1
|
Viral, genetic, and immune factors in the oncogenesis of adult T-cell leukemia/lymphoma. Int J Hematol 2023; 117:504-511. [PMID: 36705848 DOI: 10.1007/s12185-023-03547-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023]
Abstract
Adult T-cell leukemia/lymphoma (ATL) is a malignancy of mature CD4 + T cells induced by human T-cell leukemia virus type I (HTLV-1). HTLV-1 maintains life-long infection in the human host by clonal proliferation of infected cells and cell-to-cell spread of the virus. Two viral genes, tax and HTLV-1 bZIP factor (HBZ), promote expansion of infected cells through the important roles they play in acceleration of cell proliferation and protection from cell death. Long-term survival of infected clones in vivo causes genetic mutations and aberrant epigenetic changes to accumulate in host genes, resulting in the emergence of an ATL clone. Recent advances in sequencing technology have revealed the broad picture of genetic and transcriptional abnormalities in ATL cells. ATL cells have hyper-proliferative and anti-apoptotic signatures like those observed in other malignancies, but also notably have traits related to immune evasion. ATL cells exhibit a regulatory T-cell-like immuno-phenotype due to both the function of HBZ and mutation of several host genes, such as CCR4 and CIC. These findings suggest that immune evasion is a critical step in the oncogenesis of ATL, and thus novel therapies that activate anti-ATL/HTLV-1 immunity may be effective in the treatment and prevention of ATL.
Collapse
|
2
|
Futsch N, Prates G, Mahieux R, Casseb J, Dutartre H. Cytokine Networks Dysregulation during HTLV-1 Infection and Associated Diseases. Viruses 2018; 10:v10120691. [PMID: 30563084 PMCID: PMC6315340 DOI: 10.3390/v10120691] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/19/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of a neural chronic inflammation, called HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and of a malignant lymphoproliferation, called the adult T-cell leukemia/lymphoma (ATLL). The mechanisms through which the HTLV-1 induces these diseases are still unclear, but they might rely on immune alterations. HAM/TSP is associated with an impaired production of pro-inflammatory cytokines and chemokines, such as IFN-γ, TNF-α, CXCL9, or CXCL10. ATLL is associated with high levels of IL-10 and TGF-β. These immunosuppressive cytokines could promote a protumoral micro-environment. Moreover, HTLV-1 infection impairs the IFN-I production and signaling, and favors the IL-2, IL-4, and IL-6 expression. This contributes both to immune escape and to infected cells proliferation. Here, we review the landscape of cytokine dysregulations induced by HTLV-1 infection and the role of these cytokines in the HTLV-1-associated diseases progression.
Collapse
Affiliation(s)
- Nicolas Futsch
- Équipe Oncogenèse Rétrovirale, Equipe Labellisée «FRM», CIRI-Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Inserm U1111, CNRS UMR5308, Labex Ecofect, ENS Lyon, F-69007 Lyon, France.
| | - Gabriela Prates
- Institute of Tropical Medicine of São Paulo, São Paulo, SP 05403-000, Brazil.
- Laboratory of Dermatology and Immunodeficiencies, Department of Dermatology, University of São Paulo Medical School, São Paulo, SP 01246-100, Brazil.
| | - Renaud Mahieux
- Équipe Oncogenèse Rétrovirale, Equipe Labellisée «FRM», CIRI-Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Inserm U1111, CNRS UMR5308, Labex Ecofect, ENS Lyon, F-69007 Lyon, France.
| | - Jorge Casseb
- Institute of Tropical Medicine of São Paulo, São Paulo, SP 05403-000, Brazil.
- Laboratory of Dermatology and Immunodeficiencies, Department of Dermatology, University of São Paulo Medical School, São Paulo, SP 01246-100, Brazil.
| | - Hélène Dutartre
- Équipe Oncogenèse Rétrovirale, Equipe Labellisée «FRM», CIRI-Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Inserm U1111, CNRS UMR5308, Labex Ecofect, ENS Lyon, F-69007 Lyon, France.
| |
Collapse
|
3
|
Yamauchi J, Coler-Reilly A, Sato T, Araya N, Yagishita N, Ando H, Kunitomo Y, Takahashi K, Tanaka Y, Shibagaki Y, Nishioka K, Nakajima T, Hasegawa Y, Utsunomiya A, Kimura K, Yamano Y. Mogamulizumab, an anti-CCR4 antibody, targets human T-lymphotropic virus type 1-infected CD8+ and CD4+ T cells to treat associated myelopathy. J Infect Dis 2014; 211:238-48. [PMID: 25104771 DOI: 10.1093/infdis/jiu438] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Human T-lymphotropic virus type 1 (HTLV-1) can cause chronic spinal cord inflammation, known as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Since CD4(+)CCR4(+) T cells are the main HTLV-1 reservoir, we evaluated the defucosylated humanized anti-CCR4 antibody mogamulizumab as a treatment for HAM/TSP. METHODS We assessed the effects of mogamulizumab on peripheral blood mononuclear cells from 11 patients with HAM/TSP. We also studied how CD8(+) T cells, namely CD8(+) CCR4(+) T cells and cytotoxic T lymphocytes, are involved in HTLV-1 infection and HAM/TSP pathogenesis and how they would be affected by mogamulizumab. RESULTS Mogamulizumab effectively reduced the HTLV-1 proviral load (56.4% mean reduction at a minimum effective concentration of 0.01 µg/mL), spontaneous proliferation, and production of proinflammatory cytokines, including interferon γ (IFN-γ). Like CD4(+)CCR4(+) T cells, CD8(+)CCR4(+) T cells from patients with HAM/TSP exhibited high proviral loads and spontaneous IFN-γ production, unlike their CCR4(-) counterparts. CD8(+)CCR4(+) T cells from patients with HAM/TSP contained more IFN-γ-expressing cells and fewer interleukin 4-expressing cells than those from healthy donors. Notably, Tax-specific cytotoxic T lymphocytes that may help control the HTLV-1 infection were overwhelmingly CCR4(-). CONCLUSIONS We determined that CD8(+)CCR4(+) T cells and CD4(+)CCR4(+) T cells are prime therapeutic targets for treating HAM/TSP and propose mogamulizumab as a new treatment.
Collapse
Affiliation(s)
- Junji Yamauchi
- Department of Rare Diseases Research, Institute of Medical Science Division of Nephrology and Hypertension
| | | | - Tomoo Sato
- Department of Rare Diseases Research, Institute of Medical Science
| | - Natsumi Araya
- Department of Rare Diseases Research, Institute of Medical Science
| | - Naoko Yagishita
- Department of Rare Diseases Research, Institute of Medical Science
| | - Hitoshi Ando
- Department of Rare Diseases Research, Institute of Medical Science
| | - Yasuo Kunitomo
- Department of Rare Diseases Research, Institute of Medical Science
| | | | - Yuetsu Tanaka
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Okinawa
| | | | | | | | - Yasuhiro Hasegawa
- Division of Neurology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki
| | - Atae Utsunomiya
- Department of Hematology, Imamura Bun-in Hospital, Kagoshima, Japan
| | | | - Yoshihisa Yamano
- Department of Rare Diseases Research, Institute of Medical Science
| |
Collapse
|
4
|
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is causally associated with adult T-cell leukemia (ATL), an aggressive T-cell malignancy with a poor prognosis. To elucidate ATL pathogenesis in vivo, a variety of animal models have been established; however, the mechanisms driving this disorder remain poorly understood due to deficiencies in each of these animal models. Here, we report a novel HTLV-1-infected humanized mouse model generated by intra-bone marrow injection of human CD133(+) stem cells into NOD/Shi-scid/IL-2Rγc null (NOG) mice (IBMI-huNOG mice). Upon infection, the number of CD4(+) human T cells in the periphery increased rapidly, and atypical lymphocytes with lobulated nuclei resembling ATL-specific flower cells were observed 4 to 5 months after infection. Proliferation was seen in both CD25(-) and CD25(+) CD4 T cells with identical proviral integration sites; however, a limited number of CD25(+)-infected T-cell clones eventually dominated, indicating an association between clonal selection of infected T cells and expression of CD25. Additionally, HTLV-1-specific adaptive immune responses were induced in infected mice and might be involved in the control of HTLV-1-infected cells. Thus, the HTLV-1-infected IBMI-huNOG mouse model successfully recapitulated the development of ATL and may serve as an important tool for investigating in vivo mechanisms of ATL leukemogenesis and evaluating anti-ATL drug and vaccine candidates.
Collapse
|
5
|
Enose-Akahata Y, Abrams A, Massoud R, Bialuk I, Johnson KR, Green PL, Maloney EM, Jacobson S. Humoral immune response to HTLV-1 basic leucine zipper factor (HBZ) in HTLV-1-infected individuals. Retrovirology 2013; 10:19. [PMID: 23405908 PMCID: PMC3584941 DOI: 10.1186/1742-4690-10-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/08/2013] [Indexed: 11/15/2022] Open
Abstract
Background Human T cell lymphotropic virus type 1 (HTLV-1) infection can lead to development of adult T cell leukemia/lymphoma (ATL) or HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in a subset of infected subjects. HTLV-1 basic leucine zipper factor (HBZ) gene has a critical role in HTLV-1 infectivity and the development of ATL and HAM/TSP. However, little is known about the immune response against HBZ in HTLV-1-infected individuals. In this study, we examined antibody responses against HBZ in serum/plasma samples from 436 subjects including HTLV-1 seronegative donors, asymptomatic carriers (AC), ATL, and HAM/TSP patients using the luciferase immunoprecipitation system. Results Immunoreactivity against HBZ was detected in subsets of all HTLV-1-infected individuals but the test did not discriminate between AC, ATL and HAM/TSP. However, the frequency of detection of HBZ-specific antibodies in the serum of ATL patients with the chronic subtype was higher than in ATL patients with the lymphomatous subtype. Antibody responses against HBZ were also detected in cerebrospinal fluid of HAM/TSP patients with anti-HBZ in serum. Antibody responses against HBZ did not correlate with proviral load and HBZ mRNA expression in HAM/TSP patients, but the presence of an HBZ-specific response was associated with reduced CD4+ T cell activation in HAM/TSP patients. Moreover, HBZ-specific antibody inhibited lymphoproliferation in the PBMC of HAM/TSP patients. Conclusions This is the first report demonstrating humoral immune response against HBZ associated with HTLV-I infection. Thus, a humoral immune response against HBZ might play a role in HTLV-1 infection.
Collapse
Affiliation(s)
- Yoshimi Enose-Akahata
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Cook LB, Elemans M, Rowan AG, Asquith B. HTLV-1: persistence and pathogenesis. Virology 2013; 435:131-40. [PMID: 23217623 DOI: 10.1016/j.virol.2012.09.028] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 12/27/2022]
MESH Headings
- Adolescent
- Antigens, Viral, Tumor/genetics
- Antigens, Viral, Tumor/immunology
- HLA Antigens/genetics
- HLA Antigens/immunology
- HTLV-I Infections/immunology
- HTLV-I Infections/pathology
- HTLV-I Infections/virology
- Human T-lymphotropic virus 1/pathogenicity
- Human T-lymphotropic virus 1/physiology
- Humans
- Immunity, Innate
- Killer Cells, Natural/pathology
- Killer Cells, Natural/virology
- Leukemia, T-Cell/immunology
- Leukemia, T-Cell/pathology
- Leukemia, T-Cell/virology
- Lymphoma, T-Cell/immunology
- Lymphoma, T-Cell/pathology
- Lymphoma, T-Cell/virology
- Paraparesis, Tropical Spastic/immunology
- Paraparesis, Tropical Spastic/pathology
- Paraparesis, Tropical Spastic/virology
- Receptors, KIR/genetics
- Receptors, KIR/immunology
- T-Lymphocytes, Cytotoxic/pathology
- T-Lymphocytes, Cytotoxic/virology
Collapse
Affiliation(s)
- Lucy B Cook
- Section of Immunology, Wright-Fleming Institute, Imperial College London, London W2 1PG, UK
| | | | | | | |
Collapse
|
7
|
Suzuki S, Masaki A, Ishida T, Ito A, Mori F, Sato F, Narita T, Ri M, Kusumoto S, Komatsu H, Fukumori Y, Nishikawa H, Tanaka Y, Niimi A, Inagaki H, Iida S, Ueda R. Tax is a potential molecular target for immunotherapy of adult T-cell leukemia/lymphoma. Cancer Sci 2012; 103:1764-73. [PMID: 22735080 DOI: 10.1111/j.1349-7006.2012.02371.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 06/18/2012] [Accepted: 06/21/2012] [Indexed: 11/30/2022] Open
Abstract
We expanded CTL specific for Tax (a human T-lymphotropic virus type-1-encoded gene product) in vitro from PBMC of several adult T-cell leukemia/lymphoma (ATL) patients, and document its potential significance as a target for ATL immunotherapy. Tax-specific CTL responses against tumor cells were restricted by Tax-expression and the appropriate human leukocyte antigen (HLA) type. Tax-specific CTL recognized HLA/Tax-peptide complexes on autologous ATL cells, even when their Tax expression was so low that it could only be detected by RT-PCR but not by flow cytometry. Recognition resulted in interferon gamma (IFN-γ) production and target cell lysis. This would be the first report that Tax-specific CTL from ATL patients specifically recognized and killed autologous tumor cells that expressed Tax. The Tax-specific CTL responded to as little as 0.01 pM of the corresponding peptide, indicating that their T-cell receptor avidity was much higher than that of any other CTL recognizing viral or other tumor antigens. This is presumably the reason why the Tax-specific CTL recognized and killed autologous ATL cells despite their very low Tax expression. In addition, cell cycle analyses and experiments with primary ATL cell-bearing mice demonstrated that ATL cells present at the site of active cell proliferation, such as in the tumor masses, expressed substantial amounts of Tax, but it was minimally expressed by the tumor cells in a quiescent state, such as in the blood. The present study not only provides a strong rationale for exploiting Tax as a possible target for ATL immunotherapy but also contributes to our understanding of the immunopathogenesis of ATL.
Collapse
Affiliation(s)
- Susumu Suzuki
- Department of Medical Oncology & Immunology, Nagoya City University Graduate School of Medical Sciences, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Yoshizumi T, Shirabe K, Ikegami T, Kayashima H, Yamashita N, Morita K, Masuda T, Hashimoto N, Taketomi A, Soejima Y, Maehara Y. Impact of human T cell leukemia virus type 1 in living donor liver transplantation. Am J Transplant 2012; 12:1479-85. [PMID: 22486853 DOI: 10.1111/j.1600-6143.2012.04037.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is an endemic retrovirus in southwestern Japan, which causes adult T cell leukemia (ATL) or HTLV-1 associated myelopathy in a minority of carriers. Here, we investigated the impact of HTLV-1 status in living donor liver transplantation (LDLT). Twenty-six of 329 (7.9%) HTLV-1 carriers underwent primary LDLT. One recipient negative for HTLV-1 before LDLT received a graft from an HTLV-1 positive donor. Eight donors were HTLV-1 positive. Twenty-seven recipients (13 male and 14 female; mean age 52.5 years) were reviewed retrospectively. ATL developed in four recipients who ultimately died. The intervals between LDLT and ATL development ranged from 181 to 1315 days. Of the four ATL recipients, two received grafts from HTLV-1 positive donors and two from negative donors. The 1-, 3- and 5-year HTLV-1 carrier survival rates were 91.3%, 78.3% and 66.3%, respectively. Fulminant hepatic failure as a pretransplant diagnosis and a pretransplant MELD score ≥ 15 was identified as risk factors for ATL development in this study (p = 0.001 and p = 0.041, respectively). In conclusion, LDLT can be performed for HTLV-1 positive recipients. However, when fulminant hepatic failure is diagnosed, LDLT should not be performed until further studies have revealed the mechanisms of ATL development.
Collapse
Affiliation(s)
- T Yoshizumi
- Department of Surgery and Multidisciplinary Treatment, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|