1
|
Houssein M, Khalil M, Fatfat M, Gali-Muhtasib H. Apoptosis as a mechanism for the treatment of adult T cell leukemia: promising drugs from benchside to bedside. Drug Discov Today 2020; 25:1189-1197. [PMID: 32389641 DOI: 10.1016/j.drudis.2020.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 04/17/2020] [Accepted: 04/29/2020] [Indexed: 11/26/2022]
Abstract
Human T cell lymphotropic virus-1 (HTLV-1) is the causative agent of adult T cell leukemia (ATL), an aggressive malignancy of mature activated T cells. Although many therapeutic strategies are available, none are effective and most patients experience recurrence of the disease. Over the past decade, many drugs have been discovered that showed promising therapeutic potential against ATL but which remain in the preclinical testing phase. Mechanistically, these drugs either induce apoptosis or regulate cellular proliferation in ATL cells. Here, we provide a summary of these promising drugs that target ATL, with a focus on their mechanism of anticancer activity, to offer insights into the use of multiple drugs with different targets for enhancing ATL eradication.
Collapse
Affiliation(s)
- Marwa Houssein
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Lebanon; Center for Drug Discovery, American University of Beirut, Lebanon
| | - Mahmoud Khalil
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Lebanon
| | - Maamoun Fatfat
- Center for Drug Discovery, American University of Beirut, Lebanon
| | - Hala Gali-Muhtasib
- Center for Drug Discovery, American University of Beirut, Lebanon; Department of Biology, American University of Beirut, Lebanon.
| |
Collapse
|
2
|
Wang X, Dasari S, Nowakowski GS, Lazaridis KN, Wieben ED, Kadin ME, Feldman AL, Boddicker RL. Retinoic acid receptor alpha drives cell cycle progression and is associated with increased sensitivity to retinoids in T-cell lymphoma. Oncotarget 2018; 8:26245-26255. [PMID: 28412739 PMCID: PMC5432253 DOI: 10.18632/oncotarget.15441] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/06/2017] [Indexed: 12/15/2022] Open
Abstract
Peripheral T-cell lymphomas (PTCLs) are aggressive non-Hodgkin lymphomas with generally poor outcomes following standard therapy. Few candidate therapeutic targets have been identified to date. Retinoic acid receptor alpha (RARA) is a transcription factor that modulates cell growth and differentiation in response to retinoids. While retinoids have been used to treat some cutaneous T-cell lymphomas (CTCLs), their mechanism of action and the role of RARA in CTCL and other mature T-cell lymphomas remain poorly understood. After identifying a PTCL with a RARAR394Q mutation, we sought to characterize the role of RARA in T-cell lymphoma cells. Overexpressing wild-type RARA or RARAR394Q significantly increased cell growth in RARAlow cell lines, while RARA knockdown induced G1 arrest and decreased expression of cyclin-dependent kinases CDK2/4/6 in RARAhigh cells. The retinoids, AM80 (tamibarotene) and all-trans retinoic acid, caused dose-dependent growth inhibition, G1 arrest, and CDK2/4/6 down-regulation. Genes down-regulated in transcriptome data were enriched for cell cycle and G1-S transition. Finally, RARA overexpression augmented chemosensitivity to retinoids. In conclusion, RARA drives cyclin-dependent kinase expression, G1-S transition, and cell growth in T-cell lymphoma. Synthetic retinoids inhibit these functions in a dose-dependent fashion and are most effective in cells with high RARA expression, indicating RARA may represent a therapeutic target in some PTCLs.
Collapse
Affiliation(s)
- Xueju Wang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America.,Department of Pathology, China-Japan Union Hospital of Jilin Province, Changchun, Jilin Province, China
| | - Surendra Dasari
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Grzegorz S Nowakowski
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Konstantinos N Lazaridis
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America.,Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Eric D Wieben
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Marshall E Kadin
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Department of Dermatology, Roger Williams Medical Center, Providence, Rhode Island, United States of America
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Rebecca L Boddicker
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
3
|
Sakai S, Izumi H, Yoshiura Y, Nakayama Y, Yamaguchi T, Harada Y, Koi C, Kurata H, Morimoto Y. In vitro evaluation of a combination treatment involving anticancer agents and an aurora kinase B inhibitor. Oncol Lett 2016; 12:4263-4269. [PMID: 27895801 PMCID: PMC5104265 DOI: 10.3892/ol.2016.5156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 08/25/2016] [Indexed: 12/25/2022] Open
Abstract
Aurora kinase B (AURKB) inhibitors are regarded as potential molecular-targeting drugs for cancer therapy. The present study evaluated the cytotoxic effect of a combination of AZD1152-hQPA, an AURKB inhibitor, and various anticancer agents on the HeLa human cervical cancer cell line, as well as its cisplatin-resistant equivalent HCP4 cell line. It was demonstrated that AZD1152-hQPA had an antagonistic effect on the cytotoxicity of cisplatin, etoposide and doxorubicin, but had a synergistic effect on that of all-trans-retinoic acid (ATRA), Am80 and TAC-101, when tested on HeLa cells. Cisplatin, etoposide and doxorubicin were shown to increase the cellular expression of AURKB, while ATRA, Am80 and TAC-101 downregulated its expression. These results suggested that AURKB expression is regulated by these anticancer agents at the transcriptional level, and that the level of expression of AURKB may influence the cytotoxic effect of AZD1152-hQPA. Therefore, when using anticancer agents, decreasing the expression of AURKB using a molecular-targeting drug may be an optimal therapeutic strategy.
Collapse
Affiliation(s)
- Senna Sakai
- Department of Occupational Pneumology, Institute of Industrial Ecological Science, University of Occupational and Environmental Health School of Medicine, Kitakyushu 807-8555, Japan
- Department of Bioscience and Bioinformatics, Biomedical Informatics R&D Center, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Hiroto Izumi
- Department of Occupational Pneumology, Institute of Industrial Ecological Science, University of Occupational and Environmental Health School of Medicine, Kitakyushu 807-8555, Japan
| | - Yukiko Yoshiura
- Department of Occupational Pneumology, Institute of Industrial Ecological Science, University of Occupational and Environmental Health School of Medicine, Kitakyushu 807-8555, Japan
| | - Yoshifumi Nakayama
- Department of Gastroenterological and General Surgery, Wakamatsu Hospital, University of Occupational and Environmental Health School of Medicine, Kitakyushu 808-0024, Japan
| | - Takahiro Yamaguchi
- Department of Hematology, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Yoshikazu Harada
- Department of Dentistry and Oral Surgery, University Hospital, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Chiho Koi
- Department of Obstetrics and Gynecology, University of Occupational and Environmental Health School of Medicine, Kitakyushu 807-8555, Japan
| | - Hiroyuki Kurata
- Department of Bioscience and Bioinformatics, Biomedical Informatics R&D Center, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Yasuo Morimoto
- Department of Occupational Pneumology, Institute of Industrial Ecological Science, University of Occupational and Environmental Health School of Medicine, Kitakyushu 807-8555, Japan
| |
Collapse
|
4
|
Abstract
Adult T-cell Leukemia (ATL) is an aggressive malignant disease of CD4+ T-cells associated with human T-cell leukemia virus type I (HTLV-I). Prognosis of ATL patients is directly correlated to the subtype of ATL. Treatment of the aggressive forms (acute and lymphoma types) of ATL remains inadequate, as most ATL patients receive conventional chemotherapy without stem cell rescue. At present, LSG15 is the standard chemotherapy for the treatment of aggressive ATL, but the efficacy of LSG15 in most patients is transient. To prolong median survival time, additional therapies for maintenance of complete response (CR) are needed after achieving CR by induction chemotherapy. Improved outcome after allogeneic stem cell transplantation (allo-SCT), despite a high incidence of graft-versus-host disease, has been reported. Thus, allogeneic bone marrow transplantation and allogeneic peripheral blood SCT may have great potential for eradication of HTLV-1 and cure of ATL. Recently, reduced-intensity conditioning stem cell transplantation was also reported to be effective for ATL. Although several issues, including selection criteria for patients and sources of stem cells remain to be resolved, allo-SCT may be considered as a treatment option for patients with aggressive ATL. To evaluate whether allo-SCT is more effective than the standard chemotherapy (LSG15) for aggressive ATL, an up front phase II clinical trial of JCOG-LSG is now being planned. Novel innovative targeted strategies, such as antiretroviral therapy, arsenic trioxide, nuclear factor-kappaB inhibitors, proteasome inhibitors, histone deacetylase inhibitors, several monoclonal antibodies including anti-CC chemokine receptor 4, anti-folate, purine nucleotide phosphorylase inhibitor, mTOR (mammalian target of rapamycin) inhibitor, bendamustine, small molecule Bcl-2 inhibitors and Tax-targeted immunotherapy, should be promptly studied in order to develop curative treatments for ATL in the near future.
Collapse
Affiliation(s)
- Kimiru Uozumi
- Department of Hematology and Immunology, Kagoshima University Hospital.
| |
Collapse
|
5
|
Yuan C, Zhang YS, Cheng YN, Xue X, Xu WF, Qu XJ. A112, a tamibarotene dimethylaminoethyl ester, may inhibit human leukemia cell growth more potently than tamibarotene. Leuk Lymphoma 2011; 53:295-304. [DOI: 10.3109/10428194.2011.614707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Maeda Y, Sasakawa A, Hirase C, Yamaguchi T, Morita Y, Miyatake JI, Urase F, Nomura S, Matsumura I. Senescence induction therapy for the treatment of adult T-cell leukemia. Leuk Lymphoma 2010; 52:150-2. [PMID: 21067445 DOI: 10.3109/10428194.2010.527406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Zimmerman B, Niewiesk S, Lairmore MD. Mouse models of human T lymphotropic virus type-1-associated adult T-cell leukemia/lymphoma. Vet Pathol 2010; 47:677-89. [PMID: 20442421 DOI: 10.1177/0300985810370009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Human T-lymphotropic virus type-1 (HTLV-1), the first human retrovirus discovered, is the causative agent of adult T-cell leukemia/lymphoma (ATL) and a number of lymphocyte-mediated inflammatory conditions including HTLV-1-associated myelopathy/tropical spastic paraparesis. Development of animal models to study the pathogenesis of HTLV-1-associated diseases has been problematic. Mechanisms of early infection and cell-to-cell transmission can be studied in rabbits and nonhuman primates, but lesion development and reagents are limited in these species. The mouse provides a cost-effective, highly reproducible model in which to study factors related to lymphoma development and the preclinical efficacy of potential therapies against ATL. The ability to manipulate transgenic mice has provided important insight into viral genes responsible for lymphocyte transformation. Expansion of various strains of immunodeficient mice has accelerated the testing of drugs and targeted therapy against ATL. This review compares various mouse models to illustrate recent advances in the understanding of HTLV-1-associated ATL development and how improvements in these models are critical to the future development of targeted therapies against this aggressive T-cell lymphoma.
Collapse
Affiliation(s)
- B Zimmerman
- The Ohio State University, Department of Veterinary Biosciences, Goss Laboratory, 1925 Coffey Road, Columbus, Ohio 43210-1093, USA
| | | | | |
Collapse
|
8
|
Maeda N, Muta H, Oflazoglu E, Yoshikai Y. Susceptibility of human T-cell leukemia virus type I-infected cells to humanized anti-CD30 monoclonal antibodies in vitro and in vivo. Cancer Sci 2010; 101:224-30. [PMID: 19799612 PMCID: PMC11159198 DOI: 10.1111/j.1349-7006.2009.01354.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Adult T-cell leukemia (ATL) is an aggressive malignancy of activated CD4(+) T cells associated with human T-cell leukemia virus type I (HTLV-I) infection. No conventional chemotherapy regimen has appeared successful in patients with ATL, thus establishing effective therapy is urgently required. In some cases, ATL tumor cells express CD30 on the cell surface, therefore, a therapy with mAb against CD30 would be beneficial. To investigate the effect of CD30-mediated therapy on ATL, we assessed SGN-30, a chimeric anti-CD30 mAb, and SGN-35, a monomethyl auristatin E-conjugated anti-CD30 mAb, in vitro and in vivo. Three HTLV-I-infected cell lines were co-cultured with SGN-30 or SGN-35, and the growth-inhibitory effects on the HTLV-I-infected cells were evaluated using an in vitro cell proliferation assay and cell cycle analysis. SGN-30 and SGN-35 showed growth-inhibitory activity against the HTLV-I-infected cell lines by apoptosis and/or cell growth arrest in vitro. To further investigate the effects of SGN-30 and SGN-35 on HTLV-I-infected cells in vivo, we used NOD/SCID mice subcutaneously engrafted with HTLV-I-infected cells. Both mAbs significantly inhibited the growth of HTLV-I-infected cell tumors in the NOD/SCID murine xenograft models. These data suggest that CD30-mediated therapy with SGN-30 or SGN-35 would be useful for patients with ATL.
Collapse
Affiliation(s)
- Naoyoshi Maeda
- Division of Host Defense, Research Center for Prevention of Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|
9
|
Nakamura M, Hamasaki T, Tokitou M, Baba M, Hashimoto Y, Aoyama H. Discovery of tetrahydrotetramethylnaphthalene analogs as adult T-cell leukemia cell-selective proliferation inhibitors in a small chemical library constructed based on multi-template hypothesis. Bioorg Med Chem 2009; 17:4740-6. [DOI: 10.1016/j.bmc.2009.04.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 04/21/2009] [Accepted: 04/22/2009] [Indexed: 11/24/2022]
|
10
|
Miyano-Kurosaki N, Ikegami K, Kurosaki K, Endo T, Aoyagi H, Hanami M, Yasumoto J, Tomoda A. Anticancer effects of phenoxazine derivatives revealed by inhibition of cell growth and viability, disregulation of cell cycle, and apoptosis induction in HTLV-1-positive leukemia cells. J Pharmacol Sci 2009; 110:87-97. [PMID: 19403995 DOI: 10.1254/jphs.08347fp] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Adult T-cell leukemia (ATL) is a malignant tumor of human CD4(+) T cells infected with a human retrovirus, T lymphotropic virus type-1 (HTLV-1). The aim of the present study was to investigate the apoptotic effects of phenoxazines, 2-amino-4,4alpha-dihydro-4alpha,7-dimethyl-3H-phenoxazine-3-one (Phx-1), 3-amino-1,4alpha-dihydro-4alpha,8-dimethyl-2H-phenoxazine-2-one (Phx-2), and 2-aminophenoxazine-3-one (Phx-3) on a T cell leukemia cell line from ATL patients, MT-1 cells; HTLV-1 transformed T-cell lines, HUT-102 cells and MT-2 cells; and an HTLV-1-negative rat sarcoma cell line, XC cells. Among these phenoxazines, Phx-3 at concentrations of less than 10 microg/ml extensively inhibited growth and cell viability; arrested cell cycles at sub G(0)/G(1) phase; and augmented apoptosis of MT-1, HUT-102, and MT-2 cells. However, these phenoxazines did not affect the cell viability of an HTLV-1-negative rat sarcoma cell line, XC cells, and phytohemaggutinin-activated human peripheral blood mononuclear cells, although they markedly inhibited the growth of these cells. The transmission of HTLV-1 from HTLV-1-positive cells (MT-2 cells) to HTLV-1-negative cells (XC cells) was considered to be prevented by Phx-1, Phx-2, or Phx-3 because the syncytium formation between these cells was inhibited markedly in the presence of these phenoxazines. The present results suggest that Phx-1, Phx-2, and, in particular, Phx-3 may be useful as therapeutic agents against ATL, which is extremely refractory to current therapies.
Collapse
|
11
|
Machijima Y, Ishikawa C, Sawada S, Okudaira T, Uchihara JN, Tanaka Y, Taira N, Mori N. Anti-adult T-cell leukemia/lymphoma effects of indole-3-carbinol. Retrovirology 2009; 6:7. [PMID: 19146708 PMCID: PMC2635345 DOI: 10.1186/1742-4690-6-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 01/16/2009] [Indexed: 11/10/2022] Open
Abstract
Background Adult T-cell leukemia/lymphoma (ATLL) is a malignancy derived from T cells infected with human T-cell leukemia virus type 1 (HTLV-1), and it is known to be resistant to standard anticancer therapies. Indole-3-carbinol (I3C), a naturally occurring component of Brassica vegetables such as cabbage, broccoli and Brussels sprout, is a promising chemopreventive agent as it is reported to possess antimutagenic, antitumorigenic and antiestrogenic properties in experimental studies. The aim of this study was to determine the potential anti-ATLL effects of I3C both in vitro and in vivo. Results In the in vitro study, I3C inhibited cell viability of HTLV-1-infected T-cell lines and ATLL cells in a dose-dependent manner. Importantly, I3C did not exert any inhibitory effect on uninfected T-cell lines and normal peripheral blood mononuclear cells. I3C prevented the G1/S transition by reducing the expression of cyclin D1, cyclin D2, Cdk4 and Cdk6, and induced apoptosis by reducing the expression of XIAP, survivin and Bcl-2, and by upregulating the expression of Bak. The induced apoptosis was associated with activation of caspase-3, -8 and -9, and poly(ADP-ribose) polymerase cleavage. I3C also suppressed IκBα phosphorylation and JunD expression, resulting in inactivation of NF-κB and AP-1. Inoculation of HTLV-1-infected T cells in mice with severe combined immunodeficiency resulted in tumor growth. The latter was inhibited by treatment with I3C (50 mg/kg/day orally), but not the vehicle control. Conclusion Our preclinical data suggest that I3C could be potentially a useful chemotherapeutic agent for patients with ATLL.
Collapse
Affiliation(s)
- Yoshiaki Machijima
- Division of Molecular Virology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan.
| | | | | | | | | | | | | | | |
Collapse
|