1
|
Imam J, Singh PK, Shukla P. Plant Microbe Interactions in Post Genomic Era: Perspectives and Applications. Front Microbiol 2016; 7:1488. [PMID: 27725809 PMCID: PMC5035750 DOI: 10.3389/fmicb.2016.01488] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/07/2016] [Indexed: 01/17/2023] Open
Abstract
Deciphering plant-microbe interactions is a promising aspect to understand the benefits and the pathogenic effect of microbes and crop improvement. The advancement in sequencing technologies and various 'omics' tool has impressively accelerated the research in biological sciences in this area. The recent and ongoing developments provide a unique approach to describing these intricate interactions and test hypotheses. In the present review, we discuss the role of plant-pathogen interaction in crop improvement. The plant innate immunity has always been an important aspect of research and leads to some interesting information like the adaptation of unique immune mechanisms of plants against pathogens. The development of new techniques in the post - genomic era has greatly enhanced our understanding of the regulation of plant defense mechanisms against pathogens. The present review also provides an overview of beneficial plant-microbe interactions with special reference to Agrobacterium tumefaciens-plant interactions where plant derived signal molecules and plant immune responses are important in pathogenicity and transformation efficiency. The construction of various Genome-scale metabolic models of microorganisms and plants presented a better understanding of all metabolic interactions activated during the interactions. This review also lists the emerging repertoire of phytopathogens and its impact on plant disease resistance. Outline of different aspects of plant-pathogen interactions is presented in this review to bridge the gap between plant microbial ecology and their immune responses.
Collapse
Affiliation(s)
| | | | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand UniversityRohtak, India
| |
Collapse
|
2
|
Facelli E, Duan T, Smith SE, Christophersen HM, Facelli JM, Smith FA. Opening the black box: outcomes of interactions between arbuscular mycorrhizal (AM) and non-host genotypes of Medicago depend on fungal identity, interplay between P uptake pathways and external P supply. PLANT, CELL & ENVIRONMENT 2014; 37:1382-1392. [PMID: 24236504 DOI: 10.1111/pce.12237] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 11/11/2013] [Accepted: 11/11/2013] [Indexed: 06/02/2023]
Abstract
We investigated the physiology that underlies the influence of arbuscular mycorrhizal (AM) colonization on outcomes of interactions between plants. We grew Medicago truncatula A17 and its AM-defective mutant dmi1 in intragenotypic (two plants per pot of the same genotype, x2) or intergenotypic (one plant of each genotype, 1 + 1) combinations, inoculated or not with Rhizophagus irregularis (formerly Glomus intraradices) or Gigaspora margarita. We measured plant growth, colonization, contributions of AM and direct P uptake pathways using (32)P, and expression of plant Pi transporter genes at two levels of P supply. A17 (x2) responded positively to inoculation only at low P. The response was enhanced with 1 + 1 even at high P where colonization in A17 was reduced. With R. irregularis P uptake by the AM pathway was unaffected by P supply, whereas with G. margarita, the AM pathway was lower at high P, and direct uptake higher. Gene expression varied and was unrelated to P uptake through the two pathways. There was no evidence of plant control of P uptake via R. irregularis at high P but there was via G. margarita. Importantly, growth responses of plant genotypes grown alone did not predict outcomes of intergenotypic interactions.
Collapse
Affiliation(s)
- E Facelli
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, 5005, Australia
| | | | | | | | | | | |
Collapse
|
3
|
Jayaraman D, Valdés-López O, Kaspar CW, Ané JM. Response of Medicago truncatula seedlings to colonization by Salmonella enterica and Escherichia coli O157:H7. PLoS One 2014; 9:e87970. [PMID: 24551073 PMCID: PMC3925098 DOI: 10.1371/journal.pone.0087970] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/02/2014] [Indexed: 11/18/2022] Open
Abstract
Disease outbreaks due to the consumption of legume seedlings contaminated with human enteric bacterial pathogens like Escherichia coli O157:H7 and Salmonella enterica are reported every year. Besides contaminations occurring during food processing, pathogens present on the surface or interior of plant tissues are also responsible for such outbreaks. In the present study, surface and internal colonization of Medicago truncatula, a close relative of alfalfa, by Salmonella enterica and Escherichia coli O157:H7 were observed even with inoculum levels as low as two bacteria per plant. Furthermore, expression analyses revealed that approximately 30% of Medicago truncatula genes were commonly regulated in response to both of these enteric pathogens. This study highlights that very low inoculum doses trigger responses from the host plant and that both of these human enteric pathogens may in part use similar mechanisms to colonize legume seedlings.
Collapse
Affiliation(s)
- Dhileepkumar Jayaraman
- Department of Agronomy, University of Wisconsin–Madison, Madison Madison, Wisconsin, United States of America
| | - Oswaldo Valdés-López
- Department of Agronomy, University of Wisconsin–Madison, Madison Madison, Wisconsin, United States of America
| | - Charles W. Kaspar
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin–Madison, Madison Madison, Wisconsin, United States of America
| |
Collapse
|
4
|
Granqvist E, Wysham D, Hazledine S, Kozlowski W, Sun J, Charpentier M, Martins TV, Haleux P, Tsaneva-Atanasova K, Downie JA, Oldroyd GE, Morris RJ. Buffering capacity explains signal variation in symbiotic calcium oscillations. PLANT PHYSIOLOGY 2012; 160:2300-10. [PMID: 23027664 PMCID: PMC3510149 DOI: 10.1104/pp.112.205682] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Legumes form symbioses with rhizobial bacteria and arbuscular mycorrhizal fungi that aid plant nutrition. A critical component in the establishment of these symbioses is nuclear-localized calcium (Ca(2+)) oscillations. Different components on the nuclear envelope have been identified as being required for the generation of the Ca(2+) oscillations. Among these an ion channel, Doesn't Make Infections1, is preferentially localized on the inner nuclear envelope and a Ca(2+) ATPase is localized on both the inner and outer nuclear envelopes. Doesn't Make Infections1 is conserved across plants and has a weak but broad similarity to bacterial potassium channels. A possible role for this cation channel could be hyperpolarization of the nuclear envelope to counterbalance the charge caused by the influx of Ca(2+) into the nucleus. Ca(2+) channels and Ca(2+) pumps are needed for the release and reuptake of Ca(2+) from the internal store, which is hypothesized to be the nuclear envelope lumen and endoplasmic reticulum, but the release mechanism of Ca(2+) remains to be identified and characterized. Here, we develop a mathematical model based on these components to describe the observed symbiotic Ca(2+) oscillations. This model can recapitulate Ca(2+) oscillations, and with the inclusion of Ca(2+)-binding proteins it offers a simple explanation for several previously unexplained phenomena. These include long periods of frequency variation, changes in spike shape, and the initiation and termination of oscillations. The model also predicts that an increase in buffering capacity in the nucleoplasm would cause a period of rapid oscillations. This phenomenon was observed experimentally by adding more of the inducing signal.
Collapse
|
5
|
Mapping the genetic basis of symbiotic variation in legume-rhizobium interactions in Medicago truncatula. G3-GENES GENOMES GENETICS 2012; 2:1291-303. [PMID: 23173081 PMCID: PMC3484660 DOI: 10.1534/g3.112.003269] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/19/2012] [Indexed: 01/30/2023]
Abstract
Mutualisms are known to be genetically variable, where the genotypes differ in the fitness benefits they gain from the interaction. To date, little is known about the loci that underlie such genetic variation in fitness or whether the loci influencing fitness are partner specific, and depend on the genotype of the interaction partner. In the legume-rhizobium mutualism, one set of potential candidate genes that may influence the fitness benefits of the symbiosis are the plant genes involved in the initiation of the signaling pathway between the two partners. Here we performed quantitative trait loci (QTL) mapping in Medicago truncatula in two different rhizobium strain treatments to locate regions of the genome influencing plant traits, assess whether such regions are dependent on the genotype of the rhizobial mutualist (QTL × rhizobium strain), and evaluate the contribution of sequence variation at known symbiosis signaling genes. Two of the symbiotic signaling genes, NFP and DMI3, colocalized with two QTL affecting average fruit weight and leaf number, suggesting that natural variation in nodulation genes may potentially influence plant fitness. In both rhizobium strain treatments, there were QTL that influenced multiple traits, indicative of either tight linkage between loci or pleiotropy, including one QTL with opposing effects on growth and reproduction. There was no evidence for QTL × rhizobium strain or genotype × genotype interactions, suggesting either that such interactions are due to small-effect loci or that more genotype-genotype combinations need to be tested in future mapping studies.
Collapse
|
6
|
Jayaraman D, Forshey KL, Grimsrud PA, Ané JM. Leveraging proteomics to understand plant-microbe interactions. FRONTIERS IN PLANT SCIENCE 2012; 3:44. [PMID: 22645586 PMCID: PMC3355735 DOI: 10.3389/fpls.2012.00044] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 02/21/2012] [Indexed: 05/20/2023]
Abstract
Understanding the interactions of plants with beneficial and pathogenic microbes is a promising avenue to improve crop productivity and agriculture sustainability. Proteomic techniques provide a unique angle to describe these intricate interactions and test hypotheses. The various approaches for proteomic analysis generally include protein/peptide separation and identification, but can also provide quantification and the characterization of post-translational modifications. In this review, we discuss how these techniques have been applied to the study of plant-microbe interactions. We also present some areas where this field of study would benefit from the utilization of newly developed methods that overcome previous limitations. Finally, we reinforce the need for expanding, integrating, and curating protein databases, as well as the benefits of combining protein-level datasets with those from genetic analyses and other high-throughput large-scale approaches for a systems-level view of plant-microbe interactions.
Collapse
Affiliation(s)
| | - Kari L. Forshey
- Department of Agronomy, University of Wisconsin MadisonMadison, WI, USA
- Department of Genetics, University of Wisconsin MadisonMadison, WI, USA
| | - Paul A. Grimsrud
- Department of Biochemistry, University of Wisconsin MadisonMadison, WI, USA
| | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin MadisonMadison, WI, USA
- *Correspondence: Jean-Michel Ané, Department of Agronomy, University of Wisconsin Madison, 1575 Linden Drive, Madison, WI 53706, USA. e-mail:
| |
Collapse
|
7
|
Horváth B, Yeun LH, Domonkos A, Halász G, Gobbato E, Ayaydin F, Miró K, Hirsch S, Sun J, Tadege M, Ratet P, Mysore KS, Ané JM, Oldroyd GED, Kaló P. Medicago truncatula IPD3 is a member of the common symbiotic signaling pathway required for rhizobial and mycorrhizal symbioses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1345-58. [PMID: 21692638 DOI: 10.1094/mpmi-01-11-0015] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Legumes form endosymbiotic associations with nitrogen-fixing bacteria and arbuscular mycorrhizal (AM) fungi which facilitate nutrient uptake. Both symbiotic interactions require a molecular signal exchange between the plant and the symbiont, and this involves a conserved symbiosis (Sym) signaling pathway. In order to identify plant genes required for intracellular accommodation of nitrogen-fixing bacteria and AM fungi, we characterized Medicago truncatula symbiotic mutants defective for rhizobial infection of nodule cells and colonization of root cells by AM hyphae. Here, we describe mutants impaired in the interacting protein of DMI3 (IPD3) gene, which has been identified earlier as an interacting partner of the calcium/calmodulin-dependent protein, a member of the Sym pathway. The ipd3 mutants are impaired in both rhizobial and mycorrhizal colonization and we show that IPD3 is necessary for appropriate Nod-factor-induced gene expression. This indicates that IPD3 is a member of the common Sym pathway. We observed differences in the severity of ipd3 mutants that appear to be the result of the genetic background. This supports the hypothesis that IPD3 function is partially redundant and, thus, additional genetic components must exist that have analogous functions to IPD3. This explains why mutations in an essential component of the Sym pathway have defects at late stages of the symbiotic interactions.
Collapse
|
8
|
Isolation, phylogeny and evolution of the SymRK gene in the legume genus Lupinus L. Mol Phylogenet Evol 2011; 60:49-61. [DOI: 10.1016/j.ympev.2011.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 02/04/2023]
|
9
|
Rodpothong P, Sullivan JT, Songsrirote K, Sumpton D, Cheung KWJT, Thomas-Oates J, Radutoiu S, Stougaard J, Ronson CW. Nodulation gene mutants of Mesorhizobium loti R7A-nodZ and nolL mutants have host-specific phenotypes on Lotus spp. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1546-54. [PMID: 19888820 DOI: 10.1094/mpmi-22-12-1546] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Rhizobial Nod factors induce plant responses and facilitate bacterial infection, leading to the development of nitrogen-fixing root nodules on host legumes. Nodule initiation is highly dependent on Nod-factor structure and, hence, on at least some of the nodulation genes that encode Nod-factor production. Here, we report the effects of mutations in Mesorhizobium loti R7A nodulation genes on nodulation of four Lotus spp. and on Nod-factor structure. Most mutants, including a DeltanodSDeltanolO double mutant that produced Nod factors lacking the carbamoyl and possibly N-methyl groups on the nonreducing terminal residue, were unaffected for nodulation. R7ADeltanodZ and R7ADeltanolL mutants that produced Nod factors without the (acetyl)fucose on the reducing terminal residue had a host-specific phenotype, forming mainly uninfected nodule primordia on Lotus filicaulis and L. corniculatus and effective nodules with a delay on L. japonicus. The mutants also showed significantly reduced infection thread formation and Nin gene induction. In planta complementation experiments further suggested that the acetylfucose was important for balanced signaling in response to Nod factor by the L. japonicus NFR1/NFR5 receptors. Overall the results reveal differences in the sensitivity of plant perception with respect to signaling leading to root hair deformation and nodule primordium development versus infection thread formation and rhizobial entry.
Collapse
Affiliation(s)
- Patsarin Rodpothong
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Navazio L, Mariani P. Calcium opens the dialogue between plants and arbuscular mycorrhizal fungi. PLANT SIGNALING & BEHAVIOR 2008; 3:229-30. [PMID: 19704636 PMCID: PMC2634184 DOI: 10.4161/psb.3.4.5093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Accepted: 09/27/2007] [Indexed: 05/14/2023]
Abstract
Calcium ion is considered a ubiquitous second messenger in all eukaryotic cells. Analysis of intracellular Ca(2+) concentration dynamics has demonstrated its signalling role in plant cells in response to a wide array of environmental cues. The implication of Ca(2+) in the early steps of the arbuscular mycorrhizal symbiosis has been frequently claimed, mainly by analogy with what firmly demonstrated in the rhizobium-legume symbiosis. We recently documented transient Ca(2+) changes in plant cells challenged with diffusible molecules released by arbuscular mycorrhizal fungi. Ca(2+) measurements by the recombinant aequorin method provided new insights into the molecular communications between plants and these beneficial fungi.
Collapse
Affiliation(s)
- Lorella Navazio
- Dipartimento di Biologia; Università di Padova; Padova, Italy
| | | |
Collapse
|
11
|
Messinese E, Mun JH, Yeun LH, Jayaraman D, Rougé P, Barre A, Lougnon G, Schornack S, Bono JJ, Cook DR, Ané JM. A novel nuclear protein interacts with the symbiotic DMI3 calcium- and calmodulin-dependent protein kinase of Medicago truncatula. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:912-21. [PMID: 17722695 DOI: 10.1094/mpmi-20-8-0912] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Many higher plants establish symbiotic relationships with arbuscular mycorrhizal (AM) fungi that improve their ability to acquire nutrients from the soil. In addition to establishing AM symbiosis, legumes also enter into a nitrogen-fixing symbiosis with bacteria known as rhizobia that results in the formation of root nodules. Several genes involved in the perception and transduction of bacterial symbiotic signals named "Nod factors" have been cloned recently in model legumes through forward genetic approaches. Among them, DMI3 (Doesn't Make Infections 3) is a calcium- and calmodulin-dependent kinase required for the establishment of both nodulation and AM symbiosis. We have identified, by a yeast two-hybrid system, a novel protein interacting with DMI3 named IPD3 (Interacting Protein of DMI3). IPD3 is predicted to interact with DMI3 through a C-terminal coiled-coil domain. Chimeric IPD3::GFP is localized to the nucleus of transformed Medicago truncatula root cells, in which split yellow fluorescent protein assays suggest that IPD3 and DMI3 physically interact in Nicotiana benthamiana. Like DMI3, IPD3 is extremely well conserved among the angiosperms and is absent from Arabidopsis. Despite this high level of conservation, none of the homologous proteins have a demonstrated biological or biochemical function. This work provides the first evidence of the involvement of IPD3 in a nuclear interaction with DMI3.
Collapse
Affiliation(s)
- Elsa Messinese
- Department of Agronomy, University of Wisconsin, 1575 Linden Drive, Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Capoen W, Den Herder J, Rombauts S, De Gussem J, De Keyser A, Holsters M, Goormachtig S. Comparative transcriptome analysis reveals common and specific tags for root hair and crack-entry invasion in Sesbania rostrata. PLANT PHYSIOLOGY 2007; 144:1878-89. [PMID: 17600136 PMCID: PMC1949896 DOI: 10.1104/pp.107.102178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The tropical legume Sesbania rostrata provides its microsymbiont Azorhizobium caulinodans with versatile invasion strategies to allow nodule formation in temporarily flooded habitats. In aerated soils, the bacteria enter via the root hair curling mechanism. Submergence prevents this epidermal invasion by accumulation of inhibiting concentrations of ethylene and, under these conditions, the bacterial colonization occurs via intercellular cortical infection at lateral root bases. The transcriptome of both invasion ways was compared by cDNA-amplified fragment length polymorphism analysis. Clusters of gene tags were identified that were specific for either epidermal or cortical invasion or were shared by both. The data provide insight into mechanisms that control infection and illustrate that entry via the epidermis adds a layer of complexity to rhizobial invasion.
Collapse
Affiliation(s)
- Ward Capoen
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Ghent University, B-9052 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
13
|
Pislariu CI, Dickstein R. The AGC Kinase MtIRE: A Link to Phospholipid Signaling During Nodulation? PLANT SIGNALING & BEHAVIOR 2007; 2:314-316. [PMID: 19704633 PMCID: PMC2634162 DOI: 10.4161/psb.2.4.4115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 03/07/2007] [Indexed: 05/28/2023]
Abstract
The development of nitrogen fixing root nodules is complex and involves an interplay of signaling processes. During maturation of plant host cells and their endocytosed rhizobia in symbiosomes, host cells and symbiosomes expand. This expansion is accompanied by a large quantity of membrane biogenesis. We recently characterized an AGC kinase gene, MtIRE, that could play a role in this expansion. MtIRE's expression coincides with host cell and symbiosome expansion in the proximal side of the invasion zone in developing Medicago truncatula nodules. MtIRE's closest homolog is the Arabidopsis AGC kinase family IRE gene, which regulates root hair elongation. AGC kinases are regulated by phospholipid signaling in animals and fungi as well as in the several instances where they have been studied in plants. Here we suggest that a phospholipid signaling pathway may also activate MtIRE activity and propose possible upstream activators of MtIRE protein's presumed AGC kinase activity.
Collapse
Affiliation(s)
- Catalina I Pislariu
- Department of Biological Sciences; University of North Texas; Denton, Texas USA
| | | |
Collapse
|
14
|
Riely BK, Lougnon G, Ané JM, Cook DR. The symbiotic ion channel homolog DMI1 is localized in the nuclear membrane of Medicago truncatula roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:208-16. [PMID: 17173544 DOI: 10.1111/j.1365-313x.2006.02957.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Legumes utilize a common signaling pathway to form symbiotic associations both with rhizobial bacteria and arbuscular mycorrhizal fungi. The perception of microbial signals is believed to take place at the plasma membrane, activating a cascade that converges on the nucleus where transcriptional reprogramming facilitates the symbioses. Forward genetic strategies have identified genes in this signaling pathway including Medicago truncatula DMI1 (Doesn't Make Infections 1) that encodes a putative ion channel. Although the DMI1 homologs from Lotus japonicus, CASTOR and POLLUX, were recently reported to be localized in plastids, we report here that a functional DMI1::GFP fusion is localized to the nuclear envelope in M. truncatula roots when expressed both from a constitutive 35S promoter and from a native DMI1 promoter. Localization may be mediated in part by sequences located within the amino-terminus of DMI1. This region of DMI1 is required for symbiotic signal transduction, and its replacement with a bona fide plastid transit peptide from the glutamine synthetase 2 gene does not restore DMI1 function. These new data place DMI1 in the nuclear envelope in close proximity to the origin of Nod-factor-induced calcium spiking.
Collapse
Affiliation(s)
- Brendan K Riely
- Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | |
Collapse
|