1
|
Chen F, Wei R, Wang Y, Cao Q, Wang J, Wang C, Yao D, Yao Z, Ni C, Li M. Identification of deep intronic variants in junctional epidermolysis bullosa using genome sequencing and splicing assays. NPJ Genom Med 2025; 10:8. [PMID: 39915495 PMCID: PMC11802722 DOI: 10.1038/s41525-025-00466-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 01/20/2025] [Indexed: 02/09/2025] Open
Abstract
Junctional epidermolysis bullosa (JEB) is characterized by mucocutaneous fragility. We enrolled 69 cases of recessive JEB, with 13.0% of these cases remained genetically undiagnosed following an initial exome sequencing. Among cases carried COL17A1 variants, this proportion can reach 31.6%. We employed genome sequencing to genetically diagnosis these cases. Four deep intronic variants (c.4156+117 G > A, c.2039-104 G > A and c.1267+237dupC in the COL17A1 gene and c.-38 + 2 T > C in the LAMB3 gene) were identified in six cases. The c.4156+117 G > A variant was found in three of the five cases, suggesting it may be a common deep intronic variant in Chinese JEB. Splicing analysis revealed that these variants caused splicing defect by inducing exon skipping, or pseudoexon insertion into the transcript in HaCaT cells, not in HEK293 cells. Our results emphasize the importance of selecting the right cell line for mRNA analysis.
Collapse
Affiliation(s)
- Fuying Chen
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Ruoqu Wei
- Department of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yumeng Wang
- Department of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiaoyu Cao
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jianbo Wang
- Department of Dermatology, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, China
| | - Chenfei Wang
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Dingjin Yao
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Zhirong Yao
- Department of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Ni
- Department of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Ming Li
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| |
Collapse
|
2
|
Kubanov AA, Chikin VV, Karamova AE, Monchakovskaya ES. Junctional epidermolysis bullosa: genotype-phenotype correlations. VESTNIK DERMATOLOGII I VENEROLOGII 2022. [DOI: 10.25208/vdv1391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Junctional epidermolysis bullosa most commonly results from mutations in theLAMA3, LAMB3, LAMC2, COL17A1, ITGA6 and ITGB4genes. Junctional epidermolysis bullosa is characterized by clinical heterogeneity. To date, scientific findings allow to evaluate correlations between the severity of clinical manifestations and genetic defects underlying in the development of the disease. A systematic literature search was performed using PubMed and RSCI, and keywords including junctional epidermolysis bullosa, laminin 332, collagen XVII, 64 integrin. The review includes description of clinical findings of junctional epidermolysis bullosa, mutation location and types, its impact on protein production and functions. To evaluate the impact of gene mutation on protein functions, this review explores the structure and functions of lamina lucida components, including laminin 332, collagen XVII and 64 integrin, which are frequently associated with the development of junctional epidermolysis bullosa. The correlation between severe types of junctional epidermolysis bullosa and mutations resulting in premature stop codon generation and complete absence of protein expression has been described. Although, genotype-phenotype correlations should be analyzed carefully due to mechanisms which enable to improve protein expression.
Collapse
|
3
|
Targeted NGS in Diagnostics of Genodermatosis Characterized by the Epidermolysis Bullosa Symptom Complex in 268 Russian Children. Int J Mol Sci 2022; 23:ijms232214343. [PMID: 36430820 PMCID: PMC9698894 DOI: 10.3390/ijms232214343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
The pathogenic variants of genes encoding proteins, participating in the formation and functioning of epidermis and dermo-epidermal junctions, create a large variety of clinical phenotypes from: small localized to severe generalized dermatitis, as well as early, or even, prenatal death due to extensive epidermis loss. The diagnostic panel in this study was developed for the purposes of identifying these pathogenic genetic variants in 268 Russian children, who possessed the epidermolysis bullosa symptom complex in a selection of 247 families. This panel included the targeted areas of 33 genes, which are genetic variants that can lead to the development of the phenotype mentioned above. The usage of next generation sequencing allowed the revelation of 192 various altered alleles (of which 109 alleles were novel, i.e., had not been described previously). In addition, it allowed the definition of the genetic variants that are both typical for most of the examined children and for the separate ethnic groups inhabiting modern Russia. We found that the most characteristic mutations for the Dargin and Chechen ethnic groups are the c.3577del deletion in the COL7A1 gene and the c.2488G>A missense mutation in the COL17A1 gene, respectively. In addition, the study of haplotypes of microsatellite markers, which we managed to conduct in the Dargin population, confirmed the presence of the founder effect.
Collapse
|
4
|
Wang Y, Kitahata H, Kosumi H, Watanabe M, Fujimura Y, Takashima S, Osada SI, Hirose T, Nishie W, Nagayama M, Shimizu H, Natsuga K. Collagen XVII deficiency alters epidermal patterning. J Transl Med 2022; 102:581-588. [PMID: 35145203 DOI: 10.1038/s41374-022-00738-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 11/09/2022] Open
Abstract
Vertebrates exhibit patterned epidermis, exemplified by scales/interscales in mice tails and grooves/ridges on the human skin surface (microtopography). Although the role of spatiotemporal regulation of stem cells (SCs) has been implicated in this process, the mechanism underlying the development of such epidermal patterns is poorly understood. Here, we show that collagen XVII (COL17), a niche for epidermal SCs, helps stabilize epidermal patterns. Gene knockout and rescue experiments revealed that COL17 maintains the width of the murine tail scale epidermis independently of epidermal cell polarity. Skin regeneration after wounding was associated with slender scale epidermis, which was alleviated by overexpression of human COL17. COL17-negative skin in human junctional epidermolysis bullosa showed a distinct epidermal pattern from COL17-positive skin that resulted from revertant mosaicism. These results demonstrate that COL17 contributes to defining mouse tail scale shapes and human skin microtopography. Our study sheds light on the role of the SC niche in tissue pattern formation.
Collapse
Affiliation(s)
- Yunan Wang
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroyuki Kitahata
- Department of Physics, Graduate School of Science, Chiba University, Chiba, Japan
| | - Hideyuki Kosumi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mika Watanabe
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Centre, University of Turin, Turin, Italy
| | - Yu Fujimura
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shota Takashima
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shin-Ichi Osada
- Department of Dermatology, Nippon Medical School, Tokyo, Japan
| | - Tomonori Hirose
- Department of Molecular Biology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Wataru Nishie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaharu Nagayama
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Hiroshi Shimizu
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ken Natsuga
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
5
|
Lin L, Hwang BJ, Li N, Googe P, Diaz LA, Miao E, Vilen B, Thomas NE, Ting J, Liu Z. Non-Cell-Autonomous Activity of the Hemidesmosomal Protein BP180/Collagen XVII in Granulopoiesis in Humanized NC16A Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:2786-2794. [PMID: 32998984 PMCID: PMC7658030 DOI: 10.4049/jimmunol.2000784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/03/2020] [Indexed: 12/27/2022]
Abstract
BP180 (also termed type XVII collagen) is a hemidesmosomal protein and plays a critical role in cell-cell matrix adhesion in the skin; however, its other biological functions are largely unclear. In this study, we generated a BP180 functional-deficient mouse strain by deleting its extracellular domain of humanized NC16A (termed ΔNC16A mice). We found that BP180 is expressed by bone marrow mesenchymal stem cells (BM-MSC), and its functional deficiency leads to myeloid hyperplasia. Altered granulopoiesis in ΔNC16A mice is through bone marrow stromal cells evidenced by bone marrow transplantation. Furthermore, the level of G-CSF in bone marrow and circulation were significantly increased in ΔNC16A mice as compared with wild-type mice. The increased G-CSF was accompanied by an increased activation of the NF-κB signaling pathway in bone marrow and BM-MSC of ΔNC16A mice. Blockade of G-CSF restored normal granulopoiesis in ΔNC16A mice. Inhibition of NF-κB signaling pathway significantly reduces the release of G-CSF from ΔNC16A BM-MSC in vitro and the level of serum G-CSF in ΔNC16A mice. To our knowledge, these findings provide the first direct evidence that BP180 plays an important role in granulopoiesis through regulating NF-κB signaling pathway in BM-MSC.
Collapse
Affiliation(s)
- Lin Lin
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Oral Biology Program, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Bin-Jin Hwang
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Ning Li
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Paul Googe
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Luis A Diaz
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Ed Miao
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Barbara Vilen
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Nancy E Thomas
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jenny Ting
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Zhi Liu
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599;
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| |
Collapse
|
6
|
Has C, Liu L, Bolling MC, Charlesworth AV, El Hachem M, Escámez MJ, Fuentes I, Büchel S, Hiremagalore R, Pohla-Gubo G, van den Akker PC, Wertheim-Tysarowska K, Zambruno G. Clinical practice guidelines for laboratory diagnosis of epidermolysis bullosa. Br J Dermatol 2019; 182:574-592. [PMID: 31090061 PMCID: PMC7064925 DOI: 10.1111/bjd.18128] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2019] [Indexed: 02/06/2023]
Abstract
Linked Comment: https://doi.org/10.1111/bjd.18377. https://doi.org/10.1111/bjd.18829 available online
Collapse
Affiliation(s)
- C Has
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - L Liu
- Viapath, St Thomas' Hospital, London, U.K
| | - M C Bolling
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - A V Charlesworth
- Centre de Reference des Maladies Rares de la Peau et des Muqueuses d'Origine Génétique, L'Archet Hôpital, Nice, France
| | - M El Hachem
- Dermatology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - M J Escámez
- Bioengineering Department at Universidad Carlos III de Madrid (UC3M), Regenerative Medicine Unit at CIEMAT - U714 CIBER on Rare Diseases (ISCIII), Instituto de Investigación Sanitaria Fundación Jiménez Diaz (IISFJD), Madrid, Spain
| | - I Fuentes
- Fundación DEBRA Chile, Santiago, Chile.,Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - S Büchel
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - R Hiremagalore
- Adjunct Faculty, Centre for Human Genetics and Department of Dermatology and Pediatrics, Manipal Hospital, Bengaluru, India
| | - G Pohla-Gubo
- EB House Austria, Department of Dermatology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - P C van den Akker
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - G Zambruno
- Dermatology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
7
|
Kroeger J, Hoppe E, Galiger C, Has C, Franzke CW. Amino acid substitution in the C-terminal domain of collagen XVII reduces laminin-332 interaction causing mild skin fragility with atrophic scarring. Matrix Biol 2019; 80:72-84. [PMID: 30316981 DOI: 10.1016/j.matbio.2018.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 01/08/2023]
Abstract
The behavior of a cell depends on how its adhesion molecules interact with the cellular microenvironment. Hemidesmosomal collagen XVII essentially contributes to cell adhesion and modulates keratinocyte directionality and proliferation during skin regeneration, however only little is known about the involved interactions. Here, we used keratinocytes from patients with junctional epidermolysis bullosa with late onset, which exclusively produce a collagen XVII mutant with the p.R1303Q mutation within its extracellular C-terminus. Although this mutant was normally expressed and targeted to the membrane and the expression of integrins α3β1, α6β4 and of laminin-332 was unchanged, the keratinocytes were less adhesive, showed migratory defects and decreased clonogenic growth. Since the p.R1303Q substitution is located within the predicted laminin-332 binding site of collagen XVII, we anticipated an altered collagen XVII-laminin-332 interaction. Indeed, the pR1303Q collagen XVII ectodomain showed decreased binding capability to laminin-332 and was less co-localized with pericellular laminin-332 molecules in cell culture. Thus, aberrant collagen XVII-laminin-332 interaction results in reduced cell adhesion, destabilized cell motility and decreased clonogenicity, which in turn lead to blister formation, delayed wound healing and skin atrophy.
Collapse
Affiliation(s)
- Jasmin Kroeger
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Germany
| | - Esther Hoppe
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Germany
| | - Célimène Galiger
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Germany
| | - Cristina Has
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Germany
| | - Claus-Werner Franzke
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Germany; Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Germany.
| |
Collapse
|
8
|
Condrat I, He Y, Cosgarea R, Has C. Junctional Epidermolysis Bullosa: Allelic Heterogeneity and Mutation Stratification for Precision Medicine. Front Med (Lausanne) 2019; 5:363. [PMID: 30761300 PMCID: PMC6362712 DOI: 10.3389/fmed.2018.00363] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/21/2018] [Indexed: 11/13/2022] Open
Abstract
Junctional epidermolysis bullosa (JEB) is a hereditary blistering disease caused by reduced dermal-epidermal adhesion due to deficiencies of one of the proteins, laminin-332, type XVII collagen, integrin α6β4 or integrin α3. Significant progress has been achieved in the development of therapies for EB, such as bone-marrow transplantation, local or systemic injections with fibroblasts or mesenchymal stromal cells, readthrough of premature termination codons, or exon skipping. These were tailored in particular for dystrophic EB, which is caused by type VII collagen deficiency and have not yet reached broad clinical practice. Recently, pioneering combined gene and stem cell therapy was successful in treating one boy with junctional EB. Beside these exclusive approaches, no specific therapy to amend the major clinical features, skin and mucosal blistering and non-healing wounds is available to date. Here we extend the mutational spectrum of junctional EB, provide a stratification of COL17A1 mutations and discuss potential molecular therapeutic approaches.
Collapse
Affiliation(s)
- Irina Condrat
- Department of Dermatology and Venerology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Dermatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Yinghong He
- Department of Dermatology and Venerology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rodica Cosgarea
- Department of Dermatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Cristina Has
- Department of Dermatology and Venerology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Has C, Nyström A, Saeidian AH, Bruckner-Tuderman L, Uitto J. Epidermolysis bullosa: Molecular pathology of connective tissue components in the cutaneous basement membrane zone. Matrix Biol 2018; 71-72:313-329. [PMID: 29627521 DOI: 10.1016/j.matbio.2018.04.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 01/13/2023]
Abstract
Epidermolysis bullosa (EB), a group of heritable skin fragility disorders, is characterized by blistering, erosions and chronic ulcers in the skin and mucous membranes. In some forms, the blistering phenotype is associated with extensive mutilating scarring and development of aggressive squamous cell carcinomas. The skin findings can be associated with extracutaneous manifestations in the ocular as well as gastrointestinal and vesico-urinary tracts. The phenotypic heterogeneity reflects the presence of mutations in as many as 20 different genes expressed in the cutaneous basement membrane zone, and the types and combinations of the mutations and their consequences at the mRNA and protein levels contribute to the spectrum of severity encountered in different subtypes of EB. This overview highlights the molecular genetics of EB based on mutations in the genes encoding type VII and XVII collagens as well as laminin-332. The mutations identified in these protein components of the extracellular matrix attest to their critical importance in providing stability to the cutaneous basement membrane zone, with implications for heritable and acquired diseases.
Collapse
Affiliation(s)
- Cristina Has
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Amir Hossein Saeidian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Lucky AW, Dagaonkar N, Lammers K, Husami A, Kissell D, Zhang K. A comprehensive next-generation sequencing assay for the diagnosis of epidermolysis bullosa. Pediatr Dermatol 2018; 35:188-197. [PMID: 29334134 DOI: 10.1111/pde.13392] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Historically, diagnosis of epidermolysis bullosa has required skin biopsies for electron microscopy, direct immunofluorescence to determine which gene(s) to choose for genetic testing, or both. METHODS To avoid these invasive tests, we developed a high-throughput next-generation sequencing (NGS)-based diagnostic assay called EBSEQ that allows simultaneous detection of mutations in 21 genes with known roles in epidermolysis bullosa pathogenicity. Mutations are confirmed with traditional Sanger sequencing. RESULTS We present our EBSEQ assay and preliminary studies on the first 43 subjects tested. We identified 11 cases of epidermolysis bullosa simplex, five cases of junctional epidermolysis bullosa, 11 cases of dominant dystrophic epidermolysis bullosa, 15 cases of recessive dystrophic epidermolysis bullosa, and one case that remains without diagnosis. We also found an additional 52 variants of uncertain clinical significance in 17 of the 21 epidermolysis bullosa-associated genes tested. Three of the variants of uncertain clinical significance were also found in three other patients, for a total of 49 unique variants of uncertain clinical significance. We found the clinical sensitivity of the assay to be 75% to 98% and the analytical sensitivity to be 99% in identifying base substitutions and small deletions and duplications. Turnaround time was 3 to 6 weeks. CONCLUSIONS EBSEQ is a sensitive, relatively rapid, minimally invasive, comprehensive genetic assay for the diagnosis of epidermolysis bullosa.
Collapse
Affiliation(s)
- Anne W Lucky
- Division of General and Community Pediatrics and Cincinnati Children's Epidermolysis Bullosa Center, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Neha Dagaonkar
- Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Karen Lammers
- Division of General and Community Pediatrics and Cincinnati Children's Epidermolysis Bullosa Center, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Ammar Husami
- Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Diane Kissell
- Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Kejian Zhang
- Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, OH, USA
| |
Collapse
|
11
|
Yan X, Zhang C, Liang T, Yang F, Wang H, Wu F, Wang W, Wang Z, Cheng W, Xu J, Jiang T, Chen J, Ding Y. A PTEN-COL17A1 fusion gene and its novel regulatory role in Collagen XVII expression and GBM malignance. Oncotarget 2017; 8:85794-85803. [PMID: 29156757 PMCID: PMC5689647 DOI: 10.18632/oncotarget.20526] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 07/31/2017] [Indexed: 01/31/2023] Open
Abstract
Collagen XVII expression has recently been demonstrated to be correlated with the tumor malignance. While Collagen XVII is known to be widely distributed in neurons of the human brain, its precise role in pathogenesis of glioblastoma multiforme (GBM) is unknown. In this study, we identified and characterized a new PTEN-COL17A1 fusion gene in GMB using transcriptome sequencing. Although fusion gene did not result in measurable fusion protein production, its presence is accompanied with high levels of COL17A1 expression, revealed a novel regulatory mechanism of Collagen XVII expression by PTEN-COL17A1 gene fusion. Knocked down Collagen XVII expression in glioma cell lines resulted in decreased tumor invasiveness, along with significant reduction of MMP9 expression, while increased Collagen XVII expression promotes invasive activities of glioma cells and associated with GBM recurrences. Together, our results uncovered a new PTEN-COL17A1 fusion gene and its novel regulatory role in Collagen XVII expression and GBM malignance, and demonstrated that COL17A1 could serve as a useful prognostic biomarker and therapeutic targets for GBM.
Collapse
Affiliation(s)
- Xiaoyan Yan
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China.,The First Hospital of Baoding, Baoding, Hebei 071000, China
| | - Chuanbao Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Tingyu Liang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Fan Yang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Haoyuan Wang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Fan Wu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Wen Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Zheng Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Wen Cheng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Jiangnan Xu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Jing Chen
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Yaozhong Ding
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
12
|
Yenamandra VK, Vellarikkal SK, Kumar M, Chowdhury MR, Jayarajan R, Verma A, Scaria V, Sivasubbu S, Ray SB, Dinda AK, Kabra M, Kaur P, Sharma VK, Sethuraman G. Application of whole exome sequencing in elucidating the phenotype and genotype spectrum of junctional epidermolysis bullosa: A preliminary experience of a tertiary care centre in India. J Dermatol Sci 2017; 86:30-36. [PMID: 28087116 DOI: 10.1016/j.jdermsci.2016.12.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/20/2016] [Accepted: 12/28/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Junctional epidermolysis bullosa (JEB) is a diverse group of genodermatoses associated with extreme skin fragility. Despite several well-characterized genetic studies, molecular diagnosis of this heterogeneous group is still challenging. Recent advances in the field of genomics have seen the successful implementation of whole exome sequencing (WES) as a fast and efficient diagnostic strategy in several genodermatoses. OBJECTIVE In view of the scarcity and need of molecular studies for JEB in India, we sought to explore the potential of WES in understanding the mutational spectrum of this rare, in certain subtypes lethal, sub-group of EB. METHODS WES was performed using genomic DNA from each case of EB, followed by massively parallel sequencing. Resulting reads were mapped to the human reference genome hg19. Sanger sequencing subsequently confirmed the potentially pathogenic mutations. RESULTS Overall, four unrelated families (6 patients) of JEB with a highly variable clinical presentation including a rare case of LOC syndrome were studied. WES revealed 4 variations in 3 genes (LAMA3, LAMB3 and COL17A1) that are implicated in JEB. None of the variations were recurrent. In addition we proposed the probable molecular consequence of a missense mutation on the structure-function relationship of lamininβ3 protein through computational modeling studies. CONCLUSIONS Being the first report documenting the phenotype-genotype correlations of JEB patients from India, our preliminary experience with WES is clearly encouraging and serves as a nidus for future large-scale molecular studies to actively identify and understand JEB patients in Indian population.
Collapse
Affiliation(s)
- Vamsi K Yenamandra
- Departments of Dermatology & Venereology, All India Institute of Medical Sciences, New Delhi, India
| | - Shamsudheen K Vellarikkal
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, India; Academy of Scientific and Innovative Research, CSIR, India
| | - Manoj Kumar
- Departments of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Madhumita R Chowdhury
- Departments of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Rijith Jayarajan
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, India
| | - Ankit Verma
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, India
| | - Vinod Scaria
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, India; Academy of Scientific and Innovative Research, CSIR, India
| | - Sridhar Sivasubbu
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, India; Academy of Scientific and Innovative Research, CSIR, India
| | - Subrata B Ray
- Departments of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Amit K Dinda
- Departments of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Madhulika Kabra
- Departments of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Punit Kaur
- Departments of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Vinod K Sharma
- Departments of Dermatology & Venereology, All India Institute of Medical Sciences, New Delhi, India
| | - Gomathy Sethuraman
- Departments of Dermatology & Venereology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
13
|
Nishimura M, Nishie W, Shirafuji Y, Shinkuma S, Natsuga K, Nakamura H, Sawamura D, Iwatsuki K, Shimizu H. Extracellular cleavage of collagen XVII is essential for correct cutaneous basement membrane formation. Hum Mol Genet 2016; 25:328-39. [PMID: 26604146 DOI: 10.1093/hmg/ddv478] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 11/16/2015] [Indexed: 02/04/2023] Open
Abstract
In skin, basal keratinocytes in the epidermis are tightly attached to the underlying dermis by the basement membrane (BM). The correct expression of hemidesmosomal and extracellular matrix (ECM) proteins is essential for BM formation, and the null-expression of one molecule may induce blistering diseases associated with immature BM formation in humans. However, little is known about the significance of post-translational processing of hemidesmosomal or ECM proteins in BM formation. Here we show that the C-terminal cleavage of hemidesmosomal transmembrane collagen XVII (COL17) is essential for correct BM formation. The homozygous p.R1303Q mutation in COL17 induces BM duplication and blistering in humans. Although laminin 332, a major ECM protein, interacts with COL17 around p.R1303, the mutation leaves the binding of both molecules unchanged. Instead, the mutation hampers the physiological C-terminal cleavage of COL17 in the ECM. Consequently, non-cleaved COL17 ectodomain remnants induce the aberrant deposition of laminin 332 in the ECM, which is thought to be the major pathogenesis of the BM duplication that results from this mutation. As an example of impaired cleavage of COL17, this study shows that regulated processing of hemidesmosomal proteins is essential for correct BM organization in skin.
Collapse
Affiliation(s)
- Machiko Nishimura
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Wataru Nishie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan,
| | - Yoshinori Shirafuji
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama 700-8558, Japan and
| | - Satoru Shinkuma
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Ken Natsuga
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Hideki Nakamura
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Daisuke Sawamura
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Zaifu-Cho 5, Hirosaki 036-8562, Japan
| | - Keiji Iwatsuki
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama 700-8558, Japan and
| | - Hiroshi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan,
| |
Collapse
|
14
|
Turcan I, Jonkman MF. Blistering disease: insight from the hemidesmosome and other components of the dermal-epidermal junction. Cell Tissue Res 2014; 360:545-69. [PMID: 25502077 DOI: 10.1007/s00441-014-2021-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 09/25/2014] [Indexed: 02/07/2023]
Abstract
The hemidesmosome is a specialized transmembrane complex that mediates the binding of epithelial cells to the underlying basement membrane. In the skin, this multiprotein structure can be regarded as the chief adhesion unit at the site of the dermal-epidermal junction. Focal adhesions are additional specialized attachment structures located between hemidesmosomes. The integrity of the skin relies on well-assembled and functional hemidesmosomes and focal adhesions (also known as integrin adhesomes). However, if these adhesion structures are impaired, e.g., as a result of circulating autoantibodies or inherited genetic mutations, the mechanical strength of the skin is compromised, leading to blistering and/or tissue inflammation. A particular clinical presentation emerges subject to the molecule that is targeted. None of these junctional complexes are simply compounds of adhesion molecules; they also play a significant role in signalling pathways involved in the differentiation and migration of epithelial cells such as during wound healing and in tumour invasion. We summarize current knowledge about hereditary and acquired blistering diseases emerging from pathologies of the hemidesmosome and its neighbouring proteins as components of the dermal-epidermal junction.
Collapse
Affiliation(s)
- Iana Turcan
- Centre for Blistering Diseases, Department of Dermatology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands,
| | | |
Collapse
|
15
|
Inherited epidermolysis bullosa: updated recommendations on diagnosis and classification. J Am Acad Dermatol 2014; 70:1103-26. [PMID: 24690439 DOI: 10.1016/j.jaad.2014.01.903] [Citation(s) in RCA: 589] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/19/2014] [Accepted: 01/25/2014] [Indexed: 01/02/2023]
Abstract
BACKGROUND Several new targeted genes and clinical subtypes have been identified since publication in 2008 of the report of the last international consensus meeting on diagnosis and classification of epidermolysis bullosa (EB). As a correlate, new clinical manifestations have been seen in several subtypes previously described. OBJECTIVE We sought to arrive at an updated consensus on the classification of EB subtypes, based on newer data, both clinical and molecular. RESULTS In this latest consensus report, we introduce a new approach to classification ("onion skinning") that takes into account sequentially the major EB type present (based on identification of the level of skin cleavage), phenotypic characteristics (distribution and severity of disease activity; specific extracutaneous features; other), mode of inheritance, targeted protein and its relative expression in skin, gene involved and type(s) of mutation present, and--when possible--specific mutation(s) and their location(s). LIMITATIONS This classification scheme critically takes into account all published data through June 2013. Further modifications are likely in the future, as more is learned about this group of diseases. CONCLUSION The proposed classification scheme should be of value both to clinicians and researchers, emphasizing both clinical and molecular features of each EB subtype, and has sufficient flexibility incorporated in its structure to permit further modifications in the future.
Collapse
|
16
|
Has C, Kiritsi D, Mellerio JE, Franzke CW, Wedgeworth E, Tantcheva-Poor I, Kernland-Lang K, Itin P, Simpson MA, Dopping-Hepenstal PJ, Fujimoto W, McGrath JA, Bruckner-Tuderman L. The missense mutation p.R1303Q in type XVII collagen underlies junctional epidermolysis bullosa resembling Kindler syndrome. J Invest Dermatol 2014; 134:845-849. [PMID: 24005051 DOI: 10.1038/jid.2013.367] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Cristina Has
- Department of Dermatology, University Medical Center Freiburg, Freiburg, Germany
| | - Dimitra Kiritsi
- Department of Dermatology, University Medical Center Freiburg, Freiburg, Germany
| | - Jemima E Mellerio
- St John's Institute of Dermatology, King's College London (Guy's Campus), London, UK
| | - Claus-Werner Franzke
- Department of Dermatology, University Medical Center Freiburg, Freiburg, Germany
| | - Emma Wedgeworth
- St John's Institute of Dermatology, King's College London (Guy's Campus), London, UK
| | | | | | - Peter Itin
- Department of Dermatology, University of Basel, Basel, Switzerland
| | - Michael A Simpson
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | | | - Wataru Fujimoto
- Department of Dermatology, Kawasaki Medical School, Okayama, Japan
| | - John A McGrath
- St John's Institute of Dermatology, King's College London (Guy's Campus), London, UK
| | - Leena Bruckner-Tuderman
- Department of Dermatology, University Medical Center Freiburg, Freiburg, Germany; Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
17
|
Sproule TJ, Bubier JA, Grandi FC, Sun VZ, Philip VM, McPhee CG, Adkins EB, Sundberg JP, Roopenian DC. Molecular identification of collagen 17a1 as a major genetic modifier of laminin gamma 2 mutation-induced junctional epidermolysis bullosa in mice. PLoS Genet 2014; 10:e1004068. [PMID: 24550734 PMCID: PMC3923665 DOI: 10.1371/journal.pgen.1004068] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/11/2013] [Indexed: 12/21/2022] Open
Abstract
Epidermolysis Bullosa (EB) encompasses a spectrum of mechanobullous disorders caused by rare mutations that result in structural weakening of the skin and mucous membranes. While gene mutated and types of mutations present are broadly predictive of the range of disease to be expected, a remarkable amount of phenotypic variability remains unaccounted for in all but the most deleterious cases. This unexplained variance raises the possibility of genetic modifier effects. We tested this hypothesis using a mouse model that recapitulates a non-Herlitz form of junctional EB (JEB) owing to the hypomorphic jeb allele of laminin gamma 2 (Lamc2). By varying normally asymptomatic background genetics, we document the potent impact of genetic modifiers on the strength of dermal-epidermal adhesion and on the clinical severity of JEB in the context of the Lamc2(jeb) mutation. Through an unbiased genetic approach involving a combination of QTL mapping and positional cloning, we demonstrate that Col17a1 is a strong genetic modifier of the non-Herlitz JEB that develops in Lamc2(jeb) mice. This modifier is defined by variations in 1-3 neighboring amino acids in the non-collagenous 4 domain of the collagen XVII protein. These allelic variants alter the strength of dermal-epidermal adhesion in the context of the Lamc2(jeb) mutation and, consequentially, broadly impact the clinical severity of JEB. Overall the results provide an explanation for how normally innocuous allelic variants can act epistatically with a disease causing mutation to impact the severity of a rare, heritable mechanobullous disorder.
Collapse
Affiliation(s)
| | - Jason A. Bubier
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Victor Z. Sun
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Vivek M. Philip
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Elisabeth B. Adkins
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Genetics Program, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - John P. Sundberg
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | |
Collapse
|
18
|
Vanotti S, Chiaverini C, Charlesworth A, Bonnet N, Berbis P, Meneguzzi G, Lacour JP. Late-onset skin fragility in childhood: a case of junctional epidermolysis bullosa of late onset caused by a missense mutation in COL17A1. Br J Dermatol 2013; 169:714-5. [PMID: 23550562 DOI: 10.1111/bjd.12353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- S Vanotti
- Department of Dermatology, CHU Nice, Nice, France
| | | | | | | | | | | | | |
Collapse
|