1
|
Sharma RK, Sharma MR, Singh S, Mahendra A, Kumar A, Sharma SP, Kapur V, Sharma AK. Dysbiosis of pro-inflammatory and anti-inflammatory salivary cytokines during psoriasis providing a therapeutic window and a valuable diagnostic aid in future. Biotechnol Appl Biochem 2025; 72:369-376. [PMID: 39267495 DOI: 10.1002/bab.2669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
The objective of this article is to evaluate the salivary levels of tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), interleukin-2 (IL-2), and IL-10 in patients with active psoriasis and compare them with those in healthy control subjects. This study included 60 subjects who were clinically diagnosed cases with active psoriasis (categorized further into 33 mild to moderate and 27 severe cases based on the Psoriasis Area Severity Index score) and 60 age- and gender-matched healthy control subjects. Levels of TNF-α, IFN-γ, IL-2, and IL-10 in the unstimulated saliva of subjects were determined via enzyme-linked immunosorbent assay (BT Lab). The salivary levels of TNF-α, IFN-γ, and IL-2 were significantly higher, whereas IL-10 concentration was significantly reduced in psoriatic patients in comparison to controls, and the difference increased with the progressing severity of the disease. Assessment of cytokine profiles in psoriasis patients is significant for diagnostic validation and monitoring the disease severity. Saliva offers an alternate, noninvasive, and readily available biological sample for evaluating cytokine levels. Extensive research in this field has been recommended for better scientifically proven conclusions.
Collapse
Affiliation(s)
- Ravi Kant Sharma
- Department of Biochemistry, Dr. Harvansh Singh Judge Institute of Dental Sciences & Hospital, Panjab University, Chandigarh, India
| | - Manu Rashmi Sharma
- Department of Health and Planning, ESI Hospital, Una, Himachal Pradesh, India
| | - Simranjit Singh
- Department of Oral and Maxillofacial Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Aneet Mahendra
- Department of Dermatology, MMIMSR, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| | - Aman Kumar
- Department of Urology, Ohio State University, Columbus, Ohio, USA
| | - Surya Prakash Sharma
- Eye Research Laboratory, Advanced Eye Centre, PGIMER, Chandigarh, Chandigarh, India
| | - Vinay Kapur
- Department of General Medicine, Dr. Harvansh Singh Judge Institute of Dental Sciences & Hospital, Panjab University, Chandigarh, India
| | - Anil Kumar Sharma
- Department of Biotechnology, Amity School of Biological Sciences, Amity University Punjab, Mohali, India
| |
Collapse
|
2
|
Saw PE, Song E. The 'inflammazone' in chronic inflammatory diseases: psoriasis and sarcoidosis. Trends Immunol 2025; 46:121-137. [PMID: 39875239 DOI: 10.1016/j.it.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/26/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025]
Abstract
Chronic inflammatory diseases show significant heterogeneity in their phenotypes, with diverse immune cells and mediators interacting in response to various stimuli. This review proposes the concept of the 'inflammazone' framework - which maps the distribution of immune components driving disease pathogenesis - using sarcoidosis and psoriasis as examples. Sarcoidosis features granulomatous inflammation with macrophages and CD4+ T cells, which can spread to lymph nodes and other organs. Psoriasis, affecting primarily the skin, involves Th1, Th17, and Th22 pathways with CD8+ T cells and dendritic cells. Human sarcoidosis exhibits geographic and racial variability, while psoriasis shows varying morphologies and disease courses. Sarcoidosis has more extensive distal immune signaling, whereas psoriasis remains more localized. Understanding the inflammazone is crucial for advancing personalized treatments for inflammatory diseases.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Nanhai Clinical Translational Center, Sun Yat-sen Memorial Hospital, Foshan, China; Department of General Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Nanhai Clinical Translational Center, Sun Yat-sen Memorial Hospital, Foshan, China; Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Zenith Institute of Medical Sciences, Guangzhou 510120, China.
| |
Collapse
|
3
|
Dairov A, Sekenova A, Alimbek S, Nurkina A, Shakhatbayev M, Kumasheva V, Kuanysh S, Adish Z, Issabekova A, Ogay V. Psoriasis: The Versatility of Mesenchymal Stem Cell and Exosome Therapies. Biomolecules 2024; 14:1351. [PMID: 39595528 PMCID: PMC11591958 DOI: 10.3390/biom14111351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are multilineage differentiating stromal cells with extensive immunomodulatory and anti-inflammatory properties. MSC-based therapy is widely used in the treatment of various pathologies, including bone and cartilage diseases, cardiac ischemia, diabetes, and neurological disorders. Along with MSCs, it is promising to study the therapeutic properties of exosomes derived from MSCs (MSC-Exo). A number of studies report that the therapeutic properties of MSC-Exo are superior to those of MSCs. In particular, MSC-Exo are used for tissue regeneration in various diseases, such as healing of skin wounds, cancer, coronary heart disease, lung injury, liver fibrosis, and neurological, autoimmune, and inflammatory diseases. In this regard, it is not surprising that the scientific community is interested in studying the therapeutic properties of MSCs and MSC-Exo in the treatment of psoriasis. This review summarizes the recent advancements from preclinical and clinical studies of MSCs and MSC-Exo in the treatment of psoriasis, and it also discusses their mechanisms of therapeutic action involved in the treatment of this disease.
Collapse
Affiliation(s)
- Aidar Dairov
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
- Department of General Biology and Genomics, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Aliya Sekenova
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Symbat Alimbek
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Assiya Nurkina
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Miras Shakhatbayev
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Venera Kumasheva
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Sandugash Kuanysh
- Obstetrics and Gynecology, Astana Medical University, Astana 010000, Kazakhstan
| | - Zhansaya Adish
- Laboratory of Immunochemistry and Immunobiotechnology, National Center for Biotechnology, Astana 010000, Kazakhstan;
- Department of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Assel Issabekova
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Vyacheslav Ogay
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
- Department of General Biology and Genomics, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| |
Collapse
|
4
|
Kim HR, Lee SY, You GE, Kim HO, Park CW, Chung BY. Adipose-Derived Stem Cell Exosomes Alleviate Psoriasis Serum Exosomes-Induced Inflammation by Regulating Autophagy and Redox Status in Keratinocytes. Clin Cosmet Investig Dermatol 2023; 16:3699-3711. [PMID: 38152151 PMCID: PMC10752035 DOI: 10.2147/ccid.s439760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/07/2023] [Indexed: 12/29/2023]
Abstract
Introduction Exosomes play a key role in cell communication and are involved in both pathological and physiological processes. Autophagy dysfunction and oxidative stress are linked to immune-mediated inflammatory diseases such as psoriasis. Stem cell-derived exosomes exhibit immunomodulatory and antioxidant efficacy. Methods We aimed to investigate the impact of psoriasis serum-derived exosomes on inflammation, oxidative stress, and autophagy in keratinocytes. Additionally, we explored the therapeutic potential of adipose-derived stem cell (ADSC) exosomes against inflammation induced by psoriasis serum exosomes. To validate psoriasis patient serum-derived exosomes and ADSC exosomes, we used nanoparticle tracking analysis, Western blotting, flow cytometry, and immunofluorescence. qPCR was used to study changes in the gene expression of proinflammatory cytokines and oxidative stress markers in HaCaT cells treated with psoriasis serum-derived exosomes or ADSC exosomes. The effects of these exosomes on autophagy in HaCaT cells were evaluated by Western blotting and immunofluorescence. Result The treatment of HaCaT cells with psoriasis serum-derived exosomes increased proinflammatory cytokine production and oxidative stress-related factor (Nox2 and Nox4) expression and decreased Nrf2 expression via P65/NF-κB and P38/MAPK activation. Compared with healthy control serum-derived exosomes, psoriasis serum-derived exosomes decreased ATG5, P62, Beclin1, and LC3 expression and autophagosome production in HaCaT cells. Conversely, ADSC exosomes suppressed proinflammatory cytokine and oxidative stress production, and restored autophagy in HaCaT cells treated with psoriasis serum-derived exosomes. Discussion These findings suggest that ADSC exosomes exhibit a suppressive effect on psoriasis serum exosome-induced inflammation and oxidative stress by regulating autophagy in keratinocytes.
Collapse
Affiliation(s)
- Hye Ran Kim
- Department of Dermatology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, 07441, Korea
| | - So Yeon Lee
- Department of Dermatology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, 07441, Korea
| | - Ga Eun You
- Research and Development Institute, Biosolution, Seoul Technopark, Seoul, 01811, Korea
| | - Hye One Kim
- Department of Dermatology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, 07441, Korea
| | - Chun Wook Park
- Department of Dermatology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, 07441, Korea
| | - Bo Young Chung
- Department of Dermatology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, 07441, Korea
| |
Collapse
|
5
|
Niu X, Li X, Feng Z, Han Q, Li J, Liu Y, Zhang K. EDIL3 and VEGF Synergistically Affect Angiogenesis in Endothelial Cells. Clin Cosmet Investig Dermatol 2023; 16:1269-1277. [PMID: 37223216 PMCID: PMC10202143 DOI: 10.2147/ccid.s411253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/12/2023] [Indexed: 05/25/2023]
Abstract
Background Angiogenesis is one of the histologically predominant characteristics of psoriasis. Vascular endothelial growth factor (VEGF) and epidermal growth factor-like repeats and discoidin I-like domains 3 (EDIL3) have critical effects on angiogenesis. Both these proteins are vital proangiogenic factors in tumor occurrence and progression; however, the relationship between EDIL3 and VEGF with psoriasis remains unclear. Objective We aimed to elucidate the role of EDIL3 and VEGF and the involved mechanisms in psoriasis-associated angiogenesis. Methods EDIL3 and VEGF expression in cutaneous tissue was determined by immunohistochemical assay. The effects of EDIL3 on VEGF, VEGFR2, and the growth, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) were analyzed by Western blotting assay, cell counting kit-8 assay, Transwell assay, and Matrigel tube formation assay. Results EDIL3 and VEGF levels in psoriatic lesions significantly increased as compared to those in normal individuals and showed a positive relationship with the Psoriasis Area and Severity Index. The downregulation of EDIL3 decreased VEGF and VEGFR2 expression in HUVECs. Moreover, the decreased expression of EDIL3 and VEGF reduced the growth, invasion, and tube formation abilities of HUVECs, while EDIL3 resistance to VEGF and VEGFR2 was restored by using the EDIL3 recombinant protein. Conclusion These results suggest that psoriasis is also characterized by EDIL3 and VEGF-mediated angiogenesis. Thus, EDIL3 and VEGF could serve as novel targets for treating psoriasis.
Collapse
Affiliation(s)
- Xuping Niu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Xinhua Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Zhipeng Feng
- Department of Gastroenterology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Qixin Han
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Juan Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Yanmin Liu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| |
Collapse
|
6
|
Di Vincenzo M, Diotallevi F, Piccirillo S, Carnevale G, Offidani A, Campanati A, Orciani M. miRNAs, Mesenchymal Stromal Cells and Major Neoplastic and Inflammatory Skin Diseases: A Page Being Written: A Systematic Review. Int J Mol Sci 2023; 24:ijms24108502. [PMID: 37239847 DOI: 10.3390/ijms24108502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/28/2023] Open
Abstract
Micro RNAs (miRNAs) are a type of non-coding RNA (ncRNA) and typically interact with specific target mRNAs through complementary base pairing, affecting their translation and/or stability. MiRNAs regulate nearly all cellular functions, including the cell fate of mesenchymal stromal cells (MSCs). It is now accepted that various pathologies arise at the stem level, and, in this scenario, the role played by miRNAs in the fate of MSCs becomes of primary concern. Here we have considered the existing literature in the field of miRNAs, MSCs and skin diseases, classified as inflammatory (such as psoriasis and atopic dermatitis-AD) and neoplastic (melanoma and non-melanoma-skin-cancer including squamous cell and basal cell carcinoma) diseases. In this scoping review article, the evidence recovered indicates that this topic has attracted attention, but it is still a matter of opinion. A protocol for this review was registered in PROSPERO with the registration number "CRD42023420245". According to the different skin disorders and to the specific cellular mechanisms considered (cancer stem cells, extracellular vesicles, inflammation), miRNAs may play a pro- or anti-inflammatory, as well as a tumor suppressive, or supporting, role, indicating a complex regulation of their function. It is evident that the mode of action of miRNAs is more than a switch on-off, and all the observed effects of their dysregulated expression must be checked in a detailed analysis of the targeted proteins. The involvement of miRNAs has been studied mainly for squamous cell carcinoma and melanoma, and much less in psoriasis and AD; different mechanisms have been considered, such as miRNAs included in extracellular vesicles derived both from MSCs or tumor cells, miRNAs involved in cancer stem cells formation, up to miRNAs as candidates to be new therapeutic tools.
Collapse
Affiliation(s)
- Mariangela Di Vincenzo
- Department of Clinical and Molecular Sciences-Histology, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Federico Diotallevi
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Silvia Piccirillo
- Department of Biomedical Sciences and Public Health-Pharmacology, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, Università di Modena e Reggio Emilia, 41121 Modena, Italy
| | - Annamaria Offidani
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Anna Campanati
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Monia Orciani
- Department of Clinical and Molecular Sciences-Histology, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
7
|
Pathogenic Role of Adipose Tissue-Derived Mesenchymal Stem Cells in Obesity and Obesity-Related Inflammatory Diseases. Cells 2023; 12:cells12030348. [PMID: 36766689 PMCID: PMC9913687 DOI: 10.3390/cells12030348] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Adipose tissue-derived mesenchymal stem cells (ASCs) are adult stem cells, endowed with self-renewal, multipotent capacities, and immunomodulatory properties, as mesenchymal stem cells (MSCs) from other origins. However, in a pathological context, ASCs like MSCs can exhibit pro-inflammatory properties and attract inflammatory immune cells at their neighborhood. Subsequently, this creates an inflammatory microenvironment leading to ASCs' or MSCs' dysfunctions. One such example is given by obesity where adipogenesis is impaired and insulin resistance is initiated. These opposite properties have led to the classification of MSCs into two categories defined as pro-inflammatory ASC1 or anti-inflammatory ASC2, in which plasticity depends on the micro-environmental stimuli. The aim of this review is to (i) highlight the pathogenic role of ASCs during obesity and obesity-related inflammatory diseases, such as rheumatoid arthritis, multiple sclerosis, psoriasis, inflammatory bowel disease, and cancer; and (ii) describe some of the mechanisms leading to ASCs dysfunctions. Thus, the role of soluble factors, adhesion molecules; TLRs, Th17, and Th22 cells; γδ T cells; and immune checkpoint overexpression will be addressed.
Collapse
|
8
|
Yang J, Xiao M, Ma K, Li H, Ran M, Yang S, Yang Y, Fu X, Yang S. Therapeutic effects of mesenchymal stem cells and their derivatives in common skin inflammatory diseases: Atopic dermatitis and psoriasis. Front Immunol 2023; 14:1092668. [PMID: 36891306 PMCID: PMC9986293 DOI: 10.3389/fimmu.2023.1092668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Chronic skin inflammatory diseases including atopic dermatitis (AD) and psoriasis have been considered uncontrolled inflammatory responses, which have usually troubled patients around the world. Moreover, the recent method to treat AD and psoriasis has been based on the inhibition, not regulation, of the abnormal inflammatory response, which can induce a number of side effects and drug resistance in long-term treatment. Mesenchymal stem/stromal cells (MSCs) and their derivatives have been widely used in immune diseases based on their regeneration, differentiation, and immunomodulation with few adverse effects, which makes MSCs a promising treatment for chronic skin inflammatory diseases. As a result, in this review, we aim to systematically discuss the therapeutic effects of various resources of MSCs, the application of preconditioning MSCs and engineering extracellular vesicles (EVs) in AD and psoriasis, and the clinical evaluation of the administration of MSCs and their derivatives, which can provide a comprehensive vision for the application of MSCs and their derivatives in future research and clinical treatment.
Collapse
Affiliation(s)
- Jie Yang
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China.,Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| | - Minglu Xiao
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China.,Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| | - Kui Ma
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| | - Hongyu Li
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China.,Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China.,Tianjin Medical University, Tianjin, China
| | - Mingzi Ran
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| | - Shuxu Yang
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China.,Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| | - Yuguang Yang
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China
| | - Xiaobing Fu
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| | - Siming Yang
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China.,Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| |
Collapse
|
9
|
Bellei B, Migliano E, Picardo M. Therapeutic potential of adipose tissue-derivatives in modern dermatology. Exp Dermatol 2022; 31:1837-1852. [PMID: 35102608 DOI: 10.1111/exd.14532] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 12/14/2022]
Abstract
Stem cell-mediated therapies in combination with biomaterial and growth factor-based approaches in regenerative medicine are rapidly evolving with increasing application beyond the dermatologic field. Adipose-derived stem cells (ADSCs) are the more frequently used adult stem cells due to their abundance and easy access. In the case of volumetric defects, adipose tissue can take the shape of defects, restoring the volume and enhancing the regeneration of receiving tissue. When regenerative purposes prevail on volume restoration, the stromal vascular fraction (SVF) rich in staminal cells, purified mesenchymal stem cells (MSCs) or their cell-free derivatives grafting are favoured. The therapeutic efficacy of acellular approaches is explained by the fact that a significant part of the natural propensity of stem cells to repair damaged tissue is ascribable to their secretory activity that combines mitogenic factors, cytokines, chemokines and extracellular matrix components. Therefore, the secretome's ability to modulate multiple targets simultaneously demonstrated preclinical and clinical efficacy in reversing pathological mechanisms of complex conditions such atopic dermatitis (AD), vitiligo, psoriasis, acne and Lichen sclerosus (LS), non-resolving wounds and alopecia. This review analysing both in vivo and in vitro models gives an overview of the clinical relevance of adipose tissue-derivatives such as autologous fat graft, stromal vascular fraction, purified stem cells and secretome for skin disorders application. Finally, we highlighted the major disease-specific limitations and the future perspective in this field.
Collapse
Affiliation(s)
- Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Emilia Migliano
- Department of Plastic and Regenerative Surgery, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
10
|
Mesenchymal Stem Cells and Psoriasis: Systematic Review. Int J Mol Sci 2022; 23:ijms232315080. [PMID: 36499401 PMCID: PMC9740222 DOI: 10.3390/ijms232315080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Mesenchymal Stem Cells (MSCs) are multipotent non-hematopoietic stromal cells found in different body tissues such as bone marrow, adipose tissue, periosteum, Wharton's jelly, umbilical cord, blood, placenta, amniotic fluid, and skin. The biological behavior of MSCs depends mainly on their interaction with the microenvironment in which they are found, whose quality deeply influences the regenerative and immunomodulatory properties of these cells. Several studies confirm the interaction between MSCs and inflammatory microenvironment in the pathogenesis of psoriasis, designating MSCs as an important factor driving psoriasis development. This review aims to describe the most recent evidence on how the inflammatory microenvironment that characterizes psoriasis influences the homeostasis of MSCs and how they can be used to treat the disease.
Collapse
|
11
|
Campanati A, Orciani M, Marani A, Di Vincenzo M, Magi S, Gregoriou S, Diotallevi F, Martina E, Radi G, Offidani A. Mesenchymal Stem Cells Profile in Adult Atopic Dermatitis and Effect of IL4-IL13 Inflammatory Pathway Inhibition In Vivo: Prospective Case-Control Study. J Clin Med 2022; 11:jcm11164759. [PMID: 36013001 PMCID: PMC9409772 DOI: 10.3390/jcm11164759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022] Open
Abstract
Atopic dermatitis (AD) is an inflammatory disease that typically begins in childhood and may persist into adulthood, becoming a lifelong condition. The major inflammatory mediators of AD are known to be interleukin IL4 and IL13, so Dupilumab, which is able to inhibit both interleukins by blocking the shared IL4Rα subunit, has become an attractive option for treating AD. Mesenchymal stem cells (MSCs) are involved in the onset and development of AD by secreting specific interleukins. The aim of this study was to isolate MSCs from healthy controls (C-MSCs) and patients with AD before (AD-MSCs T0) and after 16 weeks of treatment with Dupilumab (AD-MSCs T16); to evaluate the expression mainly of IL4 and IL13 and of other inflammatory cytokines in C-MSCs, AD-MSCs at T0 and at T16; and to evaluate the efficacy of Dupilumab on MSCs immunobiology. C- and AD-MSCs (T0, T16) were isolated from skin specimens and characterized; the expression/secretion of IL4 and IL13 was evaluated using immuno-cytochemistry (ICC), indirect immune-fluorescence (IIF) and an ELISA test; secretion of IL2, IL4, IL5, IL6, IL10, IL12, IL13, IL17A, Interferon gamma (IFNγ), Tumor necrosis factor alpha (TNFα), Granulocyte Colony-Stimulating Factor (G-CSF), and Transforming Growth Factor beta1 (TGFβ1) were measured with ELISA. IL13 and IL6 were over-expressed, while IL4 was down-regulated in AD-MSCs at T0 compared to C-MSCs. IL6 and IL13 expression was restored after 16 weeks of Dupilumab treatment, while no significant effects on IL4 expression were noted. Finally, IL2, IL5, IL10, IL12, IL17A, INFγ, TNFα, G-CSF, and TGFβ1 were similarly secreted by C- and AD-MSCs. Although Dupilumab blocks the IL4Rα subunit shared by IL4 and IL13, it is evident that its real target is IL13, and its ability to target IL13 in MSCs reinforces the evidence, already known in differentiated cells, of the central role IL13 rather than IL4 in the development of AD. The inflammatory cascade in AD begins at the mesenchymal level, so an upstream therapeutic intervention, able to modify the immunobiology of atopic MSCs, could potentially change the natural history of the disease.
Collapse
Affiliation(s)
- Anna Campanati
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy
| | - Monia Orciani
- Histology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Andrea Marani
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy
- Correspondence: ; Tel.: +39-071-5963433
| | - Mariangela Di Vincenzo
- Histology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Simona Magi
- Pharmacology, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Stamatios Gregoriou
- Faculty of Medicine, 1st Department of Dermatology-Venereology at Andreas Sygros Hospital, National and Kapodistrian University in Athens, 16121 Athens, Greece
| | - Federico Diotallevi
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy
| | - Emanuela Martina
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy
| | - Giulia Radi
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy
| | - Annamaria Offidani
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy
| |
Collapse
|
12
|
Wang F, Hou R, Li J, Zhao X, Wang Q, Zhang K, Li X. Psoriatic Serum Induce an Abnormal Inflammatory Phenotype and a Decreased Immunosuppressive Function of Mesenchymal Stem Cells. Int J Stem Cells 2022; 15:155-163. [PMID: 35483716 PMCID: PMC9148834 DOI: 10.15283/ijsc20210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/25/2021] [Accepted: 04/30/2021] [Indexed: 11/09/2022] Open
Abstract
Background and Objectives Mesenchymal stem cells (MSCs) have immunomodulatory function and participate in the pathogenesis of many immunoregulation-related diseases, including psoriasis. Previously, we found that MSCs from psoriatic lesions overexpress the proinflammatory microRNA, miR-155 and exhibit a decreased immunosuppressive capacity. But the origin of these aberrant characteristics is still not clear. To investigate whether inflammatory cytokines in serum and peripheral blood mononuclear cells (PBMCs) from psoriatic patients can regulate the expression patterns of immunoregulation-related cytokines and the immunoregulation function of MSCs. Methods and Results Normal dermal mesenchymal stem cells (nDMSCs) were treated with serum or PBMCs derived from patients with psoriasis or healthy donors. Expression of miR-155 and immunoregulation-related genes in each MSCs were measured using real-time PCR or western-blot. Meanwhile, the immunosuppressive capacity of DMSCs was evaluated by its inhibitory ability on proliferation of activated PBMCs. Compared to control serum, psoriatic serum significantly increased the expression levels of miR-155 (27.19±2.40 vs. 3.51±1.19, p<0.001), while decreased TAB2 expression (0.28±0.04 vs. 0.72±0.20, p<0.01) in DMSCs. Expression levels of immunoregulation-related genes such as PGE2, IL-10, and TLR4 were also markedly down-regulated following the psoriatic serum treatment. Those DMSCs treated with healthy serum could inhibit PBMC proliferation, while those psoriatic serum-treated DMSCs could not inhibit PBMC proliferation effectively. Conclusions Psoriatic serum up-regulate the expression of miR-155, down-regulate the expression of immunoregulation-related genes (PGE2, IL-10, and TLR4) in DMSCs, and along with the inhibition of the immunosuppressive function of MSCs.
Collapse
Affiliation(s)
- Fangdi Wang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruixia Hou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Xincheng Zhao
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Qiang Wang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinhua Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
13
|
Altered Proteomic Profile of Adipose Tissue-Derived Mesenchymal Stem Cell Exosomes from Cats with Severe Chronic Gingivostomatitis. Animals (Basel) 2021; 11:ani11082466. [PMID: 34438923 PMCID: PMC8388770 DOI: 10.3390/ani11082466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Feline chronic gingivostomatitis (FCGS) is a common pathology in cats, related to an aberrant immune response. The cause of FCGS remains elusive, despite extensive investigations. A multitude of conditions and infectious agents have been related, without proof of causation, as follows: virus, bacteria, environmental stress, hypersensitivity, etc. In recent years, therapies based on feline adipose-derived mesenchymal stem cells (fAd-MSC) have become an interesting alternative for the treatment of different complex pathologies in cats. Mesenchymal stem cells secrete a wide variety of therapeutic elements, such as bioactive molecules and extracellular vesicles, such as exosomes. It is essential to characterize these elements, to better understand their mechanisms of action. In this study, we show, for the first time, that the proteomic profile of fAd-MSC-derived exosomes, from calicivirus-positive patients with severe FCGS, is altered. Using bioinformatic tools, we have demonstrated the existence of different proteins in the exosomes from diseased patients, responsible for an altered biological effect. In addition, the exosomes do not only experience changes in their cargo, but are also produced in larger quantities. This study might contribute to the better prediction of the clinical outcomes of mesenchymal stem cell treatments in veterinary patients with immune-mediated diseases, such as FCGS. Abstract Feline chronic gingivostomatitis (FCGS) is a pathology with a complicated therapeutic approach and with a prevalence between 0.7 and 12%. Although the etiology of the disease is diverse, feline calicivirus infection is known to be a predisposing factor. To date, the available treatment helps in controlling the disease, but cannot always provide a cure, which leads to a high percentage of refractory animals. Mesenchymal stem cells (MSCs) play a pivotal role in the homeostasis and reparation of different tissues and have the ability to modulate the immune system responses. This ability is, in part, due to the capacity of exosomes to play a part in intercellular cell communication. However, the precise role of MSC-derived exosomes and their alterations in immunocompromised pathologies remains unknown, especially in veterinary patients. The goal of this work was to analyze the proteomic profile of feline adipose tissue-derived MSCs (fAd-MSCs) from calicivirus-positive FCGS patients, and to detect possible modifications of the exosomal cargo, to gain better knowledge of the disease’s etiopathogenesis. Using high-resolution mass spectrometry and functional enrichment analysis with Gene Ontology, exosomes isolated from the fAd-MSCs of five healthy cats and five calicivirus-positive FCGS patients, were pooled and compared. The results showed that the fAd-MSCs from cats suffering from FCGS not only had a higher exosome production, but also their exosomes showed significant alterations in their proteomic profile. Eight proteins were exclusively found in the exosomes from the FCGS group, and five proteins could only be found in the exosomes from the healthy cats. When comparing the exosomal cargo between the two groups, significant upregulation of 17 and downregulation of 13 proteins were detected in the FCGS group compared to the control group. These findings shed light on new perspectives on the roles of MSCs and their relation to this disease, which may help in identifying new therapeutic targets and selecting specific biomarkers.
Collapse
|
14
|
Liang N, Chang W, Peng A, Cao Y, Li J, Wang Y, Jiao J, Zhang K. Dermal Mesenchymal Stem Cells from Psoriatic Lesions Stimulate HaCaT Cell Proliferation, Differentiation, and Migration via Activating the PI3K/AKT Signaling Pathway. Dermatology 2021; 238:283-291. [PMID: 34175855 DOI: 10.1159/000515767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/08/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Psoriasis is a chronic inflammatory skin disease characterized by excessive proliferation and abnormal differentiation of keratinocytes. Dermal mesenchymal stem cells (DMSCs) are not only involved in the regeneration of skin tissue, but also can regulate skin microenvironment by secreting cytokines. However, whether and how psoriatic DMSCs regulate proliferation and differentiation of keratinocytes remains unknown. OBJECTIVE To study the effects of psoriatic DMSCs on the proliferation, differentiation, and migration of keratinocytes and the underlying mechanisms. METHODS Following co-cultures of HaCaT cells with either psoriatic DMSCs (p-DMSCs) or DMSCs from normal volunteers (n-DMSCs), HaCaT cell proliferation was assessed using CCK-8 and EDU incorporation assay, while scratch assay and transwell assay were used to assess cell migration. qRT-PCR was used to determine expression levels of mRNA for cell proliferation (Ki-67) and differentiation (keratin 5, involucrin, and filaggrin). Western blot was used to measure expression levels of proteins associated with keratinocyte proliferation and differentiation in cultured HaCaT cells treated with or without PI3K inhibitor. ELISA assay was used to measure expression profile of stem cell factor (SCF), epidermal growth factor (EGF), and interleukin-11 (IL-11) within the co-culture supernatants. RESULTS The results showed that p-DMSCs displayed a higher potency than n-DMSCs in stimulating proliferation, differentiation, and migration of HaCaT cells. Expression levels of PI3K and AKT proteins were markedly increased in HaCaT cells co-cultured with DMSCs versus HaCaT cell culture alone. Moreover, inhibition of the PI3K/AKT signaling pathway reversed the effect of p-DMSCs on proliferation, differentiation, and migration of HaCaT cells. Compared with n-DMSCs, the p-DMSCs showed increased secretion of IL-11, EGF, and SCF. CONCLUSION p-DMSCs stimulate HaCaT cell proliferation, differentiation and migration via activating the PI3K/AKT signaling pathway, providing a new insight into the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Nannan Liang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenjuan Chang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Aihong Peng
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Yue Cao
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Ying Wang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Juanjuan Jiao
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
15
|
Campanati A, Di Vincenzo M, Radi G, Rizzetto G, Carnevale G, Marchi S, Orciani M, Offidani A. The less-known face of dupilumab: its role in mesenchymal stem cells by interleukin-13 modulation. Br J Dermatol 2021; 185:217-219. [PMID: 33657639 DOI: 10.1111/bjd.19892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/16/2021] [Indexed: 11/28/2022]
Affiliation(s)
- A Campanati
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - M Di Vincenzo
- Department of Clinical and Molecular Sciences - Histology, Università Politecnica delle Marche, Ancona, Italy
| | - G Radi
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - G Rizzetto
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - G Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - S Marchi
- Department of Clinical and Molecular Sciences - Histology, Università Politecnica delle Marche, Ancona, Italy
| | - M Orciani
- Department of Clinical and Molecular Sciences - Histology, Università Politecnica delle Marche, Ancona, Italy
| | - A Offidani
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
16
|
Chang W, Liang N, Cao Y, Xing J, Li J, Li J, Zhao X, Li J, Niu X, Hou R, Yin G, Zhang K. The effects of human dermal-derived mesenchymal stem cells on the keratinocyte proliferation and apoptosis in psoriasis. Exp Dermatol 2021; 30:943-950. [PMID: 33838056 DOI: 10.1111/exd.14353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 12/25/2022]
Abstract
Psoriasis is a common chronic inflammatory skin disease, characterized by epidermal hyperproliferation. Mesenchymal stem cells (MSCs) regulate inflammation and vascular proliferation in the psoriasis lesions. Whether dermal-derived mesenchymal stem cells (DMSCs), the main MSCs in the dermis, regulate keratinocyte proliferation and apoptosis remains unknown. In the present study, we assessed the proliferation and apoptosis of keratinocytes cocultured with DMSCs isolated from either normal or psoriatic involved skin. Cell growth and apoptotic rates were determined using Cell Count Kit-8 and annexin V-FITC staining, respectively. In addition, EDU kit was also used to measure the rate of keratinocyte proliferation. Our results showed that psoriatic DMSCs (pDMSCs) were more potent than normal DMSCs (nDMSCs) in stimulating keratinocyte proliferation. In contrast, the apoptotic rate and expression levels of caspase-3 protein were lower in pDMSC-treated than nDMSC-treated keratinocytes (p < 0.001). Moreover, significantly higher contents of IL-6, IL-8, TNF-α and IFN-γ were found in the culture medium of pDMSCs than in that of nDMSCs. In conclusion, pDMSCs were more potent than nDMSCs in stimulation of keratinocyte proliferation and secretion of proinflammatory cytokines, but weaker in promoting apoptosis.
Collapse
Affiliation(s)
- Wenjuan Chang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Nannan Liang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Yue Cao
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianxiao Xing
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Jiao Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Juan Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Xincheng Zhao
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Xuping Niu
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruixia Hou
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Guohua Yin
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
17
|
Zhou L, Wang J, Liang J, Hou H, Li J, Li J, Cao Y, Li J, Zhang K. Psoriatic mesenchymal stem cells stimulate the angiogenesis of human umbilical vein endothelial cells in vitro. Microvasc Res 2021; 136:104151. [PMID: 33662409 DOI: 10.1016/j.mvr.2021.104151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/09/2021] [Accepted: 02/23/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To investigate the regulation of psoriatic dermal mesenchymal stem cells (p-DMSCs) in the expression of vascular growth factor (VEGF), and migration and angiogenesis of human umbilical vein endothelial cells (HUVECs) in vitro. METHODS A co-culture model of HUVECs and dermal mesenchymal stem cells (DMSCs)was used in this study. After 7-day co-culture, changes in expression levels of VEGF mRNA and protein in HUVECs were assessed using RT-PCR and Western Blotting, respectively. Migration and tubular formation of HUVECs were also assessed following co-culture of DMSCs and HUVECs. RESULTS In comparison to either HUVECs alone or co-culture of n-DMSCs and HUVECs, co-culture of HUVECs and p-DMSCs significantly increased expression levels of both VEGF mRNA (p < 0.01 vs. HUVECs alone) and protein in HUVECs (p < 0.001 vs. both HUVECs alone and HUVECs co-cultured with n-DMSCs). Moreover, p-DMSCs stimulated HUVEC migration and vascular formation (p < 0.05 vs. both HUVECs alone and co-culture of n-DMSCs and HUVECs). CONCLUSION Psoriatic DMSCs can upregulate VEGF expression, and stimulate migration and angiogenesis of HUVECs, suggesting a pathogenic role of p-DMSCs in psoriasis.
Collapse
Affiliation(s)
- Ling Zhou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Juanjuan Wang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Jiannan Liang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Hui Hou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Jiao Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Juan Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Yue Cao
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China.
| |
Collapse
|
18
|
An Update on the Potential of Mesenchymal Stem Cell Therapy for Cutaneous Diseases. Stem Cells Int 2021; 2021:8834590. [PMID: 33505474 PMCID: PMC7806381 DOI: 10.1155/2021/8834590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem or stromal cells (MSCs) are nonhematopoietic postnatal stem cells with self-renewal, multipotent differentiation, and potent immunomodulatory and anti-inflammatory capabilities, thus playing an important role in tissue repair and regeneration. Numerous clinical and preclinical studies have demonstrated the potential application of MSCs in the treatment of tissue inflammation and immune diseases, including inflammatory skin diseases. Therefore, understanding the biological and immunological characteristics of MSCs is important to standardize and optimize MSC-based regenerative therapy. In this review, we highlight the mechanisms underlying MSC-mediated immunomodulation and tissue repair/regeneration and present the latest development of MSC-based clinical trials on cutaneous diseases.
Collapse
|
19
|
The efficacy of in vivo administration of Apremilast on mesenchymal stem cells derived from psoriatic patients. Inflamm Res 2020; 70:79-87. [DOI: 10.1007/s00011-020-01412-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022] Open
|
20
|
Niu X, Han Q, Liu Y, Li J, Hou R, Li J, Zhang K. Psoriasis-associated angiogenesis is mediated by EDIL3. Microvasc Res 2020; 132:104056. [PMID: 32795468 DOI: 10.1016/j.mvr.2020.104056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/14/2020] [Accepted: 08/08/2020] [Indexed: 12/26/2022]
Abstract
The dermal mesenchymal stem cells (DMSCs) from psoriasis display higher expression level of epidermal growth factor-like repeats and discoidin I-like domains 3 (EDIL3), while EDIL3 can bind integrins, including αvβ3 and αvβ5, to regulate angiogenesis. To assess the role of EDIL3 derived from DMSCs of psoriasis (P-DMSCs) in angiogenesis, in vitro, EDIL3 of DMSCs from psoriasis was silenced by interfering EDIL3. Then the efficacy of silencing EDIL3 was tested by fluorescent flag, qRT-PCR and western blotting. And, in vitro, the relationship of EDIL3 in DMSCs with the angiogenesis of HUVECs were investigated through co-culture system. In vivo, EDIL3 recombinant protein was injected into IMQ cream-induced psoriasis-like skin lesions of mouse and EDIL3-associated tube formation were determined using Image J software. Our results showed the capacity of the adhesion, migration and tube formation of HUVECs in all psoriatic DMSCs groups were significantly higher compared with the control and si-EDIL3 groups (all P<0.05) in vitro. Moreover, under stimulated by EDIL3 recombinant protein, EDIL3-associated tube formation was dramatically elevated in vivo (P<0.01). In this study, EDIL3 could promote the adhesion, migration and tube formation of ECs and participant in the angiogenesis pathogenesis of psoriasis through affecting biological function on ECs both in vitro and in vivo. The results suggest a potential role of the critical pro-angiogenic factor EDIL3 in psoriasis therapy.
Collapse
Affiliation(s)
- Xuping Niu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Qixin Han
- Department of Dermatology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yanmin Liu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Juan Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Ruixia Hou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China.
| |
Collapse
|
21
|
Liu R, Chang W, Li J, Cheng Y, Dang E, Yang X, Wang Q, Wang G, Li X, Zhang K. Mesenchymal stem cells in psoriatic lesions affect the skin microenvironment through circular RNA. Exp Dermatol 2020; 28:292-299. [PMID: 30664808 DOI: 10.1111/exd.13890] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 01/18/2019] [Indexed: 02/06/2023]
Abstract
Psoriasis is an autoimmune skin disease. Our previous studies revealed abnormal immune regulation of skin mesenchymal stem cells (S-MSCs) in psoriatic lesions. Circular RNA (circRNA) molecules were recently discovered as a new class of non-coding regulatory RNAs. Their role in the pathogenesis of psoriasis has not yet been studied. To explore potential circRNA-mediated mechanisms of S-MSCs in the pathogenesis of psoriasis, we sequenced mRNAs and circRNAs of MSCs from normal skin and psoriatic lesions, followed by functional prediction and interaction analyses. In total, 129 circRNAs were differentially expressed, including 123 up-regulated and 6 down-regulated circRNAs, in MSCs from psoriatic lesions. Pathway analysis showed that the genes significantly down-regulated in psoriatic as compared to normal S-MSCs were mainly involved in JAK-STAT signalling. According to a circRNA-miRNA-mRNA interaction network, the expression of circRNAs associated with these mRNAs was also down-regulated in MSCs of psoriatic skin lesions. Knockdown of the circRNA gene chr2:206992521|206994966 reduced the capacity of S-MSCs to inhibit T-cell proliferation upon co-culture in normal as well as lesion-derived S-MSCs. Secreted-cytokine profiles (IL-6, IL-11 and hepatocyte growth factor) were also similar in normal and lesion-derived S-MSCs after circRNA knockdown. Thus, the circRNA chr2:206992521|206994966 in S-MSCs from psoriatic lesions affects the activity of T lymphocytes in local lesions by influencing their cytokine secretion. Taken together, our findings indicate that circRNA mediates the role of S-MSCs in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Ruifeng Liu
- Institute of Dermatology, Taiyuan City Centre Hospital, Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Taiyuan, China
| | - Wenjuan Chang
- Institute of Dermatology, Taiyuan City Centre Hospital, Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Taiyuan, China
| | - Juan Li
- Institute of Dermatology, Taiyuan City Centre Hospital, Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Taiyuan, China
| | - Yueai Cheng
- Institute of Dermatology, Taiyuan City Centre Hospital, Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Taiyuan, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaohong Yang
- Institute of Dermatology, Taiyuan City Centre Hospital, Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Taiyuan, China
| | - Qiang Wang
- Institute of Dermatology, Taiyuan City Centre Hospital, Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Taiyuan, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xinhua Li
- Institute of Dermatology, Taiyuan City Centre Hospital, Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Taiyuan, China
| | - Kaiming Zhang
- Institute of Dermatology, Taiyuan City Centre Hospital, Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Taiyuan, China
| |
Collapse
|
22
|
Paganelli A, Tarentini E, Benassi L, Kaleci S, Magnoni C. Mesenchymal stem cells for the treatment of psoriasis: a comprehensive review. Clin Exp Dermatol 2020; 45:824-830. [PMID: 32386432 DOI: 10.1111/ced.14269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2020] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSCs) have recently been shown to have not only regenerative capabilities but also immunomodulating properties. For this reason, they are currently under investigation in clinical trials for the treatment of several autoimmune systemic disorders. Psoriasis is a systemic immune-mediated disease for which MSCs could have therapeutic potential. We analysed the existing literature with regard to MSC-based strategies for the treatment of psoriasis, using the MEDLINE, Embase, Scopus and Cochrane Library electronic databases from inception to the date of study. A number of studies confirm the involvement of MSCs in psoriasis pathogenesis and therefore designate MSCs as an important potential therapeutic tool in this setting. Preclinical data are mostly based on imiquimod-induced murine models of psoriasis, and confirm the anti-inflammatory and immunomodulatory action of MSCs in the setting of psoriasis. Six patients affected by psoriasis were described in four clinical studies. Despite significant differences in terms of therapeutic protocols and clinical outcomes, the MSC-based regimens were efficacious in 100% of the cases. Despite more data still being needed, MSCs could be a promising therapy for psoriasis.
Collapse
Affiliation(s)
- A Paganelli
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy.,PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - E Tarentini
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - L Benassi
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - S Kaleci
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - C Magnoni
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
23
|
Campanati A, Diotallevi F, Martina E, Paolinelli M, Radi G, Offidani A. Safety update of etanercept treatment for moderate to severe plaque psoriasis. Expert Opin Drug Saf 2020; 19:439-448. [PMID: 32178543 DOI: 10.1080/14740338.2020.1740204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Conventional topical therapies and disease-modifying anti-rheumatic drugs (DMARDs) for patients with psoriasis are often linked to inadequate outcomes and risk of multiple adverse effects. Biologic agents such as etanercept (ETN) have revolutionized the therapeutic management of psoriasis, allowing the treatment of most difficult cases, and fragile patients.Areas covered: The authors searched PubMed using the term 'psoriasis,' 'etanercept,' and 'safety.' Articles considered by the authors to be most relevant, such as randomized controlled studies, cohort studies, and review articles placing emphasis on studies of efficacy and safety were selected. Case reports and letters relating to safety were also included. The main sources of data referenced by these articles were also included in the review. Besides, to get the relevant studies, the reference lists were examined to identify the potentially available studies. The aim of this review is to describe the safety profile of ETN, used for psoriasis treatment, focusing on related clinical implications.Expert opinion: ETN has a favorable safety profile, and its use should be largely considered in psoriatic patients. Caution should be recommended in case of chronic heart failure, autoimmune disease, previous malignancies, familial history of demyelinating diseases, latent TBC infection, chronic HBV and HCV infection or HIV.
Collapse
Affiliation(s)
- Anna Campanati
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Federico Diotallevi
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Emanuela Martina
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Matteo Paolinelli
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Giulia Radi
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Annamaria Offidani
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| |
Collapse
|
24
|
Dalmády S, Kemény L, Antal M, Gyulai R. Periodontitis: a newly identified comorbidity in psoriasis and psoriatic arthritis. Expert Rev Clin Immunol 2019; 16:101-108. [PMID: 31825680 DOI: 10.1080/1744666x.2019.1700113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Introduction: Psoriasis is a chronic autoimmune skin disease with strong genetic background and environmental triggers. Patients with psoriasis and psoriatic arthritis are at greater risk of developing other chronic and potentially severe comorbidities, such as psoriatic arthritis, hyperlipidemia, type 2 diabetes mellitus, obesity, metabolic syndrome, cardiovascular diseases or depression. Recently, accumulating epidemiologic, genetic and pathogenetic evidence indicates that psoriasis is also associated with periodontitis, a chronic progressive inflammatory disease, which may result in tooth loss without early and adequate therapy.Areas covered: In this review article we summarize and discuss in detail the available epidemiologic, genetic, microbiological and immunological links between psoriasis and periodontitis.Expert opinion: Periodontitis, via the immunomodulatory effect of the oral microbiota, may play both a direct and indirect role in the development or exacerbation of psoriasis, and may influence the efficacy of antipsoriatic therapy. These new findings indicate a need for increased awareness, early recognition and focus on prevention of periodontitis for patients with psoriasis.
Collapse
Affiliation(s)
- Szandra Dalmády
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,MTA-SZTE Dermatological Research Group, University of Szeged, Szeged, Hungary.,HCEMM-SZTE Skin Research Group, University of Szeged, Szeged, Hungary
| | - Márk Antal
- Department of Operative and Esthetic Dentistry, University of Szeged, Szeged, Hungary
| | - Rolland Gyulai
- Department of Dermatology, Venerology and Oncodermatology, University of Pécs, Faculty of Medicine, Pécs, Hungary
| |
Collapse
|
25
|
Mesenchymal Stromal Cells from the Epidermis and Dermis of Psoriasis Patients: Morphology, Immunophenotype, Differentiation Patterns, and Regulation of T Cell Proliferation. Stem Cells Int 2019; 2019:4541797. [PMID: 31885608 PMCID: PMC6914887 DOI: 10.1155/2019/4541797] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/21/2019] [Accepted: 09/30/2019] [Indexed: 12/29/2022] Open
Abstract
Psoriasis is a skin disease characterized by hyperproliferation of keratinocytes and chronic inflammation. Mesenchymal stem/stromal cells (MSCs) exhibit an immunoregulatory function that can be altered in the skin of these patients. However, to date, the presence and functional capacity of MSCs in the dermis and epidermis of patients with psoriasis have not been fully established. In the present study, we evaluated the presence of MSCs in the skin of patients by obtaining adherent cells from the dermis and epidermis of lesional and nonlesional areas and characterizing them in a comparative manner with corresponding cells obtained from the dermis (HD-MSCs) and epidermis (HE-MSCs) of healthy donors. We determined whether the adherent cells had immunophenotypic profiles and differentiation potentials that were characteristic of MSCs. In addition, we analyzed their immunosuppression function by evaluating their capacity to decrease T cell proliferation. Our results indicate the presence of MSCs in the dermis and epidermis of healthy donors and patients with psoriasis; adherent cells from all skin sources exhibited MSC characteristics, such as expression of CD73, CD90, and CD105 markers and a lack of hematopoietic and endothelial marker expression. However, the cell populations obtained showed differences in differentiation potential toward adipogenic, osteogenic, and chondrogenic lineages. In addition, we observed a low MSC obtention frequency in nonlesional epidermal samples (NLE-MSCs), which also showed alterations in morphology and proliferation rate. Interestingly, MSCs from both the nonlesional dermis (NLD-MSCs) and lesional dermis (LD-MSCs) showed higher HLA class I antigen (HLA-I) expression than HD-MSCs. Moreover, NLD-MSCs showed a low T cell proliferation suppression capacity. In summary, this study demonstrates the presence of MSCs in the epidermis and dermis of patients with psoriasis and suggests that such cells may favor the inflammatory process and thus psoriatic lesion development through high HLA-I expression and low immunosuppression capacity.
Collapse
|
26
|
Campanati A, Paolinelli M, Diotallevi F, Martina E, Molinelli E, Offidani A. Pharmacodynamics OF TNF α inhibitors for the treatment of psoriasis. Expert Opin Drug Metab Toxicol 2019; 15:913-925. [PMID: 31623470 DOI: 10.1080/17425255.2019.1681969] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: The treatment of psoriasis with conventional topical therapies and disease-modifying anti-rheumatic drugs (DMARDs) is often linked to unsatisfactory outcomes and the risk of serious adverse events. Over the last decades, research advances in understanding the role of tumor necrosis factor alpha (TNF α) and other cytokines in the pathogenesis of psoriasis have driven the introduction of biologic agents targeting specific immune mediators in everyday clinical practice. TNF α inhibitors are a consolidated treatment option for patients with moderate-to-severe disease with remarkable efficacy and a reassuring safety profile.Areas covered: The PubMed database was searched using combinations of the following keywords: psoriasis, TNF α inhibitors, biologic therapy, pharmacodynamics, adalimumab, etanercept, infliximab, certolizumab pegol, golimumab, adverse effects. The aim of this review is to describe the pharmacodynamic profile of anti-TNF α inhibitors, currently approved by the European Medicines Agency (EMA) for the treatment of psoriasis, focusing on related clinical implications, also in comparison to the new generation biological therapies targeting the interleukin 23/interleukin 17 axis.Expert opinion: Pharmacodynamics of TNF α inhibitors should be fully considered in planning patient's therapy strategies, especially in case of secondary failures, poor adherence to treatment, instable psoriasis, high risk of infection, pregnant or lactating women, metabolic comorbidities, coexistence of other immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Anna Campanati
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Matteo Paolinelli
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Frederico Diotallevi
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Emanuela Martina
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Elisa Molinelli
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Annamaria Offidani
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| |
Collapse
|
27
|
Caffarini M, Armeni T, Pellegrino P, Cianfruglia L, Martino M, Offidani A, Di Benedetto G, Arnaldi G, Campanati A, Orciani M. Cushing Syndrome: The Role of MSCs in Wound Healing, Immunosuppression, Comorbidities, and Antioxidant Imbalance. Front Cell Dev Biol 2019; 7:227. [PMID: 31649930 PMCID: PMC6794435 DOI: 10.3389/fcell.2019.00227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/25/2019] [Indexed: 11/24/2022] Open
Abstract
Cushing syndrome (CS), caused by glucocorticoid (GCs) excess, is strictly connected to onset of different metabolic diseases and impaired wound healing. The source of excessively high levels of GCs allows the identification of endogenous and exogenous (iatrogenic) CS. Iatrogenic patients usually receive also anti-metabolites serving as the foundation to modern steroid-sparing immunosuppressive therapy. Tissues mainly targeted by CS are bone and fat, both derived from progenitor cells named mesenchymal stem cells (MSCs). In addition, the pathogenic role of MSCs in other diseases sharing common properties with CS, such as an altered inflammatory profile and increased oxidative stress, has been identified. In this light, MSCs isolated from skin of control healthy subjects (C-MSCs), patients affected by endogenous CS (ENDO-MSCs), patients affected by iatrogenic CS (IATRO-MSCs) and patients affected by exogenous CS receiving steroid-sparing drugs (SS-MSCs), respectively, have been isolated and analyzed. ENDO- and IATRO-MSCs showed a reduced differentiative potential toward osteogenic and adipogenic lineages compared to C-MSCs, whereas SS-MSCs re-acquired the ability to differentiate, with a trend similar to control cells. In addition, MSCs from CS groups, compared to control MSCs, displayed a reduction in the secretion of cytokines (immune-suppression), a decreased expression of genes related to wound healing and a dysregulation of the enzymes/genes related to antioxidant capacity. In conclusion, our results suggest that the hallmarks of CS, such as wound healing impairment and immunosuppression, are already detectable in undifferentiated cells, which could be considered a potential therapeutic early target for control of CS.
Collapse
Affiliation(s)
- Miriam Caffarini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Tatiana Armeni
- Section of Biochemistry, Department of Clinical Sciences, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Pamela Pellegrino
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Laura Cianfruglia
- Section of Biochemistry, Department of Clinical Sciences, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Marianna Martino
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Annamaria Offidani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Giovanni Di Benedetto
- Department of Experimental and Clinical Medicine, Clinic of Plastic and Reconstructive Surgery, Università Politecnica delle Marche, Ancona, Italy
| | - Giorgio Arnaldi
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Anna Campanati
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Monia Orciani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
28
|
Campanati A, Orciani M, Sorgentoni G, Consales V, Offidani A, Di Primio R. Pathogenetic Characteristics of Mesenchymal Stem Cells in Hidradenitis Suppurativa. JAMA Dermatol 2019; 154:1184-1190. [PMID: 30140888 DOI: 10.1001/jamadermatol.2018.2516] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Importance Hidradenitis suppurativa (HS) is a disease of the terminal hair follicle in apocrine gland-enriched skin areas, where immunobiology dysregulation of mesenchymal stem cells (MSCs) may have a key role. Objective To investigate the MSC profile in patients with HS and in healthy controls. Design, Setting, and Participants In this prospective case-control study, patients with HS were recruited from the Dermatological Clinic at the Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy. Biopsy specimens were analyzed at the Histology Section of the Department of Clinical and Molecular Sciences. Participants included 11 patients with HS and 9 healthy controls, who were recruited into the study between January 20, 2015, and September 20, 2016, and underwent punch biopsy from axillary skin. None of the participants had received any antibiotics (systemic or topical therapy) within almost 12 weeks before the study. Main Outcomes and Measures The immunophenotypic profile of MSCs was characterized following the minimal criteria established by the International Society for Cellular Therapy for the identification of MSCs. Levels of 12 cytokines belonging to helper T-cell subtypes 1, 2, and 17 pathways were examined on the secretome of isolated cells by enzyme-linked immunoabsorbent assay. Results Skin MSCs were characterized in 11 patients with HS (8 women and 3 men; mean [SD] age, 35.8 [7.9] years) and 9 healthy controls (7 women and 2 men; mean [SD] age, 36.7 [6.9] years). The healthy controls were matched with patients with HS for body mass index. Mesenchymal stem cells isolated from patients with HS (HS-MSCs) and from healthy controls (C-MSCs) met the International Society for Cellular Therapy minimal criteria. Compared with C-MSCs, cytokine analyses of HS-MSCs revealed statistically significant overexpression of interleukin (IL) 6 (median [interquartile range {IQR}], 8765.00 [7659.00-9123.00] vs 2849.00 [2609.00-3001.00] pg/mL; P = .008), IL-10 (median [IQR], 29.46 [26.35-35.79] vs 21.36 [19.89-23.33] pg/mL; P = .004), IL-12 (median [IQR], 15.25 [13.27-16.25] vs 11.89 [10.73-12.33] pg/mL; P = .03), IL-17A (median [IQR], 15.24 [13.23-17.24] vs 11.24 [10.28-11.95] pg/mL; P = .008), tumor necrosis factor (median [IQR], 42.54 [42.20-43.94] vs 32.55 [31.78-33.28] pg/mL; P = .004), transforming growth factor β1 (median [IQR], 1728.00 [1535.00-1979.00] vs 500.80 [465.00-634.50] pg/mL; P = .004), and interferon γ (median [IQR], 11.49 [10.71-12.35] vs 9.45 [9.29-10.01] pg/mL; P = .005). Conclusions and Relevance Mesenchymal stem cells isolated from the skin of patients with HS seem to be activated toward an inflammatory status. The imbalance between proinflammatory and anti-inflammatory activities of MSCs favors the hypothesis of their pathogenic involvement in HS.
Collapse
Affiliation(s)
- Anna Campanati
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Monia Orciani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Giulia Sorgentoni
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Veronica Consales
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Annamaria Offidani
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Roberto Di Primio
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
29
|
Mesenchymal Stem Cells in Homeostasis and Systemic Diseases: Hypothesis, Evidences, and Therapeutic Opportunities. Int J Mol Sci 2019; 20:ijms20153738. [PMID: 31370159 PMCID: PMC6696100 DOI: 10.3390/ijms20153738] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are present in all organs and tissues, playing a well-known function in tissue regeneration. However, there is also evidence indicating a broader role of MSCs in tissue homeostasis. In vivo studies have shown MSC paracrine mechanisms displaying proliferative, immunoregulatory, anti-oxidative, or angiogenic activity. In addition, recent studies also demonstrate that depletion and/or dysfunction of MSCs are associated with several systemic diseases, such as lupus, diabetes, psoriasis, and rheumatoid arthritis, as well as with aging and frailty syndrome. In this review, we hypothesize about the role of MSCs as keepers of tissue homeostasis as well as modulators in a variety of inflammatory and degenerative systemic diseases. This scenario opens the possibility for the use of secretome-derived products from MSCs as new therapeutic agents in order to restore tissue homeostasis, instead of the classical paradigm "one disease, one drug".
Collapse
|
30
|
Mesenchymal Stem Cells from Cervix and Age: New Insights into CIN Regression Rate. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1545784. [PMID: 30622662 PMCID: PMC6304868 DOI: 10.1155/2018/1545784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/01/2018] [Indexed: 02/06/2023]
Abstract
Cervical intraepithelial neoplasia (CIN) is a precancerous lesion of the uterine cervix that can regress or progress to cervical cancer; interestingly, it has been noted that young women generally seem to have higher rates of spontaneous regression and remission, suggesting a correlation between the patient's age and regression/progression rates of CIN. Even if the underlying mechanisms are still unclear, inflammation seems to play a pivotal role in CIN fate and inflammatory processes are often driven by mesenchymal stem cells (MSCs). This study was aimed at evaluating if age affects the behavior of MSCs from the cervix (C-MSCs) that in turn may modulate inflammation and, finally, regression rate. Fourteen samples of the human cervix were recovered from two groups of patients, "young" (mean age 28 ± 2) and "old" (mean age 45 ± 3), during treatment using the loop electrosurgical excision procedure (LEEP) technique. Progenitor cells were isolated, deeply characterized, and divided into young (yC-MSCs) and old cervixes (oC-MSCs); the senescence, expression/secretion of selected cytokines related to inflammation, and the effects of indirect cocultures with HeLa cells were analyzed. Our results show that isolated cells satisfy the fixed criteria for stemness and display age-related properties; yC-MSCs express a higher level of cytokines related to acute inflammation than oC-MSCs. Finally, in the crosstalk with HeLa cells, MSCs derived from the cervixes of young patients play a stronger antitumoral role than oC-MSCs. In conclusion, the immunobiology of MSCs derived from the cervix is affected by the age of donors and this can correlate with the regression rate of CIN by influencing their paracrine effect. In addition, MSCs from a young cervix drives an antitumoral effect by sustaining an acute inflammatory environment.
Collapse
|
31
|
Villatoro AJ, Hermida-Prieto M, Fernández V, Fariñas F, Alcoholado C, Rodríguez-García MI, Mariñas-Pardo L, Becerra J. Allogeneic adipose-derived mesenchymal stem cell therapy in dogs with refractory atopic dermatitis: clinical efficacy and safety. Vet Rec 2018; 183:654. [DOI: 10.1136/vr.104867] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/18/2018] [Accepted: 08/05/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Antonio José Villatoro
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences; University of Málaga, IBIMA; Málaga Spain
- Cellular Therapy Unit; Instituto de Inmunología Clínica y Terapia Celular (IMMUNESTEM); Málaga Spain
| | | | - Viviana Fernández
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences; University of Málaga, IBIMA; Málaga Spain
- Cellular Therapy Unit; Instituto de Inmunología Clínica y Terapia Celular (IMMUNESTEM); Málaga Spain
| | - Fernando Fariñas
- Cellular Therapy Unit; Instituto de Inmunología Clínica y Terapia Celular (IMMUNESTEM); Málaga Spain
| | - Cristina Alcoholado
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences; University of Málaga, IBIMA; Málaga Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN); Madrid Spain
| | | | | | - José Becerra
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences; University of Málaga, IBIMA; Málaga Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN); Madrid Spain
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND; Málaga Spain
| |
Collapse
|
32
|
Campanati A, Orciani M, Sorgentoni G, Consales V, Mattioli Belmonte M, Di Primio R, Offidani A. Indirect co-cultures of healthy mesenchymal stem cells restore the physiological phenotypical profile of psoriatic mesenchymal stem cells. Clin Exp Immunol 2018; 193:234-240. [PMID: 29676778 PMCID: PMC6046490 DOI: 10.1111/cei.13141] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2018] [Indexed: 12/29/2022] Open
Abstract
Psoriasis microenvironment, characterized by an imbalance between T helper type 1 (Th1)/Th17 and Th2 cytokines and also influences the mesenchymal stem cells (MSCs) phenotypical profile. MSCs from healthy donors (H-MSCs) can exert a strong paracrine effect by secreting active soluble factors, able to modulate the inflammation in the microenvironment. To evaluate the influence of H-MSCs on MSCs from psoriatic patients (PsO-MSCs), H-MSCs and PsO-MSCs were isolated and characterized. Indirect co-culture of H-MSCs with PsO-MSCs was performed; effects on proliferation and expression of cytokines linked to Th1/Th17 and Th2 pathways were assayed before and after co-culture. The results show that before co-culture, proliferation of PsO-MSCs was significantly higher than H-MSCs (P < 0·05) and the levels of secreted cytokines confirmed the imbalance of Th1/Th17 versus the Th2 axis. After co-culture of H-MSCs with PsO-MSCs, healthy MSCs seem to exert a 'positive' influence on PsO-MSCs, driving the inflammatory phenotypical profile of PsO-MSCs towards a physiological pattern. The proliferation rate decreased towards values nearer to those observed in H-MSCs and the secretion of the cytokines that mostly identified the inflammatory microenvironment that characterized psoriasis, such as interleukin (IL)-6, IL-12, IL-13, IL-17A, tumour necrosis factor (TNF)-α and granulocyte-macrophage colony-stimulating factor (G-CSF), is significantly lower in co-cultured PsO-MSCs than in individually cultured PSO-MSCs (P at least < 0·05). In conclusion, our preliminary results seem to provide an intriguing molecular explanation for the ever-increasing evidence of therapeutic efficacy of allogeneic MSCs infusion in psoriatic patients.
Collapse
Affiliation(s)
- A. Campanati
- Department of Clinical and Molecular Sciences, Dermatological ClinicUniversità Politecnica delle MarcheAnconaItaly
| | - M. Orciani
- Department of Clinical and Molecular Science, HistologyUniversità Politecnica delle MarcheAnconaItaly
| | - G. Sorgentoni
- Department of Clinical and Molecular Science, HistologyUniversità Politecnica delle MarcheAnconaItaly
| | - V. Consales
- Department of Clinical and Molecular Sciences, Dermatological ClinicUniversità Politecnica delle MarcheAnconaItaly
| | - M. Mattioli Belmonte
- Department of Clinical and Molecular Science, HistologyUniversità Politecnica delle MarcheAnconaItaly
| | - R. Di Primio
- Department of Clinical and Molecular Science, HistologyUniversità Politecnica delle MarcheAnconaItaly
| | - A. Offidani
- Department of Clinical and Molecular Sciences, Dermatological ClinicUniversità Politecnica delle MarcheAnconaItaly
| |
Collapse
|
33
|
Campanati A, Consales V, Orciani M, Giuliodori K, Ganzetti G, Bobyr I, Sorgentoni G, di Primio R, Offidani A. Role of mesenchymal stem cells in the pathogenesis of psoriasis: current perspectives. PSORIASIS-TARGETS AND THERAPY 2017; 7:73-85. [PMID: 29387610 PMCID: PMC5774609 DOI: 10.2147/ptt.s108311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent nonhematopoietic stromal cells studied for their properties and importance in management of several skin diseases. This review collects and analyzes the emerging published data, which describe the function of MSCs in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Anna Campanati
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Veronica Consales
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Monia Orciani
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Katia Giuliodori
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Giulia Ganzetti
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Ivan Bobyr
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Giulia Sorgentoni
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Roberto di Primio
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Annamaria Offidani
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| |
Collapse
|
34
|
Stem Cells as Potential Candidates for Psoriasis Cell-Replacement Therapy. Int J Mol Sci 2017; 18:ijms18102182. [PMID: 29053579 PMCID: PMC5666863 DOI: 10.3390/ijms18102182] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 02/08/2023] Open
Abstract
Recent years have seen considerable progress in explaining the mechanisms of the pathogenesis of psoriasis, with a significant role played in it by the hyper-reactivity of Th1 and Th17 cells, Treg function disorder, as well as complex relationships between immune cells, keratinocytes, and vascular endothelium. The effect of stem cells in the epidermis and stem cells on T cells has been identified and the dysfunction of various types of stem cells may be a prime cause of dysregulation of the inflammatory response in psoriasis. However, exploring these mechanisms in detail could provide a chance to develop new therapeutic strategies. In this paper, the authors reviewed data on the role played by stem cells in the pathogenesis of psoriasis and initial attempts at using them in treatment.
Collapse
|
35
|
Orciani M, Campanati A, Caffarini M, Ganzetti G, Consales V, Lucarini G, Offidani A, Di Primio R. T helper (Th)1, Th17 and Th2 imbalance in mesenchymal stem cells of adult patients with atopic dermatitis: at the origin of the problem. Br J Dermatol 2017; 176:1569-1576. [DOI: 10.1111/bjd.15078] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2016] [Indexed: 01/06/2023]
Affiliation(s)
- M. Orciani
- Department of Molecular and Clinical Sciences - Histology; Marche Polytechnic University; Via Tronto 10/A 60126 Ancona Italy
| | - A. Campanati
- Dermatological Clinic; Department of Molecular and Clinical Sciences; Marche Polytechnic University; Via Tronto 10/A 60126 Ancona Italy
| | - M. Caffarini
- Department of Molecular and Clinical Sciences - Histology; Marche Polytechnic University; Via Tronto 10/A 60126 Ancona Italy
| | - G. Ganzetti
- Dermatological Clinic; Department of Molecular and Clinical Sciences; Marche Polytechnic University; Via Tronto 10/A 60126 Ancona Italy
| | - V. Consales
- Dermatological Clinic; Department of Molecular and Clinical Sciences; Marche Polytechnic University; Via Tronto 10/A 60126 Ancona Italy
| | - G. Lucarini
- Department of Molecular and Clinical Sciences - Histology; Marche Polytechnic University; Via Tronto 10/A 60126 Ancona Italy
| | - A. Offidani
- Dermatological Clinic; Department of Molecular and Clinical Sciences; Marche Polytechnic University; Via Tronto 10/A 60126 Ancona Italy
| | - R. Di Primio
- Department of Molecular and Clinical Sciences - Histology; Marche Polytechnic University; Via Tronto 10/A 60126 Ancona Italy
| |
Collapse
|
36
|
Orciani M, Sorgentoni G, Olivieri F, Mattioli-Belmonte M, Di Benedetto G, Di Primio R. Inflammation by Breast Implants and Adenocarcinoma: Not Always a Bad Company. Clin Breast Cancer 2017; 17:286-292. [PMID: 28188107 DOI: 10.1016/j.clbc.2017.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/05/2016] [Accepted: 01/08/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Inflammation and tumor are now an inseparable binomial. Inflammation may also derive by the use of breast implants followed by the formation of a periprosthetic capsule. It is known that tumor cells, in an inflamed microenvironment, can profit by the paracrine effect exerted also by mesenchymal stem cells (MSCs). Here we evaluated the role of inflammation on the immunobiology of MSCs before and after cocultures with cells derived from breast adenocarcinoma. METHODS MSCs derived from both inflamed (I-MSCs) and control (C-MSCs) tissues were isolated and cocultured with MCF7 cells derived from breast adenocarcinoma. Before and after cocultures, the proliferation rate of MCF7 cells and the expression/secretion of cytokines related to inflammation were tested. RESULTS Before cocultures, higher levels of cytokine related to chronic inflammation were detected in I-MSCs than in C-MSCs. After cocultures with MCF7, C- and I-MSCs show a variation in cytokine production. In detail, IL-2, IL-4, IL-5, IL-10, IL-13, TGF-β and G-CSF were decreased, whereas IL-6, IL-12, IFN-γ, and IL-17 were oversecreted. Proliferation of MCF7 was significantly increased after cocultures with I-MSCs. CONCLUSIONS Inflammation at the site of origin of MSCs affects their immunobiology. Even if tumor cells increased their proliferation rate after cocultures with I-MSCs, the analysis of the cytokines, known to play a role in the interference of tumor cells with the host immune system, absolves completely the breast implants from the insult to enforce the risk of adenocarcinoma.
Collapse
Affiliation(s)
- Monia Orciani
- Department of Clinical and Molecular Sciences-Histology, Università Politecnica delle Marche, Ancona, Italy.
| | - Giulia Sorgentoni
- Department of Clinical and Molecular Sciences-Histology, Università Politecnica delle Marche, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences-Pathology, Università Politecnica delle Marche, Ancona, Italy
| | - Monica Mattioli-Belmonte
- Department of Clinical and Molecular Sciences-Histology, Università Politecnica delle Marche, Ancona, Italy
| | - Giovanni Di Benedetto
- Department of Experimental and Clinical Medicine-Clinic of Plastic and Reconstructive Surgery, Università Politecnica delle Marche, Ancona, Italy
| | - Roberto Di Primio
- Department of Clinical and Molecular Sciences-Histology, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
37
|
Abstract
Psoriasis is a complex chronic relapsing inflammatory disease. Although the exact mechanism remains unknown, it is commonly accepted that the development of psoriasis is a result of multi-system interactions among the epidermis, dermis, blood vessels, immune system, neuroendocrine system, metabolic system, and hematopoietic system. Many cell types have been confirmed to participate in the pathogenesis of psoriasis. Here, we review the stem cell abnormalities related to psoriasis that have been investigated recently.
Collapse
|
38
|
De Jesus MM, Santiago JS, Trinidad CV, See ME, Semon KR, Fernandez MO, Chung FS. Autologous Adipose-Derived Mesenchymal Stromal Cells for the Treatment of Psoriasis Vulgaris and Psoriatic Arthritis: A Case Report. Cell Transplant 2016; 25:2063-2069. [DOI: 10.3727/096368916x691998] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Psoriasis is a dermatologic disease of immune origins with no definitive cure. We report the Makati Medical Center experience of utilizing autologous mesenchymal stromal cells (MSCs) for one patient with psoriasis vulgaris (PV) and another with psoriatic arthritis (PA). Patients were educated and gave informed consent, according to the principles of the Declaration of Helsinki. The protocol was approved by the Cellular Transplantation Ethics Committee of the Makati Medical Center. Autologous MSCs were cultured from lipoaspirate and expanded in a clean room class 100 facility (Cellular Therapeutics Center, Makati Medical Center). MSCs were infused intravenously at a dose of 0.5–3.1 million cells/kg after complying with quality control parameters. Psoriasis area and severity index (PASI) evaluations were conducted by third-party dermatologists. The PA patient, who was previously unresponsive to standard treatment modalities, demonstrated a decrease in PASI (from 21.6 to 9.0, mild state after two infusions). No improvements were noted in joint pain until further treatment with etanercept and infliximab. The PV patient, who was previously dependent on methotrexate, showed a decrease in PASI from 24.0 to 8.3 after three infusions; this clinical improvement was sustained for 292 days (9.7 months) without methotrexate. The PV patient illustrated a marginal reduction in serum tumor necrosis factor-α (TNF-α), while significant (3.5- to 5-fold) decreases in reactive oxygen species (ROS) activity were noted. The ROS levels correlated with the clinical improvement of the PV patient. No serious adverse events were noted for either patient as a result of MSC infusions. This report demonstrates safe and tolerable transplantation of autologous MSCs for the treatment of psoriasis and warrants large clinical studies to investigate the long-term safety and efficacy of this approach.
Collapse
Affiliation(s)
- Miguel M. De Jesus
- Cellular Therapeutics Center, Makati Medical Center, Makati City, Metro Manila, Philippines
| | - Jayson S. Santiago
- Cellular Therapeutics Center, Makati Medical Center, Makati City, Metro Manila, Philippines
| | - Camille V. Trinidad
- Cellular Therapeutics Center, Makati Medical Center, Makati City, Metro Manila, Philippines
| | - Melvin E. See
- Cellular Therapeutics Center, Makati Medical Center, Makati City, Metro Manila, Philippines
| | - Kimberly R. Semon
- Cellular Therapeutics Center, Makati Medical Center, Makati City, Metro Manila, Philippines
| | - Manuel O. Fernandez
- Cellular Therapeutics Center, Makati Medical Center, Makati City, Metro Manila, Philippines
| | - Francisco S. Chung
- Cellular Therapeutics Center, Makati Medical Center, Makati City, Metro Manila, Philippines
| |
Collapse
|
39
|
Campanati A, Orciani M, Lazzarini R, Ganzetti G, Consales V, Sorgentoni G, Di Primio R, Offidani A. TNF-α inhibitors reduce the pathological Th1-Th17/Th2imbalance in cutaneous mesenchymal stem cells of psoriasis patients. Exp Dermatol 2016; 26:319-324. [DOI: 10.1111/exd.13139] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Anna Campanati
- Dermatological Clinic; Department of Molecular and Clinical Sciences; Marche Polytechnic University; Ancona Italy
| | - Monia Orciani
- Department of Molecular and Clinical Sciences - Histology; Marche Polytechnic University; Ancona Italy
| | - Raffaella Lazzarini
- Department of Molecular and Clinical Sciences - Histology; Marche Polytechnic University; Ancona Italy
| | - Giulia Ganzetti
- Dermatological Clinic; Department of Molecular and Clinical Sciences; Marche Polytechnic University; Ancona Italy
| | - Veronica Consales
- Dermatological Clinic; Department of Molecular and Clinical Sciences; Marche Polytechnic University; Ancona Italy
| | - Giulia Sorgentoni
- Department of Molecular and Clinical Sciences - Histology; Marche Polytechnic University; Ancona Italy
| | - Roberto Di Primio
- Department of Molecular and Clinical Sciences - Histology; Marche Polytechnic University; Ancona Italy
| | - Annamaria Offidani
- Dermatological Clinic; Department of Molecular and Clinical Sciences; Marche Polytechnic University; Ancona Italy
| |
Collapse
|
40
|
Ganzetti G, Campanati A, Santarelli A, Sartini D, Molinelli E, Brisigotti V, Di Ruscio G, Bobyr I, Emanuelli M, Offidani A. Salivary interleukin-1β: Oral inflammatory biomarker in patients with psoriasis. J Int Med Res 2016; 44:10-14. [PMID: 27683132 PMCID: PMC5536539 DOI: 10.1177/0300060515598902] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To evaluate salivary interleukin (IL)-1β levels in patients with psoriasis, before and after treatment with tumour necrosis factor (TNF)-α inhibitors. METHODS In this pilot study, salivary secretions were collected from patients with psoriasis and untreated healthy control subjects at baseline, and from patients after 12 weeks' treatment with TNF-α inhibitors. IL-1β levels were determined in saliva samples via enzyme-linked immunosorbent assays, undertaken before and after TNF-α inhibitor treatment. Psoriasis-specific analysis of disease severity and activity were also undertaken. RESULTS At baseline, patients (n = 25) had significantly higher salivary IL1β levels than controls (n = 20). In patients with psoriasis, TNF-α inhibitor treatment resulted in significantly reduced IL1β levels compared with baseline, but IL1β levels remained significantly higher than in control subjects even after treatment. There was a positive correlation between IL-1β levels, psoriasis activity and disease index score after TNF-α inhibitor treatment. CONCLUSION Saliva is a valid noninvasive tool for monitoring inflammation in psoriasis. TNF-α inhibitor treatments appear to interfere with the oral inflammatory process in patients with psoriasis.
Collapse
Affiliation(s)
- Giulia Ganzetti
- Dermatology Clinic, Polytechnic University of Marche Region, Ancona, Italy
| | - Anna Campanati
- Dermatology Clinic, Polytechnic University of Marche Region, Ancona, Italy
| | - Andrea Santarelli
- Department of Clinical Specialist and Stomatological Sciences, Polytechnic University of Marche Region, Ancona, Italy
| | - Davide Sartini
- Department of Clinical Specialist and Stomatological Sciences, Polytechnic University of Marche Region, Ancona, Italy
| | - Elisa Molinelli
- Dermatology Clinic, Polytechnic University of Marche Region, Ancona, Italy
| | - Valerio Brisigotti
- Dermatology Clinic, Polytechnic University of Marche Region, Ancona, Italy
| | - Giulia Di Ruscio
- Department of Clinical Specialist and Stomatological Sciences, Polytechnic University of Marche Region, Ancona, Italy
| | - Ivan Bobyr
- Dermatology Clinic, Polytechnic University of Marche Region, Ancona, Italy
| | - Monica Emanuelli
- Department of Clinical Specialist and Stomatological Sciences, Polytechnic University of Marche Region, Ancona, Italy
| | - Annamaria Offidani
- Dermatology Clinic, Polytechnic University of Marche Region, Ancona, Italy
| |
Collapse
|
41
|
Campanati A, Orciani M, Ganzetti G, Consales V, Di Primio R, Offidani A. The effect of etanercept on vascular endothelial growth factor production by cutaneous mesenchymal stem cells from patients with psoriasis. J Int Med Res 2016; 44:6-9. [PMID: 27683131 PMCID: PMC5536541 DOI: 10.1177/0300060515593229] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To evaluate prospectively the effect of etanercept (a tumour necrosis factor [TNF]-α inhibitor) on vascular endothelial growth factor (VEGF) production by mesenchymal stem cells (MSC) from patients with psoriasis. METHODS MSCs from lesional and perilesional skin were isolated, cultured and characterized. VEGF production was evaluated at baseline and after 12 weeks' etanercept treatment. RESULTS Etanercept treatment resulted in significant reductions in VEGF production compared with baseline in both lesional MSCs (256.42 ± 3.07 pg/ml per 106 cells at baseline vs 27.66 ± 2.03 pg/ml per 106 cells after treatment) and perilesional MSCs (235.03 ± 2.52 pg/ml per 106 cells vs 41.65 ± 4.72 pg/ml per 106 cells). CONCLUSIONS Etanercept reduces the production of VEGF in MSCs, which may modulate angiogenesis and contributes towards preventing the start of the "psoriatic march".
Collapse
Affiliation(s)
- Anna Campanati
- Department of Clinical and Molecular Sciences - Dermatological Clinic, Polytechnic Marche University, Ancona, Italy
| | - Monia Orciani
- Department of Clinical and Molecular Sciences - Histology, Polytechnic Marche University, Ancona, Italy
| | - Giulia Ganzetti
- Department of Clinical and Molecular Sciences - Dermatological Clinic, Polytechnic Marche University, Ancona, Italy
| | - Veronica Consales
- Department of Clinical and Molecular Sciences - Dermatological Clinic, Polytechnic Marche University, Ancona, Italy
| | - Roberto Di Primio
- Department of Clinical and Molecular Sciences - Histology, Polytechnic Marche University, Ancona, Italy
| | - Annamaria Offidani
- Department of Clinical and Molecular Sciences - Histology, Polytechnic Marche University, Ancona, Italy
| |
Collapse
|
42
|
Campanati A, Molinelli E, Ganzetti G, Giuliodori K, Minetti I, Taus M, Catani M, Martina E, Conocchiari L, Offidani A. The effect of low-carbohydrates calorie-restricted diet on visceral adipose tissue and metabolic status in psoriasis patients receiving TNF-alpha inhibitors: results of an open label controlled, prospective, clinical study. J DERMATOL TREAT 2016; 28:206-212. [DOI: 10.1080/09546634.2016.1214666] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
de Lima KA, de Oliveira GLV, Yaochite JNU, Pinheiro DG, de Azevedo JTC, Silva WA, Covas DT, Couri CEB, Simões BP, Voltarelli JC, Oliveira MC, Malmegrim KCR. Transcriptional profiling reveals intrinsic mRNA alterations in multipotent mesenchymal stromal cells isolated from bone marrow of newly-diagnosed type 1 diabetes patients. Stem Cell Res Ther 2016; 7:92. [PMID: 27406064 PMCID: PMC4942931 DOI: 10.1186/s13287-016-0351-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/12/2016] [Accepted: 06/22/2016] [Indexed: 02/07/2023] Open
Abstract
Background Bone marrow multipotent mesenchymal stromal cells (MSCs) are a diverse subset of precursors that contribute to the homeostasis of the hematopoietic niche. MSCs can be isolated and expanded in vitro and have unique immunomodulatory and regenerative properties that make them attractive for the treatment of autoimmune diseases, including type 1 diabetes (T1D). Whether autologous or allogeneic MSCs are more suitable for therapeutic purposes has not yet been established. While autologous MSCs may present abnormal function, allogeneic cells may be recognized and rejected by the host immune system. Thus, studies that investigate biological characteristics of MSCs isolated from T1D patients are essential to guide future clinical applications. Methods Bone marrow-derived MSCs from recently diagnosed type 1 diabetes patients (T1D-MSCs) were compared with those from healthy individuals (C-MSCs) for morphological and immunophenotypic characteristics and for differentiation potential. Bioinformatics approaches allowed us to match absolute and differential gene expression of several adhesion molecules, immune mediators, growth factors, and their receptors involved with hematopoietic support and immunomodulatory properties of MSCs. Finally, the differentially expressed genes were collated for functional pathway enrichment analysis. Results T1D-MSCs and C-MSCs were similar for morphology, immunophenotype, and differentiation potential. Our absolute gene expression results supported previous literature reports, while also detecting new potential molecules related to bone marrow-derived MSC functions. T1D-MSCs showed intrinsic abnormalities in mRNA expression, including the immunomodulatory molecules VCAM-1, CXCL12, HGF, and CCL2. Pathway analyses revealed activation of sympathetic nervous system and JAK STAT signaling in T1D-MSCs. Conclusions Collectively, our results indicate that MSCs isolated from T1D patients present intrinsic transcriptional alterations that may affect their therapeutic potential. However, the implications of these abnormalities in T1D development as well as in the therapeutic efficacy of autologous MSCs require further investigation. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0351-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kalil A de Lima
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil. .,Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil. .,, Tenente Catao Roxo, 2501, Monte Alegre, 14051-140, Ribeirao Preto, Sao Paulo, Brazil.
| | - Gislane L V de Oliveira
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Juliana N U Yaochite
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, Ceara, Brazil
| | - Daniel G Pinheiro
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Júlia T C de Azevedo
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Wilson Araujo Silva
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Dimas T Covas
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Carlos E B Couri
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Belinda P Simões
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Julio C Voltarelli
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Maria C Oliveira
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Kelen C R Malmegrim
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
44
|
Rokunohe A, Matsuzaki Y, Rokunohe D, Sakuraba Y, Fukui T, Nakano H, Sawamura D. Immunosuppressive effect of adipose-derived stromal cells on imiquimod-induced psoriasis in mice. J Dermatol Sci 2016; 82:50-3. [DOI: 10.1016/j.jdermsci.2015.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 12/08/2015] [Accepted: 12/16/2015] [Indexed: 01/26/2023]
|
45
|
MSCs and inflammation: new insights into the potential association between ALCL and breast implants. Breast Cancer Res Treat 2016; 156:65-72. [PMID: 26956974 DOI: 10.1007/s10549-016-3745-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 12/26/2022]
Abstract
Possible association between anaplastic large cell lymphoma (ALCL) and breast implants has been suggested. In this context, formation of the periprosthetic capsule has been reported as a cause of inflammation, which plays a key role in tumor onset. Tumors take advantage of inflammation to influence and interfere with the host immune response by secreting multiple factors, and their onset and survival is in turn affected by the paracrine effects from mesenchymal stem cells (MSCs). In this study, we tried to clarify how inflammation can modify the immunobiology and the exerted paracrine effect of MSCs. MSCs derived from both inflamed (I-MSCs) and control (C-MSCs) tissues were isolated and co-cultured with an ALCL cell line. Proliferation rate and the expression of selected cytokines were tested. I-MSCs secrete higher levels of cytokine related to chronic inflammation than C-MSCs. After co-cultures with KI-JK cells, C- and I-MSCs show the same variation in the cytokine expression, with an increase of IL2, IL4, IL5, IL10, IL13, TNF-α, TGF-β, and G-CSF. Proliferation of ALCL cells was not influenced by co-cultures. Our results state that (i) inflamed microenvironment affects the immunobiology of MSCs modifying the profile of the expressed cytokines, and (ii) the paracrine effects exerted by MSCs on ALCL cells are not influenced by inflammation. Moreover, it seems that ALCL cells are able to manipulate MSCs' immunoregulatory properties to evade the host immune control. Nevertheless, this ability is not associated with inflammation and the question about BIA-ALCL is not proved by our experiments.
Collapse
|
46
|
Sah SK, Park KH, Yun CO, Kang KS, Kim TY. Effects of Human Mesenchymal Stem Cells Transduced with Superoxide Dismutase on Imiquimod-Induced Psoriasis-Like Skin Inflammation in Mice. Antioxid Redox Signal 2016; 24:233-48. [PMID: 26462411 PMCID: PMC4753626 DOI: 10.1089/ars.2015.6368] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIMS The immunomodulatory and anti-inflammatory properties of mesenchymal stem cells (MSCs) have been proposed in several autoimmune diseases and successfully tested in animal models, but their contribution to psoriasis and underlying pathways remains elusive. Likewise, an increased or prolonged presence of reactive oxygen species and aberrant antioxidant systems in skin are known to contribute to the development of psoriasis and therefore effective antioxidant therapy is highly required. We explored the feasibility of using extracellular superoxide dismutase (SOD3)-transduced allogeneic MSCs as a novel therapeutic approach in a mouse model of imiquimod (IMQ)-induced psoriasis-like inflammation and investigated the poorly understood underlying mechanism. In addition, the chronicity and late-phase response of inflammation were evaluated during continued activation of antigen receptors by applying a booster dose of IMQ. RESULTS Subcutaneous injection of allogeneic SOD3-transduced MSCs significantly prevented psoriasis development in our IMQ-induced mouse model, likely through a suppression of proliferation and infiltration of various effector cells into skin with a concomitant modulated cytokine and chemokine expression and inhibition of signaling pathways such as toll-like receptor-7, nuclear factor-kappa B, p38 mitogen-activated kinase, and Janus kinase-signal transducer and activator of transcription, as well as adenosine receptor activation. INNOVATION AND CONCLUSION Our data offer a novel therapeutic approach to chronic inflammatory skin diseases such as psoriasis by leveraging immunomodulatory effects of MSCs as well as SOD3 expression.
Collapse
Affiliation(s)
- Shyam Kishor Sah
- 1 Laboratory of Dermato-Immunology, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea , Seoul, Republic of Korea
| | - Kyung Ho Park
- 2 Biological Sciences Center, University of Minnesota Twin Cities , St. Paul, Minnesota
| | - Chae-Ok Yun
- 3 Department of Bioengineering, College of Engineering, Hanyang University , Seoul, Republic of Korea
| | - Kyung-Sun Kang
- 4 Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University , Seoul, Republic of Korea
| | - Tae-Yoon Kim
- 1 Laboratory of Dermato-Immunology, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea , Seoul, Republic of Korea
| |
Collapse
|
47
|
Lazzarini R, Sorgentoni G, Caffarini M, Sayeed MA, Olivieri F, Di Primio R, Orciani M. New miRNAs network in human mesenchymal stem cells derived from skin and amniotic fluid. Int J Immunopathol Pharmacol 2015; 29:523-8. [PMID: 26684628 DOI: 10.1177/0394632015610228] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/10/2015] [Indexed: 01/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs), isolated from different adult sources, have great appeal for therapeutic applications due to their simple isolation, extensive expansion potential, and high differentiative potential.In our previous studies we isolated MSCs form amniotic fluid (AF-MSCs) and skin (S-MSCs) and characterized them according to their phenotype, pluripotency, and mRNA/microRNAs (miRNAs) profiling using Card A from Life Technologies.Here, we enlarge the profiling of AF-MCSs and S-MSCs to the more recently discovered miRNAs (Card B by Life Technologies) to identify the miRNAs putative target genes and the relative signaling pathways. Card B, in fact, contains miRNAs whose role and target are not yet elucidated.The expression of the analyzed miRNAs is changing between S-MSCs and AF-MSCs, indicating that these two types of MSCs show differences potentially related to their source. Interestingly, the pathways targeted by the miRNAS deriving from Card B are the same found during the analysis of miRNAs from Card A.This result confirms the key role played by WNT and TGF-β pathways in stem cell fate, underlining as other miRNAs partially ignored up to now deserve to be reconsidered. In addition, this analysis allows including Adherens junction pathways among the mechanisms finely regulated in stem cell behavior.
Collapse
Affiliation(s)
- R Lazzarini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - G Sorgentoni
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - M Caffarini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - M A Sayeed
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - F Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - R Di Primio
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - M Orciani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
48
|
Ganzetti G, Campanati A, Santarelli A, Pozzi V, Molinelli E, Minnetti I, Brisigotti V, Procaccini M, Emanuelli M, Offidani A. Periodontal disease: an oral manifestation of psoriasis or an occasional finding? Drug Dev Res 2015; 75 Suppl 1:S46-9. [PMID: 25381976 DOI: 10.1002/ddr.21194] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Even if the existence of oral psoriasis has been suggested, it is still a debated issue. Indeed, oral inflammatory diseases may histologically resemble psoriasis-related oral lesions. However, an increased prevalence of fissured tongue and geographic tongue has been associated with psoriatic patients, being a transitory and permanent lesion, respectively. Recently, it was hypothesized that gingivitis and periodontitis share the same underlying inflammatory pathogenetic process of psoriasis. Thus, in the present study, psoriatic patients were investigated for oral mucosa lesions prevalence as well as gum disease. Results displayed an increased association between gingivitis/periodontitis and psoriasis, which may suggest common underlying pathogenic risk factors. However, large-scale studies are needed to evaluate the real prevalence of gingivitis and periodontitis in these patients, to consider them a comorbidity of psoriasis.
Collapse
Affiliation(s)
- Giulia Ganzetti
- Clinic of Dermatology, Polytechnic University of Marche Region, Ancona, 60126, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Campanati A, Ganzetti G, Giuliodori K, Marra M, Bonfigli A, Testa R, Offidani A. Serum levels of adipocytokines in psoriasis patients receiving tumor necrosis factor-α inhibitors: results of a retrospective analysis. Int J Dermatol 2015; 54:839-45. [PMID: 25877149 DOI: 10.1111/ijd.12706] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/15/2014] [Accepted: 03/08/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Adipocytokines are bioactive molecules that are deeply involved in the occurrence of atherosclerosis, obesity, and autoimmune inflammatory diseases. OBJECTIVES This study was conducted to evaluate the effects of tumor necrosis factor-α (TNF-α) inhibitors on serum levels of adipocytokines in patients with chronic plaque psoriasis. METHODS Serum levels of adiponectin, resistin, visfatin, leptin, TNF-α, and interleukin-6 (IL-6) were evaluated in sera obtained from 47 patients with psoriasis, both at baseline and after they had received TNF-α inhibitors for 24 weeks. Equivalent data were obtained for 39 control subjects matched by age, sex, body mass index, waist : hip ratio, geographical origin, Mediterranean dietary habits, and smoking habits. RESULTS At baseline, mean serum levels of TNF-α, IL-6, leptin, resistin, and visfatin were higher in the psoriasis group than in healthy controls; these differences were statistically significant (P < 0.05). Conversely, mean serum levels of adiponectin were significantly lower in patients with psoriasis than in controls (P < 0.0001). Serum levels of adipocytokines did not linearly correlate with anthropometric indices in psoriasis patients (P > 0.05), except in the case of leptin, for which serum levels were related to waist : hip ratio in both men and women (P < 0.05). After 24 weeks of treatment, although serum levels of proinflammatory adipocytokines were decreased, only that of leptin showed a statistically significant reduction (P = 0.0003). Serum levels of adiponectin, an anti-inflammatory adipocytokine, were only mildly increased and persisted at a significantly lower level than in healthy controls (P > 0.005). CONCLUSIONS Patients with psoriasis show an imbalance between pro- and anti-inflammatory adipocytokines, which is reduced but not normalized after administration of TNF-α inhibitors for 24 weeks. This partial rebalancing seems to be mainly related to a reduction in proinflammatory adipocytokines, rather than an increase in anti-inflammatory adipocytokines.
Collapse
Affiliation(s)
- Anna Campanati
- Dermatology Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Giulia Ganzetti
- Dermatology Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Katia Giuliodori
- Dermatology Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Maurizio Marra
- Metabolic Diseases and Diabetology Unit, Italian National Research Center on Aging (INRCA), Ancona, Italy
| | - Annarita Bonfigli
- Metabolic Diseases and Diabetology Unit, Italian National Research Center on Aging (INRCA), Ancona, Italy
| | - Roberto Testa
- Experimental Models in Clinical Pathology, INRCA, Ancona, Italy
| | - Annamaria Offidani
- Dermatology Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| |
Collapse
|
50
|
Campanati A, Ganzetti G, Martina E, Giannoni M, Gesuita R, Bendia E, Giuliodori K, Sandroni L, Offidani A. Helicobacter pylori infection in psoriasis: results of a clinical study and review of the literature. Int J Dermatol 2015; 54:e109-14. [PMID: 25808243 DOI: 10.1111/ijd.12798] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Data from the literature concerning the role of Helicobacter pylori (H. pylori) infection in psoriasis are still conflicting. This study was carried out to evaluate prevalence of H. pylori in patients with mild to severe psoriasis, correlation between H. pylori infection and severity of psoriasis, and effect of H. pylori eradication on the clinical course of psoriasis. METHODS Two hundred and ten patients with psoriasis and 150 healthy controls were screened for H. pylori through [(13) C] urea breath test at baseline (T0). All patients with psoriasis received standardized phototherapy treatment, and those infected by H. pylori were also treated with a 1-week triple therapy, then they were all re-evaluated four weeks later at the end of therapy (T5). RESULTS The prevalence of H. pylori was not higher in psoriasis than in the control group (20.27 vs. 22%; P > 0.05). Patients infected by H. pylori showed more severe psoriasis than uninfected patients (psoriasis area and severity index score 17.9 ± 7.1 vs. 13.7 ± 6.9; P = 0.04), and patients who received successful eradication of H. pylori infection showed a greater improvement of psoriasis than the others (psoriasis area and severity index score at T5 in patients infected by H. pylori was 8.36 ± 3.76, in uninfected patients was 10.85 ± 3.49; P = 0.006). CONCLUSIONS Patients with mild to severe psoriasis do not show a greater prevalence of H. pylori infection; however, H. pylori seems able to affect the clinical severity of psoriasis.
Collapse
Affiliation(s)
- Anna Campanati
- Dermatological Unit, Department of Clinical and Moleciular Sciences, Polytechnic Marche University, Ancona, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|