1
|
Liu M, Lan Q, Yang L, Deng Q, Wei T, Zhao H, Peng P, Lin X, Chen Y, Ma H, Wei H, Yin Y. Genome-Wide Association Analysis Identifies Genomic Regions and Candidate Genes for Growth and Fatness Traits in Diannan Small-Ear (DSE) Pigs. Animals (Basel) 2023; 13:ani13091571. [PMID: 37174608 PMCID: PMC10177038 DOI: 10.3390/ani13091571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/13/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
In the livestock industry, the growth and fatness traits are directly related to production efficiency and economic profits. As for Diannan small-ear (DSE) pigs, a unique indigenous breed, the genetic architecture of growth and fatness traits is still elusive. The aim of this study was to search the genetic loci and candidate genes associated with phenotypic traits in DSE pigs using GWAS based on the Geneseek Porcine 50K SNP Chip data. A total of 22,146 single nucleotide polymorphisms (SNPs) were detected in 265 DSE pigs and used for Genome-wide association studies (GWAS) analysis. Seven SNPs were found to be associated with back height, chest circumference, cannon bone circumference, and backfat thickness at the suggestive significance level. Based on gene annotation results, these seven SNPs were, respectively, mapped to the following candidate genes, VIPR2, SLC10A2, NUCKS1, MCT1, CHCHD3, SMOX, and GPR1, which are mainly involved with adipocyte differentiation, lipid metabolism, skeletal muscle development, and average daily weight gain. Our work offers novel insights into the genetic architecture of economically important traits in swine and may play an important role in breeding using molecular markers in the DSE breed.
Collapse
Affiliation(s)
- Mei Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Qun Lan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Long Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Qiuchun Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Taiyun Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming 650201, China
| | - Heng Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming 650201, China
| | - Peiya Peng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoding Lin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yuhan Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Hongjiang Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming 650201, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
2
|
Yang M, Zhang R, Liu X, Shi G, Liu H, Wang L, Hou X, Shi L, Wang L, Zhang L. Integrating genome-wide association study with RNA-seq revealed DBI as a good candidate gene for intramuscular fat content in Beijing black pigs. Anim Genet 2023; 54:24-34. [PMID: 36305366 DOI: 10.1111/age.13270] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 01/07/2023]
Abstract
Increasing intramuscular fat (IMF) content can enhance the sensory quality of meat, including tenderness, juiciness, flavor, and color. Genome-wide association study and RNA-sequencing (RNA-seq) analysis were used to identify candidate IMF genes in Beijing Black pigs, a popular species among consumers in northern China. Two and three single nucleotide polymorphisms were significantly associated with IMF in SSC13 and SSC15 respectively. Solute carrier family 4 member 7 (SLC4A7) on SSC13 and insulin induced gene 2 (INSIG2), coiled-coil domain containing 93 (CCDC93), and diazepam binding inhibitor acyl-CoA binding protein (DBI) on SSC15 are good candidate genes in this population. Furthermore, RNA-seq analysis was performed between high and low IMF groups, and 534 differentially expressed genes were identified. In addition, based on differentially expressed genes, Kyoto Encyclopedia of Genes and Genomes analysis revealed that peroxisome proliferator-activated receptors and FoxO signaling pathway pathways might contribute to IMF. Moreover, the DBI gene was identified as a candidate for IMF both by genome-wide association study and RNA-seq analysis, suggesting that it might be a crucial candidate gene for influencing IMF in Beijing Black pigs.
Collapse
Affiliation(s)
- Man Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Run Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiance Liu
- Beijing Heiliu Animal Husbandry Technology Co, Ltd, Beijing, China
| | - Guohua Shi
- Beijing Heiliu Animal Husbandry Technology Co, Ltd, Beijing, China
| | - Hai Liu
- Beijing Heiliu Animal Husbandry Technology Co, Ltd, Beijing, China
| | - Ligang Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinhua Hou
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijun Shi
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixian Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Longchao Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Wang K, Wang S, Ji X, Chen D, Shen Q, Yu Y, Wu P, Li X, Tang G. Epigenome-wide association studies of meat traits in Chinese Yorkshire pigs highlights several DNA methylation loci and genes. Front Genet 2023; 13:1028711. [PMID: 36685918 PMCID: PMC9845630 DOI: 10.3389/fgene.2022.1028711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
In this study, we aimed to identified CpG sites at which DNA methylation levels are associated with meat quality traits in 140 Yorkshire pigs, including pH at 45 min (pH45min), pH at 24 h (pH24h), drip loss (DL), meat redness value (a*), yellowness (b*) and lightness (L*). Genome-wide methylation levels were measured in muscular tissue using reduced representation bisulfite sequencing (RRBS). Associations between DNA methylation levels and meat quality traits were examined using linear mixed-effect models that were adjusted for gender, year, month and body weight. A Bonferroni-corrected p-value lower than 7.79 × 10 - 8 was considered statistically significant threshold. Eight CpG sites were associated with DL, including CpG sites annotated to RBM4 gene (cpg301054, cpg301055, cpg301058, cpg301059, cpg301066, cpg301072 and cpg301073) and NCAM1 gene (cpg1802985). Two CpG sites were associated with b*, including RNFT1 and MED13 (cpg2272837) and TRIM37 gene (cpg2270611). Five CpG sites were associated with L*, including GSDMA and LRRC3C gene (cpg2252750) and ENSSSCG00000043539 and IRX1 gene (cpg2820178, cpg2820179, cpg2820181 and cpg2820182). No significant associations were observed with pH45min, pH24h or a*. We reported associations of meat quality traits with DNA methylation and identified some candidate genes associated with these traits, such as NCAM1, MED13 and TRIM37 gene. These results provide new insight into the epigenetic molecular mechanisms of meat quality traits in pigs.
Collapse
Affiliation(s)
- Kai Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shujie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiang Ji
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dong Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qi Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yang Yu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Pingxian Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Chongqing Academy of Animal Science, Chongqing, China
| | - Xuewei Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Guoqing Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China,*Correspondence: Guoqing Tang,
| |
Collapse
|
4
|
Jiang Y, Liu J, Liu H, Zhang W, Li X, Liu L, Zhou M, Wang J, Su S, Ding X, Wang C. miR-381-3p Inhibits Intramuscular Fat Deposition through Targeting FABP3 by ceRNA Regulatory Network. BIOLOGY 2022; 11:biology11101497. [PMID: 36290402 PMCID: PMC9598794 DOI: 10.3390/biology11101497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 01/24/2023]
Abstract
Intramuscular fat (IMF) deposition is an important determinant of pork quality and a complex process facilitated by non-coding ceRNAs. In this study, 52 Berkshire × Anqing Sixwhite crossbred pigs were slaughtered to measure eight carcass and pork quality traits. Whole-transcriptome sequencing analysis was performed using longissimus dorsi samples of six low- and high-IMF samples; 34 ceRNA networks, based on 881, 394, 158 differentially expressed (DE) lncRNAs, miRNAs, and mRNAs, were constructed. Following weighted gene co-expression network analysis between the low and high IMF, only one ceRNA, lncRNA4789/miR-381-3p/FABP3, that showed similar DE trend in longissimus dorsi tissue was retained. Dual-luciferase reporter assays further indicated that FABP3 was a direct, functional target of miR-381-3p, where miR-381-3p overexpression inhibited the mRNA and protein expression of FABP3. In addition, overexpressed lncRNA4789 attenuated the effect of miR-381-3p on FABP3 by sponging miR-381-3p. Cell function verification experiment demonstrated that miR-381-3p suppressed IMF deposition by inhibiting preadipocyte cell differentiation and lipid droplet deposition via the suppression of FABP3 expression in the peroxisome proliferator-activated receptor signalling pathway, whereas lncRNA4789 rescued FABP3 expression by sponging miR-381-3p. Our study may aid in identifying novel molecular markers for its optimization in IMF which is of importance in breeding for improving pork quality.
Collapse
Affiliation(s)
- Yao Jiang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- National Animal Husbandry Service, Beijing 100125, China
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiali Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huatao Liu
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei Zhang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xiaojin Li
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Linqing Liu
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Mei Zhou
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Jieru Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Shiguang Su
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xiangdong Ding
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chonglong Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Correspondence:
| |
Collapse
|
5
|
Comprehensive Analysis of Differentially Expressed mRNAs, lncRNAs and circRNAs Related to Intramuscular Fat Deposition in Laiwu Pigs. Genes (Basel) 2022; 13:genes13081349. [PMID: 36011260 PMCID: PMC9407282 DOI: 10.3390/genes13081349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) are important classes of small noncoding RNAs that can regulate numerous biological processes. To understand the role of message RNA (mRNAs, lncRNAs and circRNAs) in the regulation of intramuscular fat (IMF) deposition, in this study the expression profiles of longissimus dorsi (LD) muscle from six Laiwu pigs (three with extremely high and three with extremely low IMF content) were sequenced based on rRNA-depleted library construction. In total, 323 differentially expressed protein-coding genes (DEGs), 180 lncRNAs (DELs) and 105 circRNAs (DECs) were detected between the high IMF and low IMF groups. Functional analysis indicated that most DEGs, and some target genes of DELs, were enriched into GO terms and pathways related to adipogenesis, suggesting their important roles in regulating IMF deposition. In addition, 12 DELs were observed to exhibit a positive relationship with stearoyl-CoA desaturase (SCD), phosphoenolpyruvate carboxykinase 1 (PCK1), and adiponectin (ADIPOQ), suggesting they are highly likely to be the target genes of DELs. Finally, we constructed a source gene-circRNA-miRNA connective network, and some of miRNA of the network have been reported to affect lipid metabolism or adipogenesis. Overall, this work provides a valuable resource for further research and helps to understand the potential functions of lncRNAs and circRNAs in IMF deposition.
Collapse
|
6
|
Li J, Peng S, Zhong L, Zhou L, Yan G, Xiao S, Ma J, Huang L. Identification and validation of a regulatory mutation upstream of the BMP2 gene associated with carcass length in pigs. Genet Sel Evol 2021; 53:94. [PMID: 34906088 PMCID: PMC8670072 DOI: 10.1186/s12711-021-00689-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 12/01/2021] [Indexed: 11/10/2022] Open
Abstract
Background Carcass length is very important for body size and meat production for swine, thus understanding the genetic mechanisms that underly this trait is of great significance in genetic improvement programs for pigs. Although many quantitative trait loci (QTL) have been detected in pigs, very few have been fine-mapped to the level of the causal mutations. The aim of this study was to identify potential causal single nucleotide polymorphisms (SNPs) for carcass length by integrating a genome-wide association study (GWAS) and functional assays. Results Here, we present a GWAS in a commercial Duroc × (Landrace × Yorkshire) (DLY) population that reveals a prominent association signal (P = 4.49E−07) on pig chromosome 17 for carcass length, which was further validated in two other DLY populations. Within the detected 1 Mb region, the BMP2 gene stood out as the most likely causal candidate because of its functions in bone growth and development. Whole-genome gene expression studies showed that the BMP2 gene was differentially expressed in the cartilage tissues of pigs with extreme carcass length. Then, we genotyped an additional 267 SNPs in 500 selected DLY pigs, followed by further whole-genome SNP imputation, combined with deep genome resequencing data on multiple pig breeds. Reassociation analyses using genotyped and imputed SNP data revealed that the rs320706814 SNP, located approximately 123 kb upstream of the BMP2 gene, was the strongest candidate causal mutation, with a large association with carcass length, with a ~ 4.2 cm difference in length across all three DLY populations (N = 1501; P = 3.66E−29). This SNP segregated in all parental lines of the DLY (Duroc, Large White and Landrace) and was also associated with a significant effect on body length in 299 pure Yorkshire pigs (P = 9.2E−4), which indicates that it has a major value for commercial breeding. Functional assays showed that this SNP is likely located within an enhancer and may affect the binding affinity of transcription factors, thereby regulating BMP2 gene expression. Conclusions Taken together, these results suggest that the rs320706814 SNP on pig chromosome 17 is a putative causal mutation for carcass length in the widely used DLY pigs and has great value in breeding for body size in pigs. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-021-00689-0.
Collapse
Affiliation(s)
- Jing Li
- National Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Song Peng
- National Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Liepeng Zhong
- National Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lisheng Zhou
- National Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Guorong Yan
- National Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shijun Xiao
- National Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Junwu Ma
- National Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Lusheng Huang
- National Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
7
|
Cheng F, Liang J, Yang L, Lan G, Wang L, Wang L. Systematic Identification and Comparison of the Expressed Profiles of lncRNAs, miRNAs, circRNAs, and mRNAs with Associated Co-Expression Networks in Pigs with Low and High Intramuscular Fat. Animals (Basel) 2021; 11:ani11113212. [PMID: 34827944 PMCID: PMC8614448 DOI: 10.3390/ani11113212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Intramuscular fat (IMF) content is a complex trait that affects meat quality and determines pork quality. In order to explore the potential mechanisms that affect the intramuscular fat content of pigs, a Large white × Min pigs F2 resource populations were constructed, then whole-transcriptome profile analysis was carried out for five low-IMF and five high-IMF F2 individuals. In total, 218 messenger RNA (mRNAs), 213 long non-coding RNAs (lncRNAs), 18 microRNAs (miRNAs), and 59 circular RNAs (circRNAs) were found to be differentially expressed in the longissimus dorsi muscle. Gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes annotations revealed that these differentially expressed (DE) genes or potential target genes (PTGs) of DE regulatory RNAs (lncRNAs, miRNAs, and circRNAs) are mainly involved in cell differentiation, fatty acid synthesis, system development, muscle fiber development, and regulating lipid metabolism. In total, 274 PTGs were found to be differentially expressed between low- and high-IMF pigs, which indicated that some DE regulatory RNAs may contribute to the deposition/metabolism of IMF by regulating their PTGs. In addition, we analyzed the quantitative trait loci (QTLs) of DE RNAs co-located in high- and low-IMF groups. A total of 97 DE regulatory RNAs could be found located in the QTLs related to IMF. Co-expression networks among different types of RNA and competing endogenous RNA (ceRNA) regulatory networks were also constructed, and some genes involved in type I diabetes mellitus were found to play an important role in the complex molecular process of intramuscular fat deposition. This study identified and analyzed some differential RNAs, regulatory RNAs, and PTGs related to IMF, and provided new insights into the study of IMF formation at the level of the genome-wide landscape.
Collapse
Affiliation(s)
- Feng Cheng
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.C.); (L.Y.)
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.L.); (G.L.)
| | - Jing Liang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.L.); (G.L.)
| | - Liyu Yang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.C.); (L.Y.)
| | - Ganqiu Lan
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.L.); (G.L.)
| | - Lixian Wang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.C.); (L.Y.)
- Correspondence: (L.W.); (L.W.)
| | - Ligang Wang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.C.); (L.Y.)
- Correspondence: (L.W.); (L.W.)
| |
Collapse
|
8
|
Liu X, Zhang J, Xiong X, Chen C, Xing Y, Duan Y, Xiao S, Yang B, Ma J. An Integrative Analysis of Transcriptome and GWAS Data to Identify Potential Candidate Genes Influencing Meat Quality Traits in Pigs. Front Genet 2021; 12:748070. [PMID: 34745221 PMCID: PMC8567094 DOI: 10.3389/fgene.2021.748070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Understanding the genetic factors behind meat quality traits is of great significance to animal breeding and production. We previously conducted a genome-wide association study (GWAS) for meat quality traits in a White Duroc × Erhualian F2 pig population using Illumina porcine 60K SNP data. Here, we further investigate the functional candidate genes and their network modules associated with meat quality traits by integrating transcriptomics and GWAS information. Quantitative trait transcript (QTT) analysis, gene expression QTL (eQTL) mapping, and weighted gene co-expression network analysis (WGCNA) were performed using the digital gene expression (DGE) data from 493 F2 pig's muscle and liver samples. Among the quantified 20,108 liver and 23,728 muscle transcripts, 535 liver and 1,014 muscle QTTs corresponding to 416 and 721 genes, respectively, were found to be significantly (p < 5 × 10-4) correlated with 22 meat quality traits measured on longissiums dorsi muscle (LM) or semimembranosus muscle (SM). Transcripts associated with muscle glycolytic potential (GP) and pH values were enriched for genes involved in metabolic process. There were 42 QTTs (for 32 genes) shared by liver and muscle tissues, of which 10 QTTs represent GP- and/or pH-related genes, such as JUNB, ATF3, and PPP1R3B. Furthermore, a genome-wide eQTL mapping revealed a total of 3,054 eQTLs for all annotated transcripts in muscle (p < 2.08 × 10-5), including 1,283 cis-eQTLs and 1771 trans-eQTLs. In addition, WGCNA identified five modules relevant to glycogen metabolism pathway and highlighted the connections between variations in meat quality traits and genes involved in energy process. Integrative analysis of GWAS loci, eQTL, and QTT demonstrated GALNT15/GALNTL2 and HTATIP2 as strong candidate genes for drip loss and pH drop from postmortem 45 min to 24 h, respectively. Our findings provide valuable insights into the genetic basis of meat quality traits and greatly expand the number of candidate genes that may be valuable for future functional analysis and genetic improvement of meat quality.
Collapse
Affiliation(s)
- Xianxian Liu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Junjie Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xinwei Xiong
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Congying Chen
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yuyun Xing
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yanyu Duan
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Shijun Xiao
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Bin Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Junwu Ma
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
9
|
Liu Q, Long Y, Zhang YF, Zhang ZY, Yang B, Chen CY, Huang LS, Su Y. Phenotypic and genetic correlations of pork myoglobin content with meat colour and other traits in an eight breed-crossed heterogeneous population. Animal 2021; 15:100364. [PMID: 34601209 DOI: 10.1016/j.animal.2021.100364] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022] Open
Abstract
Meat colour is one of the most important meat quality traits affecting consumption desire. Genetic improvement for meat colour traits is not so easy because pigs can be phenotyped only after slaughter. Besides the parameters from the optical instrument, other indexes that reflect the material basis of meat colour should be measured accurately and used in the genomic analysis. Myoglobin (Mb) is the main chemical component determining meat colour. However, to what extent the Mb content contributes to meat colour, and whether it can be used as a trait for pig breeding to improve meat colour, and the correlations of Mb content with complex porcine traits are largely unknown. To address these questions, we measured the muscle Mb content in 624 pigs from the 7th generation of a specially designed eight breed-crossed pig heterogeneous population, evaluated its phenotypic and genetic correlations with longissimus thoracis colour score at 24 h after slaughter. More than that, we also systematically phenotyped more than 100 traits on these animals to evaluate the potential correlations between muscle Mb content and economically important traits. Our results showed that the average muscle Mb content in the 624 pigs was 1.00 mg/g, ranging from 0.51 to 2.17 mg/g. We found that higher Mb content usually correlated with favourable meat colour, higher marbling score, less moisture content, and less drip loss. Genetic correlation analysis between muscle Mb content and 101 traits measured in this study shows that Mb content is also significantly correlated with 31 traits, including marbling, shear force, firmness, and juiciness. To our knowledge, this is one of the largest studies about the correlations of muscle Mb content with as many as 100 various traits in a large-scale genetically diversified population. Our results showed that the Mb content could be a selection parameter for the genetic improvement of meat colour. The selection for higher Mb content will also benefit marbling, shear force, firmness, and overall liking but might not affect the growth, carcass, and fat deposition traits.
Collapse
Affiliation(s)
- Q Liu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Y Long
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, 330045 Nanchang, China; Present address: Taihe Aomu Breeding Company Limited, Fujian Aonong Biological Technology Group Incorporation Limited, 343713 Taihe, China
| | - Y F Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Z Y Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, 330045 Nanchang, China
| | - B Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, 330045 Nanchang, China
| | - C Y Chen
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, 330045 Nanchang, China
| | - L S Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Y Su
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, 330045 Nanchang, China.
| |
Collapse
|
10
|
Wang BB, Hou LM, Zhou WD, Liu H, Tao W, Wu WJ, Niu PP, Zhang ZP, Zhou J, Li Q, Huang RH, Li PH. Genome-wide association study reveals a quantitative trait locus and two candidate genes on Sus scrofa chromosome 5 affecting intramuscular fat content in Suhuai pigs. Animal 2021; 15:100341. [PMID: 34425484 DOI: 10.1016/j.animal.2021.100341] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022] Open
Abstract
Intramuscular fat content (IFC) is an essential quantitative trait of meat, affecting multiple meat quality indicators. A certain amount of IFC could not only improve the sensory score of pork but also increase the flavour, tenderness, juiciness and shelf-life. To dissect the genetic determinants of IFC, two methods, including genome-wide efficient mixed-model analysis (GEMMA) and linkage disequilibrium adjusted kinships (LDAKs), were used to carry out genome-wide association studies for IFC in Suhuai pig population. A total of 14 and 18 significant single nucleotide polymorphisms (SNPs) were identified by GEMMA and LDAK, respectively. The results of these two methods were highly consistent and all 14 significant SNPs in GEMMA were detected by LDAK. Seven of the 18 SNPs reached the genome-wide significance level (P < 9.85E-07) while 11 cases reached the suggestive significance level (P < 1.77E-05). These significant SNPs were mainly distributed on Sus scrofa chromosome (SSC) 5, 3, and 7. Moreover, one locus resides in a 2.27 Mb (71.37-73.64 Mb) region on SSC5 harbouring 13 significant SNPs associated with IFC, and the lead SNP (rs81302978) also locates in this region. Linkage disequilibrium (LD) analysis showed that there were four pairs of complete LD (r2 = 1) among these 13 SNPs, and the remaining 9 SNPs with incomplete LD (r2 ≠ 1) were selected for subsequent analyses of IFC. Association analyses showed that 7 out of 9 SNPs were significantly associated with IFC (P < 0.05) in 330 Suhuai pigs, and the other 2 SNPs tended to reach a significant association level with IFC (P < 0.1). The phenotypic variance explained (PVE) range of these 9 SNPs was 0.92-3.55%. Meanwhile, the lead SNP was also significantly associated (rs81302978) with IFC (P < 0.05) in 378 commercial hybrid pigs (Pietrain × Duroc) × (Landrace × Yorkshire) (PDLY), and the PVE was 1.38%. Besides, two lipid metabolism-relevant candidate genes, the leucine rich repeat kinase 2 (LRRK2) and PDZ domain containing ring finger 4 (PDZRN4) were identified in the 2.27 Mb region on SSC5. In conclusion, our results may provide a set of markers useful for genetic improvement of IFC in pigs and will advance the genome selection process of IFC on pig breeding programmes.
Collapse
Affiliation(s)
- B B Wang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; Huaian Academy, Nanjing Agricultural University, Huaian 223005, China
| | - L M Hou
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; Huaian Academy, Nanjing Agricultural University, Huaian 223005, China
| | - W D Zhou
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
| | - H Liu
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; Huaian Academy, Nanjing Agricultural University, Huaian 223005, China
| | - W Tao
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; Huaian Academy, Nanjing Agricultural University, Huaian 223005, China
| | - W J Wu
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
| | - P P Niu
- Huaian Academy, Nanjing Agricultural University, Huaian 223005, China
| | - Z P Zhang
- Huaian Academy, Nanjing Agricultural University, Huaian 223005, China
| | - J Zhou
- Huaiyin Pig Breeding Farm of Huaian City, Huaian 223322, China
| | - Q Li
- Huaiyin Pig Breeding Farm of Huaian City, Huaian 223322, China
| | - R H Huang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; Huaian Academy, Nanjing Agricultural University, Huaian 223005, China
| | - P H Li
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; Huaian Academy, Nanjing Agricultural University, Huaian 223005, China.
| |
Collapse
|
11
|
Yan G, Liu X, Xiao S, Xin W, Xu W, Li Y, Huang T, Qin J, Xie L, Ma J, Zhang Z, Huang L. An imputed whole-genome sequence-based GWAS approach pinpoints causal mutations for complex traits in a specific swine population. SCIENCE CHINA-LIFE SCIENCES 2021; 65:781-794. [PMID: 34387836 DOI: 10.1007/s11427-020-1960-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/19/2021] [Indexed: 01/08/2023]
Abstract
Sequencing-based genome-wide association studies (GWAS) have facilitated the identification of causal associations between genetic variants and traits in diverse species. However, it is cost-prohibitive for the majority of research groups to sequence a large number of samples. Here, we carried out genotype imputation to increase the density of single nucleotide polymorphisms in a large-scale Swine F2 population using a reference panel including 117 individuals, followed by a series of GWAS analyses. The imputation accuracies reached 0.89 and 0.86 for allelic concordance and correlation, respectively. A quantitative trait nucleotide (QTN) affecting the chest vertebrate was detected directly, while the investigation of another QTN affecting the residual glucose failed due to the presence of similar haplotypes carrying wild-type and mutant allelesin the reference panel used in this study. A high imputation accuracy was confirmed by Sanger sequencing technology for the most significant loci. Two candidate genes, CPNE5 and MYH3, affecting meat-related traits were proposed. Collectively, we illustrated four scenarios in imputation-based GWAS that may be encountered by researchers, and our results will provide an extensive reference for future genotype imputation-based GWAS analyses in the future.
Collapse
Affiliation(s)
- Guorong Yan
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xianxian Liu
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shijun Xiao
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wenshui Xin
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wenwu Xu
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yiping Li
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Tao Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jiangtao Qin
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lei Xie
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Junwu Ma
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Zhiyan Zhang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Lusheng Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
12
|
Xie L, Qin J, Rao L, Tang X, Cui D, Chen L, Xu W, Xiao S, Zhang Z, Huang L. Accurate prediction and genome-wide association analysis of digital intramuscular fat content in longissimus muscle of pigs. Anim Genet 2021; 52:633-644. [PMID: 34291482 DOI: 10.1111/age.13121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 11/30/2022]
Abstract
Intramuscular fat (IMF) content is a critical indicator of pork quality that affects directly the purchasing desire of consumers. However, to measure IMF content is both laborious and costly, preventing our understanding of its genetic determinants and improvement. In the present study, we constructed an accurate and fast image acquisition and analysis system, to extract and calculate the digital IMF content, the proportion of fat areas in the image (PFAI) of the longissimus muscle of 1709 animals from multiple pig populations. PFAI was highly significantly correlated with marbling scores (MS; 0.95, r2 = 0.90), and also with IMF contents chemically defined for 80 samples (0.79, r2 = 0.63; more accurate than direct analysis between IMF contents and MS). The processing time for one image is only 2.31 s. Genome-wide association analysis on PFAI for all 1709 animals identified 14 suggestive significant SNPs and 1 genome-wide significant SNP. On MS, we identified nine suggestive significant SNPs, and seven of them were also identified in PFAI. Furthermore, the significance (-log P) values of the seven common SNPs are higher in PFAI than in MS. Novel candidate genes of biological importance for IMF content were also discovered. Our imaging systems developed for prediction of digital IMF content is closer to IMF measured by Soxhlet extraction and slightly more accurate than MS. It can achieve fast and high-throughput IMF phenotype, which can be used in improvement of pork quality.
Collapse
Affiliation(s)
- L Xie
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, China
| | - J Qin
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, China
| | - L Rao
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, China
| | - X Tang
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, China
| | - D Cui
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, China
| | - L Chen
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, China
| | - W Xu
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, China
| | - S Xiao
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, China
| | - Z Zhang
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, China
| | - L Huang
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, China
| |
Collapse
|
13
|
Li LY, Xiao SJ, Tu JM, Zhang ZK, Zheng H, Huang LB, Huang ZY, Yan M, Liu XD, Guo YM. A further survey of the quantitative trait loci affecting swine body size and carcass traits in five related pig populations. Anim Genet 2021; 52:621-632. [PMID: 34182604 DOI: 10.1111/age.13112] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 12/13/2022]
Abstract
Breeding for good meat quality performance while maintaining large body size and desirable carcass traits has been the major challenge for modern swine selective breeding. To address this goal, in the present work we studied five related populations produced by two commercial breeds (Berkshire and Duroc) and two Chinese breeds (Licha black pig and Lulai black pig). A single-trait GWAS performed on 20 body size and carcass traits using a self-developed China Chip-1 porcine SNP50K BeadChip identified 11 genome-wide significant QTL on nine chromosomes and 22 suggestive QTL on 15 chromosomes. For the 11 genome-wide significant QTL, eight were detected in at least two populations, and the rest were population-specific and only mapped in Shanxia black pig. Most of the genome-wide significant QTL were pleiotropic; for example, the QTL around 75.65 Mb on SSC4 was associated with four traits at genome-wide significance level. After screening the genes within 50 kb of the top SNP for each genome-wide significant QTL, NR6A1 and VRTN were chosen as candidate genes for vertebrae number; PLAG1 and BMP2 were identified as candidate genes for body size; and MC4R was the strong candidate gene for body weight. The four genes have been reported as candidates for thoracic vertebrae number, lumbar vertebrae number, carcass length and body weight respectively in previous studies. The effects of VRTN on thoracic vertebrae number, carcass length and body length have been verified in Shanxia black pig. Therefore, the VRTN genotype could be used in gene-assisted selection, and this could accelerate genetic improvement of body size and carcass traits in Shanxia black pig.
Collapse
Affiliation(s)
- L-Y Li
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - S-J Xiao
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - J-M Tu
- Jiangxi Shanxia Swine Genetic Investment Company Limited, Dingnan, Jiangxi, 341900, China
| | - Z-K Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - H Zheng
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China.,Jiangxi Shanxia Swine Genetic Investment Company Limited, Dingnan, Jiangxi, 341900, China
| | - L-B Huang
- Jiangxi Shanxia Swine Genetic Investment Company Limited, Dingnan, Jiangxi, 341900, China
| | - Z-Y Huang
- Jiangxi Shanxia Swine Genetic Investment Company Limited, Dingnan, Jiangxi, 341900, China
| | - M Yan
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - X-D Liu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Y-M Guo
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| |
Collapse
|
14
|
Zhao X, Hu H, Lin H, Wang C, Wang Y, Wang J. Muscle Transcriptome Analysis Reveals Potential Candidate Genes and Pathways Affecting Intramuscular Fat Content in Pigs. Front Genet 2020; 11:877. [PMID: 32849841 PMCID: PMC7431984 DOI: 10.3389/fgene.2020.00877] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/17/2020] [Indexed: 12/22/2022] Open
Abstract
Intramuscular fat (IMF) content plays an essential role in meat quality. For identifying potential candidate genes and pathways regulating IMF content, the IMF content and the longissimus dorsi transcriptomes of 28 purebred Duroc pigs were measured. As a result, the transcriptome analysis of four high- and four low-IMF individuals revealed a total of 309 differentially expressed genes (DEGs) using edgeR and DESeq2 (p < 0.05, |log2(fold change)| ≥ 1). Functional enrichment analysis of the DEGs revealed 19 hub genes significantly enriched in the Gene Ontology (GO) terms and pathways (q < 0.05) related to lipid metabolism and fat cell differentiation. The weighted gene coexpression network analysis (WGCNA) of the 28 pigs identified the most relevant module with 43 hub genes. The combined results of DEGs, WGCNA, and protein-protein interactions revealed ADIPOQ, PPARG, LIPE, CIDEC, PLIN1, CIDEA, and FABP4 to be potential candidate genes affecting IMF. Furthermore, the regulation of lipolysis in adipocytes and the peroxisome proliferator-activated receptor (PPAR) signaling pathway were significantly enriched for both the DEGs and genes in the most relevant module. Some DEGs and pathways detected in our study play essential roles and are potential candidate genes and pathways that affect IMF content in pigs. This study provides crucial information for understanding the molecular mechanism of IMF content and would be helpful in improving pork quality.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiying Wang
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
15
|
Szmatoła T, Jasielczuk I, Semik-Gurgul E, Szyndler-Nędza M, Blicharski T, Szulc K, Skrzypczak E, Gurgul A. Detection of runs of homozygosity in conserved and commercial pig breeds in Poland. J Anim Breed Genet 2020; 137:571-580. [PMID: 32362048 DOI: 10.1111/jbg.12482] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 01/22/2023]
Abstract
Runs of homozygosity (ROH) are continuous segments of the genome that arose as a result of inbreeding, resulting in the inheritance of identical haplotypes from both parents who shared a common ancestor. In the present study, we performed a detailed characterization and comparison of ROH in four pig breeds, including intensively selected Polish Landrace as well as native unselected animals of Puławska and two Złotnicka breeds (White and Spotted). We used a medium-density PorcineSNP60 BeadChip assay (Illumina) and cgaTOH software to detect ROH covering a minimum of 30 adjacent SNPs and maintaining a size over 1 Mb. By analysing ROH distribution and frequency across the genome, we also identified genomic regions with high ROH frequency (so-called "ROH hotspots"). The obtained results showed that the analysed conserved breeds were characterized by a higher ROH span and higher ROH-based inbreeding coefficients (FROH ), which likely result from past population bottlenecks, increasing the overall inbreeding level within these populations. The analysis of ROH distribution across the genomes revealed the presence of both shared and breed-specific ROH hotspots. These hotspots, presumably representing genome regions under selection, overlapped with a variety of genes associated with processes connected with immune system functioning, reproduction, glucose homeostasis and metabolism. The genome regions with ROH hotspots overlapping in all analysed populations, located on SSC4 (51.9-55.9 Mb) and 13 (92.6-97.8 Mb), covered thirty-one different genes, including MMP16, SLC7A13, ATP6V0D2, CNGB3, WWiP1, RiMDN1 and CPNE3. These genes are primarily associated with biological regulation and metabolism, processes that could be responsible for the variety of the selected production and functional features.
Collapse
Affiliation(s)
- Tomasz Szmatoła
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Kraków, Poland.,Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Igor Jasielczuk
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Kraków, Poland.,Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Ewelina Semik-Gurgul
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | | | - Tadeusz Blicharski
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Breeding, Jastrzębiec, Poland
| | - Karolina Szulc
- Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Poznań, Poland
| | - Ewa Skrzypczak
- Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Poznań, Poland
| | - Artur Gurgul
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Kraków, Poland.,Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| |
Collapse
|
16
|
Zhuang Z, Li S, Ding R, Yang M, Zheng E, Yang H, Gu T, Xu Z, Cai G, Wu Z, Yang J. Meta-analysis of genome-wide association studies for loin muscle area and loin muscle depth in two Duroc pig populations. PLoS One 2019; 14:e0218263. [PMID: 31188900 PMCID: PMC6561594 DOI: 10.1371/journal.pone.0218263] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/29/2019] [Indexed: 01/07/2023] Open
Abstract
Loin muscle area (LMA) and loin muscle depth (LMD) are important traits influencing the production performance of breeding pigs. However, the genetic architecture of these two traits is still poorly understood. To discern the genetic architecture of LMA and LMD, a material consisting of 6043 Duroc pigs belonging to two populations with different genetic backgrounds was collected and applied in genome-wide association studies (GWAS) with a genome-wide distributed panel of 50K single nucleotide polymorphisms (SNPs). To improve the power of detection for common SNPs, we conducted a meta-analysis in these two pig populations and uncovered additional significant SNPs. As a result, we identified 75 significant SNPs for LMA and LMD on SSC6, 7, 12, 16, and 18. Among them, 25 common SNPs were associated with LMA and LMD. One pleiotropic quantitative trait locus (QTL), which was located on SSC7 with a 283 kb interval, was identified to affect LMA and LMD. Marker ALGA0040260 is a key SNP for this QTL, explained 1.77% and 2.48% of the phenotypic variance for LMA and LMD, respectively. Another genetic region on SSC16 (709 kb) was detected and displayed prominent association with LMA and the peak SNP, WU_10.2_16_35829257, contributed 1.83% of the phenotypic variance for LMA. Further bioinformatics analysis determined eight promising candidate genes (GCLC, GPX8, DAXX, FGF21, TAF11, SPDEF, NUDT3, and PACSIN1) with functions in glutathione metabolism, adipose and muscle tissues development and lipid metabolism. This study provides the first GWAS for the LMA and LMD of Duroc breed to analyze the underlying genetic variants through a large sample size. The findings further advance our understanding and help elucidate the genetic architecture of LMA, LMD and growth-related traits in pigs.
Collapse
Affiliation(s)
- Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Shaoyun Li
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Ming Yang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Wens Foodstuffs Group Co., Ltd, Guangdong, P.R. China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Huaqiang Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Ting Gu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Zheng Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
- National Engineering Research Center for Breeding Swine Industry, Guangdong Wens Foodstuffs Group Co., Ltd, Guangdong, P.R. China
- * E-mail: (JY); (ZW)
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
- * E-mail: (JY); (ZW)
| |
Collapse
|
17
|
Wang Y, Ning C, Wang C, Guo J, Wang J, Wu Y. Genome-wide association study for intramuscular fat content in Chinese Lulai black pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 32:607-613. [PMID: 30381738 PMCID: PMC6502724 DOI: 10.5713/ajas.18.0483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/16/2018] [Indexed: 12/31/2022]
Abstract
Objective Intramuscular fat (IMF) content plays an important role in meat quality. Identification of single nucleotide polymorphisms (SNPs) and genes related to pig IMF, especially using pig populations with high IMF content variation, can help to establish novel molecular breeding tools for optimizing IMF in pork and unveil the mechanisms that underlie fat metabolism. Methods We collected muscle samples of 453 Chinese Lulai black pigs, measured IMF content by Soxhlet petroleum-ether extraction method, and genotyped genome-wide SNPs using GeneSeek Genomic Profiler Porcine HD BeadChip. Then a genome-wide association study was performed using a linear mixed model implemented in the GEMMA software. Results A total of 43 SNPs were identified to be significantly associated with IMF content by the cutoff p<0.001. Among these significant SNPs, the greatest number of SNPs (n = 19) were detected on Chr.9, and two linkage disequilibrium blocks were formed among them. Additionally, 17 significant SNPs are mapped to previously reported quantitative trait loci (QTLs) of IMF and confirmed previous QTLs studies. Forty-two annotated genes centering these significant SNPs were obtained from Ensembl database. Overrepresentation test of pathways and gene ontology (GO) terms revealed some enriched reactome pathways and GO terms, which mainly involved regulation of basic material transport, energy metabolic process and signaling pathway. Conclusion These findings improve our understanding of the genetic architecture of IMF content in pork and facilitate the follow-up study of fine-mapping genes that influence fat deposition in muscle.
Collapse
Affiliation(s)
- Yanping Wang
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Chao Ning
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Cheng Wang
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jianfeng Guo
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jiying Wang
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Ying Wu
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
18
|
Wang C, Wang X, Tang J, Chen H, Zhang J, Li Y, Lei S, Ji H, Yang B, Ren J, Ding N. Genome-wide association studies for two exterior traits in Chinese Dongxiang spotted pigs. Anim Sci J 2018; 89:868-875. [DOI: 10.1111/asj.13003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/11/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Chengbin Wang
- State Key Laboratory of Pig Genetic Improvement and Production Technology; Jiangxi Agricultural University; Nanchang China
| | - Xiaopeng Wang
- State Key Laboratory of Pig Genetic Improvement and Production Technology; Jiangxi Agricultural University; Nanchang China
| | - Jianhong Tang
- State Key Laboratory of Pig Genetic Improvement and Production Technology; Jiangxi Agricultural University; Nanchang China
| | - Hao Chen
- State Key Laboratory of Pig Genetic Improvement and Production Technology; Jiangxi Agricultural University; Nanchang China
| | - Junjie Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology; Jiangxi Agricultural University; Nanchang China
| | - Yiping Li
- State Key Laboratory of Pig Genetic Improvement and Production Technology; Jiangxi Agricultural University; Nanchang China
| | - Shengrong Lei
- National Conservation Farm of Dongxiang Spotted Pigs; Dongxiang China
| | - Huayuan Ji
- Institute of Animal Husbandry and Veterinary; Jiangxi Academy of Agricultural Science; Nanchang China
| | - Bin Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology; Jiangxi Agricultural University; Nanchang China
| | - Jun Ren
- State Key Laboratory of Pig Genetic Improvement and Production Technology; Jiangxi Agricultural University; Nanchang China
| | - Nengshui Ding
- State Key Laboratory of Pig Genetic Improvement and Production Technology; Jiangxi Agricultural University; Nanchang China
| |
Collapse
|
19
|
Duarte DAS, Fortes MRS, Duarte MDS, Guimarães SEF, Verardo LL, Veroneze R, Ribeiro AMF, Lopes PS, de Resende MDV, Fonseca e Silva F. Genome-wide association studies, meta-analyses and derived gene network for meat quality and carcass traits in pigs. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an16018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A large number of quantitative trait loci (QTL) for meat quality and carcass traits has been reported in pigs over the past 20 years. However, few QTL have been validated and the biological meaning of the genes associated to these QTL has been underexploited. In this context, a meta-analysis was performed to compare the significant markers with meta-QTL previously reported in literature. Genome association studies were performed for 12 traits, from which 144 SNPs were found out to be significant (P < 0.05). They were validated in the meta-analysis and used to build the Association Weight Matrix, a matrix framework employed to investigate co-association of pairwise SNP across phenotypes enabling to derive a gene network. A total of 45 genes were selected from the Association Weight Matrix analysis, from which 25 significant transcription factors were identified and used to construct the networks associated to meat quality and carcass traits. These networks allowed the identification of key transcription factors, such as SOX5 and NKX2–5, gene–gene interactions (e.g. ATP5A1, JPH1, DPT and NEDD4) and pathways related to the regulation of adipose tissue metabolism and skeletal muscle development. Validated SNPs and knowledge of key genes driving these important industry traits might assist future strategies in pig breeding.
Collapse
|
20
|
Guo Y, Qiu H, Xiao S, Wu Z, Yang M, Yang J, Ren J, Huang L. A genome-wide association study identifies genomic loci associated with backfat thickness, carcass weight, and body weight in two commercial pig populations. J Appl Genet 2017; 58:499-508. [DOI: 10.1007/s13353-017-0405-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 12/30/2022]
|
21
|
Chen H, Huang T, Zhang Z, Yang B, Jiang C, Wu J, Zhou Z, Zheng H, Xin W, Huang M, Zhang M, Chen C, Ren J, Ai H, Huang L. Genome-wide association studies and meta-analysis reveal novel quantitative trait loci and pleiotropic loci for swine head-related traits1,2. J Anim Sci 2017; 95:2354-2366. [DOI: 10.2527/jas.2016.1137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- H. Chen
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - T. Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Z. Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - B. Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - C. Jiang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - J. Wu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Z. Zhou
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - H. Zheng
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - W. Xin
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - M. Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - M. Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - C. Chen
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - J. Ren
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - H. Ai
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - L. Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
22
|
Ji J, Zhou L, Guo Y, Huang L, Ma J. Genome-wide association study identifies 22 new loci for body dimension and body weight traits in a White Duroc×Erhualian F 2 intercross population. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 30:1066-1073. [PMID: 28111436 PMCID: PMC5494478 DOI: 10.5713/ajas.16.0679] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/09/2016] [Accepted: 01/08/2017] [Indexed: 02/08/2023]
Abstract
Objective Growth-related traits are important economic traits in the swine industry. However, the genetic mechanism of growth-related traits is little known. The aim of this study was to screen the candidate genes and molecular markers associated with body dimension and body weight traits in pigs. Methods A genome-wide association study (GWAS) on body dimension and body weight traits was performed in a White Duroc×Erhualian F2 intercross by the illumina PorcineSNP60K Beadchip. A mixed linear model was used to assess the association between single nucleotide polymorphisms (SNPs) and the phenotypes. Results In total, 611 and 79 SNPs were identified significantly associated with body dimension traits and body weight respectively. All SNPs but 62 were located into 23 genomic regions (quantitative trait loci, QTLs) on 14 autosomal and X chromosomes in Sus scrofa Build 10.2 assembly. Out of the 23 QTLs with the suggestive significance level (5×10−4), three QTLs exceeded the genome-wide significance threshold (1.15×10−6). Except the one on Sus scrofa chromosome (SSC) 7 which was reported previously all the QTLs are novel. In addition, we identified 5 promising candidate genes, including cell division cycle 7 for abdominal circumference, pleiomorphic adenoma gene 1 and neuropeptides B/W receptor 1 for both body weight and cannon bone circumference on SSC4, phosphoenolpyruvate carboxykinase 1, and bone morphogenetic protein 7 for hip circumference on SSC17. Conclusion The results have not only demonstrated a number of potential genes/loci associated with the growth-related traits in pigs, but also laid a foundation for studying the genes’ role and further identifying causative variants underlying these loci.
Collapse
Affiliation(s)
- Jiuxiu Ji
- National Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lisheng Zhou
- National Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yuanmei Guo
- National Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lusheng Huang
- National Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Junwu Ma
- National Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
23
|
Howard JT, Tiezzi F, Huang Y, Gray KA, Maltecca C. Characterization and management of long runs of homozygosity in parental nucleus lines and their associated crossbred progeny. Genet Sel Evol 2016; 48:91. [PMID: 27884108 PMCID: PMC5123398 DOI: 10.1186/s12711-016-0269-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 11/10/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In nucleus populations, regions of the genome that have a high frequency of runs of homozygosity (ROH) occur and are associated with a reduction in genetic diversity, as well as adverse effects on fitness. It is currently unclear whether, and to what extent, ROH stretches persist in the crossbred genome and how genomic management in the nucleus population might impact low diversity regions and its implications on the crossbred genome. METHODS We calculated a ROH statistic based on lengths of 5 (ROH5) or 10 (ROH10) Mb across the genome for genotyped Landrace (LA), Large White (LW) and Duroc (DU) dams. We simulated crossbred dam (LA × LW) and market [DU × (LA × LW)] animal genotypes based on observed parental genotypes and the ROH frequency was tabulated. We conducted a simulation using observed genotypes to determine the impact of minimizing parental relationships on multiple diversity metrics within nucleus herds, i.e. pedigree-(A), SNP-by-SNP relationship matrix or ROH relationship matrix. Genome-wide metrics included, pedigree inbreeding, heterozygosity and proportion of the genome in ROH of at least 5 Mb. Lastly, the genome was split into bins of increasing ROH5 frequency and, within each bin, heterozygosity, ROH5 and length (Mb) of ROH were evaluated. RESULTS We detected regions showing high frequencies of either ROH5 and/or ROH10 across both LW and LA on SSC1, SSC4, and SSC14, and across all breeds on SSC9. Long haplotypes were shared across parental breeds and thus, regions of ROH persisted in crossbred animals. Averaged across replicates and breeds, progeny had higher levels of heterozygosity (0.0056 ± 0.002%) and lower proportion of the genome in a ROH of at least 5 Mb (-0.015 ± 0.003%) than their parental genomes when genomic relationships were constrained, while pedigree relationships resulted in negligible differences at the genomic level. Across all breeds, only genomic data was able to target low diversity regions. CONCLUSIONS We show that long stretches of ROH present in the parents persist in crossbred animals. Furthermore, compared to using pedigree relationships, using genomic information to constrain parental relationships resulted in maintaining more genetic diversity and more effectively targeted low diversity regions.
Collapse
Affiliation(s)
- Jeremy T Howard
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695-7627, USA.
| | - Francesco Tiezzi
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695-7627, USA
| | - Yijian Huang
- Smithfield Premium Genetics, Rose Hill, NC, 28458, USA
| | - Kent A Gray
- Smithfield Premium Genetics, Rose Hill, NC, 28458, USA
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695-7627, USA.,Genetics Program, North Carolina State University, Raleigh, NC, 27695-7627, USA
| |
Collapse
|
24
|
Supakankul P, Kumchoo T, Mekchay S. Identification and characterization of novel single nucleotide polymorphism markers for fat deposition in muscle tissue of pigs using amplified fragment length polymorphism. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 30:338-346. [PMID: 27608636 PMCID: PMC5337912 DOI: 10.5713/ajas.16.0200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/26/2016] [Accepted: 09/08/2016] [Indexed: 02/07/2023]
Abstract
Objective This study was conducted to identify and evaluate the effective single nucleotide polymorphism (SNP) markers for fat deposition in the longissimus dorsi muscles of pigs using the amplified fragment length polymorphism (AFLP) approach. Methods Sixty-four selective primer combinations were used to identify the AFLP markers in the 20 highest- and 20 lowest-intramuscular fat (IMF) content phenotypes. Five AFLP fragments were converted into simple codominant SNP markers. These SNP markers were tested in terms of their association with IMF content and fatty acid (FA) composition traits in 620 commercially crossbred pigs. Results The SSC7 g.4937240C>G marker showed an association with IMF content (p<0.05). The SSC9 g.5496647_5496662insdel marker showed a significant association with IMF content and arachidonic levels (p<0.05). The SSC10 g.71225134G>A marker revealed an association with palmitoleic and ω9 FA levels (p<0.05), while the SSC17 g.61976696G>T marker showed a significant association with IMF content and FA levels of palmitoleic, eicosenoic, arachidonic, monounsaturated fatty acids, and ω9 FA levels. However, no significant association of SSC8 g.47338181G>A was observed with any IMF and FA levels in this study. Conclusion Four SNP markers (SSC7 g.4937240C>G, SSC9 g.5496647_5496662insdel, SSC10 g.71225134G>A, and SSC17 g.61976696G>T) were found to be associated with IMF and/or FA content traits in commercially crossbred pigs. These findings provide evidence of the novel SNP markers as being potentially useful for selecting pigs with the desirable IMF content and FA composition.
Collapse
Affiliation(s)
- Pantaporn Supakankul
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand.,Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand.,Human and Animal Biotechnology Program, Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tanavadee Kumchoo
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Supamit Mekchay
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
25
|
Association of NLK polymorphisms with intramuscular fat content and fatty acid composition traits in pigs. Meat Sci 2016; 118:61-5. [DOI: 10.1016/j.meatsci.2016.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/16/2016] [Accepted: 03/24/2016] [Indexed: 12/16/2022]
|
26
|
A GWA study reveals genetic loci for body conformation traits in Chinese Laiwu pigs and its implications for human BMI. Mamm Genome 2016; 27:610-621. [PMID: 27473603 DOI: 10.1007/s00335-016-9657-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/06/2016] [Indexed: 12/20/2022]
Abstract
Pigs share numerous physiological and phenotypic similarities with human and thus have been considered as a good model in nonrodent mammals for the study of genetic basis of human obesity. Researches on candidate genes for obesity traits have successfully identified some common genes between humans and pigs. However, few studies have assessed how many similarities exist between the genetic architecture of obesity in pigs and humans by large-scale comparative genomics. Here, we performed a genome-wide association study (GWAS) using the porcine 60 K SNP Beadchip for BMI and other four conformation traits at three different ages in a Chinese Laiwu pig population, which shows a large variability in fat deposition. In total, 35 SNPs were found to be significant at Bonferroni-corrected 5 % chromosome-wise level (P = 2.13 × 10-5) and 88 SNPs had suggestive (P < 10-4) association with the conformation traits. Some SNPs showed age-dependent association. Intriguingly, out of 32 regions associated with BMI in pigs, 18 were homologous with the loci for BMI in humans. Furthermore, five closest genes to GWAS peaks including HIF1AN, SMYD3, COX10, SLMAP, and GBE1 have been already associated with BMI in humans, which makes them very promising candidates for these QTLs. The result of GO analysis provided strong support to the fact that mitochondria and synapse play important roles in obesity susceptibility, which is consistent with previous findings on human obesity, and it also implicated new gene sets related to chromatin modification and Ig-like C2-type 5 domain. Therefore, these results not only provide new insights into the genetic architecture of BMI in pigs but also highlight that humans and pigs share the significant overlap of obesity-related genes.
Collapse
|
27
|
Multi-breed genome-wide association study reveals heterogeneous loci associated with loin eye area in pigs. J Appl Genet 2016; 57:511-518. [DOI: 10.1007/s13353-016-0351-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 03/15/2016] [Accepted: 05/04/2016] [Indexed: 01/11/2023]
|
28
|
Iqbal A, Kim YS, Kang JM, Lee YM, Rai R, Jung JH, Oh DY, Nam KC, Lee HK, Kim JJ. Genome-wide Association Study to Identify Quantitative Trait Loci for Meat and Carcass Quality Traits in Berkshire. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:1537-44. [PMID: 26580276 PMCID: PMC4647092 DOI: 10.5713/ajas.15.0752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 09/29/2015] [Accepted: 10/03/2015] [Indexed: 12/15/2022]
Abstract
Meat and carcass quality attributes are of crucial importance influencing consumer preference and profitability in the pork industry. A set of 400 Berkshire pigs were collected from Dasan breeding farm, Namwon, Chonbuk province, Korea that were born between 2012 and 2013. To perform genome wide association studies (GWAS), eleven meat and carcass quality traits were considered, including carcass weight, backfat thickness, pH value after 24 hours (pH24), Commission Internationale de l’Eclairage lightness in meat color (CIE L), redness in meat color (CIE a), yellowness in meat color (CIE b), filtering, drip loss, heat loss, shear force and marbling score. All of the 400 animals were genotyped with the Porcine 62K SNP BeadChips (Illumina Inc., USA). A SAS general linear model procedure (SAS version 9.2) was used to pre-adjust the animal phenotypes before GWAS with sire and sex effects as fixed effects and slaughter age as a covariate. After fitting the fixed and covariate factors in the model, the residuals of the phenotype regressed on additive effects of each single nucleotide polymorphism (SNP) under a linear regression model (PLINK version 1.07). The significant SNPs after permutation testing at a chromosome-wise level were subjected to stepwise regression analysis to determine the best set of SNP markers. A total of 55 significant (p<0.05) SNPs or quantitative trait loci (QTL) were detected on various chromosomes. The QTLs explained from 5.06% to 8.28% of the total phenotypic variation of the traits. Some QTLs with pleiotropic effect were also identified. A pair of significant QTL for pH24 was also found to affect both CIE L and drip loss percentage. The significant QTL after characterization of the functional candidate genes on the QTL or around the QTL region may be effectively and efficiently used in marker assisted selection to achieve enhanced genetic improvement of the trait considered.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dong-Yup Oh
- Livestock Research Institute, Yeongju, 750-871, Korea
| | - Ki-Chang Nam
- Department of Animal Science and Technology, Sunchon National University, Suncheon 540-950, Korea
| | - Hak-Kyo Lee
- Department of Animal Biotechnology, Chonbuk National University, Jeonju 561-756, Korea
| | | |
Collapse
|
29
|
He Y, Li X, Zhang F, Su Y, Hou L, Chen H, Zhang Z, Huang L. Multi-breed genome-wide association study reveals novel loci associated with the weight of internal organs. Genet Sel Evol 2015; 47:87. [PMID: 26576866 PMCID: PMC4647478 DOI: 10.1186/s12711-015-0168-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 10/30/2015] [Indexed: 12/01/2022] Open
Abstract
Background Recently, many genome-wide association studies (GWAS) have been conducted to understand the genetic architecture of economic important traits in farm animals. Pig is widely used as a biomedical animal model for its similarity with humans in terms of organ formation and disease mechanisms. Moreover, understanding the mechanisms that underlie the development of internal organs will impact the productive potential of pigs. Our aim was to uncover new single nucleotide polymorphisms (SNPs) associated with the weight of internal organs and carcass and also potential candidate genes. Methods We performed GWAS for the weight of heart, liver, spleen, kidney and carcass on five pig populations (White Duroc × Erhualian F2 intercross, Sutai population, Laiwu population, Erhualian population and commercial population, for a total of 2650 individuals). Genotype data was produced using the PorcineSNP60 Beadchip array. After quality control, the data was used for association tests under a general linear mixed model. Population stratification was adjusted by including a random polygenic effect based on a matrix of genotypic relationships. A meta-analysis of our GWAS datasets was conducted by summing up the Chi square values across breeds, with the degrees of freedom of the Chi square distribution equal to the effective number of breeds. Results Thirty-nine quantitative trait loci (QTL) located on 15 chromosomes were identified by the single-population GWAS at the suggestive level. Among these, nine QTL surpassed the 5 % genome-wide significance threshold, including four for heart weight on SSC (Sus scrofa chromosome) 2, 4, 7 and 10, two for liver weight on SSC7, two for spleen weight on SSC5 and SSC7 and one for carcass weight on SSC11. The QTL on SSC7 showed pleiotropic effects for heart, liver and spleen weights in the F2 population. In addition, two QTL were detected in several populations, including one on SSC2 for heart weight in the F2 and Sutai populations and one on SSC7 for liver weight in the F2 and Laiwu populations. The meta-analysis detected four novel QTL on SSC1, 3, 8 and 16 for carcass weight. Electronic supplementary material The online version of this article (doi:10.1186/s12711-015-0168-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuna He
- National Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Xinjian Li
- National Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Feng Zhang
- National Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Ying Su
- National Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Lijuan Hou
- National Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Hao Chen
- National Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Zhiyan Zhang
- National Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Lusheng Huang
- National Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
30
|
Rohrer GA, Nonneman DJ, Wiedmann RT, Schneider JF. A study of vertebra number in pigs confirms the association of vertnin and reveals additional QTL. BMC Genet 2015; 16:129. [PMID: 26518887 PMCID: PMC4628235 DOI: 10.1186/s12863-015-0286-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/22/2015] [Indexed: 11/30/2022] Open
Abstract
Background Formation of the vertebral column is a critical developmental stage in mammals. The strict control of this process has resulted in little variation in number of vertebrae across mammalian species and no variation within most mammalian species. The pig is quite unique as considerable variation exists in number of thoracic vertebrae as well as number of lumbar vertebrae. At least two genes have been identified that affect number of vertebrae in pigs yet considerable genetic variation still exists. Therefore, a genome-wide association (GWA) analysis was conducted to identify additional genomic regions that affect this trait. Results A total of 1883 animals were phenotyped for the number of ribs and thoracolumbar vertebrae as well as successfully genotyped with the Illumina Porcine SNP60 BeadChip. After data editing, 41,148 SNP markers were included in the GWA analysis. These animals were also phenotyped for kyphosis. Fifty-three 1 Mb windows each explained at least 1.0 % of the genomic variation for vertebrae counts while 16 regions were significant for kyphosis. Vertnin genotype significantly affected vertebral counts as well. The region with the largest effect for number of lumbar vertebrae and thoracolumbar vertebrae were located over the Hox B gene cluster and the largest association for thoracic vertebrae number was over the Hox A gene cluster. Genetic markers in significant regions accounted for approximately 50 % of the genomic variation. Less genomic variation for kyphosis was described by QTL regions and no region was associated with kyphosis and vertebra counts. Conclusions The importance of the Hox gene families in vertebral development was highlighted as significant associations were detected over the A, B and C families. Further evaluation of these regions and characterization of variants within these genes will expand our knowledge on vertebral development using natural genetic variants segregating in commercial swine. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0286-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gary A Rohrer
- United States Department of Agriculture, Agricultural Research Service,, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA.
| | - Dan J Nonneman
- United States Department of Agriculture, Agricultural Research Service,, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA.
| | - Ralph T Wiedmann
- United States Department of Agriculture, Agricultural Research Service,, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA.
| | - James F Schneider
- United States Department of Agriculture, Agricultural Research Service,, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA.
| |
Collapse
|
31
|
Liu X, Xiong X, Yang J, Zhou L, Yang B, Ai H, Ma H, Xie X, Huang Y, Fang S, Xiao S, Ren J, Ma J, Huang L. Genome-wide association analyses for meat quality traits in Chinese Erhualian pigs and a Western Duroc × (Landrace × Yorkshire) commercial population. Genet Sel Evol 2015; 47:44. [PMID: 25962760 PMCID: PMC4427942 DOI: 10.1186/s12711-015-0120-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 04/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Understanding the genetic mechanisms that underlie meat quality traits is essential to improve pork quality. To date, most quantitative trait loci (QTL) analyses have been performed on F2 crosses between outbred pig strains and have led to the identification of numerous QTL. However, because linkage disequilibrium is high in such crosses, QTL mapping precision is unsatisfactory and only a few QTL have been found to segregate within outbred strains, which limits their use to improve animal performance. To detect QTL in outbred pig populations of Chinese and Western origins, we performed genome-wide association studies (GWAS) for meat quality traits in Chinese purebred Erhualian pigs and a Western Duroc × (Landrace × Yorkshire) (DLY) commercial population. METHODS Three hundred and thirty six Chinese Erhualian and 610 DLY pigs were genotyped using the Illumina PorcineSNP60K Beadchip and evaluated for 20 meat quality traits. After quality control, 35 985 and 56 216 single nucleotide polymorphisms (SNPs) were available for the Chinese Erhualian and DLY datasets, respectively, and were used to perform two separate GWAS. We also performed a meta-analysis that combined P-values and effects of 29 516 SNPs that were common to Erhualian, DLY, F2 and Sutai pig populations. RESULTS We detected 28 and nine suggestive SNPs that surpassed the significance level for meat quality in Erhualian and DLY pigs, respectively. Among these SNPs, ss131261254 on pig chromosome 4 (SSC4) was the most significant (P = 7.97E-09) and was associated with drip loss in Erhualian pigs. Our results suggested that at least two QTL on SSC12 and on SSC15 may have pleiotropic effects on several related traits. All the QTL that were detected by GWAS were population-specific, including 12 novel regions. However, the meta-analysis revealed seven novel QTL for meat characteristics, which suggests the existence of common underlying variants that may differ in frequency across populations. These QTL regions contain several relevant candidate genes. CONCLUSIONS These findings provide valuable insights into the molecular basis of convergent evolution of meat quality traits in Chinese and Western breeds that show divergent phenotypes. They may contribute to genetic improvement of purebreds for crossbred performance.
Collapse
Affiliation(s)
- Xianxian Liu
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Xinwei Xiong
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Jie Yang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Lisheng Zhou
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Bin Yang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Huashui Ai
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Huanban Ma
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Xianhua Xie
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Yixuan Huang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Shaoming Fang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Shijun Xiao
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Jun Ren
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Junwu Ma
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Lusheng Huang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
32
|
Cho IC, Yoo CK, Lee JB, Jung EJ, Han SH, Lee SS, Ko MS, Lim HT, Park HB. Genome-wide QTL analysis of meat quality-related traits in a large F2 intercross between Landrace and Korean native pigs. Genet Sel Evol 2015; 47:7. [PMID: 25888076 PMCID: PMC4336478 DOI: 10.1186/s12711-014-0080-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 11/20/2014] [Indexed: 11/21/2022] Open
Abstract
Background We conducted a genome-wide linkage analysis to identify quantitative trait loci (QTL) that influence meat quality-related traits in a large F2 intercross between Landrace and Korean native pigs. Thirteen meat quality-related traits of the m. longissimus lumborum et thoracis were measured in more than 830 F2 progeny. All these animals were genotyped with 173 microsatellite markers located throughout the pig genome, and the GridQTL program based on the least squares regression model was used to perform the QTL analysis. Results We identified 23 genome-wide significant QTL in eight chromosome regions (SSC1, 2, 6, 7, 9, 12, 13, and 16) (SSC for Sus Scrofa) and detected 51 suggestive QTL in the 17 chromosome regions. QTL that affect 10 meat quality traits were detected on SSC12 and were highly significant at the genome-wide level. In particular, the QTL with the largest effect affected crude fat percentage and explained 22.5% of the phenotypic variance (F-ratio = 278.0 under the additive model, nominal P = 5.5 × 10−55). Interestingly, the QTL on SSC12 that influenced meat quality traits showed an obvious trend for co-localization. Conclusions Our results confirm several previously reported QTL. In addition, we identified novel QTL for meat quality traits, which together with the associated positional candidate genes improve the knowledge on the genetic structure that underlies genetic variation for meat quality traits in pigs. Electronic supplementary material The online version of this article (doi:10.1186/s12711-014-0080-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- In-Cheol Cho
- Subtropical Animal Experiment Station, National Institute of Animal Science, Rural Development Administration, Jeju, 690-150, Korea.
| | - Chae-Kyoung Yoo
- Department of Animal Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 660-701, Korea. .,Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 660-701, Korea.
| | - Jae-Bong Lee
- Department of Animal Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 660-701, Korea. .,Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 660-701, Korea.
| | - Eun-Ji Jung
- Department of Animal Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 660-701, Korea. .,Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 660-701, Korea.
| | - Sang-Hyun Han
- Subtropical Animal Experiment Station, National Institute of Animal Science, Rural Development Administration, Jeju, 690-150, Korea.
| | - Sung-Soo Lee
- Subtropical Animal Experiment Station, National Institute of Animal Science, Rural Development Administration, Jeju, 690-150, Korea.
| | - Moon-Suck Ko
- Subtropical Animal Experiment Station, National Institute of Animal Science, Rural Development Administration, Jeju, 690-150, Korea.
| | - Hyun-Tae Lim
- Department of Animal Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 660-701, Korea. .,Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 660-701, Korea.
| | - Hee-Bok Park
- Department of Animal Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 660-701, Korea. .,Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 660-701, Korea. .,Department of Animal Science and Biotechnology (BK21 plus program), College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 305-764, Korea.
| |
Collapse
|
33
|
Xiong X, Liu X, Zhou L, Yang J, Yang B, Ma H, Xie X, Huang Y, Fang S, Xiao S, Ren J, Chen C, Ma J, Huang L. Genome-wide association analysis reveals genetic loci and candidate genes for meat quality traits in Chinese Laiwu pigs. Mamm Genome 2015; 26:181-90. [PMID: 25678226 DOI: 10.1007/s00335-015-9558-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/29/2015] [Indexed: 12/29/2022]
Abstract
Meat quality traits have economically significant impacts on the pig industry, and can be improved using molecular approaches in pig breeding. Since 1994 when the first genome-wide scan for quantitative trait loci (QTLs) in pig was reported, over the past two decades, numerous QTLs have been identified for meat quality traits by family based linkage analyses. However, little is known about the genetic variants for meat quality traits in Chinese purebred or outbred populations. To unveil it, we performed a genome-wide association study for 10 meat quality traits in Chinese purebred Laiwu pigs. In total, 75 significant SNPs (P < 1.01 × 10(-6)) and 33 suggestive SNPs (P < 2.03 × 10(-5)) were identified. On SSC12, a region between 56.22 and 61.49 Mb harbored a cluster of SNPs that were associated with meat color parameters (L*, lightness; a*, redness; b*, yellowness) and moisture content of longissimus muscle (LM) and semimembranosus muscle at the genome-wide significance level. A region on SSC4 also has pleiotropic effects on moisture content and drip loss of LM. In addition, this study revealed at least five novel QTLs and several candidate genes including 4-linked MYH genes (MYH1, MYH2, MYH3, and MYH13), MAL2, LPAR1, and PRKAG3 at four significant loci. Except for the SSC12 QTL, other QTLs are likely tissue-specific. These results provide new insights into the genetic basis of meat quality traits in Chinese Laiwu pigs and some significant SNPs reported here could be incorporated into the selection programs involving this breed.
Collapse
Affiliation(s)
- Xinwei Xiong
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, 330045, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ma J, Yang J, Zhou L, Ren J, Liu X, Zhang H, Yang B, Zhang Z, Ma H, Xie X, Xing Y, Guo Y, Huang L. A splice mutation in the PHKG1 gene causes high glycogen content and low meat quality in pig skeletal muscle. PLoS Genet 2014; 10:e1004710. [PMID: 25340394 PMCID: PMC4207639 DOI: 10.1371/journal.pgen.1004710] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 08/26/2014] [Indexed: 11/19/2022] Open
Abstract
Glycolytic potential (GP) in skeletal muscle is economically important in the pig industry because of its effect on pork processing yield. We have previously mapped a major quantitative trait loci (QTL) for GP on chromosome 3 in a White Duroc × Erhualian F2 intercross. We herein performed a systems genetic analysis to identify the causal variant underlying the phenotype QTL (pQTL). We first conducted genome-wide association analyses in the F2 intercross and an F19 Sutai pig population. The QTL was then refined to an 180-kb interval based on the 2-LOD drop method. We then performed expression QTL (eQTL) mapping using muscle transcriptome data from 497 F2 animals. Within the QTL interval, only one gene (PHKG1) has a cis-eQTL that was colocolizated with pQTL peaked at the same SNP. The PHKG1 gene encodes a catalytic subunit of the phosphorylase kinase (PhK), which functions in the cascade activation of glycogen breakdown. Deep sequencing of PHKG1 revealed a point mutation (C>A) in a splice acceptor site of intron 9, resulting in a 32-bp deletion in the open reading frame and generating a premature stop codon. The aberrant transcript induces nonsense-mediated decay, leading to lower protein level and weaker enzymatic activity in affected animals. The mutation causes an increase of 43% in GP and a decrease of>20% in water-holding capacity of pork. These effects were consistent across the F2 and Sutai populations, as well as Duroc × (Landrace × Yorkshire) hybrid pigs. The unfavorable allele exists predominantly in Duroc-derived pigs. The findings provide new insights into understanding risk factors affecting glucose metabolism, and would greatly contribute to the genetic improvement of meat quality in Duroc related pigs. Glycogen storage diseases (GSD) are a group of inherited disorders characterized by storage of excess glycogen, which are mainly caused by the abnormality of a particular enzyme essential for releasing glucose from glycogen. GSD-like conditions have been described in a wide variety of species. Pigs are a valuable model for the study of human GSD. Moreover, pigs affected by GSD usually produce inferior pork with a lower ultimate pH (so-called “acid meat”) and less processing yield due to post-mortem degradation of the excess glycogen. So far, only one causal variant, PRKAG3 R225Q, has been identified for GSD in pigs. Here we reported a loss-of-function mutation in the PHKG1 gene that causes the deficiency of the glycogen breakdown, consequently leading to GSD and acid meat in Duroc-sired pigs. Eliminating the undesirable mutation from the breeding stock by a diagnostic DNA test will greatly reduce the incidence of GSD and significantly improve pork quality and productivity in the pig.
Collapse
Affiliation(s)
- Junwu Ma
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, P.R. China
- * E-mail: (JM); (LH)
| | - Jie Yang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Lisheng Zhou
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Jun Ren
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Xianxian Liu
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Hui Zhang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Bin Yang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Zhiyan Zhang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Huanban Ma
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Xianhua Xie
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Yuyun Xing
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Yuanmei Guo
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Lusheng Huang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, P.R. China
- * E-mail: (JM); (LH)
| |
Collapse
|
35
|
Lopes MS, Bastiaansen JWM, Harlizius B, Knol EF, Bovenhuis H. A genome-wide association study reveals dominance effects on number of teats in pigs. PLoS One 2014; 9:e105867. [PMID: 25158056 PMCID: PMC4144910 DOI: 10.1371/journal.pone.0105867] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 07/29/2014] [Indexed: 12/31/2022] Open
Abstract
Dominance has been suggested as one of the genetic mechanisms explaining heterosis. However, using traditional quantitative genetic methods it is difficult to obtain accurate estimates of dominance effects. With the availability of dense SNP (Single Nucleotide Polymorphism) panels, we now have new opportunities for the detection and use of dominance at individual loci. Thus, the aim of this study was to detect additive and dominance effects on number of teats (NT), specifically to investigate the importance of dominance in a Landrace-based population of pigs. In total, 1,550 animals, genotyped for 32,911 SNPs, were used in single SNP analysis. SNPs with a significant genetic effect were tested for their mode of gene action being additive, dominant or a combination. In total, 21 SNPs were associated with NT, located in three regions with additive (SSC6, 7 and 12) and one region with dominant effects (SSC4). Estimates of additive effects ranged from 0.24 to 0.29 teats. The dominance effect of the QTL located on SSC4 was negative (−0.26 teats). The additive variance of the four QTLs together explained 7.37% of the total phenotypic variance. The dominance variance of the four QTLs together explained 1.82% of the total phenotypic variance, which corresponds to one-fourth of the variance explained by additive effects. The results suggest that dominance effects play a relevant role in the genetic architecture of NT. The QTL region on SSC7 contains the most promising candidate gene: VRTN. This gene has been suggested to be related to the number of vertebrae, a trait correlated with NT.
Collapse
Affiliation(s)
- Marcos S. Lopes
- TOPIGS Research Center IPG B.V., Beuningen, the Netherlands
- Wageningen University, Animal Breeding and Genomics Centre, Wageningen, the Netherlands
- * E-mail:
| | | | | | - Egbert F. Knol
- TOPIGS Research Center IPG B.V., Beuningen, the Netherlands
| | - Henk Bovenhuis
- Wageningen University, Animal Breeding and Genomics Centre, Wageningen, the Netherlands
| |
Collapse
|
36
|
Wang L, Zhang L, Yan H, Liu X, Li N, Liang J, Pu L, Zhang Y, Shi H, Zhao K, Wang L. Genome-wide association studies identify the loci for 5 exterior traits in a Large White × Minzhu pig population. PLoS One 2014; 9:e103766. [PMID: 25090094 PMCID: PMC4121205 DOI: 10.1371/journal.pone.0103766] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 07/02/2014] [Indexed: 01/28/2023] Open
Abstract
As one of the main breeding selection criteria, external appearance has special economic importance in the hog industry. In this study, an Illumina Porcine SNP60 BeadChip was used to conduct a genome-wide association study (GWAS) in 605 pigs of the F2 generation derived from a Large White × Minzhu intercross. Traits under study were abdominal circumference (AC), body height (BH), body length (BL), cannon bone circumference (CBC), chest depth (CD), chest width (CW), rump circumference (RC), rump width (RW), scapula width (SW), and waist width (WW). A total of 138 SNPs (the most significant being MARC0033464) on chromosome 7 were found to be associated with BH, BL, CBC, and RC (P-value = 4.15E-6). One SNP on chromosome 1 was found to be associated with CD at genome-wide significance levels. The percentage phenotypic variance of these significant SNPs ranged from 0.1–25.48%. Moreover, a conditional analysis revealed that the significant SNPs were derived from a single quantitative trait locus (QTL) and indicated additional chromosome-wide significant association for 25 SNPs on SSC4 (BL, CBC) and 9 SNPs on SSC7 (RC). Linkage analysis revealed two complete linkage disequilibrium haplotype blocks that contained seven and four SNPs, respectively. In block 1, the most significant SNP, MARC0033464, was present. Annotations from pig reference genome suggested six genes (GRM4, HMGA1, NUDT3, RPS10, SPDEF and PACSIN1) in block 1 (495 kb), and one gene (SCUBE3) in block 3 (124 kb). Functional analysis indicated that HMGA1 and SCUBE3 genes are the potential genes controlling BH, BL, and RC in pigs, with an application in breeding programs. We screened several candidate intervals and genes based on SNP location and gene function, and predicted their function using bioinformatics analyses.
Collapse
Affiliation(s)
- Ligang Wang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Longchao Zhang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hua Yan
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Liu
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Na Li
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Jilin Academy of Agricultural Sciences, Changchun, China
| | - Jing Liang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Pu
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuebo Zhang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huibi Shi
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kebin Zhao
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixian Wang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
37
|
Lee KT, Lee YM, Alam M, Choi BH, Park MR, Kim KS, Kim TH, Kim JJ. A Whole Genome Association Study on Meat Quality Traits Using High Density SNP Chips in a Cross between Korean Native Pig and Landrace. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 25:1529-39. [PMID: 25049513 PMCID: PMC4093033 DOI: 10.5713/ajas.2012.12474] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 09/28/2012] [Accepted: 09/27/2012] [Indexed: 11/27/2022]
Abstract
A whole genome association (WGA) study was performed to detect significant polymorphisms for meat quality traits in an F2 cross population (N = 478) that were generated with Korean native pig sires and Landrace dams in National Livestock Research Institute, Songwhan, Korea. The animals were genotyped using Illumina porcine 60k SNP beadchips, in which a set of 46,865 SNPs were available for the WGA analyses on ten carcass quality traits; live weight, crude protein, crude lipids, crude ash, water holding capacity, drip loss, shear force, CIE L, CIE a and CIE b. Phenotypes were regressed on additive and dominance effects for each SNP using a simple linear regression model, after adjusting for sex, sire and slaughter stage as fixed effects. With the significant SNPs for each trait (p<0.001), a stepwise regression procedure was applied to determine the best set of SNPs with the additive and/or dominance effects. A total of 106 SNPs, or quantitative trait loci (QTL) were detected, and about 32 to 66% of the total phenotypic variation was explained by the significant SNPs for each trait. The QTL were identified in most porcine chromosomes (SSCs), in which majority of the QTL were detected in SSCs 1, 2, 12, 13, 14 and 16. Several QTL clusters were identified on SSCs 12, 16 and 17, and a cluster of QTL influencing crude protein, crude lipid, drip loss, shear force, CIE a and CIE b were located between 20 and 29 Mb of SSC12. A pleiotropic QTL for drip loss, CIE L and CIE b was also detected on SSC16. These QTL need to be validated in commercial pig populations for genetic improvement in meat quality via marker-assisted selection.
Collapse
Affiliation(s)
- K-T Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Suwon, Korea
| | - Y-M Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Suwon, Korea
| | - M Alam
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Suwon, Korea
| | - B H Choi
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Suwon, Korea
| | - M R Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Suwon, Korea
| | - K-S Kim
- Department of Animal Science, Chungbuk National University, Cheongju, Korea
| | - T-H Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Suwon, Korea
| | - J-J Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Suwon, Korea
| |
Collapse
|
38
|
Yoo CK, Park HB, Lee JB, Jung EJ, Kim BM, Kim HI, Ahn SJ, Ko MS, Cho IC, Lim HT. QTL analysis of body weight and carcass body length traits in an F2intercross between Landrace and Korean native pigs. Anim Genet 2014; 45:589-92. [DOI: 10.1111/age.12166] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2014] [Indexed: 11/30/2022]
Affiliation(s)
- C. K. Yoo
- Division of Applied Life Science (Brain Korea 21 Program); Graduate School of Gyeongsang National University; Jinju 660-701 Korea
| | - H. B. Park
- Institute of Agriculture and Life Sciences; Gyeongsang National University; Jinju 660-701 Korea
| | - J. B. Lee
- Division of Applied Life Science (Brain Korea 21 Program); Graduate School of Gyeongsang National University; Jinju 660-701 Korea
- Institute of Agriculture and Life Sciences; Gyeongsang National University; Jinju 660-701 Korea
| | - E. J. Jung
- Division of Applied Life Science (Brain Korea 21 Program); Graduate School of Gyeongsang National University; Jinju 660-701 Korea
- Institute of Agriculture and Life Sciences; Gyeongsang National University; Jinju 660-701 Korea
| | - B. M. Kim
- Division of Applied Life Science (Brain Korea 21 Program); Graduate School of Gyeongsang National University; Jinju 660-701 Korea
| | - H. I. Kim
- Division of Applied Life Science (Brain Korea 21 Program); Graduate School of Gyeongsang National University; Jinju 660-701 Korea
| | - S. J. Ahn
- Department of Information Statistics; RINS; Gyeongsang National University; Jinju 660-701 Korea
| | - M. S. Ko
- Subtropical Animal Experiment Station; National Institute of Animal Science; Rural Development Administration; Jeju 690-150 Korea
| | - I. C. Cho
- Subtropical Animal Experiment Station; National Institute of Animal Science; Rural Development Administration; Jeju 690-150 Korea
| | - H. T. Lim
- Institute of Agriculture and Life Sciences; Gyeongsang National University; Jinju 660-701 Korea
- Department of Animal Science; College of Agriculture and Life Sciences; Gyeongsang National University; Jinju 660-701 Korea
| |
Collapse
|
39
|
Ai H, Xiao S, Zhang Z, Yang B, Li L, Guo Y, Lin G, Ren J, Huang L. Three novel quantitative trait loci for skin thickness in swine identified by linkage and genome-wide association studies. Anim Genet 2014; 45:524-33. [DOI: 10.1111/age.12163] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Huashui Ai
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China; Jiangxi Agricultural University; 330045 Nanchang China
| | - Shijun Xiao
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China; Jiangxi Agricultural University; 330045 Nanchang China
| | - Zhiyan Zhang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China; Jiangxi Agricultural University; 330045 Nanchang China
| | - Bin Yang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China; Jiangxi Agricultural University; 330045 Nanchang China
| | - Lin Li
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China; Jiangxi Agricultural University; 330045 Nanchang China
| | - Yuanmei Guo
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China; Jiangxi Agricultural University; 330045 Nanchang China
| | - Guoshan Lin
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China; Jiangxi Agricultural University; 330045 Nanchang China
| | - Jun Ren
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China; Jiangxi Agricultural University; 330045 Nanchang China
| | - Lusheng Huang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China; Jiangxi Agricultural University; 330045 Nanchang China
| |
Collapse
|
40
|
Kang K, Seo DW, Lee JB, Jung EJ, Park HB, Cho IC, Lim HT, Lee JH. Identification of SNPs Affecting Porcine Carcass Weight with the 60K SNP Chip. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2013. [DOI: 10.5187/jast.2013.55.4.231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Yang B, Zhang W, Zhang Z, Fan Y, Xie X, Ai H, Ma J, Xiao S, Huang L, Ren J. Genome-wide association analyses for fatty acid composition in porcine muscle and abdominal fat tissues. PLoS One 2013; 8:e65554. [PMID: 23762394 PMCID: PMC3676363 DOI: 10.1371/journal.pone.0065554] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/26/2013] [Indexed: 01/03/2023] Open
Abstract
Fatty acid composition is an important phenotypic trait in pigs as it affects nutritional, technical and sensory quality of pork. Here, we reported a genome-wide association study (GWAS) for fatty acid composition in the longissimus muscle and abdominal fat tissues of 591 White Duroc×Erhualian F2 animals and in muscle samples of 282 Chinese Sutai pigs. A total of 46 loci surpassing the suggestive significance level were identified on 15 pig chromosomes (SSC) for 12 fatty acids, revealing the complex genetic architecture of fatty acid composition in pigs. Of the 46 loci, 15 on SSC5, 7, 14 and 16 reached the genome-wide significance level. The two most significant SNPs were ss131535508 (P = 2.48×10(-25)) at 41.39 Mb on SSC16 for C20∶0 in abdominal fat and ss478935891 (P = 3.29×10(-13)) at 121.31 Mb on SSC14 for muscle C18∶0. A meta-analysis of GWAS identified 4 novel loci and enhanced the association strength at 6 loci compared to those evidenced in a single population, suggesting the presence of common underlying variants. The longissimus muscle and abdominal fat showed consistent association profiles at most of the identified loci and distinct association signals at several loci. All loci have specific effects on fatty acid composition, except for two loci on SSC4 and SSC7 affecting multiple fatness traits. Several promising candidate genes were found in the neighboring regions of the lead SNPs at the genome-wide significant loci, such as SCD for C18∶0 and C16∶1 on SSC14 and ELOVL7 for C20∶0 on SSC16. The findings provide insights into the molecular basis of fatty acid composition in pigs, and would benefit the final identification of the underlying mutations.
Collapse
Affiliation(s)
- Bin Yang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Wanchang Zhang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Zhiyan Zhang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Yin Fan
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Xianhua Xie
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Huashui Ai
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Junwu Ma
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Shijun Xiao
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Lusheng Huang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
- * E-mail: (LH); (JR)
| | - Jun Ren
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
- * E-mail: (LH); (JR)
| |
Collapse
|
42
|
Ma J, Yang J, Zhou L, Zhang Z, Ma H, Xie X, Zhang F, Xiong X, Cui L, Yang H, Liu X, Duan Y, Xiao S, Ai H, Ren J, Huang L. Genome-wide association study of meat quality traits in a White Duroc×Erhualian F2 intercross and Chinese Sutai pigs. PLoS One 2013; 8:e64047. [PMID: 23724019 PMCID: PMC3665833 DOI: 10.1371/journal.pone.0064047] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 04/07/2013] [Indexed: 12/31/2022] Open
Abstract
Thousands of QTLs for meat quality traits have been identified by linkage mapping studies, but most of them lack precise position or replication between populations, which hinder their application in pig breeding programs. To localize QTLs for meat quality traits to precise genomic regions, we performed a genome-wide association (GWA) study using the Illumina PorcineSNP60K Beadchip in two swine populations: 434 Sutai pigs and 933 F2 pigs from a White Duroc×Erhualian intercross. Meat quality traits, including pH, color, drip loss, moisture content, protein content and intramuscular fat content (IMF), marbling and firmness scores in the M. longissimus (LM) and M. semimembranosus (SM) muscles, were recorded on the two populations. In total, 127 chromosome-wide significant SNPs for these traits were identified. Among them, 11 SNPs reached genome-wise significance level, including 1 on SSC3 for pH, 1 on SSC3 and 3 on SSC15 for drip loss, 3 (unmapped) for color a*, and 2 for IMF each on SSC9 and SSCX. Except for 11 unmapped SNPs, 116 significant SNPs fell into 28 genomic regions of approximately 10 Mb or less. Most of these regions corresponded to previously reported QTL regions and spanned smaller intervals than before. The loci on SSC3 and SSC7 appeared to have pleiotropic effects on several related traits. Besides them, a few QTL signals were replicated between the two populations. Further, we identified thirteen new candidate genes for IMF, marbling and firmness, on the basis of their positions, functional annotations and reported expression patterns. The findings will contribute to further identification of the causal mutation underlying these QTLs and future marker-assisted selection in pigs.
Collapse
Affiliation(s)
- Junwu Ma
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Jie Yang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Lisheng Zhou
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Zhiyan Zhang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Huanban Ma
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Xianhua Xie
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Feng Zhang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Xinwei Xiong
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Leilei Cui
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Hui Yang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Xianxian Liu
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Yanyu Duan
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Shijun Xiao
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Huashui Ai
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Jun Ren
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Lusheng Huang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
- * E-mail:
| |
Collapse
|
43
|
Casellas J, Vidal O, Pena RN, Gallardo D, Manunza A, Quintanilla R, Amills M. Genetics of serum and muscle lipids in pigs. Anim Genet 2013; 44:609-19. [DOI: 10.1111/age.12049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2013] [Indexed: 01/31/2023]
Affiliation(s)
- J. Casellas
- Departament de Ciència Animal i dels Aliments; Universitat Autònoma de Barcelona; Bellaterra 08193 Spain
| | - O. Vidal
- Departament de Biologia; Universitat de Girona; Girona 17071 Spain
| | - R. N. Pena
- Departament de Producció Animal; Universitat de Lleida; Lleida 25198 Spain
| | - D. Gallardo
- Departament de Ciència Animal i dels Aliments; Universitat Autònoma de Barcelona; Bellaterra 08193 Spain
| | - A. Manunza
- Department of Animal Genetics; Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB); Universitat Autònoma de Barcelona; Bellaterra 08193 Spain
| | | | - M. Amills
- Department of Animal Genetics; Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB); Universitat Autònoma de Barcelona; Bellaterra 08193 Spain
| |
Collapse
|
44
|
Kärst S, Strucken EM, Schmitt AO, Weyrich A, de Villena FPM, Yang H, Brockmann GA. Effect of the myostatin locus on muscle mass and intramuscular fat content in a cross between mouse lines selected for hypermuscularity. BMC Genomics 2013; 14:16. [PMID: 23324137 PMCID: PMC3626839 DOI: 10.1186/1471-2164-14-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 12/19/2012] [Indexed: 12/07/2022] Open
Abstract
Background This study is aimed at the analysis of genetic and physiological effects of myostatin on economically relevant meat quality traits in a genetic background of high muscularity. For this purpose, we generated G3 populations of reciprocal crosses between the two hypermuscular mouse lines BMMI866, which carries a myostatin mutation and is lean, and BMMI806, which has high intramuscular and body fat content. To assess the relationship between muscle mass, body composition and muscle quality traits, we also analysed intramuscular fat content (IMF), water holding capacity (WHC), and additional physiological parameters in M. quadriceps and M. longissimus in 308 G3-animals. Results We found that individuals with larger muscles have significantly lower total body fat (r = −0.28) and IMF (r = −0.64), and in females, a lower WHC (r = −0.35). In males, higher muscle mass was also significantly correlated with higher glycogen contents (r = 0.2) and lower carcass pH-values 24 hours after dissection (r = −0.19). Linkage analyses confirmed the influence of the myostatin mutation on higher lean mass (1.35 g), reduced body fat content (−1.15%), and lower IMF in M. longissimus (−0.13%) and M. quadriceps (−0.07%). No effect was found for WHC. A large proportion of variation of intramuscular fat content of the M. longissimus at the myostatin locus could be explained by sex (23%) and direction-of-cross effects (26%). The effects were higher in males (+0.41%). An additional locus with negative over-dominance effects on total fat mass (−0.55 g) was identified on chromosome 16 at 94 Mb (86–94 Mb) which concurs with fat related QTL in syntenic regions on SSC13 in pigs and BTA1 in cattle. Conclusion The data shows QTL effects on mouse muscle that are similar to those previously observed in livestock, supporting the mouse model. New information from the mouse model helps to describe variation in meat quantity and quality, and thus contribute to research in livestock.
Collapse
Affiliation(s)
- Stefan Kärst
- Department for Crop and Animal Sciences, Breeding Biology and Molecular Genetics, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Chen C, Qiao R, Wei R, Guo Y, Ai H, Ma J, Ren J, Huang L. A comprehensive survey of copy number variation in 18 diverse pig populations and identification of candidate copy number variable genes associated with complex traits. BMC Genomics 2012; 13:733. [PMID: 23270433 PMCID: PMC3543711 DOI: 10.1186/1471-2164-13-733] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 12/15/2012] [Indexed: 01/04/2023] Open
Abstract
Background Copy number variation (CNV) is a major source of structural variants and has been commonly identified in mammalian genome. It is associated with gene expression and may present a major genetic component of phenotypic diversity. Unlike many other mammalian genomes where CNVs have been well annotated, studies of porcine CNV in diverse breeds are still limited. Result Here we used Porcine SNP60 BeadChip and PennCNV algorithm to identify 1,315 putative CNVs belonging to 565 CNV regions (CNVRs) in 1,693 pigs from 18 diverse populations. Total 538 out of 683 CNVs identified in a White Duroc × Erhualian F2 population fit Mendelian transmission and 6 out of 7 randomly selected CNVRs were confirmed by quantitative real time PCR. CNVRs were non-randomly distributed in the pig genome. Several CNV hotspots were found on pig chromosomes 6, 11, 13, 14 and 17. CNV numbers differ greatly among different pig populations. The Duroc pigs were identified to have the most number of CNVs per individual. Among 1,765 transcripts located within the CNVRs, 634 genes have been reported to be copy number variable genes in the human genome. By integrating analysis of QTL mapping, CNVRs and the description of phenotypes in knockout mice, we identified 7 copy number variable genes as candidate genes for phenotypes related to carcass length, backfat thickness, abdominal fat weight, length of scapular, intermuscle fat content of logissimus muscle, body weight at 240 day, glycolytic potential of logissimus muscle, mean corpuscular hemoglobin, mean corpuscular volume and humerus diameter. Conclusion We revealed the distribution of the unprecedented number of 565 CNVRs in pig genome and investigated copy number variable genes as the possible candidate genes for phenotypic traits. These findings give novel insights into porcine CNVs and provide resources to facilitate the identification of trait-related CNVs.
Collapse
Affiliation(s)
- Congying Chen
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, 330045, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Paixão D, Carneiro P, Paiva S, Sousa K, Verardo L, Braccini Neto J, Pinto A, Hidalgo A, Nascimento CSD, Périssé I, Lopes P, Guimarães S. Mapeamento de QTL nos cromossomos 1, 2, 3, 12, 14, 15 e X em suínos: características de carcaça e qualidade de carne. ARQ BRAS MED VET ZOO 2012. [DOI: 10.1590/s0102-09352012000400026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A realização do presente estudo teve como objetivo mapear Quantitative Trait Loci (QTL) de carcaça e qualidade de carne em uma população F2 de suínos desenvolvida pelo cruzamento de dois reprodutores da raça brasileira Piau com 18 fêmeas comerciais (Landrace x Large White x Pietrain). O mapa de ligação para essa população foi construído após a genotipagem de 684 animais para 35 marcadores microssatélites. Os dados foram analisados pelo mapeamento por intervalo usando-se sexo, lote e genótipo halotano como efeitos fixos e peso de carcaça ao abate, peso da carcaça direita e idade ao abate como covariáveis. Um total de 18 QTLs foi encontrado; os QTLs para maior espessura de toucinho na região da copa, na linha dorsolombar, e a perda por cozimento foram significativos em nível de 5% genômico. A característica espessura de toucinho foi essencialmente associada aos alelos da raça Piau, conhecido como porco tipo banha. As informações dos QTLs significativos encontrados servem para futuros estudos de mapeamento fino para identificação de genes a serem usados em conjunto com os métodos tradicionais de seleção, para melhorar a eficiência dos programas de melhoramento, assim como prover informação acerca da fisiologia envolvida no desenvolvimento das características quantitativas dos suínos.
Collapse
Affiliation(s)
| | | | - S.R. Paiva
- Empresa Brasileira de Pesquisa Agropecuária
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Choi I, Bates RO, Raney NE, Steibel JP, Ernst CW. Evaluation of QTL for carcass merit and meat quality traits in a US commercial Duroc population. Meat Sci 2012; 92:132-8. [PMID: 22578477 DOI: 10.1016/j.meatsci.2012.04.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 03/17/2012] [Accepted: 04/15/2012] [Indexed: 10/28/2022]
Abstract
Putative quantitative trait loci (QTL) regions on 5 chromosomes (SSC3, 6, 12, 15, and 18) were selected from our previous genome scans of a Duroc×Pietrain F(2) resource population for further evaluation in a US commercial Duroc population (n=331). A total of 81 gene-specific single nucleotide polymorphism (SNP) markers were genotyped and 33 markers were segregating. The MDH1 SNP on SSC3 was associated with 45-min and ultimate pH (pHu), and pH decline. PRKAG3 on SSC15 was associated with pHu. The HSPG2 SNP on SSC6 was associated with marbling score and days to 113kg. Markers for NUP88 and FKBP10 on SSC12 were associated with 45-min pH and L*, respectively. The SSC15 marker SF3B1 was associated with L* and LMA, and the SSC18 marker ARF5 was associated with pHu and color score. These results in a commercial Duroc population showed a general consistency with our previous genome scan.
Collapse
Affiliation(s)
- Igseo Choi
- Department of Animal Science, Michigan State University, East Lansing, MI 48824-1225, USA.
| | | | | | | | | |
Collapse
|
48
|
Luo W, Cheng D, Chen S, Wang L, Li Y, Ma X, Song X, Liu X, Li W, Liang J, Yan H, Zhao K, Wang C, Wang L, Zhang L. Genome-wide association analysis of meat quality traits in a porcine Large White × Minzhu intercross population. Int J Biol Sci 2012; 8:580-95. [PMID: 22532790 PMCID: PMC3334672 DOI: 10.7150/ijbs.3614] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 03/19/2012] [Indexed: 01/27/2023] Open
Abstract
Pork quality is an economically important trait and one of the main selection criteria for breeding in the swine industry. In this genome-wide association study (GWAS), 455 pigs from a porcine Large White × Minzhu intercross population were genotyped using the Illumina PorcineSNP60K Beadchip, and phenotyped for intramuscular fat content (IMF), marbling, moisture, color L*, color a*, color b* and color score in the longissimus muscle (LM). Association tests between each trait and the SNPs were performed via the Genome Wide Rapid Association using the Mixed Model and Regression-Genomic Control (GRAMMAR-GC) approach. From the Ensembl porcine database, SNP annotation was implemented using Sus scrofa Build 9. A total of 45 SNPs showed significant association with one or multiple meat quality traits. Of the 45 SNPs, 36 were located on SSC12. These significantly associated SNPs aligned to or were in close approximation to previously reported quantitative trait loci (QTL) and some were located within introns of previously reported candidate genes. Two haplotype blocks ASGA0100525-ASGA0055225-ALGA0067099-MARC0004712-DIAS0000861, and ASGA0085522-H3GA0056170 were detected in the significant region. The first block contained the genes MYH1, MYH2 and MYH4. A SNP (ASGA0094812) within an intron of the USP43 gene was significantly associated with five meat quality traits. The present results effectively narrowed down the associated regions compared to previous QTL studies and revealed haplotypes and candidate genes on SSC12 for meat quality traits in pigs.
Collapse
Affiliation(s)
- Weizhen Luo
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Gallardo D, Pena RN, Quintanilla R, Ramírez O, Almuzara D, Noguera JL, Amills M. Quantitative trait loci analysis of a Duroc commercial population highlights differences in the genetic determination of meat quality traits at two different muscles. Anim Genet 2012; 43:800-4. [DOI: 10.1111/j.1365-2052.2012.02333.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2011] [Indexed: 11/28/2022]
Affiliation(s)
- D. Gallardo
- Departament de Ciència Animal i dels Aliments; Universitat Autònoma de Barcelona; 08193; Bellaterra; Spain
| | - R. N. Pena
- IRTA; Genètica i Millora Animal; 25198; Lleida; Spain
| | | | - O. Ramírez
- Departament de Ciència Animal i dels Aliments; Universitat Autònoma de Barcelona; 08193; Bellaterra; Spain
| | - D. Almuzara
- IRTA; Genètica i Millora Animal; 25198; Lleida; Spain
| | - J. L. Noguera
- IRTA; Genètica i Millora Animal; 25198; Lleida; Spain
| | | |
Collapse
|
50
|
Corominas J, Ramayo-Caldas Y, Castelló A, Muñoz M, Ibáñez-Escriche N, Folch JM, Ballester M. Evaluation of the porcineACSL4gene as a candidate gene for meat quality traits in pigs. Anim Genet 2012; 43:714-20. [DOI: 10.1111/j.1365-2052.2012.02335.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2011] [Indexed: 12/01/2022]
Affiliation(s)
| | | | | | - M. Muñoz
- Departamento de Mejora Genética Animal; INIA; Ctra. De la Coruña km. 7; Madrid; 28040; Spain
| | | | | | | |
Collapse
|