1
|
Guo R, Teng JF, Wang YT, Yao J, Li X, Wu B, Sui JF, Long JH, Ou ZZ, He ZQ, Hu XQ, Liu SL. The parietal association cortex and its projections to the dorsal striatum are involved in histaminergic and nonhistaminergic itch processing. Brain Res Bull 2025; 226:111352. [PMID: 40274076 DOI: 10.1016/j.brainresbull.2025.111352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/20/2025] [Accepted: 04/22/2025] [Indexed: 04/26/2025]
Abstract
Itch is an unpleasant sensation accompanied by the urge to scratch. The act of scratching not only alleviates the itch but also activates the reward circuitry, inducing a pleasurable sensation that can perpetuate further scratching. Therefore, scratching can be characterized as both a goal-directed behavior and a reward-motivated behavior. As a key hub for sensorymotor integration and information processing in goal-directed tasks, the specific role of the posterior parietal cortex (PPC) in modulating itch remains to be elucidated. Using immunofluorescence and calcium-signal fiber photometric recordings, we found that neurons in the parietal association cortex (PtA), a subregion of the PPC, were activated during acute itch. Pharmacogenetic experiments demonstrated that both nonselective inhibition of neurons in the PtA and selective inhibition of pyramidal neuron activity in the PtA reduced the experimental itch-scratching behavior induced by subcutaneous injections of 5-HT and compound 48/80. The PtA projects to the dorsal striatum (DS), a critical component of the brain's reward circuitry, and inhibition of this pathway also diminished experimental itch-scratching behavior. Therefore, this study demonstrated for the first time that the PtA may be involved in the regulation of the goal-directed behavior of scratching of histaminergic and nonhistaminergic itch through projections to the DS.
Collapse
Affiliation(s)
- Rui Guo
- Department of Dermatology of Jiangbei Campus, The First Affiliated Hospital of Army Medical University, Chongqing 400020, China
| | - Jun-Fei Teng
- Department of Dermatology of Jiangbei Campus, The First Affiliated Hospital of Army Medical University, Chongqing 400020, China
| | - Ya-Ting Wang
- Department of Dermatology of Jiangbei Campus, The First Affiliated Hospital of Army Medical University, Chongqing 400020, China
| | - Juan Yao
- Experimental Center of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Xuan Li
- Experimental Center of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Bing Wu
- Experimental Center of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Jian-Feng Sui
- Experimental Center of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Jun-Hui Long
- Department of Dermatology of Jiangbei Campus, The First Affiliated Hospital of Army Medical University, Chongqing 400020, China
| | - Zu-Zhen Ou
- Department of Dermatology of Jiangbei Campus, The First Affiliated Hospital of Army Medical University, Chongqing 400020, China
| | - Zhi-Qiang He
- Department of Dermatology of Jiangbei Campus, The First Affiliated Hospital of Army Medical University, Chongqing 400020, China
| | - Xue-Qiang Hu
- Department of Dermatology of Jiangbei Campus, The First Affiliated Hospital of Army Medical University, Chongqing 400020, China
| | - Shu-Lei Liu
- Department of Dermatology of Jiangbei Campus, The First Affiliated Hospital of Army Medical University, Chongqing 400020, China.
| |
Collapse
|
2
|
Renkhold L, Wiegmann H, Pfleiderer B, Süer A, Zeidler C, Pereira MP, Schmelz M, Ständer S, Agelopoulos K. Scratching increases epidermal neuronal branching and alters psychophysical testing responses in atopic dermatitis and brachioradial pruritus. Front Mol Neurosci 2023; 16:1260345. [PMID: 37795274 PMCID: PMC10546039 DOI: 10.3389/fnmol.2023.1260345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/25/2023] [Indexed: 10/06/2023] Open
Abstract
Background Chronic scratching imposes a major stress on the skin and can lead to itch intensity worsening, and consequently, patients may enter an itch-scratch cycle. This repetitive mechanical stress can result in lichenification, worsening of epidermal barrier function, and enhanced cutaneous inflammation. Furthermore, a reduction of intraepidermal nerve fibers was previously described in lichenification. Aim The aim of this study was to investigate the influence of chronic scratching on the epidermal neuroanatomy and on sensory changes, in particular the prevalence of hyperknesis and alloknesis in patients after mechanical, chemical, and electrical stimuli. Methods Analyses were performed on pruritic lichenified (chronically scratched), pruritic non-lichenified (not chronically scratched), and non-pruritic non-lesional (unaffected) skin areas of patients with inflammatory pruritus, i.e., atopic dermatitis (n = 35), and neuropathic pruritus, i.e., brachioradial pruritus (n = 34) vs. healthy matched controls (n = 64). Our fine-grained spatial skin characterization enabled specifically studying the differential effects of chronic scratching in inflammatory and neuropathic itch. Results Analysis of intraepidermal nerve fiber density showed rarefaction of fibers in all three skin areas of patients compared with healthy controls in both diagnoses. Even more, the two pruritic areas had significantly less nerve fibers than the unaffected skin, whereas electrically induced itch was massively increased. Epidermal branching of the remaining nerve fibers in lichenified/chronically scratched skin was increased, particularly in patients with brachioradial pruritus, which may contribute to the pronounced local neuronal sensitivity. Hyperknesis and alloknesis were found to increase independently of lichenification. Conclusion Our results indicate that chronic scratching may not affect intraepidermal nerve fiber density but leads to a stronger branching pattern of intraepidermal nerve fibers, which may contribute to local hypersensitivity. The increased sensitivity in the pruritic areas suggests mechanisms of peripheral sensitization, whereas the increased sensation of electrically and chemically induced itch in unaffected skin indicates central sensitization for itch.
Collapse
Affiliation(s)
- Lina Renkhold
- Department of Dermatology and Centre for Chronic Pruritus, University Hospital Münster, Münster, Germany
| | - Henning Wiegmann
- Department of Dermatology and Centre for Chronic Pruritus, University Hospital Münster, Münster, Germany
| | - Bettina Pfleiderer
- Clinic of Radiology, Medical Faculty, University Hospital Münster, University of Münster, Münster, Germany
| | - Aysenur Süer
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Claudia Zeidler
- Department of Dermatology and Centre for Chronic Pruritus, University Hospital Münster, Münster, Germany
| | - Manuel P. Pereira
- Institute of Allergology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | - Martin Schmelz
- Department of Experimental Pain Research, MCTN, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Sonja Ständer
- Department of Dermatology and Centre for Chronic Pruritus, University Hospital Münster, Münster, Germany
| | - Konstantin Agelopoulos
- Department of Dermatology and Centre for Chronic Pruritus, University Hospital Münster, Münster, Germany
| |
Collapse
|
3
|
Liu JJ, Li X, Guo J, Yu S, Yang S. Role of GRPR in Acupuncture Intervention in the "Itch-scratch Vicious Cycle" Spinal Circuit of Chronic Pruritus. Chin Med 2023; 18:2. [PMID: 36597164 PMCID: PMC9809006 DOI: 10.1186/s13020-022-00706-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Many previous studies have shown the potential antipruritic effect of acupuncture. This paper reviews the antipruritic mechanisms of acupuncture according to these aspects: sample characteristics, detail of intervention, and effects evaluation. The majority of research on acupuncture's antipruritic effect has focused on primary afferents of the peripheral mechanism. Relatively few studies, however, have addressed the central mechanisms. Combination the latest research achievements of chronic itch, gastrin-releasing peptide receptor (GRPR) in the dorsal horn of the spinal cord may represent the first molecule identified that is dedicated to mediating the itch response and may provide an important therapeutic target for the treatment of chronic pruritic conditions. Therefore, GRPR may be a new target for acupuncture to relieve itch in the future and provide new ideas for acupuncture intervention in the mechanisms of the spinal level of the "itch-scratch vicious cycle" of chronic itch.
Collapse
Affiliation(s)
- Jia-jia Liu
- grid.411304.30000 0001 0376 205XAcupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan China
| | - Xuemei Li
- grid.411304.30000 0001 0376 205XAcupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan China
| | - Jing Guo
- grid.411304.30000 0001 0376 205XAcupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan China
| | - Shuguang Yu
- grid.411304.30000 0001 0376 205XAcupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan China ,Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu, Sichuan China
| | - Sha Yang
- grid.411304.30000 0001 0376 205XAcupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan China ,grid.411304.30000 0001 0376 205XAcupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan China
| |
Collapse
|
4
|
Schepko M, Stumpf KC, Tumala S, Peters EM, Kupfer JP, Schut C. Study protocol: Neuro-inflammatory parameters as mediators of the relationship between social anxiety and itch intensity: A cross-sectional, controlled laboratory study in patients with psoriasis and healthy skin controls. PLoS One 2023; 18:e0281989. [PMID: 36928456 PMCID: PMC10019658 DOI: 10.1371/journal.pone.0281989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/02/2023] [Indexed: 03/18/2023] Open
Abstract
INTRODUCTION Psoriasis (PSO) is a disease that in the majority of patients is accompanied by itch, which imposes a great burden and positively relates to anxiety. Social anxiety, a facet of anxiety associated with social withdrawal, may be a predictor of itch intensity in this patient group. Moreover, anxiety is linked to the secretion of neuroendocrine and inflammatory parameters such as substance P (SP), interleukin (IL)-6 and IL-17, which are also related to itch. In this research project, we investigate first, whether there is a direct relationship between social anxiety and itch intensity in patients with PSO and second whether the secretion of SP, IL-6 and IL-17 in the skin mediates this relationship. Additionally, PSO-patients are compared to healthy skin controls regarding their level of social anxiety, itch intensity and the secretion of SP, IL-6 and IL-17. METHODS AND ANALYSES For study 1, we aim to recruit 250 psoriasis patients and 250 healthy skin controls who complete questionnaires to assess social anxiety, itch intensity and control variables (e.g. sociodemographic variables and severity of PSO). A linear hierarchic regression will be used to determine whether social anxiety significantly contributes to itch intensity. In study 2, we plan to apply the suction blister method to 128 patients and healthy skin controls recruited from study 1 to determine SP, IL-6 and IL-17 in tissue fluid extracted from the skin. A mediation analysis will be conducted using the SPSS-macro PROCESS to test whether the relationship between social anxiety and itch is mediated by SP, IL-6 and IL-17. TRIAL REGISTRATION NUMBERS DRKS00023621 (study 1) and DRKS00023622 (study 2).
Collapse
Affiliation(s)
- Marcel Schepko
- Institute of Medical Psychology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Katharina C. Stumpf
- Institute of Medical Psychology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Susanne Tumala
- Department of Psychosomatic Medicine and Psychotherapy, Psychoneuroimmunology Laboratory, Justus-Liebig-University Giessen, Giessen, Germany
| | - Eva M. Peters
- Department of Psychosomatic Medicine and Psychotherapy, Psychoneuroimmunology Laboratory, Justus-Liebig-University Giessen, Giessen, Germany
| | - Jörg P. Kupfer
- Institute of Medical Psychology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Christina Schut
- Institute of Medical Psychology, Justus-Liebig-University Giessen, Giessen, Germany
- * E-mail:
| |
Collapse
|
5
|
Labib A, Yap QV, Smith P, Yosipovitch G. Scratch pleasurability is high in chronic spontaneous urticaria. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:3337-3338.e1. [PMID: 35973524 DOI: 10.1016/j.jaip.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Angelina Labib
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, Miami, Fla
| | - Qai Ven Yap
- Biostatistics Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Peter Smith
- Clinical Medicine, Griffith University, Southport, QLD, Australia
| | - Gil Yosipovitch
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, Miami, Fla.
| |
Collapse
|
6
|
Yeom M, Ahn S, Jang SY, Jang JH, Lee Y, Hahm DH, Park HJ. Acupuncture attenuates comorbid anxiety- and depressive-like behaviors of atopic dermatitis through modulating neuroadaptation in the brain reward circuit in mice. Biol Res 2022; 55:28. [PMID: 36088447 PMCID: PMC9463810 DOI: 10.1186/s40659-022-00396-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/26/2022] [Indexed: 01/21/2023] Open
Abstract
Atopic dermatitis (AD) is highly comorbid with negative emotions such as anxiety and depression. Although acupuncture has demonstrated efficacy in AD, its influence on comorbid anxiety and depression remains unclear. We sought to explore the impact and mechanisms of action of acupuncture on comorbid anxiety and depression of AD. AD-like skin lesions were induced by the topical application of MC903 to the mouse cheek. Acupuncture was performed at Gok-Ji (LI11) acupoints. AD-like phenotypes were quantified by lesion scores, scratching behavior, and histopathological changes. The effects of acupuncture on comorbid anxiety and depression-like behaviors were assessed using the elevated plus-maze (EPM), open-field tests (OFT), and tail-suspension test (TST). In addition, biochemical changes in the brain reward regions were investigated by immunoblotting for the expression of tyrosine hydroxylase (TH), dopamine D1 receptor (D1R), phospho-dopamine and cAMP-regulated phosphoprotein-32 kDa (pDARPP-32), phospho-cAMP response element binding protein (pCREB), ΔFosB, and brain-derived neurotrophic factor (BDNF) in the nucleus accumbens, dorsolateral striatum, and ventral tegmental area. Acupuncture effectively improved the chronic itching and robust AD-like skin lesions with epidermal thickening. Additionally, it considerably reduced comorbid anxiety- and depression-like symptoms, as indicated by more time spent in the open arms of the EPM and in the center of the open field and less time spent immobile in the TST. Higher pCREB, ΔFosB, BDNF, and pDARPP-32 levels, and reduced TH and D1R protein expression in the brain reward regions of AD mice were reversed by acupuncture treatment. The beneficial effects of acupuncture on clinical symptoms (scratching behavior) and comorbid psychological distress in AD strongly correlated with dorsal striatal ΔFosB levels. Collectively, these data indicate that acupuncture had a significant, positive impact on comorbid anxiety- and depression-like behaviors by modulating neuroadaptation in the brain reward circuit in mice with AD, providing a novel perspective for the non-pharmacological management of psychiatric comorbidities of AD.
Collapse
|
7
|
Wang S, Song P, Ma R, Wang Y, Yu B, Wang M, Wang M, Shen J, Dai Y, Wang Y, Xie W. Research on Characteristic of Chronic Spontaneous Urticaria Based on Multiscale Entropy. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:6691356. [PMID: 34122619 PMCID: PMC8172304 DOI: 10.1155/2021/6691356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/21/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022]
Abstract
Chronic spontaneous urticaria (CSU) is a common skin disease which symptom is local pruritus and pain. In medicine, researchers take a certain point that the brain is the control center of CSU, but in previous experiments, the researchers found that cerebellum also had a certain effect on CSU. In order to find out the influence of CSU in the brain and cerebellum, we collected the brain resting-state fMRI data from 40 healthy controls and 32 CSU patients and used DPABI to preprocess. We calculated the entropy values of five scales by using multiscale entropy (MSE) and the average entropy values of two groups' BOLD signals; 15 regions with significant differences were found which not only had a more detailed impact in the brain but also had an impact in the cerebellum, such as precentral gyrus, lenticular putamen, and vermis of cerebellum. In addition, we found that compared with the healthy controls, the entropy values of CSU patients showed two trends which need further study. The advantage of our experiment is that the multiscale entropy value is used to get more influence regions of CSU in the brain and cerebellum. The results of this paper may provide some help for the pathological study of CSU.
Collapse
Affiliation(s)
- Shujuan Wang
- College of Mathematical Sciences, Harbin Engineering University, Harbin 150001, China
| | - Ping Song
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Rong Ma
- College of Mathematical Sciences, Harbin Engineering University, Harbin 150001, China
| | - Yanzhong Wang
- School of Population Health & Environmental Sciences, Faculty of Life Science and Medicine, King's College London, London, UK
- Suzhou Fanhan Information Technology Co., Ltd, China
| | - Bin Yu
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Min Wang
- College of Mathematical Sciences, Harbin Engineering University, Harbin 150001, China
| | - Meiqi Wang
- College of Mathematical Sciences, Harbin Engineering University, Harbin 150001, China
| | - Jihong Shen
- College of Mathematical Sciences, Harbin Engineering University, Harbin 150001, China
| | - Yuntao Dai
- College of Mathematical Sciences, Harbin Engineering University, Harbin 150001, China
| | - Yuming Wang
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Wanqing Xie
- College of Mathematical Sciences, Harbin Engineering University, Harbin 150001, China
- Suzhou Fanhan Information Technology Co., Ltd, China
| |
Collapse
|
8
|
Meijer LL, Schielen ZA, van Ree KY, Dijkerman HC. Affective Touch Reduces Electrically Induced Itch Experience. Front Med (Lausanne) 2021; 8:628020. [PMID: 33659264 PMCID: PMC7917120 DOI: 10.3389/fmed.2021.628020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Itch is a common symptom in dermatologic and other diseases and can have a severe impact on quality of life and mental health. As a proportion of patients with itch-symptoms is resistant to commonly used anti-histamine treatments, development of new treatments is desirable. Past research on pain, itch and affective touch (i.e. slow, gentle stroking of the skin activating C-tactile fibers) revealed an inhibitory relationship between affective touch and pain and between pain and itch. Given the overlap in neural processing between these three sensory submodalities, a possible interaction between affective touch and itch might be expected. This study investigated whether there is a relationship between itch and affective touch, and if so, whether affective touch inhibits itch. Methodology: Itch was electrically induced with the use of electrodes that were placed at the ventral side of the wrist of 61 participants. A within-subject design was conducted with two conditions. An experimental -affective touch- condition (stroking the forearm with a soft brush at 3 cm/s) and a control -non-affective touch- condition (stroking the forearm with a soft brush at 18 cm/s). Touch was applied on the dorsal side of the forearm, the same arm as were the electrodes were placed. For each condition itch was induced for 20 min, with every 2 min a VAS-scale measurement of the level of experienced itch. Results: Both types of touch reduced the experienced itch compared to baseline (p < 0.01, partial η2 = 0.67). However, affective touch had an additional significant relieving effect compared to non-affective touch (p = 0.03, partial η2= 0.08). The alleviation of itch started after 2 min of stroking and continued to increase up till 6 min, where after the relieving effect stabilized but still persisted. Conclusion: This finding suggest that affective touch, as with acute pain, has a relieving effect on electrically induced itch.
Collapse
Affiliation(s)
- Larissa L Meijer
- Experimental Psychology/Helmholtz Institute, Utrecht University, Utrecht, Netherlands
| | - Zoë A Schielen
- Experimental Psychology/Helmholtz Institute, Utrecht University, Utrecht, Netherlands
| | - Kim Y van Ree
- Experimental Psychology/Helmholtz Institute, Utrecht University, Utrecht, Netherlands
| | - H Chris Dijkerman
- Experimental Psychology/Helmholtz Institute, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
9
|
Increased grey matter volume and associated resting-state functional connectivity in chronic spontaneous urticaria: A structural and functional MRI study. J Neuroradiol 2021; 48:236-242. [PMID: 33549611 DOI: 10.1016/j.neurad.2021.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/28/2020] [Accepted: 01/26/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND PURPOSE Chronic itch is one of the most common irritating sensations, yet its mechanisms have not been fully elucidated. Although some studies have revealed relationships between itching and brain function, the structural changes in the brain induced by chronic itching, such as those accompanying chronic spontaneous urticaria (CSU), remain unclear. In this study, we aimed to explore the potential changes in brain structure and the associated functional circuitry in CSU patients to generate insights to aid chronic itch management. METHODS Forty CSU patients and forty healthy controls (HCs) were recruited. Seven-day urticaria activity score (UAS7) values were collected to evaluate clinical symptoms. Voxel-based morphometry (VBM) and seed-based resting-state functional connectivity (rs-FC) analysis were used to assess structural changes in the brain and associated changes in functional circuitry. RESULTS Compared with HCs, CSU patients had significantly increased grey matter (GM) volume in the right premotor cortex, left fusiform cortex, and cerebellum. UAS7 values were positively associated with GM volume in the left fusiform cortex. In CSU patients relative to HCs, the left fusiform cortex as extracted by VBM analysis demonstrated decreased functional connectivity with the right orbitofrontal cortex, medial prefrontal cortex (mPFC), premotor cortex, primary motor cortex (MI), and cerebellum and increased functional connectivity with the right posterior insular cortex, primary somatosensory cortex (SI), and secondary somatosensory cortex (SII). The left cerebellum as extracted from VBM analysis demonstrated decreased functional connectivity with the right supplementary motor area (SMA) and MI in CSU patients relative to HCs. CONCLUSIONS Our findings indicate that patients suffering from chronic itching conditions, such as CSU, are likely to demonstrate altered GM volume in some brain regions. These changes may affect not only the sensorimotor area but also brain regions associated with cognitive function.
Collapse
|
10
|
Najafi P, Dufor O, Ben Salem D, Misery L, Carré JL. Itch processing in the brain. J Eur Acad Dermatol Venereol 2020; 35:1058-1066. [PMID: 33145804 DOI: 10.1111/jdv.17029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 09/17/2020] [Accepted: 10/02/2020] [Indexed: 01/04/2023]
Abstract
Itch is a sensation defined as the urge to scratch. The central mechanisms of itch are being increasingly studied. These studies are usually based on experimental itch induction methods, which can be classified into the following categories: histamine-induced, induction by other non-histamine chemicals (e.g. cowhage), physically induced (e.g. electrical) and mentally induced (e.g. audio-visual). Because pain has been more extensively studied, some extrapolations to itch can be proposed and verified by experiments. Recent studies suggest that the itch-processing network in the brain could be disrupted in certain diseases. This disruption could be related to the implication of new regions or the exclusion of already engaged brain regions from itch-processing network in the brain.
Collapse
Affiliation(s)
| | - O Dufor
- LIEN, Univ Brest, Brest, France.,LabISEN Yncréa Ouest ISEN, Brest, France
| | - D Ben Salem
- Univ Brest, LaTIM, INSERM, UMR 1101, Brest, France.,University Hospital of Brest, Brest, France
| | - L Misery
- LIEN, Univ Brest, Brest, France.,University Hospital of Brest, Brest, France
| | - J-L Carré
- LIEN, Univ Brest, Brest, France.,University Hospital of Brest, Brest, France
| |
Collapse
|
11
|
Atopic dermatitis induces anxiety- and depressive-like behaviors with concomitant neuronal adaptations in brain reward circuits in mice. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109818. [PMID: 31743694 DOI: 10.1016/j.pnpbp.2019.109818] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/25/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023]
Abstract
Clinically, it has been reported that atopic dermatitis (AD) has been linked with negative emotional problems such as depression and anxiety, thereby reducing the quality of life, but little is known about the molecular mechanism that underlies AD-associated emotional impairments. We sought to determine whether AD could induce anxiety- and depressive-like symptoms in mice and to identify pertinent signaling changes in brain reward circuitry. AD-like lesions were induced by the repeated intradermal application of MC903 into the cheek of the mouse. We assessed dermatitis severity with scratching behavior, histopathological changes, anxiety- and depressive-like behaviors using the elevated plus maze, open field and tail suspension tests, and serum corticosterone levels. In the nucleus accumbens (NAc), dorsal striatum (DS) and ventral tegmental area (VTA), protein levels of dopamine- and plasticity-related signaling molecules were determined by Western immunoblotting assay. Intradermal administration of MC903 into mouse cheek provoked a strong hind limb scratching behavior as well as the robust skin inflammation with epidermal thickening. MC903-treated mice also displayed markedly increased anxiety- and depressive-like behaviors, along with elevated serum corticosterone levels. Under these conditions, enhanced cAMP response element binding protein (CREB) and dopamine and cAMP-regulated phosphoprotein, 32 kDa (DARPP32) phosphorylation, significantly higher brain-derived neurotrophic factor (BDNF) and ΔFosB, but reduced tyrosine hydroxylase (TH) and dopamine D1 receptor (D1R) protein expression were found in the NAc, DS and VTA. Striatal BDNF, phospho-DARPP32 and phospho-CREB levels were significantly associated with the levels of depressive-like behavior in these mice. Taken together, these findings demonstrate that AD-like skin lesion elicits anxiety- and depressive-like phenotypes that are associated with neuroplasticity-related changes in reward circuitry, providing a better understanding of AD-associated emotional impairments.
Collapse
|
12
|
Hashimoto T, Yosipovitch G. Itchy body: Topographical difference of itch and scratching and C Nerve fibres. Exp Dermatol 2019; 28:1385-1389. [DOI: 10.1111/exd.14054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/24/2019] [Accepted: 11/01/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Takashi Hashimoto
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery and Miami Itch Center Miller School of Medicine University of Miami Miami FL USA
| | - Gil Yosipovitch
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery and Miami Itch Center Miller School of Medicine University of Miami Miami FL USA
| |
Collapse
|
13
|
Ishiuji Y. Addiction and the itch‐scratch cycle. What do they have in common? Exp Dermatol 2019; 28:1448-1454. [DOI: 10.1111/exd.14029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/15/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Yozo Ishiuji
- Department of Dermatology The Jikei University School of Medicine Tokyo Japan
| |
Collapse
|
14
|
Yosipovitch G, Rosen JD, Hashimoto T. Itch: From mechanism to (novel) therapeutic approaches. J Allergy Clin Immunol 2019; 142:1375-1390. [PMID: 30409247 DOI: 10.1016/j.jaci.2018.09.005] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/27/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022]
Abstract
Itch is a common sensory experience that is prevalent in patients with inflammatory skin diseases, as well as in those with systemic and neuropathic conditions. In patients with these conditions, itch is often severe and significantly affects quality of life. Itch is encoded by 2 major neuronal pathways: histaminergic (in acute itch) and nonhistaminergic (in chronic itch). In the majority of cases, crosstalk existing between keratinocytes, the immune system, and nonhistaminergic sensory nerves is responsible for the pathophysiology of chronic itch. This review provides an overview of the current understanding of the molecular, neural, and immune mechanisms of itch: beginning in the skin, proceeding to the spinal cord, and eventually ascending to the brain, where itch is processed. A growing understanding of the mechanisms of chronic itch is expanding, as is our pipeline of more targeted topical and systemic therapies. Our therapeutic armamentarium for treating chronic itch has expanded in the last 5 years, with developments of topical and systemic treatments targeting the neural and immune systems.
Collapse
Affiliation(s)
- Gil Yosipovitch
- Department of Dermatology and Cutaneous Surgery and Miami Itch Center Miller School of Medicine University of Miami, Miami, Fla.
| | - Jordan Daniel Rosen
- Department of Dermatology and Cutaneous Surgery and Miami Itch Center Miller School of Medicine University of Miami, Miami, Fla
| | - Takashi Hashimoto
- Department of Dermatology and Cutaneous Surgery and Miami Itch Center Miller School of Medicine University of Miami, Miami, Fla
| |
Collapse
|
15
|
Lerner EA. Why do we itch? Exp Dermatol 2019; 28:1474-1475. [DOI: 10.1111/exd.14004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/02/2019] [Accepted: 04/29/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Ethan A. Lerner
- Department of Dermatology Massachusetts General Hospital / Harvard Medical School Charlestown MA USA
| |
Collapse
|
16
|
Sanders KM, Fast K, Yosipovitch G. Why we scratch: Function and dysfunction. Exp Dermatol 2019; 28:1482-1484. [DOI: 10.1111/exd.13977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Kristen M. Sanders
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery and Miami Itch Center, Miller School of Medicine University of Miami Miami Florida
| | - Katharine Fast
- Department of Allergy and Immunology California Pacific Medical Center San Francisco California
| | - Gil Yosipovitch
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery and Miami Itch Center, Miller School of Medicine University of Miami Miami Florida
| |
Collapse
|
17
|
Su XY, Chen M, Yuan Y, Li Y, Guo SS, Luo HQ, Huang C, Sun W, Li Y, Zhu MX, Liu MG, Hu J, Xu TL. Central Processing of Itch in the Midbrain Reward Center. Neuron 2019; 102:858-872.e5. [PMID: 31000426 DOI: 10.1016/j.neuron.2019.03.030] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/28/2018] [Accepted: 03/19/2019] [Indexed: 10/27/2022]
Abstract
Itch is an aversive sensation that evokes a desire to scratch. Paradoxically, scratching the itch also produces a hedonic experience. The specific brain circuits processing these different aspects of itch, however, remain elusive. Here, we report that GABAergic (GABA) and dopaminergic (DA) neurons in the ventral tegmental area (VTA) are activated with different temporal patterns during acute and chronic itch. DA neuron activation lags behind GABA neurons and is dependent on scratching of the itchy site. Optogenetic manipulations of VTA GABA neurons rapidly modulated scratching behaviors through encoding itch-associated aversion. In contrast, optogenetic manipulations of VTA DA neurons revealed their roles in sustaining recurrent scratching episodes through signaling scratching-induced reward. A similar dichotomy exists for the role of VTA in chronic itch. These findings advance understanding of circuit mechanisms of the unstoppable itch-scratch cycles and shed important insights into chronic itch therapy.
Collapse
Affiliation(s)
- Xin-Yu Su
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ming Chen
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Yuan Yuan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ying Li
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Su-Shan Guo
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huo-Qing Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chen Huang
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenzhi Sun
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Yong Li
- Collaborative Innovation Center for Brain Science, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ming-Gang Liu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China.
| | - Tian-Le Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China.
| |
Collapse
|
18
|
Wang Y, Fang J, Song P, Bao Y, Song W, Liu J, Lang C, Jorgenson K, Jung M, Shen D, Li S, Sun R, Ding X, Yang J, Meng X, Wang N, Yan Z, Yan Y, Kong Q, Dong Y, Cui F, Tu Y, Cui B, Kong J. The Dysfunction of the Cerebellum and Its Cerebellum-Reward-Sensorimotor Loops in Chronic Spontaneous Urticaria. CEREBELLUM (LONDON, ENGLAND) 2018; 17:507-516. [PMID: 29574551 PMCID: PMC6126981 DOI: 10.1007/s12311-018-0933-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chronic spontaneous urticaria (CSU) is a common itchy skin disease. Despite its prevalence, the neuropathology of CSU is uncertain. In this study, we explored resting state functional connectivity (rs-FC) changes in CSU, as well as how the symptom changes following intervention can modulate rs-FC. Forty patients and 40 healthy controls (HCs) were recruited. Following an intervention, 32 patients participated in a second scan approximately 6 weeks after the first scan. Compared with healthy controls, CSU subjects exhibited higher regional homogeneity (ReHo) values in the cerebellum, which were positively associated with urticaria activity scores over 7 days (UAS7) at baseline. After an intervention accompanied with clinical improvement, we found that ReHo values decreased at the cerebellum and increased at the bilateral primary somatosensory cortex (SI)/primary motor cortex (MI)/supplementary motor area (SMA). Using the cerebellum as a seed, CSU subjects exhibited increased rs-FC with reward regions when compared with HCs and exhibited decreased rs-FC at the right orbitofrontal cortex and right sensorimotor region following the intervention. The improvement rate values were positively associated with reduced rs-FC values in the two regions. Using the cluster of SI/MI/SMA as a seed, CSU patients exhibited decreased rs-FC with the left putamen, caudate, accumbens, and thalamus following the intervention. These results demonstrate the altered cerebellar activity and cerebellum-reward-sensorimotor loops in CSU.
Collapse
Affiliation(s)
- Yuming Wang
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Jiliang Fang
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ping Song
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yan Bao
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Wenwen Song
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Jiao Liu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Courtney Lang
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Kristen Jorgenson
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Minyoung Jung
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Dong Shen
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Shasha Li
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Ruirui Sun
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Xu Ding
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jiao Yang
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xiao Meng
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ning Wang
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Zhifang Yan
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yuhe Yan
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Qian Kong
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ying Dong
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Fangyuan Cui
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Yiheng Tu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Bingnan Cui
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
19
|
Wang Y, Fang JL, Cui B, Liu J, Song P, Lang C, Bao Y, Sun R, Xu C, Ding X, Yan Z, Yan Y, Kong Q, Kong J. The functional and structural alterations of the striatum in chronic spontaneous urticaria. Sci Rep 2018; 8:1725. [PMID: 29379058 PMCID: PMC5789061 DOI: 10.1038/s41598-018-19962-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/11/2018] [Indexed: 12/16/2022] Open
Abstract
The brain has long been known to be the regulation center of itch, but the neuropathology of chronic itch, such as chronic spontaneous urticaria (CSU), remains unclear. Thus, we aimed to explore the brain areas involved in the pathophysiology of CSU in hopes that our results may provide valuable insights into the treatment of chronic itch conditions. 40 CSU patients and 40 healthy controls (HCs) were recruited. Urticaria activity scores 7 (UAS7) were collected to evaluate patient’s clinical symptoms. Amplitude of low frequency fluctuations (ALFF), voxel-based morphometry (VBM), and seed-based resting-state functional connectivity (rs-FC) analysis were used to assess brain activity and related plasticity. Compared with HCs, CSU patients exhibited 1) higher ALFF values in the right ventral striatum / putamen, which were positively associated with clinical symptoms as measured by UAS7; 2) gray matter volume (GMV) increase in the right ventral striatum and putamen; and 3) decreased rs-FC between the right ventral striatum and the right occipital cortex and between the right putamen and the left precentral gyrus. Using multiple-modality brain imaging tools, we demonstrated the dysfunction of the striatum in CSU. Our results may provide valuable insights into the neuropathology and development of chronic itch.
Collapse
Affiliation(s)
- Yuming Wang
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA.
| | - Ji-Liang Fang
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Bingnan Cui
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jiao Liu
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA.,National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Ping Song
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Courtney Lang
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Yan Bao
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ruirui Sun
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Chenchen Xu
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xu Ding
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Zhifang Yan
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yuhe Yan
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Qian Kong
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
20
|
Sanders KM, Nattkemper LA, Yosipovitch G. Advances in understanding itching and scratching: a new era of targeted treatments. F1000Res 2016; 5. [PMID: 27610225 PMCID: PMC4995681 DOI: 10.12688/f1000research.8659.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/15/2016] [Indexed: 01/14/2023] Open
Abstract
Chronic itch is a significant health burden with few effective treatments. As such, itch researchers seek to understand the mechanisms behind itch and to find potential targets for treatment. The field of itch research is dynamic, and many advances have been made so far this decade. In particular, major steps forward include the identification of new peripheral and central itch mediators and modulators, the discovery of greater roles for immune cells and glia in itch transmission, and a focus on the brain processing of itching and scratching. Finally, several new therapeutic interventions for itch have shown success in clinical trials.
Collapse
Affiliation(s)
- Kristen M Sanders
- Department of Dermatology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Leigh A Nattkemper
- Department of Dermatology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Gil Yosipovitch
- Department of Dermatology and Itch Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
21
|
Hara T, Kyuka A, Shimizu H. Butane-2,3-dione: the key contributor to axillary and foot odor associated with an acidic note. Chem Biodivers 2015; 12:248-58. [PMID: 25676506 DOI: 10.1002/cbdv.201400272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Indexed: 11/11/2022]
Abstract
Human body odor, which contains several volatile organic compounds, possesses various odor qualities. To identify key volatile compounds responsible for the common unpleasant odors derived from human axillae and feet, the odor quality and intensity of 118 human axillae and feet were directly evaluated by sniffing, and odor compounds obtained from the subjects were identified. Furthermore, the sensory differences in odor intensity and quality with and without addition of butane-2,3-dione were evaluated by using the visual analog scale (VAS). An acidic odor was a common unpleasant note in human axillae and feet. Butane-2,3-dione was identified as a key compound associated with this odor. Strong positive correlations between the amount of butane-2,3-dione, and the odor intensities of axillae and feet were observed, and the addition of butane-2,3-dione solution to blended short-chain fatty-acid solutions caused significantly increased VAS values of axillary-like odor, unpleasantness, and odor intensity compared to those of each solution without added butane-2,3-dione.
Collapse
Affiliation(s)
- Takeshi Hara
- Mandom Corporation, Technical Development Center, 5 - 12 Juniken-cho, Chuo-ku, Osaka 540-8530, Japan (phone: +81-6-67675024; fax: +81-6-67675047).
| | | | | |
Collapse
|
22
|
Lloyd DM, McGlone FP, Yosipovitch G. Somatosensory pleasure circuit: from skin to brain and back. Exp Dermatol 2015; 24:321-4. [PMID: 25607755 DOI: 10.1111/exd.12639] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2015] [Indexed: 12/20/2022]
Abstract
The skin senses serve a discriminative function, allowing us to manipulate objects and detect touch and temperature, and an affective/emotional function, manifested as itch or pain when the skin is damaged. Two different classes of nerve fibre mediate these dissociable aspects of cutaneous somatosensation: (i) myelinated A-beta and A-delta afferents that provide rapid information about the location and physical characteristics of skin contact; and (ii) unmyelinated, slow-conducting C-fibre afferents that are typically associated with coding the emotional properties of pain and itch. However, recent research has identified a third class of C-fibre afferents that code for the pleasurable properties of touch - c-tactile afferents or CTs. Clinical application of treatments that target pleasant, CT-mediated touch (such as massage therapy) could, in the future, provide a complementary, non-pharmacological means of treating both the physical and psychological aspects of chronic skin conditions such as itch and eczema.
Collapse
Affiliation(s)
- Donna M Lloyd
- School of Psychology, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
23
|
Mochizuki H, Kakigi R. Central mechanisms of itch. Clin Neurophysiol 2014; 126:1650-60. [PMID: 25534483 DOI: 10.1016/j.clinph.2014.11.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 10/31/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022]
Abstract
Itch is a complex sensory and emotional experience. Functional brain imaging studies have been performed to identify brain regions associated with this complex experience, and these studies reported that several brain regions are activated by itch stimuli. The possible roles of these regions in itch perception and difference in cerebral mechanism between healthy subjects and chronic itch patients are discussed in this review article. Additionally, the central itch modulation system and cerebral mechanisms of contagious itch, pleasurable sensation evoked by scratching have also been investigated in previous brain imaging studies. We also discuss how these studies advance our understanding of these mechanisms.
Collapse
Affiliation(s)
- Hideki Mochizuki
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Aichi, Japan; Department of Dermatology and Temple Itch Center, Temple University School of Medicine, Philadelphia, PA, USA.
| | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| |
Collapse
|
24
|
Affiliation(s)
- Kapsok Li
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
25
|
Papoiu ADP, Nattkemper LA, Sanders KM, Kraft RA, Chan YH, Coghill RC, Yosipovitch G. Brain's reward circuits mediate itch relief. a functional MRI study of active scratching. PLoS One 2013; 8:e82389. [PMID: 24324781 PMCID: PMC3855767 DOI: 10.1371/journal.pone.0082389] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 10/23/2013] [Indexed: 11/18/2022] Open
Abstract
Previous brain imaging studies investigating the brain processing of scratching used an exogenous intervention mimicking scratching, performed not by the subjects themselves, but delivered by an investigator. In real life, scratching is a conscious, voluntary, controlled motor response to itching, which is directed to the perceived site of distress. In this study we aimed to visualize in real-time by brain imaging the core mechanisms of the itch-scratch cycle when scratching was performed by subjects themselves. Secondly, we aimed to assess the correlations between brain patterns of activation and psychophysical ratings of itch relief or pleasurability of scratching. We also compared the patterns of brain activity evoked by self-scratching vs. passive scratching. We used a robust tridimensional Arterial Spin Labeling fMRI technique that is less sensitive to motion artifacts: 3D gradient echo and spin echo (GRASE)--Propeller. Active scratching was accompanied by a higher pleasurability and induced a more pronounced deactivation of the anterior cingulate cortex and insula, in comparison with passive scratching. A significant involvement of the reward system including the ventral tegmentum of the midbrain, coupled with a mechanism deactivating the periaqueductal gray matter (PAG), suggests that itch modulation operates in reverse to the mechanism known to suppress pain. Our findings not only confirm a role for the central networks processing reward in the pleasurable aspects of scratching, but also suggest they play a role in mediating itch relief.
Collapse
Affiliation(s)
- Alexandru D. P. Papoiu
- Department of Dermatology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Leigh A. Nattkemper
- PhD Program in Neurosciences, Graduate School of Biomedical Sciences, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Kristen M. Sanders
- PhD Program in Neurosciences, Graduate School of Biomedical Sciences, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Robert A. Kraft
- Department of Biomedical Engineering, Wake Forest University & Virginia Tech, Winston-Salem, North Carolina, United States of America
| | - Yiong-Huak Chan
- Biostatistics Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Robert C. Coghill
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Gil Yosipovitch
- Department of Dermatology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Department of Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| |
Collapse
|
26
|
Lloyd D, Hall E, Hall S, McGlone F. Can itch-related visual stimuli alone provoke a scratch response in healthy individuals? Br J Dermatol 2012; 168:106-11. [DOI: 10.1111/bjd.12132] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
27
|
Bin Saif G, Alajroush A, McMichael A, Kwatra S, Chan YH, McGlone F, Yosipovitch G. Aberrant C nerve fibre function of the healthy scalp. Br J Dermatol 2012; 167:485-9. [DOI: 10.1111/j.1365-2133.2012.11070.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|