at the 1st Hospital; Anhui Medical University; Hefei Anhui China
| |
Collapse
|
33
|
Kim JE, Bang SH, Choi JH, Kim CD, Won CH, Lee MW, Chang SE. Interaction of Wnt5a with Notch1 is Critical for the Pathogenesis of Psoriasis. Ann Dermatol 2016; 28:45-54. [PMID: 26848218 PMCID: PMC4737835 DOI: 10.5021/ad.2016.28.1.45] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 05/07/2015] [Accepted: 05/19/2015] [Indexed: 11/29/2022] Open
Abstract
Background Psoriasis is characterized by uncontrolled hyperproliferation, aberrant differentiation, and dermal infiltration of immune cells. Recent studies have reported that Wnt5a and Notch1 signaling are altered in psoriatic skin lesions. Objective We aimed to investigate the interaction of Wnt5a with Notch 1 with respect to inflammation-mediated epidermal hyperproliferation in psoriasis. Methods Expression of Wnt5a and Notch1 signaling-related proteins were examined in psoriatic skin biopsies. Wnt5a was upregulated in human keratinocytes by treating the cells with its recombinant form (rWnt5a). Results In psoriatic lesions, expression of Wnt5a increased while that of Notch1 decreased when compared to that in non-lesional and normal skin. Treatment with rWnt5a increased the proliferation of keratinocytes and increased their secretion of interleukin (IL)-23, IL-12, and tumor necrosis factor (TNF)-α. Further, exposure of keratinocytes to IL-1α, TNF-α, transforming growth factor-α, and interferon-γ downregulated Notch1 as well as HES 1, which is downstream to Notch1, but increased the Wnt5a levels. The upregulated Wnt5a in keratinocytes downregulated both Notch1 and HES1. Conclusion Our data suggest that Wnt5a and Notch1 signaling exert counteracting influences on each other and are involved, in part, in the pathomechanism of psoriasis.
Collapse
Affiliation(s)
- Jeong Eun Kim
- Department of Dermatology, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.; Department of Dermatology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Korea
| | - Seung Hyun Bang
- Department of Dermatology, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jee Ho Choi
- Department of Dermatology, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chang Deok Kim
- Department of Dermatology, Chungnam National University College of Medicine, Daejeon, Korea
| | - Chong Hyun Won
- Department of Dermatology, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Mi Woo Lee
- Department of Dermatology, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung Eun Chang
- Department of Dermatology, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
34
|
Samarawickrama C, Chew S, Watson S. Retinoic acid and the ocular surface. Surv Ophthalmol 2015; 60:183-95. [DOI: 10.1016/j.survophthal.2014.10.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 10/05/2014] [Accepted: 10/07/2014] [Indexed: 02/04/2023]
|
35
|
Quaranta M, Knapp B, Garzorz N, Mattii M, Pullabhatla V, Pennino D, Andres C, Traidl-Hoffmann C, Cavani A, Theis FJ, Ring J, Schmidt-Weber CB, Eyerich S, Eyerich K. Intraindividual genome expression analysis reveals a specific molecular signature of psoriasis and eczema. Sci Transl Med 2015; 6:244ra90. [PMID: 25009230 DOI: 10.1126/scitranslmed.3008946] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Previous attempts to gain insight into the pathogenesis of psoriasis and eczema by comparing their molecular signatures were hampered by the high interindividual variability of those complex diseases. In patients affected by both psoriasis and nonatopic or atopic eczema simultaneously (n = 24), an intraindividual comparison of the molecular signatures of psoriasis and eczema identified genes and signaling pathways regulated in common and exclusive for each disease across all patients. Psoriasis-specific genes were important regulators of glucose and lipid metabolism, epidermal differentiation, as well as immune mediators of T helper 17 (TH17) responses, interleukin-10 (IL-10) family cytokines, and IL-36. Genes in eczema related to epidermal barrier, reduced innate immunity, increased IL-6, and a TH2 signature. Within eczema subtypes, a mutually exclusive regulation of epidermal differentiation genes was observed. Furthermore, only contact eczema was driven by inflammasome activation, apoptosis, and cellular adhesion. On the basis of this comprehensive picture of the pathogenesis of psoriasis and eczema, a disease classifier consisting of NOS2 and CCL27 was created. In an independent cohort of eczema (n = 28) and psoriasis patients (n = 25), respectively, this classifier diagnosed all patients correctly and also identified initially misdiagnosed or clinically undifferentiated patients.
Collapse
Affiliation(s)
- Maria Quaranta
- Center of Allergy & Environment, Technische Universität and Helmholtz Center Munich, Member of the German Center for Lung Research, 80802 Munich, Germany
| | - Bettina Knapp
- Institute of Computational Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Natalie Garzorz
- Department of Dermatology and Allergy, Technische Universität Munich, 80802 Munich, Germany
| | - Martina Mattii
- Center of Allergy & Environment, Technische Universität and Helmholtz Center Munich, Member of the German Center for Lung Research, 80802 Munich, Germany
| | - Venu Pullabhatla
- Division of Genetics and Molecular Medicine, King's College London School of Medicine, Guy's Hospital, London WC2R 2LS, UK
| | - Davide Pennino
- Center of Allergy & Environment, Technische Universität and Helmholtz Center Munich, Member of the German Center for Lung Research, 80802 Munich, Germany
| | - Christian Andres
- Department of Dermatology and Allergy, Technische Universität Munich, 80802 Munich, Germany
| | | | - Andrea Cavani
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico, 00163 Rome, Italy
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany. Department of Mathematics, Technische Universität Munich, 85748 Garching, Germany
| | - Johannes Ring
- Department of Dermatology and Allergy, Technische Universität Munich, 80802 Munich, Germany
| | - Carsten B Schmidt-Weber
- Center of Allergy & Environment, Technische Universität and Helmholtz Center Munich, Member of the German Center for Lung Research, 80802 Munich, Germany
| | - Stefanie Eyerich
- Center of Allergy & Environment, Technische Universität and Helmholtz Center Munich, Member of the German Center for Lung Research, 80802 Munich, Germany
| | - Kilian Eyerich
- Department of Dermatology and Allergy, Technische Universität Munich, 80802 Munich, Germany.
| |
Collapse
|
36
|
El-wahed Gaber MA, El-Halim Kandil MA, El-Farargy SM, Galbet DAE. Beta-catenin expression in psoriasis. Indian Dermatol Online J 2015; 6:13-6. [PMID: 25657910 PMCID: PMC4314880 DOI: 10.4103/2229-5178.148923] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Psoriasis is a common inflammatory skin disease characterized by abnormal keratinocyte proliferation and differentiation. Beta-catenin participates in intercellular adhesion. Catenins are proteins found in complexes with cadherin cell adhesion molecules of cells. The role of catenin in regulating keratinocyte stem cell differentiation and hair follicle morphogenesis has been extensively reported. AIMS AND OBJECTIVES is to study β-catenin expression in lesional and non-lesional psoriatic skin to throw light upon its possible role in the pathogenesis of psoriasis. MATERIALS AND METHODS Biopsies were taken from 20 patients with psoriasis vulgaris and from 10 normal controls. The distribution of Beta catenin was investigated using polycolonal rabbits B-catenin antibody-1 by immunohistochemical method. RESULTS In this study membranous β-catenin expression was significantly demonstrated in the control group then the non-lesional areas in comparison to the lesional areas (P < 0.001). Nuclear β-catenin staining expression was significantly more demonstrated in lesional and non-lesional areas in comparison to the control cases (P < 0.001). CONCLUSIONS The down regulation of membranous β-catenin expression in lesional psoriatic skin might reflect a useful phenotypic marker of hyperprolifration of keratinocytes in psoriasis. Moreover, the mild down regulation of membranous β-catenin expression in non lesional psoriatic skin may provide clues about incipient structural abnormalities in the pathogenesis of psoriasis, providing an early diagnostic indicator for evolution to a generalized form of the disease. Nuclear β-catenin expression was not found in the control group but was demonstrated in lesional and moderately in non-lesional reflecting its role in kerationcyte proliferation.
Collapse
Affiliation(s)
- Mohamed Abd El-wahed Gaber
- Department of Dermatology, Andrology and Venoreology, Faculty of Medicine, Menoufia University, Menufia, Egypt
| | | | - Shawki Mahmoud El-Farargy
- Department of Dermatology, Andrology and Venoreology, Faculty of Medicine, Menoufia University, Menufia, Egypt
| | | |
Collapse
|
37
|
Helwa I, Patel R, Karempelis P, Kaddour-Djebbar I, Choudhary V, Bollag WB. The antipsoriatic agent monomethylfumarate has antiproliferative, prodifferentiative, and anti-inflammatory effects on keratinocytes. J Pharmacol Exp Ther 2015; 352:90-7. [PMID: 25332455 PMCID: PMC4279100 DOI: 10.1124/jpet.114.218818] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/17/2014] [Indexed: 12/23/2022] Open
Abstract
Monomethylfumarate (MMF) is thought to be the bioactive ingredient of the drug Fumaderm (Biogen Idec, Cambridge, MA), licensed in Germany since 1994 for the treatment of moderate-to-severe psoriasis. Psoriasis is a common inflammatory hyperproliferative skin disorder that involves cross-talk between different cell types, including immune cells and keratinocytes. Psoriatic lesions are characterized by hyperproliferation, aberrant differentiation, and inflammation, with the psoriatic cytokine network maintained by communication between immune cells and keratinocytes. Recently, there is increasing evidence regarding the pivotal role of keratinocytes in mediating the disease process, and these cells can be regarded as safe therapeutic targets. From the data available on human subjects treated with Fumaderm, MMF is an effective antipsoriatic agent with known effects on immune cells. However, little is known about its direct effects on keratinocytes. We hypothesized that MMF has direct antiproliferative, prodifferentiative, and anti-inflammatory effects on keratinocytes. Indeed, MMF dose-dependently inhibited [(3)H]thymidine incorporation into DNA, indicating a direct antiproliferative action on keratinocytes. MMF significantly increased the protein level of keratin 10, the early keratinocyte differentiation marker, and the activity of transglutaminase, a late differentiation marker. These results are consistent with an ability of MMF to promote keratinocyte differentiation and inhibit proliferation, thereby improving psoriatic lesions. In 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced keratinocytes, MMF significantly inhibited the expression of the proinflammatory cytokines, tumor necrosis factor-α (TNFα), interleukin-6, and interleukin-1α as well as the production of TNFα. Our results support the notion that MMF has direct antiproliferative, prodifferentiative, and anti-inflammatory effects on keratinocytes, highlighting its potential use as a multifactorial antipsoriatic agent.
Collapse
Affiliation(s)
- Inas Helwa
- Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia (I.H., I.K.-D., V.C., W.B.B.); Department of Oral Biology, College of Dental Medicine, (I.H., W.B.B.), and Departments of Physiology (I.H., R.P., P.K., I.K.-D., V.C., W.B.B.) and Medicine (Dermatology) (V.C., W.B.B.), Medical College of Georgia at Georgia Regents University, Augusta, Georgia
| | - Ravi Patel
- Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia (I.H., I.K.-D., V.C., W.B.B.); Department of Oral Biology, College of Dental Medicine, (I.H., W.B.B.), and Departments of Physiology (I.H., R.P., P.K., I.K.-D., V.C., W.B.B.) and Medicine (Dermatology) (V.C., W.B.B.), Medical College of Georgia at Georgia Regents University, Augusta, Georgia
| | - Peter Karempelis
- Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia (I.H., I.K.-D., V.C., W.B.B.); Department of Oral Biology, College of Dental Medicine, (I.H., W.B.B.), and Departments of Physiology (I.H., R.P., P.K., I.K.-D., V.C., W.B.B.) and Medicine (Dermatology) (V.C., W.B.B.), Medical College of Georgia at Georgia Regents University, Augusta, Georgia
| | - Ismail Kaddour-Djebbar
- Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia (I.H., I.K.-D., V.C., W.B.B.); Department of Oral Biology, College of Dental Medicine, (I.H., W.B.B.), and Departments of Physiology (I.H., R.P., P.K., I.K.-D., V.C., W.B.B.) and Medicine (Dermatology) (V.C., W.B.B.), Medical College of Georgia at Georgia Regents University, Augusta, Georgia
| | - Vivek Choudhary
- Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia (I.H., I.K.-D., V.C., W.B.B.); Department of Oral Biology, College of Dental Medicine, (I.H., W.B.B.), and Departments of Physiology (I.H., R.P., P.K., I.K.-D., V.C., W.B.B.) and Medicine (Dermatology) (V.C., W.B.B.), Medical College of Georgia at Georgia Regents University, Augusta, Georgia
| | - Wendy B Bollag
- Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia (I.H., I.K.-D., V.C., W.B.B.); Department of Oral Biology, College of Dental Medicine, (I.H., W.B.B.), and Departments of Physiology (I.H., R.P., P.K., I.K.-D., V.C., W.B.B.) and Medicine (Dermatology) (V.C., W.B.B.), Medical College of Georgia at Georgia Regents University, Augusta, Georgia
| |
Collapse
|
38
|
Donetti E, Cornaghi L, Gualerzi A, Baruffaldi Preis F, Prignano F. An innovative three-dimensional model of normal human skin to study the proinflammatory psoriatic effects of tumor necrosis factor-alpha and interleukin-17. Cytokine 2014; 68:1-8. [DOI: 10.1016/j.cyto.2014.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 12/13/2013] [Accepted: 03/14/2014] [Indexed: 01/12/2023]
|
39
|
Prieto-Pérez R, Cabaleiro T, Daudén E, Ochoa D, Román M, Abad-Santos F. Pharmacogenetics of topical and systemic treatment of psoriasis. Pharmacogenomics 2014; 14:1623-34. [PMID: 24088133 DOI: 10.2217/pgs.13.163] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease. The cause of psoriasis is unknown, although genetics may play a key role in its development. Treatment of the disease varies with severity. Topical drugs, such as corticosteroids, coal tar, retinoids and vitamin D analogs, are commonly used to treat mild psoriasis. Phototherapy and systemic drugs, such as calcineurin inhibitors, methotrexate, acitretin and biological drugs, are usually used to treat moderate-to-severe psoriasis. Not all patients respond well to treatment, and some can develop severe adverse effects. Interindividual differences in several genes may explain this variation in response to treatment. Pharmacogenetics and pharmacogenomics can facilitate more personalized medicine and prevent the adverse effects associated with treatment.
Collapse
Affiliation(s)
- Rocío Prieto-Pérez
- Service of Clinical Pharmacology, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria Princesa (IP), Diego de León 62, 28006 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Eckhart L, Lippens S, Tschachler E, Declercq W. Cell death by cornification. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3471-3480. [DOI: 10.1016/j.bbamcr.2013.06.010] [Citation(s) in RCA: 288] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/07/2013] [Accepted: 06/08/2013] [Indexed: 01/05/2023]
|
42
|
Persea americana Mill. Seed: Fractionation, Characterization, and Effects on Human Keratinocytes and Fibroblasts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:391247. [PMID: 24371457 PMCID: PMC3863524 DOI: 10.1155/2013/391247] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/29/2013] [Accepted: 09/10/2013] [Indexed: 01/13/2023]
Abstract
Methanolic avocado (Persea americana Mill., Lauraceae) seed extracts were separated by preparative HSCCC. Partition and HSCCC fractions were principally characterized by LC-ESI-MS/MS analysis. Their in vitro influence was investigated on proliferation, differentiation, cell viability, and gene expression on HaCaT and normal human epidermal keratinocytes (NHEK) and normal human dermal fibroblasts (NHDF). The methanol-water partition (M) from avocado seeds and HSCCC fraction 3 (M.3) were mostly composed of chlorogenic acid and its isomers. Both reduced NHDF but enhanced HaCaT keratinocytes proliferation. HSCCC fraction M.2 composed of quinic acid among chlorogenic acid and its isomers inhibited proliferation and directly induced differentiation of keratinocytes as observed on gene and protein level. Furthermore, M.2 increased NHDF proliferation via upregulation of growth factor receptors. Salidrosides and ABA derivatives present in HSCCC fraction M.6 increased NHDF and keratinocyte proliferation that resulted in differentiation. The residual solvent fraction M.7 contained among low concentrations of ABA derivatives high amounts of proanthocyanidins B1 and B2 as well as an A-type trimer and stimulated proliferation of normal cells and inhibited the proliferation of immortalized HaCaT keratinocytes.
Collapse
|
43
|
Jia B, Luo X, Cheng FW, Li L, Hu DJ, Wang F, Zhang SQ. Gardiquimod inhibits the expression of calcium-induced differentiation markers in HaCaT cells. Mol Biol Rep 2013; 40:6363-9. [PMID: 24057248 DOI: 10.1007/s11033-013-2750-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 09/14/2013] [Indexed: 10/26/2022]
Abstract
Toll-like receptor 7 (TLR7) is an important member in pattern recognition receptors families. TLR7 signal pathway is involved in the physiological process in many type cells, but the impact of TRL7 on differentiation in the human keratinocytes is still unknown. In this study, we investigated the expression of TLR7 in keratinocytes, and the effect of TLR7 agonist gardiquimod on the expression of calcium (Ca(2+))-induced keratinocytes differentiation markers in HaCaT cells. Immunohistochemistry and western-blotting analysis showed that TLR7 is expressed in basal keratinocytes of normal skin and in the human keratinocyte cell line HaCaT, but not expressed in the keratinocytes of psoriasis lesions. Pretreatment with gardiquimod could down-regulate Ca(2+)-induced differentiation marker expression and activate Raf-MEK-ERK and PI3K-AKT signal pathways in HaCaT cells. However, specific inhibitors studies showed that the down-regulation of the differentiation markers expression by gardiquimod was not dependent on the activation of these two pathways. TLR7 may play an important role in the pathogenesis of psoriasis through regulating the differentiation of the keratinocytes, and will give a new insight into the psoriasis.
Collapse
Affiliation(s)
- Bo Jia
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Genetics of psoriasis and pharmacogenetics of biological drugs. Autoimmune Dis 2013; 2013:613086. [PMID: 24069534 PMCID: PMC3771250 DOI: 10.1155/2013/613086] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/19/2013] [Indexed: 11/17/2022] Open
Abstract
Psoriasis is a chronic inflammatory disease of the skin. The causes of psoriasis are unknown, although family and twin studies have shown genetic factors to play a key role in its development. The many genes associated with psoriasis and the immune response include TNFα, IL23, and IL12. Advances in knowledge of the pathogenesis of psoriasis have enabled the development of new drugs that target cytokines (e.g., etanercept, adalimumab, and infliximab, which target TNFα, and ustekinumab, which targets the p40 subunit of IL23 and IL12). These drugs have improved the safety and efficacy of treatment in comparison with previous therapies. However, not all patients respond equally to treatment, possibly owing to interindividual genetic variability. In this review, we describe the genes associated with psoriasis and the immune response, the biological drugs used to treat chronic severe plaque psoriasis, new drugs in phase II and III trials, and current knowledge on the implications of pharmacogenomics in predicting response to these treatments.
Collapse
|
45
|
Ding J, Kam WR, Dieckow J, Sullivan DA. The influence of 13-cis retinoic acid on human meibomian gland epithelial cells. Invest Ophthalmol Vis Sci 2013; 54:4341-50. [PMID: 23722388 DOI: 10.1167/iovs.13-11863] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Meibomian gland dysfunction (MGD) is a primary cause of dry eye disease. One of the risk factors for MGD is exposure to 13-cis retinoic acid (13-cis RA), a metabolite of vitamin A. However, the mechanism is not well understood. We hypothesize that 13-cis RA inhibits cell proliferation, promotes cell death, alters gene and protein expressions, and attenuates cell survival pathways in human meibomian gland epithelial cells. METHODS To test our hypotheses, immortalized human meibomian gland epithelial cells were cultured with or without 13-cis RA for varying doses and time. Cell proliferation, cell death, gene expression, and proteins involved in proliferation/survival and inflammation were evaluated. RESULTS We found that 13-cis RA inhibited cell proliferation, induced cell death, and significantly altered the expression of 6726 genes, including those involved in cell proliferation, cell death, differentiation, keratinization, and inflammation, in human meibomian gland epithelial cells. Further, 13-cis RA also reduced the phosphorylation of Akt and increased the generation of interleukin-1β and matrix metallopeptidase 9. CONCLUSIONS Exposure to 13-cis RA inhibits cell proliferation, increases cell death, alters gene expression, changes signaling pathways, and promotes inflammatory mediator and protease expression in meibomian gland epithelial cells. These effects may be responsible, at least in part, for the 13-cis RA-related induction of MGD.
Collapse
Affiliation(s)
- Juan Ding
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
46
|
Bracke S, Desmet E, Guerrero-Aspizua S, Tjabringa SG, Schalkwijk J, Van Gele M, Carretero M, Lambert J. Identifying targets for topical RNAi therapeutics in psoriasis: assessment of a new in vitro psoriasis model. Arch Dermatol Res 2013; 305:501-12. [PMID: 23775225 DOI: 10.1007/s00403-013-1379-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/05/2013] [Accepted: 06/10/2013] [Indexed: 12/19/2022]
Abstract
Diseases of the skin are amenable to RNAi-based therapies and targeting key components in the pathophysiology of psoriasis using RNAi may represent a successful new therapeutic strategy. We aimed to develop a straightforward and highly reproducible in vitro psoriasis model useful to study the effects of gene knockdown by RNAi and to identify new targets for topical RNAi therapeutics. We evaluated the use of keratinocytes derived from psoriatic plaques and normal human keratinocytes (NHKs). To induce a psoriatic phenotype in NHKs, combinations of pro-inflammatory cytokines (IL-1α, IL-17A, IL-6 and TNF-α) were tested. The model based on NHK met our needs of a reliable and predictive preclinical model, and this model was further selected for gene expression analyses, comprising a panel of 55 psoriasis-associated genes and five micro-RNAs (miRNAs). Gene silencing studies were conducted by using small interfering RNAs (siRNAs) and miRNA inhibitors directed against potential target genes such as CAMP and DEFB4 and miRNAs such as miR-203. We describe a robust and highly reproducible in vitro psoriasis model that recapitulates expression of a large panel of genes and miRNAs relevant to the pathogenesis of psoriasis. Furthermore, we show that our model is a powerful first step model system for testing and screening RNAi-based therapeutics.
Collapse
Affiliation(s)
- S Bracke
- Department of Dermatology 2K4, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Amen N, Mathow D, Rabionet M, Sandhoff R, Langbein L, Gretz N, Jäckel C, Gröne HJ, Jennemann R. Differentiation of epidermal keratinocytes is dependent on glucosylceramide:ceramide processing. Hum Mol Genet 2013; 22:4164-79. [DOI: 10.1093/hmg/ddt264] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
48
|
AP1 transcription factors in epidermal differentiation and skin cancer. J Skin Cancer 2013; 2013:537028. [PMID: 23762562 PMCID: PMC3676924 DOI: 10.1155/2013/537028] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/02/2013] [Indexed: 01/17/2023] Open
Abstract
AP1 (jun/fos) transcription factors (c-jun, junB, junD, c-fos, FosB, Fra-1, and Fra-2) are key regulators of epidermal keratinocyte survival and differentiation and important drivers of cancer development. Understanding the role of these factors in epidermis is complicated by the fact that each protein is expressed, at different levels, in multiple cells layers in differentiating epidermis, and because AP1 transcription factors regulate competing processes (i.e., proliferation, apoptosis, and differentiation). Various in vivo genetic approaches have been used to study these proteins including targeted and conditional knockdown, overexpression, and expression of dominant-negative inactivating AP1 transcription factors in epidermis. Taken together, these studies suggest that individual AP1 transcription factors have different functions in the epidermis and in cancer development and that altering AP1 transcription factor function in the basal versus suprabasal layers differentially influences the epidermal differentiation response and disease and cancer development.
Collapse
|
49
|
Liu S, Kam WR, Ding J, Hatton MP, Sullivan DA. Effect of growth factors on the proliferation and gene expression of human meibomian gland epithelial cells. Invest Ophthalmol Vis Sci 2013; 54:2541-50. [PMID: 23493293 DOI: 10.1167/iovs.12-11221] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE We hypothesize that growth factors, including epidermal growth factor (EGF) and bovine pituitary extract (BPE), induce proliferation, but not differentiation (e.g., lipid accumulation), of human meibomian gland epithelial cells. We also hypothesize that these actions involve a significant upregulation of genes linked to cell cycle processes, and a significant downregulation of genes associated with differentiation. Our objective was to test these hypotheses. METHODS Immortalized human meibomian gland and conjunctival epithelial cells were cultured for varying time periods in the presence or absence of EGF, BPE, EGF + BPE, or serum, followed by cell counting, neutral lipid staining, or RNA isolation for molecular biological procedures. RESULTS Our studies show that growth factors stimulate a significant, time-dependent proliferation of human meibomian gland epithelial cells. These effects are associated with a significant upregulation of genes linked to cell cycle, DNA replication, ribosomes, and translation, and a significant decrease in those related to cell differentiation, tissue development, lipid metabolic processes, and peroxisome proliferator-activated receptor signaling. Serum-induced differentiation, but not growth factor-related proliferation, elicits a pronounced lipid accumulation in human meibomian gland epithelial cells. This lipogenic response is unique, and is not duplicated by human conjunctival epithelial cells. CONCLUSIONS Our results demonstrate that EGF and BPE stimulate human meibomian gland epithelial cells to proliferate. Further, our findings show that action is associated with an upregulation of cell cycle and translation ontologies, and a downregulation of genetic pathways linked to differentiation and lipid biosynthesis.
Collapse
Affiliation(s)
- Shaohui Liu
- Schepens Eye Research Institute, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
50
|
Ramot Y, Sugawara K, Zákány N, Tóth BI, Bíró T, Paus R. A novel control of human keratin expression: cannabinoid receptor 1-mediated signaling down-regulates the expression of keratins K6 and K16 in human keratinocytes in vitro and in situ. PeerJ 2013; 1:e40. [PMID: 23638377 PMCID: PMC3628749 DOI: 10.7717/peerj.40] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/28/2013] [Indexed: 12/23/2022] Open
Abstract
Cannabinoid receptors (CB) are expressed throughout human skin epithelium. CB1 activation inhibits human hair growth and decreases proliferation of epidermal keratinocytes. Since psoriasis is a chronic hyperproliferative, inflammatory skin disease, it is conceivable that the therapeutic modulation of CB signaling, which can inhibit both proliferation and inflammation, could win a place in future psoriasis management. Given that psoriasis is characterized by up-regulation of keratins K6 and K16, we have investigated whether CB1 stimulation modulates their expression in human epidermis. Treatment of organ-cultured human skin with the CB1-specific agonist, arachidonoyl-chloro-ethanolamide (ACEA), decreased K6 and K16 staining intensity in situ. At the gene and protein levels, ACEA also decreased K6 expression of cultured HaCaT keratinocytes, which show some similarities to psoriatic keratinocytes. These effects were partly antagonized by the CB1-specific antagonist, AM251. While CB1-mediated signaling also significantly inhibited human epidermal keratinocyte proliferation in situ, as shown by K6/Ki-67-double immunofluorescence, the inhibitory effect of ACEA on K6 expression in situ was independent of its anti-proliferative effect. Given recent appreciation of the role of K6 as a functionally important protein that regulates epithelial wound healing in mice, it is conceivable that the novel CB1-mediated regulation of keratin 6/16 revealed here also is relevant to wound healing. Taken together, our results suggest that cannabinoids and their receptors constitute a novel, clinically relevant control element of human K6 and K16 expression.
Collapse
Affiliation(s)
- Yuval Ramot
- Department of Dermatology, University of Luebeck, Luebeck, Germany.,Department of Dermatology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Koji Sugawara
- Department of Dermatology, University of Luebeck, Luebeck, Germany.,Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Nóra Zákány
- Department of Dermatology, University of Luebeck, Luebeck, Germany.,DE-MTA "Lendület" Cellular Physiology Research Group, Department of Physiology, MHSC, RCMM, University of Debrecen, Debrecen, Hungary
| | - Balázs I Tóth
- DE-MTA "Lendület" Cellular Physiology Research Group, Department of Physiology, MHSC, RCMM, University of Debrecen, Debrecen, Hungary.,Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Tamás Bíró
- DE-MTA "Lendület" Cellular Physiology Research Group, Department of Physiology, MHSC, RCMM, University of Debrecen, Debrecen, Hungary
| | - Ralf Paus
- Department of Dermatology, University of Luebeck, Luebeck, Germany.,Institute of Inflammation and Repair, and Dermatology Centre, University of Manchester, Manchester, UK
| |
Collapse
|