1
|
Cammenga J. Of gains and losses: SAMD9/SAMD9L and monosomy 7 in myelodysplastic syndrome. Exp Hematol 2024; 134:104217. [PMID: 38649131 DOI: 10.1016/j.exphem.2024.104217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
SAMD9 and SAMD9L are two interferon-regulated genes located adjacent to each other on chromosome 7q21.2. Germline gain-of-function (GL GOF) mutations in SAMD9/SAMD9L are the genetic cause of MIRAGE syndrome, ataxia-pancytopenia (ATXPC) syndrome, myeloid leukemia syndrome with monosomy 7 (MLSM7), refractory cytopenia of childhood (RCC), transient monosomy 7 in children, SAMD9L-associated autoinflammatory disease (SAAD), and a proportion of inherited aplastic anemia and bone marrow failure syndromes. The myeloid neoplasms associated with GL GOF SAMD9/SAMD9L mutations have been included in the World Health Organization (WHO) 2022 classification. The discovery of SAMD9/SAMD9L-related diseases has revealed some interesting pathobiological mechanisms, such as a high rate of primary somatic compensation, with one of the mechanisms being (transient) monosomy 7 a mechanism also described as "adaption by aneuploidy." The somatic compensation in the blood can complicate the diagnosis of SAMD9/SAMD9L-related disease when relying on hematopoietic tissues for diagnosis. Recently, GL loss-of function (LOF) mutations have been identified in older individuals with myeloid malignancies in accordance with a mouse model of SAMD9L loss that develops a myelodysplastic syndrome (MDS)-like disease late in life. The discovery of SAMD9/SAMD9L-associated syndromes has resulted in a deeper understanding of the genetics and biology of diseases/syndromes that were previously oblivious and thought to be unrelated to each other. Besides giving an overview of the literature, this review wants to also provide some practical guidance for the classification of SAMD9/SAMD9L variants that is complicated by the nonrecurrent nature of these mutations but also by the fact that both GL GOF, as well as loss-of-function mutations, have been identified.
Collapse
Affiliation(s)
- Jörg Cammenga
- Department of Hematology, Radiation Physics, Coagulation and Oncology, Skane University Hospital, Lund, Skane, Sweden; Department of Gene Therapy and Molecular Medicine, Institution for Laboratory Medicine, Lund University, Lund, Skane, Sweden; Stem Cell Center, Lund University, Lund, Sweden.
| |
Collapse
|
2
|
Beckmann CCA, Ramamoorthy S, Trompouki E, Driever W, Schwarz-Furlan S, Strahm B, Yoshimi A, Niemeyer CM, Erlacher M, Kapp FG. Assessment of a novel NRAS in-frame tandem duplication causing a myelodysplastic/myeloproliferative neoplasm. Exp Hematol 2024; 133:104207. [PMID: 38522505 DOI: 10.1016/j.exphem.2024.104207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
Myelodysplastic/myeloproliferative diseases of childhood cause a relevant disease burden, and many of these diseases may have a fatal course. The use of next-generation sequencing (NGS) has led to the identification of novel genetic variants in patients with these diseases, advancing our understanding of the underlying pathophysiology. However, novel mutations can often only be interpreted as variants of unknown significance (VUS), hindering adequate diagnosis and the use of a targeted therapy. To improve variant interpretation and test targeted therapies in a preclinical setting, we are using a rapid zebrafish embryo model that allows functional evaluation of the novel variant and possible therapeutic approaches within days. Thereby, we accelerate the translation from genetic findings to treatment options. Here, we establish this workflow on a novel in-frame tandem duplication in NRAS (c.192_227dup; p.G75_E76insDS65_G75) identified by Sanger sequencing in a 2.5-year-old patient with an unclassifiable myelodysplastic/myeloproliferative neoplasm (MDS/MPN-U). We show that this variant results in a myeloproliferative phenotype in zebrafish embryos with expansion of immature myeloid cells in the caudal hematopoietic tissue, which can be reversed by MEK inhibition. Thus, we could reclassify the variant from likely pathogenic to pathogenic using the American College of Medical Genetics (ACMG) criteria.
Collapse
Affiliation(s)
- Cora C A Beckmann
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Senthilkumar Ramamoorthy
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eirini Trompouki
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; Institute for Research on Cancer and Aging, Institut National de la Santé et de la Recherche Médicale Unité 1081, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7284, Université Côte d'Azur, Nice, France
| | - Wolfgang Driever
- Developmental Biology, Faculty of Biology, Institute of Biology 1, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | | | - Brigitte Strahm
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ayami Yoshimi
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Charlotte M Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Miriam Erlacher
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Friedrich G Kapp
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
3
|
Setiadi A, Singh C, Li A, Au N, Amid A. Monolobated megakaryocytes in Diamond-Blackfan anemia with RPL5 mutation at disease presentation mimicking myelodysplastic syndrome. Pediatr Blood Cancer 2024; 71:e30771. [PMID: 37988264 DOI: 10.1002/pbc.30771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023]
Affiliation(s)
- Audi Setiadi
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, Division of Hematopathology, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Claudia Singh
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amanda Li
- Division of Hematology & Oncology, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Nicholas Au
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, Division of Hematopathology, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Ali Amid
- Division of Hematology & Oncology, BC Children's Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Abstract
Myelodysplastic syndrome (MDS) in children is rare, accounting for < 5% of all childhood hematologic malignancies. With the advent of next-generation sequencing, the etiology of many childhood MDS (cMDS) cases has been elucidated with the finding of predisposing germline mutations in one-quarter to one-third of cases; somatic mutations have also been identified, indicating that cMDS is different than adult MDS. Herein, cMDS classification schema, clinical presentation, laboratory values, bone marrow histology, differential diagnostic considerations, and the recent molecular findings of cMDS are described.
Collapse
Affiliation(s)
- Karen M Chisholm
- Hematopathology, Department of Laboratories, Seattle Children's Hospital, 4800 Sand Point Way Northeast, FB.4.510, Seattle, WA 98105, USA; Department of Laboratory Medicine and Pathology, University of Washington Medical Center, 4800 Sand Point Way Northeast, FB.4.510, Seattle, WA 98105, USA.
| | - Sandra D Bohling
- Hematopathology, Department of Laboratories, Seattle Children's Hospital, 4800 Sand Point Way Northeast, FB.4.510, Seattle, WA 98105, USA; Department of Laboratory Medicine and Pathology, University of Washington Medical Center, 4800 Sand Point Way Northeast, FB.4.510, Seattle, WA 98105, USA
| |
Collapse
|
5
|
Wang W, Li X, Qin X, Miao Y, Zhang Y, Li S, Yao R, Yang Y, Yu L, Zhu H, Song L, Mao S, Wang X, Chen J, Feng H, Li Y. Germline Neurofibromin 1 mutation enhances the anti-tumour immune response and decreases juvenile myelomonocytic leukaemia tumourigenicity. Br J Haematol 2023; 202:328-343. [PMID: 37144690 DOI: 10.1111/bjh.18851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/10/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Juvenile myelomonocytic leukaemia (JMML) is an aggressive paediatric leukaemia characterized by mutations in five canonical RAS pathway genes, including the NF1 gene. JMML is driven by germline NF1 gene mutations, with additional somatic aberrations resulting in the NF1 biallelic inactivation, leading to disease progression. Germline mutations in the NF1 gene alone primarily cause benign neurofibromatosis type 1 (NF1) tumours rather than malignant JMML, yet the underlying mechanism remains unclear. Here, we demonstrate that with reduced NF1 gene dose, immune cells are promoted in anti-tumour immune response. Comparing the biological properties of JMML and NF1 patients, we found that not only JMML but also NF1 patients driven by NF1 mutations could increase monocytes generation. But monocytes cannot further malignant development in NF1 patients. Utilizing haematopoietic and macrophage differentiation from iPSCs, we revealed that NF1 mutations or knockout (KO) recapitulated the classical haematopoietic pathological features of JMML with reduced NF1 gene dose. NF1 mutations or KO promoted the proliferation and immune function of NK cells and iMacs derived from iPSCs. Moreover, NF1-mutated iNKs had a high capacity to kill NF1-KO iMacs. NF1-mutated or KO iNKs administration delayed leukaemia progression in a xenograft animal model. Our findings demonstrate that germline NF1 mutations alone cannot directly drive JMML development and suggest a potential cell immunotherapy for JMML patients.
Collapse
Affiliation(s)
- Wanqiao Wang
- Pediatric Translational Medicine Institute, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Key Laboratory of Pediatric Hematology & Oncology of China Ministry of Health, Shanghai, China
| | - Xin Li
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai, China
| | - Xia Qin
- Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai, China
| | - Yan Miao
- Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai, China
| | - Yingwen Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanshan Li
- Pediatric Translational Medicine Institute, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Key Laboratory of Pediatric Hematology & Oncology of China Ministry of Health, Shanghai, China
| | - Ruen Yao
- Department of Medical Genetics, Shanghai Children's Medical Center, Shanghai, China
| | - Yi Yang
- Pediatric Translational Medicine Institute, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Key Laboratory of Pediatric Hematology & Oncology of China Ministry of Health, Shanghai, China
| | - Lisha Yu
- Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai, China
| | - Hua Zhu
- Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai, China
| | - Lili Song
- Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai, China
| | - Shengqiao Mao
- Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai, China
| | - Xiumin Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai, China
| | - Jing Chen
- Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai, China
| | - Haizhong Feng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanxin Li
- Pediatric Translational Medicine Institute, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Key Laboratory of Pediatric Hematology & Oncology of China Ministry of Health, Shanghai, China
| |
Collapse
|
6
|
Olivas-Mazón R, Bueno D, Sisinni L, Mozo Y, Casado-Abad G, Pérez-Martínez A. A retrospective study of treosulfan versus busulfan-based conditioning in pediatric patients. Eur J Haematol 2022; 109:474-482. [PMID: 35810360 DOI: 10.1111/ejh.13828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To compare the outcomes of treosulfan-based vs. busulfan-based conditioning regimens in allogeneic hematopoietic stem cell transplantation (HSCT) in pediatric patients. METHODS Retrospective study of all consecutive patients (2012-2019) treated with allogenic HSCT and treosulfan- or busulfan-based conditioning regimens at a single center. RESULTS A total of 101 HSCT were included: 66 HSCT with busulfan and 35 with treosulfan. In malignant diseases (n=62), busulfan-based conditioning was more commonly employed than treosulfan: 82.3% vs. 17.7%. However, the use of treosulfan for malignant diseases increased over time: 6.5% of HSCT in 2012-2015 vs. 29% of HSCT in 2015-2019 (P=0.02). The cohort of treosulfan had more children under 1-year of age than the busulfan cohort (31 vs. 13%; P=0.033). The percentage of patients who received serotherapy was 73 and 89% in the non-malignant and malignant groups respectively. The engraftment, time to neutrophil, and platelet engraftment were not significantly different between the busulfan and the treosulfan cohorts. Rate of grade II-IV acute GvHD was significantly higher in the busulfan cohort than the treosulfan cohort (39% vs. 15%; P=0.016). No differences were observed in endothelial damage complications, chronic GvHD, relapse, overall survival, and transplant-related mortality. CONCLUSIONS Busulfan-based conditioning regimens are used more frequently for children undergoing allogenic HSCT, but treosulfan-based conditioning is gaining acceptance. Treosulfan-based conditioning is associated with lower rates of acute GvHD, and no significant differences on overall survival were observed compared with busulfan.
Collapse
Affiliation(s)
- Raquel Olivas-Mazón
- Pediatric Hemato-Oncology Department, La Paz University Hospital, Madrid, Spain
| | - David Bueno
- Pediatric Hemato-Oncology Department, La Paz University Hospital, Madrid, Spain
| | - Luisa Sisinni
- Pediatric Hemato-Oncology Department, La Paz University Hospital, Madrid, Spain
| | - Yasmina Mozo
- Pediatric Hemato-Oncology Department, La Paz University Hospital, Madrid, Spain
| | | | - Antonio Pérez-Martínez
- Pediatric Hemato-Oncology Department, La Paz University Hospital, Madrid, Spain.,Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain.,Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| |
Collapse
|
7
|
Hofmans M, Lammens T, Depreter B, Wu Y, Erlacher M, Caye A, Cavé H, Flotho C, de Haas V, Niemeyer CM, Stary J, Van Nieuwerburgh F, Deforce D, Van Loocke W, Van Vlierberghe P, Philippé J, De Moerloose B. Long non-coding RNAs as novel therapeutic targets in juvenile myelomonocytic leukemia. Sci Rep 2021; 11:2801. [PMID: 33531590 PMCID: PMC7854679 DOI: 10.1038/s41598-021-82509-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) treatment primarily relies on hematopoietic stem cell transplantation and results in long-term overall survival of 50-60%, demonstrating a need to develop novel treatments. Dysregulation of the non-coding RNA transcriptome has been demonstrated before in this rare and unique disorder of early childhood. In this study, we investigated the therapeutic potential of targeting overexpressed long non-coding RNAs (lncRNAs) in JMML. Total RNA sequencing of bone marrow and peripheral blood mononuclear cell preparations from 19 untreated JMML patients and three healthy children revealed 185 differentially expressed lncRNA genes (131 up- and 54 downregulated). LNA GapmeRs were designed for 10 overexpressed and validated lncRNAs. Molecular knockdown (≥ 70% compared to mock control) after 24 h of incubation was observed with two or more independent GapmeRs in 6 of them. For three lncRNAs (lnc-THADA-4, lnc-ACOT9-1 and NRIR) knockdown resulted in a significant decrease of cell viability after 72 h of incubation in primary cultures of JMML mononuclear cells, respectively. Importantly, the extent of cellular damage correlated with the expression level of the lncRNA of interest. In conclusion, we demonstrated in primary JMML cell cultures that knockdown of overexpressed lncRNAs such as lnc-THADA-4, lnc-ACOT9-1 and NRIR may be a feasible therapeutic strategy.
Collapse
Affiliation(s)
- Mattias Hofmans
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium. .,Department of Diagnostic Sciences, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, 9000, Belgium.
| | - Tim Lammens
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Barbara Depreter
- Department of Laboratory Medicine Hematology, University Hospital Brussels, Brussels, Belgium
| | - Ying Wu
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Miriam Erlacher
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium, Partner Site Freiburg, German Cancer Research Center, Heidelberg, Germany
| | - Aurélie Caye
- Department of Genetics, University Hospital of Robert Debré (APHP) and INSERM U1131, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Hélène Cavé
- Department of Genetics, University Hospital of Robert Debré (APHP) and INSERM U1131, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Christian Flotho
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium, Partner Site Freiburg, German Cancer Research Center, Heidelberg, Germany
| | - Valerie de Haas
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Dutch Childhood Oncology Group, The Hague, The Netherlands
| | - Charlotte M Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium, Partner Site Freiburg, German Cancer Research Center, Heidelberg, Germany
| | - Jan Stary
- Department of Pediatric Hematology/Oncology, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Filip Van Nieuwerburgh
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Wouter Van Loocke
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Pieter Van Vlierberghe
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jan Philippé
- Department of Diagnostic Sciences, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, 9000, Belgium.,Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Barbara De Moerloose
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Klco JM, Mullighan CG. Advances in germline predisposition to acute leukaemias and myeloid neoplasms. Nat Rev Cancer 2021; 21:122-137. [PMID: 33328584 PMCID: PMC8404376 DOI: 10.1038/s41568-020-00315-z] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
Although much work has focused on the elucidation of somatic alterations that drive the development of acute leukaemias and other haematopoietic diseases, it has become increasingly recognized that germline mutations are common in many of these neoplasms. In this Review, we highlight the different genetic pathways impacted by germline mutations that can ultimately lead to the development of familial and sporadic haematological malignancies, including acute lymphoblastic leukaemia, acute myeloid leukaemia (AML) and myelodysplastic syndrome (MDS). Many of the genes disrupted by somatic mutations in these diseases (for example, TP53, RUNX1, IKZF1 and ETV6) are the same as those that harbour germline mutations in children and adolescents who develop these malignancies. Moreover, the presumption that familial leukaemias only present in childhood is no longer true, in large part due to the numerous studies demonstrating germline DDX41 mutations in adults with MDS and AML. Lastly, we highlight how different cooperating events can influence the ultimate phenotype in these different familial leukaemia syndromes.
Collapse
Affiliation(s)
- Jeffery M Klco
- Department of Pathology and the Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Charles G Mullighan
- Department of Pathology and the Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
9
|
Reilly A, Doulatov S. Induced pluripotent stem cell models of myeloid malignancies and clonal evolution. Stem Cell Res 2021; 52:102195. [PMID: 33592565 PMCID: PMC10115516 DOI: 10.1016/j.scr.2021.102195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Reprogramming of cells from patients with genetic disorders to pluripotency is a promising avenue to understanding disease biology. A number of induced pluripotent stem cell (iPSC) models of inherited monogenic blood disorders have been reported over the past decade. However, the application of iPSCs for modeling of hematological malignancies has only recently been explored. Blood malignancies comprise a spectrum of genetically heterogeneous disorders marked by the acquisition of somatic mutations and chromosomal aberrations. This genetic heterogeneity presents unique challenges for iPSC modeling, but also opportunities to capture genetically distinct states and generate models of stepwise progression from normal to malignant hematopoiesis. Here we briefly review the current state of this field, highlighting current models of acquired pre-malignant and malignant blood disorders and clonal evolution, and challenges including barriers to reprogramming and differentiation of iPSCs into bona fide hematopoietic stem cells.
Collapse
Affiliation(s)
- Andreea Reilly
- Division of Hematology, Department of Medicine, Department of Genome Sciences, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, United States
| | - Sergei Doulatov
- Division of Hematology, Department of Medicine, Department of Genome Sciences, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
10
|
Mashoko V, Mackinnon D, Vaughan J. Acute myeloid leukaemia with myelodysplasia-related change in a child living with human immunodeficiency virus infection, a transformation from underlying juvenile myelomonocytic leukaemia. SOUTH AFRICAN JOURNAL OF ONCOLOGY 2020. [DOI: 10.4102/sajo.v4i0.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
11
|
Tseu B, Siow W, Pushkaran B, Cheesebrough B, Bain BJ. Beta thalassemia major and Noonan syndrome - Two genetic disorders manifest in the blood film. Am J Hematol 2020; 95:1113-1114. [PMID: 32112432 DOI: 10.1002/ajh.25767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Bing Tseu
- Department of Haematology, Buckinghamshire Healthcare NHS Trust, Amersham, UK
| | - Wenchee Siow
- Department of Haematology, Buckinghamshire Healthcare NHS Trust, Amersham, UK
| | - Beena Pushkaran
- Department of Haematology, Buckinghamshire Healthcare NHS Trust, Amersham, UK
| | - Beth Cheesebrough
- Department of Paediatrics, Buckinghamshire Healthcare NHS Trust, Amersham, UK
| | - Barbara J Bain
- Department of Haematology, St Mary's Hospital Campus of Imperial College Faculty of Medicine, St Mary's Hospital, London, UK
| |
Collapse
|
12
|
Marcu A, Colita A, Radu LE, Jercan CG, Bica AM, Asan M, Coriu D, Tanase AD, Diaconu CC, Mambet C, Botezatu A, Pasca S, Teodorescu P, Anton G, Gurban P, Colita A. Single-Center Experience With Epigenetic Treatment for Juvenile Myelomonocytic Leukemia. Front Oncol 2020; 10:484. [PMID: 32328464 PMCID: PMC7161089 DOI: 10.3389/fonc.2020.00484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Juvenile myelomonocytic leukemia (JMML) is a rare myelodysplastic/myeloproliferative neoplasm diagnosed in young children, characterized by somatic or germline mutations that lead to hyperactive RAS signaling. The only curative option is hematopoietic stem cell transplantation (HSCT). Recent data showing that aberrant DNA methylation plays a significant role in pathogenesis and correlates with clinical risk suggest a possible benefit of hypomethylating agents (HMA) in JMML treatment. Aim: The aim is to report the results of HMA-based therapy with 5-azacytidine (AZA) in three JMML patients treated in a single center, non-participating in EWOG-MDS study. Methods: The diagnosis and treatment response were evaluated according to international consensus criteria. AZA 75 mg/m2 intravenous (i.v.) was administered once daily on days 1-7 of each 28-day cycle. All patients were monitored for hematologic response, spleen size, and evolution of extramedullary disease. Targeted next generation sequencing (NGS) were performed after the 3rd AZA cycle and before SCT to evaluate the molecular alterations and genetic response. Results: Three patients diagnosed with JMML were treated with AZA (off-label indication) in Pediatric Department of Fundeni Clinical Institute, Bucharest, Romania between 2017 and 2019. There were two females and one male with median age 11 months, range 2-16 months. The cytogenetic analysis showed normal karyotype in all patients. Molecular analysis confirmed KRAS G13D mutation in two patients and NRAS G12D mutation in one patient. The clinical evaluation showed important splenomegaly and hepatomegaly in all 3 pts. One patient received AZA for early relapse after haploidentical HSCT and the other two patients received upfront AZA, as bridging therapy before HSCT. After HMA therapy, 2/3 patients achieved clinical partial response (cPR), 1/3 had clinical stable disease (cSD) and all had genetic stable disease (gSD) after 3 cycles and were able to receive the planned HSTC. One patient achieved clinical and genetic complete response before HSCT. During 22 cycles of AZA there were only four adverse events but only one determined dose reduction and treatment delay. Conclusion: Our data show that AZA monotherapy is safe and effective in controlling disease both in upfront and relapsed patients in order to proceed to HSCT.
Collapse
Affiliation(s)
- Andra Marcu
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Andrei Colita
- Department of Stem Cell Transplantation, Coltea Hospital, Bucharest, Romania
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Letitia Elena Radu
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Cristina Georgiana Jercan
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana Maria Bica
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Minodora Asan
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Daniel Coriu
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Alina Daniela Tanase
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
- Department of Hematology, Titu Maiorescu University of Medicine, Bucharest, Romania
| | - Carmen C. Diaconu
- Cellular and Molecular Pathology Department, Stefan S Nicolau Institute of Virology, Bucharest, Romania
| | - Cristina Mambet
- Cellular and Molecular Pathology Department, Stefan S Nicolau Institute of Virology, Bucharest, Romania
| | - Anca Botezatu
- Molecular Virology Department, Stefan S Nicolau Institute of Virology, Bucharest, Romania
| | - Sergiu Pasca
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Patric Teodorescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania
| | - Gabriela Anton
- Molecular Virology Department, Stefan S Nicolau Institute of Virology, Bucharest, Romania
| | - Petruta Gurban
- Personal Genetics-Medical Genetics Center, Bucharest, Romania
| | - Anca Colita
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
13
|
Marcu A, Colita A, Radu LE, Jercan CG, Bica AM, Asan M, Coriu D, Tanase AD, Diaconu CC, Mambet C, Botezatu A, Pasca S, Teodorescu P, Anton G, Gurban P, Colita A. Single-Center Experience With Epigenetic Treatment for Juvenile Myelomonocytic Leukemia. Front Oncol 2020; 10:484. [PMID: 32328464 PMCID: PMC7161089 DOI: 10.3389/fonc.2020.00484,] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/17/2020] [Indexed: 01/27/2025] Open
Abstract
Background: Juvenile myelomonocytic leukemia (JMML) is a rare myelodysplastic/myeloproliferative neoplasm diagnosed in young children, characterized by somatic or germline mutations that lead to hyperactive RAS signaling. The only curative option is hematopoietic stem cell transplantation (HSCT). Recent data showing that aberrant DNA methylation plays a significant role in pathogenesis and correlates with clinical risk suggest a possible benefit of hypomethylating agents (HMA) in JMML treatment. Aim: The aim is to report the results of HMA-based therapy with 5-azacytidine (AZA) in three JMML patients treated in a single center, non-participating in EWOG-MDS study. Methods: The diagnosis and treatment response were evaluated according to international consensus criteria. AZA 75 mg/m2 intravenous (i.v.) was administered once daily on days 1-7 of each 28-day cycle. All patients were monitored for hematologic response, spleen size, and evolution of extramedullary disease. Targeted next generation sequencing (NGS) were performed after the 3rd AZA cycle and before SCT to evaluate the molecular alterations and genetic response. Results: Three patients diagnosed with JMML were treated with AZA (off-label indication) in Pediatric Department of Fundeni Clinical Institute, Bucharest, Romania between 2017 and 2019. There were two females and one male with median age 11 months, range 2-16 months. The cytogenetic analysis showed normal karyotype in all patients. Molecular analysis confirmed KRAS G13D mutation in two patients and NRAS G12D mutation in one patient. The clinical evaluation showed important splenomegaly and hepatomegaly in all 3 pts. One patient received AZA for early relapse after haploidentical HSCT and the other two patients received upfront AZA, as bridging therapy before HSCT. After HMA therapy, 2/3 patients achieved clinical partial response (cPR), 1/3 had clinical stable disease (cSD) and all had genetic stable disease (gSD) after 3 cycles and were able to receive the planned HSTC. One patient achieved clinical and genetic complete response before HSCT. During 22 cycles of AZA there were only four adverse events but only one determined dose reduction and treatment delay. Conclusion: Our data show that AZA monotherapy is safe and effective in controlling disease both in upfront and relapsed patients in order to proceed to HSCT.
Collapse
Affiliation(s)
- Andra Marcu
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Andrei Colita
- Department of Stem Cell Transplantation, Coltea Hospital, Bucharest, Romania
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Letitia Elena Radu
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Cristina Georgiana Jercan
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana Maria Bica
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Minodora Asan
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Daniel Coriu
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Alina Daniela Tanase
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
- Department of Hematology, Titu Maiorescu University of Medicine, Bucharest, Romania
| | - Carmen C. Diaconu
- Cellular and Molecular Pathology Department, Stefan S Nicolau Institute of Virology, Bucharest, Romania
| | - Cristina Mambet
- Cellular and Molecular Pathology Department, Stefan S Nicolau Institute of Virology, Bucharest, Romania
| | - Anca Botezatu
- Molecular Virology Department, Stefan S Nicolau Institute of Virology, Bucharest, Romania
| | - Sergiu Pasca
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Patric Teodorescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania
| | - Gabriela Anton
- Molecular Virology Department, Stefan S Nicolau Institute of Virology, Bucharest, Romania
| | - Petruta Gurban
- Personal Genetics-Medical Genetics Center, Bucharest, Romania
| | - Anca Colita
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
14
|
Kalwak K, Mielcarek M, Patrick K, Styczynski J, Bader P, Corbacioglu S, Burkhardt B, Sykora KW, Drabko K, Gozdzik J, Fagioli F, Greil J, Gruhn B, Beier R, Locatelli F, Müller I, Schlegel PG, Sedlacek P, Stachel KD, Hemmelmann C, Möller AK, Baumgart J, Vora A. Treosulfan-fludarabine-thiotepa-based conditioning treatment before allogeneic hematopoietic stem cell transplantation for pediatric patients with hematological malignancies. Bone Marrow Transplant 2020; 55:1996-2007. [PMID: 32203268 PMCID: PMC7515850 DOI: 10.1038/s41409-020-0869-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 01/21/2023]
Abstract
Treosulfan-based conditioning prior to allogeneic transplantation has been shown to have myeloablative, immunosuppressive, and antineoplastic effects associated with reduced non-relapse mortality (NRM) in adults. Therefore, we prospectively evaluated the safety and efficacy of treosulfan-based conditioning in children with hematological malignancies in this phase II trial. Overall, 65 children with acute lymphoblastic leukemia (35.4%), acute myeloid leukemia (44.6%), myelodysplastic syndrome (15.4%), or juvenile myelomonocytic leukemia (4.6%) received treosulfan intravenously at a dose of 10 mg/m2/day (7.7%), 12 g/m2/day (35.4%), or 14 g/m2/day (56.9%) according to their individual body surface area in combination with fludarabine and thiotepa. The incidence of complete donor chimerism at day +28 was 98.4% with no primary and only one secondary graft failure. At 36 months, NRM was only 3.1%, while relapse incidence was 21.7%, and overall survival was 83.0%. The cumulative incidence of acute graft-vs.-host disease was 45.3% for grades I–IV and 26.6% for grades II–IV. At 36 months, 25.8% overall and 19.4% moderate/severe chronic graft-vs.-host disease were reported. These data confirm the safe and effective use of treosulfan-based conditioning in pediatric patients with hematological malignancies. Therefore, treosulfan/fludarabine/thiotepa can be recommended for myeloablative conditioning in children with hematological malignancies.
Collapse
Affiliation(s)
- Krzysztof Kalwak
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland.
| | - Monika Mielcarek
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | | | - Jan Styczynski
- Department of Pediatric Hematology and Oncology, Collegium Medicum UMK Torun, Bydgoszcz, Poland
| | - Peter Bader
- Department for Children and Adolescents, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Goethe University, Frankfurt, Germany
| | | | - Birgit Burkhardt
- Department of Pediatric Hematology, Oncology and BMT, University Hospital Muenster, Muenster, Germany
| | | | - Katarzyna Drabko
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| | - Jolanta Gozdzik
- Medical College, University Children's Hospital in Cracow Jagiellonian University, Cracow, Poland
| | - Franca Fagioli
- Children's Hospital Regina Margherita, University of Turin, Turin, Italy
| | - Johann Greil
- University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Bernd Gruhn
- Department of Pediatrics, Jena University Hospital, Jena, Germany
| | - Rita Beier
- Depertment of Pediatrics III, University Hospital of Essen, Essen, Germany
| | - Franco Locatelli
- IRCCS Bambino Gesú Children's Hospital, Sapienza University of Rome, Rome, Italy
| | - Ingo Müller
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Petr Sedlacek
- Department of Pediatric Hematology and Oncology, University Hospital Motol, Prague, Czech Republic
| | | | | | | | | | - Ajay Vora
- Great Ormond Street Hospital, London, UK
| |
Collapse
|
15
|
Hamdy N, Bokhary H, Elsayed A, Hozayn W, Soliman S, Salem S, Alsheshtawi K, Abdalla A, Hafez H, Hammad M. RAS Pathway Mutation Patterns in Patients With Juvenile Myelomonocytic Leukemia: A Developing Country Single-center Experience. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:e368-e374. [PMID: 32209330 DOI: 10.1016/j.clml.2020.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/04/2020] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Juvenile myelomonocytic leukemia (JMML) is a rare clonal myelodysplastic/myeloproliferative neoplasm of early childhood. Historically, it was difficult to diagnose clinically, as patients present with manifestations shared with other hematologic malignancies or viral infections. It is now clear that JMML is a disease of hyperactive RAS signaling. PATIENTS AND METHODS We examined the bone marrow of 41 Egyptian children with JMML by direct sequencing for mutations in the RAS pathway genes. RESULTS Mutations were detected in 33 (80%) of 41 patients. We identified 12 (29%) of 41 patients with PTPN11 mutation; 18 (44%) of 41 with RAS mutation; 9 (22%) of 41 with NRAS mutation; 9 (22%) of 41 with KRAS mutation; and 3 (7%) of 41 with CBL mutation. Eleven (92%) of the PTPN11 mutations were detected in exon 3 and 1 (8%) in exon 13. Seven of the NRAS mutations were in exon 2, and 2 were in exon 3. All KRAS mutations were in exon 2. The 3 cases with CBL mutation were homozygous mutations in exon 8. All the mutations detected in PTPN11, NRAS/KRAS, and the CBL genes were previously reported missense mutations in JMML. CONCLUSION Our results demonstrate that Egyptian children diagnosed with JMML have high frequency of NRAS/KRAS mutations and lower frequency of PTPN11 mutations as compared with previous studies. The concept of mutually exclusive RAS pathway mutations was clearly observed in our patients. All cancer centers in our region should start implementing molecular diagnostic methods before confirming the diagnosis of JMML and before offering hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Nayera Hamdy
- Department of Clinical Pathology, National Cancer Institute (NCI), Cairo University, Cairo, Egypt; Department of Clinical Pathology, Children's Cancer Hospital Egypt (CCHE-57357), Cairo, Egypt
| | - Hossam Bokhary
- Department of Clinical Pathology, Children's Cancer Hospital Egypt (CCHE-57357), Cairo, Egypt; Department of Biotechnology, Faculty of Postgraduate Studies for Advanced Science, Beni-Suef University, Beni-Suef, Egypt
| | - Amr Elsayed
- Department of Biotechnology, Faculty of Postgraduate Studies for Advanced Science, Beni-Suef University, Beni-Suef, Egypt
| | - Walaa Hozayn
- Department of Biotechnology, Faculty of Postgraduate Studies for Advanced Science, Beni-Suef University, Beni-Suef, Egypt
| | - Sonya Soliman
- Department of Clinical Pathology, National Cancer Institute (NCI), Cairo University, Cairo, Egypt; Department of Clinical Pathology, Children's Cancer Hospital Egypt (CCHE-57357), Cairo, Egypt
| | - Sherine Salem
- Department of Clinical Pathology, National Cancer Institute (NCI), Cairo University, Cairo, Egypt; Department of Clinical Pathology, Children's Cancer Hospital Egypt (CCHE-57357), Cairo, Egypt
| | - Khaled Alsheshtawi
- Department of Clinical Research, Children's Cancer Hospital Egypt (CCHE-57357), Cairo, Egypt
| | - Amr Abdalla
- Department of Pediatric Oncology, National Cancer Institute (NCI), Cairo University, Cairo, Egypt; Department of Pediatric Oncology, Children's Cancer Hospital Egypt (CCHE-57357), Cairo, Egypt
| | - Hanafy Hafez
- Department of Pediatric Oncology, National Cancer Institute (NCI), Cairo University, Cairo, Egypt; Department of Pediatric Oncology, Children's Cancer Hospital Egypt (CCHE-57357), Cairo, Egypt
| | - Mahmoud Hammad
- Department of Pediatric Oncology, National Cancer Institute (NCI), Cairo University, Cairo, Egypt; Department of Pediatric Oncology, Children's Cancer Hospital Egypt (CCHE-57357), Cairo, Egypt.
| |
Collapse
|
16
|
Pearson S, Guo B, Pierce A, Azadbakht N, Brazzatti JA, Patassini S, Mulero-Navarro S, Meyer S, Flotho C, Gelb BD, Whetton AD. Proteomic Analysis of an Induced Pluripotent Stem Cell Model Reveals Strategies to Treat Juvenile Myelomonocytic Leukemia. J Proteome Res 2020; 19:194-203. [PMID: 31657576 PMCID: PMC6942217 DOI: 10.1021/acs.jproteome.9b00495] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Juvenile
myelomonocytic leukemia (JMML) is an aggressive myeloproliferative
neoplasm of early childhood with a poor survival rate, thus there
is a requirement for improved treatment strategies. Induced pluripotent
stem cells offer the ability to model disease and develop new treatment
strategies. JMML is frequently associated with mutations in PTPN11. Children with Noonan syndrome, a development disorder,
have an increased incidence of JMML associated with specific germline
mutations in PTPN11. We undertook a proteomic assessment
of myeloid cells derived from induced pluripotent stem cells obtained
from Noonan syndrome patients with PTPN11 mutations,
either associated or not associated with an increased incidence of
JMML. We report that the proteomic perturbations induced by the leukemia-associated PTPN11 mutations are associated with TP53 and NF-Kκb
signaling. We have previously shown that MYC is involved in the differential
gene expression observed in Noonan syndrome patients associated with
an increased incidence of JMML. Thus, we employed drugs to target
these pathways and demonstrate differential effects on clonogenic
hematopoietic cells derived from Noonan syndrome patients, who develop
JMML and those who do not. Further, we demonstrated these small molecular
inhibitors, JQ1 and CBL0137, preferentially extinguish primitive hematopoietic
cells from sporadic JMML patients as opposed to cells from healthy
individuals.
Collapse
Affiliation(s)
- Stella Pearson
- Stem Cell and Leukaemia Proteomics Laboratory, Manchester Academic Health Science Centre , The University of Manchester, Wolfson Molecular Imaging Centre , 27 Palatine Road , Withington, Manchester M20 3LJ , U.K
| | - Baoqiang Guo
- Stem Cell and Leukaemia Proteomics Laboratory, Manchester Academic Health Science Centre , The University of Manchester, Wolfson Molecular Imaging Centre , 27 Palatine Road , Withington, Manchester M20 3LJ , U.K
| | - Andrew Pierce
- Stem Cell and Leukaemia Proteomics Laboratory, Manchester Academic Health Science Centre , The University of Manchester, Wolfson Molecular Imaging Centre , 27 Palatine Road , Withington, Manchester M20 3LJ , U.K
| | - Narges Azadbakht
- Stem Cell and Leukaemia Proteomics Laboratory, Manchester Academic Health Science Centre , The University of Manchester, Wolfson Molecular Imaging Centre , 27 Palatine Road , Withington, Manchester M20 3LJ , U.K
| | - Julie A Brazzatti
- Stoller Biomarker Discovery Centre, Manchester Academic Health Science Centre , University of Manchester , Manchester M13 9NQ , U.K
| | - Stefano Patassini
- Stem Cell and Leukaemia Proteomics Laboratory, Manchester Academic Health Science Centre , The University of Manchester, Wolfson Molecular Imaging Centre , 27 Palatine Road , Withington, Manchester M20 3LJ , U.K
| | | | - Stefan Meyer
- Stem Cell and Leukaemia Proteomics Laboratory, Manchester Academic Health Science Centre , The University of Manchester, Wolfson Molecular Imaging Centre , 27 Palatine Road , Withington, Manchester M20 3LJ , U.K
| | - Christian Flotho
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine , University of Freiburg , 79106 Freiburg , Germany
| | - Bruce D Gelb
- The Mindich Child Health and Development Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Anthony D Whetton
- Stem Cell and Leukaemia Proteomics Laboratory, Manchester Academic Health Science Centre , The University of Manchester, Wolfson Molecular Imaging Centre , 27 Palatine Road , Withington, Manchester M20 3LJ , U.K.,Stoller Biomarker Discovery Centre, Manchester Academic Health Science Centre , University of Manchester , Manchester M13 9NQ , U.K
| |
Collapse
|
17
|
Hofmans M, Schröder R, Lammens T, Flotho C, Niemeyer C, Van Roy N, Decaluwe W, Philippé J, De Moerloose B. Noonan syndrome-associated myeloproliferative disorder with somatically acquired monosomy 7: impact on clinical decision making. Br J Haematol 2019; 187:E83-E86. [PMID: 31617209 DOI: 10.1111/bjh.16191] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Mattias Hofmans
- Division of Paediatric Haematology-Oncology and Stem Cell Transplantation, Department of Paediatrics, Ghent University Hospital, Ghent, Belgium.,Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Rieke Schröder
- Division of Paediatric Haematology and Oncology, Department of Paediatrics and Adolescent Medicine, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tim Lammens
- Division of Paediatric Haematology-Oncology and Stem Cell Transplantation, Department of Paediatrics, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Christian Flotho
- Division of Paediatric Haematology and Oncology, Department of Paediatrics and Adolescent Medicine, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium, Partner Site Freiburg, German Cancer Research Centre, Heidelberg, Germany
| | - Charlotte Niemeyer
- Division of Paediatric Haematology and Oncology, Department of Paediatrics and Adolescent Medicine, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium, Partner Site Freiburg, German Cancer Research Centre, Heidelberg, Germany
| | - Nadine Van Roy
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium.,Centre for Medical Genetics, Ghent University, Ghent, Belgium
| | - Wim Decaluwe
- Department of Paediatrics, Neonatal Intensive Care, AZ Sint-Jan Bruges, Bruges, Belgium
| | - Jan Philippé
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Barbara De Moerloose
- Division of Paediatric Haematology-Oncology and Stem Cell Transplantation, Department of Paediatrics, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Abdalla A, Hammad M, Hafez H, Salem S, Soliman S, Ghazal S, Hassanain O, El-Haddad A. Outcome and factors affecting survival of childhood myelodysplastic syndrome; single centre experience. PEDIATRIC HEMATOLOGY ONCOLOGY JOURNAL 2019. [DOI: 10.1016/j.phoj.2019.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
19
|
Karagiannis P, Takahashi K, Saito M, Yoshida Y, Okita K, Watanabe A, Inoue H, Yamashita JK, Todani M, Nakagawa M, Osawa M, Yashiro Y, Yamanaka S, Osafune K. Induced Pluripotent Stem Cells and Their Use in Human Models of Disease and Development. Physiol Rev 2019; 99:79-114. [PMID: 30328784 DOI: 10.1152/physrev.00039.2017] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The discovery of somatic cell nuclear transfer proved that somatic cells can carry the same genetic code as the zygote, and that activating parts of this code are sufficient to reprogram the cell to an early developmental state. The discovery of induced pluripotent stem cells (iPSCs) nearly half a century later provided a molecular mechanism for the reprogramming. The initial creation of iPSCs was accomplished by the ectopic expression of four specific genes (OCT4, KLF4, SOX2, and c-Myc; OSKM). iPSCs have since been acquired from a wide range of cell types and a wide range of species, suggesting a universal molecular mechanism. Furthermore, cells have been reprogrammed to iPSCs using a myriad of methods, although OSKM remains the gold standard. The sources for iPSCs are abundant compared with those for other pluripotent stem cells; thus the use of iPSCs to model the development of tissues, organs, and other systems of the body is increasing. iPSCs also, through the reprogramming of patient samples, are being used to model diseases. Moreover, in the 10 years since the first report, human iPSCs are already the basis for new cell therapies and drug discovery that have reached clinical application. In this review, we examine the generation of iPSCs and their application to disease and development.
Collapse
Affiliation(s)
- Peter Karagiannis
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Kazutoshi Takahashi
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Megumu Saito
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Yoshinori Yoshida
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Keisuke Okita
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Akira Watanabe
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Jun K Yamashita
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Masaya Todani
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Masato Nakagawa
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Mitsujiro Osawa
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Yoshimi Yashiro
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| |
Collapse
|
20
|
Pati H, Kundil Veetil K. Myelodysplastic Syndrome/Myeloproliferative Neoplasm (MDS/MPN) Overlap Syndromes: Molecular Pathogenetic Mechanisms and Their Implications. Indian J Hematol Blood Transfus 2019; 35:3-11. [DOI: 10.1007/s12288-019-01084-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 01/16/2019] [Indexed: 11/29/2022] Open
|
21
|
Zhao W, Wang L, Yu Y. Gene module analysis of juvenile myelomonocytic leukemia and screening of anticancer drugs. Oncol Rep 2018; 40:3155-3170. [PMID: 30272300 PMCID: PMC6196601 DOI: 10.3892/or.2018.6709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 07/19/2018] [Indexed: 11/05/2022] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is a rare but severe primary hemopoietic system tumor of childhood, most frequent in children 4 years and younger. There are currently no specific anticancer therapies targeting JMML, and the underlying gene expression changes have not been revealed. To define molecular targets and possible biomarkers for early diagnosis, optimal treatment, and prognosis, we conducted microarray data analysis using the Gene Expression Omnibus, and constructed protein‑protein interaction networks of all differentially expressed genes. Modular bioinformatics analysis revealed four core functional modules for JMML. We analyzed the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway functions associated with these modules. Using the CMap database, nine potential anticancer drugs were identified that modulate expression levels of many JMML‑associated genes. In addition, we identified possible miRNAs and transcription factors regulating these differentially expressed genes. This study defines a new research strategy for developing JMML‑targeted chemotherapies.
Collapse
Affiliation(s)
- Wencheng Zhao
- Department of Paediatrics, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Lin Wang
- Key Laborarory, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yongbin Yu
- Key Laborarory, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
22
|
Li W, Wei H, Sun Y, Zhou H, Ma Y, Wang R. Exploring the effect of E76K mutation on SHP2 cause gain‐of‐function activity by a molecular dynamics study. J Cell Biochem 2018; 119:9941-9956. [DOI: 10.1002/jcb.27316] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/29/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Wei‐Ya Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics) School of Pharmacy, Tianjin Medical University Tianjin China
| | - Hui‐Yu Wei
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics) School of Pharmacy, Tianjin Medical University Tianjin China
- Eye Hospital, School of Optometry and Ophthalmology, Tianjin Medical University Tianjin China
| | - Ying‐Zhan Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics) School of Pharmacy, Tianjin Medical University Tianjin China
| | - Hui Zhou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics) School of Pharmacy, Tianjin Medical University Tianjin China
| | - Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics) School of Pharmacy, Tianjin Medical University Tianjin China
| | - Run‐Ling Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics) School of Pharmacy, Tianjin Medical University Tianjin China
| |
Collapse
|
23
|
MicroRNA fingerprints in juvenile myelomonocytic leukemia (JMML) identified miR-150-5p as a tumor suppressor and potential target for treatment. Oncotarget 2018; 7:55395-55408. [PMID: 27447965 PMCID: PMC5342425 DOI: 10.18632/oncotarget.10577] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/13/2016] [Indexed: 12/20/2022] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is an aggressive leukemia of early childhood characterized by aberrant proliferation of myelomonocytic cells and hypersensitivity to GM-CSF stimulation. Mutually exclusive mutations in the RAS/ERK pathway genes such as PTPN11, NRAS, KRAS, CBL, or NF1 are found in ~90% of the cases. These mutations give rise to disease at least in part by activating STAT5 through phosphorylation and by promoting cell growth. MicroRNAs (miRs) are small non-coding RNAs that regulate gene expression, which are often deregulated in leukemia. However, little is known about their role in JMML. Here, we report distinctive miR expression signatures associated with the molecular subgroups of JMML. Among the downregulated miRs in JMML, miR-150-5p was found to target STAT5b, a gene which is often over-activated in JMML, and contributes to the characteristic aberrant signaling of this disorder. Moreover, loss of miR-150-5p and upregulation of STAT5b expression were also identified in a murine model of JMML. Ectopic overexpression of miR-150-5p in mononuclear cells from three JMML patients significantly decreased cell proliferation. Altogether, our data indicate that miR expression is deregulated in JMML and may play a role in the pathogenesis of this disorder by modulating key effectors of cytokine receptor pathways.
Collapse
|
24
|
Coppe A, Nogara L, Pizzuto MS, Cani A, Cesaro S, Masetti R, Locatelli F, Te Kronnie G, Basso G, Bortoluzzi S, Bresolin S. Somatic mutations activating Wiskott-Aldrich syndrome protein concomitant with RAS pathway mutations in juvenile myelomonocytic leukemia patients. Hum Mutat 2018; 39:579-587. [PMID: 29316027 DOI: 10.1002/humu.23399] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 12/02/2017] [Accepted: 12/29/2017] [Indexed: 12/30/2022]
Abstract
The WAS gene product is expressed exclusively in the cytoplasm of hematopoietic cells and constitutional genetic abrogation of WASP leads to Wiskott-Aldrich syndrome (WAS). Moreover, mutational activation of WASP has been associated with X-linked neutropenia. Although studies reported that patients with constitutional WAS mutations affecting functional WASP expression may present juvenile myelomonocytic leukemia (JMML)-like features, confounding differential diagnosis above all in the copresence of mutated RAS, an activating somatic mutation of WASP has not been previously described in JMML patients. In our ongoing studies on JMML genomics, we at first detected a somatic WAS mutation in a major clone found at two consecutive relapses in one of two twins with JMML. Both twins were treated with hematopoietic stem cell transplantation after diagnosis of JMML. The somatic WAS mutation detected here displayed an activating WASP phenotype. Screening of 46 sporadic JMML patients at disease onset for mutations in the same PBD domain of WAS revealed two additional singleton patients carrying minor mutated clones. This is the first study to associate somatically acquired WASP mutations with a hematopoietic malignancy and increases insight in the complexity of the genomic landscape of JMML that shows low recurrent mutations concomitant with general hyperactivation of RAS pathway signaling.
Collapse
Affiliation(s)
- Alessandro Coppe
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Leonardo Nogara
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Matteo Samuele Pizzuto
- Laboratory of Onco-Hematology, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Alice Cani
- Laboratory of Onco-Hematology, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Simone Cesaro
- Pediatric Hematology Oncology, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Riccardo Masetti
- Oncologia ed Ematologia Pediatrica "Lalla Seràgnoli", University of Bologna, Bologna, Italy
| | - Franco Locatelli
- Department of Pediatric Onco-Hematology, IRCCS Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Geertruy Te Kronnie
- Laboratory of Onco-Hematology, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Giuseppe Basso
- Laboratory of Onco-Hematology, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | | | - Silvia Bresolin
- Laboratory of Onco-Hematology, Department of Women's and Children's Health, University of Padova, Padova, Italy
| |
Collapse
|
25
|
Mutations of SETBP1 and JAK3 in juvenile myelomonocytic leukemia: a report from the Italian AIEOP study group. Oncotarget 2018; 7:28914-9. [PMID: 26980750 PMCID: PMC5045366 DOI: 10.18632/oncotarget.8016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/21/2016] [Indexed: 11/25/2022] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is a rare aggressive disease of early childhood. Driver mutations in the Ras signaling pathways are a key feature of JMML patients. Mutations in SETBP1 and JAK3 were recently identified in a subset of JMML patients characterized by poor prognosis and progression of disease. In this study, we report the results of a screening for mutations in SETBP1 and JAK3 of a cohort of seventy Italian patients with JMML, identifying 11.4% of them harboring secondary mutations in these two genes and discovering two new mutations in the SKI domain of SETBP1. JMML xenotransplantation and colony assay provide an initial understanding of the secondary nature of these events occurring in early precursor cells and suggest a different propagating capacity of clones harboring particular mutations.
Collapse
|
26
|
Lipka DB, Witte T, Toth R, Yang J, Wiesenfarth M, Nöllke P, Fischer A, Brocks D, Gu Z, Park J, Strahm B, Wlodarski M, Yoshimi A, Claus R, Lübbert M, Busch H, Boerries M, Hartmann M, Schönung M, Kilik U, Langstein J, Wierzbinska JA, Pabst C, Garg S, Catalá A, De Moerloose B, Dworzak M, Hasle H, Locatelli F, Masetti R, Schmugge M, Smith O, Stary J, Ussowicz M, van den Heuvel-Eibrink MM, Assenov Y, Schlesner M, Niemeyer C, Flotho C, Plass C. RAS-pathway mutation patterns define epigenetic subclasses in juvenile myelomonocytic leukemia. Nat Commun 2017; 8:2126. [PMID: 29259247 PMCID: PMC5736667 DOI: 10.1038/s41467-017-02177-w] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 11/13/2017] [Indexed: 01/15/2023] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is an aggressive myeloproliferative disorder of early childhood characterized by mutations activating RAS signaling. Established clinical and genetic markers fail to fully recapitulate the clinical and biological heterogeneity of this disease. Here we report DNA methylome analysis and mutation profiling of 167 JMML samples. We identify three JMML subgroups with unique molecular and clinical characteristics. The high methylation group (HM) is characterized by somatic PTPN11 mutations and poor clinical outcome. The low methylation group is enriched for somatic NRAS and CBL mutations, as well as for Noonan patients, and has a good prognosis. The intermediate methylation group (IM) shows enrichment for monosomy 7 and somatic KRAS mutations. Hypermethylation is associated with repressed chromatin, genes regulated by RAS signaling, frequent co-occurrence of RAS pathway mutations and upregulation of DNMT1 and DNMT3B, suggesting a link between activation of the DNA methylation machinery and mutational patterns in JMML.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Biopsy
- Child
- Child, Preschool
- Chromatin/genetics
- Chromatin/metabolism
- DNA (Cytosine-5-)-Methyltransferase 1/metabolism
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- DNA Methylation
- DNA Mutational Analysis
- Epigenomics
- Female
- Gene Expression Regulation, Leukemic
- Hematopoietic Stem Cell Transplantation
- Humans
- Infant
- Leukemia, Myelomonocytic, Juvenile/genetics
- Leukemia, Myelomonocytic, Juvenile/mortality
- Leukemia, Myelomonocytic, Juvenile/pathology
- Leukemia, Myelomonocytic, Juvenile/therapy
- Male
- Mutation
- Noonan Syndrome/genetics
- Noonan Syndrome/pathology
- Prognosis
- Prospective Studies
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism
- Proto-Oncogene Proteins c-cbl
- Proto-Oncogene Proteins p21(ras)/genetics
- Proto-Oncogene Proteins p21(ras)/metabolism
- Signal Transduction/genetics
- Up-Regulation
- DNA Methyltransferase 3B
Collapse
Affiliation(s)
- Daniel B Lipka
- Regulation of Cellular Differentiation Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany.
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke-University, Leipziger Strasse 44, 39120, Magdeburg, Germany.
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Leipziger Strasse 44, 39120, Magdeburg, Germany.
| | - Tania Witte
- Regulation of Cellular Differentiation Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany
- Cancer Epigenetics Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany
| | - Reka Toth
- Computational Epigenomics Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany
| | - Jing Yang
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany
| | - Manuel Wiesenfarth
- Division of Biostatistics, German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany
| | - Peter Nöllke
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine Medical Center, Faculty of Medicine, University of Freiburg, Heiliggeiststrasse 1, 79106, Freiburg, Germany
| | - Alexandra Fischer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine Medical Center, Faculty of Medicine, University of Freiburg, Heiliggeiststrasse 1, 79106, Freiburg, Germany
| | - David Brocks
- Cancer Epigenetics Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany
| | - Zuguang Gu
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany
| | - Jeongbin Park
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany
| | - Brigitte Strahm
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine Medical Center, Faculty of Medicine, University of Freiburg, Heiliggeiststrasse 1, 79106, Freiburg, Germany
| | - Marcin Wlodarski
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine Medical Center, Faculty of Medicine, University of Freiburg, Heiliggeiststrasse 1, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), 79106, Freiburg, Germany
| | - Ayami Yoshimi
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine Medical Center, Faculty of Medicine, University of Freiburg, Heiliggeiststrasse 1, 79106, Freiburg, Germany
| | - Rainer Claus
- Division of Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Michael Lübbert
- Division of Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Hauke Busch
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Stefan-Meier-Strasse 17, 79104, Freiburg, Germany
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Melanie Boerries
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Stefan-Meier-Strasse 17, 79104, Freiburg, Germany
- German Cancer Consortium (DKTK), 79106, Freiburg, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Mark Hartmann
- Regulation of Cellular Differentiation Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany
| | - Maximilian Schönung
- Regulation of Cellular Differentiation Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany
| | - Umut Kilik
- Regulation of Cellular Differentiation Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany
| | - Jens Langstein
- Regulation of Cellular Differentiation Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany
| | - Justyna A Wierzbinska
- Regulation of Cellular Differentiation Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany
- Cancer Epigenetics Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany
| | - Caroline Pabst
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, INF 410, 69120, Heidelberg, Germany
| | - Swati Garg
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, INF 410, 69120, Heidelberg, Germany
| | - Albert Catalá
- Department of Hematology and Oncology, Hospital Sant Joan de Déu, Passeig de Sant Joan de Déu, 2, 08950, Esplugues de Llobrega, Barcelona, Spain
| | - Barbara De Moerloose
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium
| | - Michael Dworzak
- St. Anna Children's Hospital and Children's Cancer Research Institute, Medical University of Vienna, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University Hospital Skejby, Palle Juul-Jensens Boulevard 82, 8200, Aarhus, Denmark
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesú Children's Hospital, University of Pavia, Piazza S. Onofrio 4, Rome, 00165, Italy
| | - Riccardo Masetti
- Department of Pediatric Oncology and Hematology, University of Bologna, Via Massarenti 11, 40138, Bologna, Italy
| | - Markus Schmugge
- Department of Hematology and Oncology, University Children's Hospital, Steinwiesstrasse 75, 8032, Zurich, Switzerland
| | - Owen Smith
- Department of Paediatric Oncology and Haematology, Our Lady's Children's Hospital Crumlin, Dublin, 12, Ireland
| | - Jan Stary
- Department of Pediatric Hematology and Oncology, Charles University and University Hospital Motol, V Úvalu 84, 150 06, Prague 5, Czech Republic
| | - Marek Ussowicz
- Department of Pediatric Hematology, Oncology and BMT, Wroclaw Medical University, ul. Borowska 213, 50-556, Wroclaw, Poland
| | | | - Yassen Assenov
- Computational Epigenomics Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany
| | - Matthias Schlesner
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany
- Bioinformatics and Omics Data Analytics (B240), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Charlotte Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine Medical Center, Faculty of Medicine, University of Freiburg, Heiliggeiststrasse 1, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), 79106, Freiburg, Germany
| | - Christian Flotho
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine Medical Center, Faculty of Medicine, University of Freiburg, Heiliggeiststrasse 1, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), 79106, Freiburg, Germany
| | - Christoph Plass
- Cancer Epigenetics Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany.
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany.
| |
Collapse
|
27
|
Leoncini PP, Vitullo P, Di Florio F, Tocco V, Cefalo MG, Pitisci A, Girardi K, Niemeyer C, Locatelli F, Bertaina A. Whole Genome MBD-seq reveals different CpG methylation patterns in Azacytidine-treated Juvenile Myelomonocytic Leukaemia (JMML) patients. Br J Haematol 2017; 182:909-912. [DOI: 10.1111/bjh.14876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pier Paolo Leoncini
- Department of Paediatric Haematology and Oncology; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) “Bambino Gesù” Children's Hospital; Rome Italy
| | - Patrizia Vitullo
- Department of Paediatric Haematology and Oncology; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) “Bambino Gesù” Children's Hospital; Rome Italy
| | - Francesca Di Florio
- Department of Paediatric Haematology and Oncology; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) “Bambino Gesù” Children's Hospital; Rome Italy
| | - Valeria Tocco
- Department of Paediatric Haematology and Oncology; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) “Bambino Gesù” Children's Hospital; Rome Italy
| | - Maria Giuseppina Cefalo
- Department of Paediatric Haematology and Oncology; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) “Bambino Gesù” Children's Hospital; Rome Italy
| | - Angela Pitisci
- Department of Paediatric Haematology and Oncology; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) “Bambino Gesù” Children's Hospital; Rome Italy
| | - Katia Girardi
- Department of Paediatric Haematology and Oncology; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) “Bambino Gesù” Children's Hospital; Rome Italy
| | - Charlotte Niemeyer
- Department of Paediatrics and Adolescent Medicine; Division of Paediatric Haematology and Oncology Medical Centre; Faculty of Medicine; University of Freiburg; Freiburg Germany
| | - Franco Locatelli
- Department of Paediatric Haematology and Oncology; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) “Bambino Gesù” Children's Hospital; Rome Italy
- Department of Paediatrics; University of Pavia; Pavia Italy
| | - Alice Bertaina
- Department of Paediatric Haematology and Oncology; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) “Bambino Gesù” Children's Hospital; Rome Italy
| |
Collapse
|
28
|
Sallman DA, Padron E. Myelodysplasia in younger adults: outlier or unique molecular entity? Haematologica 2017; 102:967-968. [PMID: 28566339 PMCID: PMC5451326 DOI: 10.3324/haematol.2017.165993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- David A Sallman
- Malignant Hematology Department, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Eric Padron
- Malignant Hematology Department, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
29
|
Misra A, Chopra A, Kumar R, Bakhshi S. Diagnostic considerations in juvenile myelomonocytic leukemia in tropical settings. Int J Lab Hematol 2017; 39:e77-e79. [PMID: 28263030 DOI: 10.1111/ijlh.12626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A Misra
- DR BRAIRCH, Laboratory Oncology, AIIMS New Delhi, New Delhi, India
| | - A Chopra
- DR BRAIRCH, Laboratory Oncology, AIIMS New Delhi, New Delhi, India
| | - R Kumar
- DR BRAIRCH, Laboratory Oncology, AIIMS New Delhi, New Delhi, India
| | - S Bakhshi
- IRCH, Medical Oncology, AIIMS, New Delhi, India
| |
Collapse
|
30
|
Paulus S, Koronowska S, Fölster-Holst R. Association Between Juvenile Myelomonocytic Leukemia, Juvenile Xanthogranulomas and Neurofibromatosis Type 1: Case Report and Review of the Literature. Pediatr Dermatol 2017; 34:114-118. [PMID: 28111791 DOI: 10.1111/pde.13064] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The occurrence of juvenile myelomonocytic leukemia (JMML), juvenile xanthogranuloma (JXG), and neurofibromatosis type 1 (NF1) together is relatively rare. Approximately only 20 cases have been reported in the literature. It is debated whether children with NF1 and JXG are at higher risk of developing JMML than children with NF1 alone. We present the case of a boy primarily diagnosed with NF1 with coexisting JXG who developed JMML at the age of 22 months. The clinical course from initial presentation to final diagnosis is detailed and the genetic features and hematologic characteristics are discussed. We report this case to underscore the importance of close monitoring of blood count and strict clinical follow-up in children presenting with concurrent NF1 and JXG and provide a possible explanation for this association.
Collapse
Affiliation(s)
- Samuel Paulus
- Department of Dermatology, University of Kiel, Kiel, Germany
| | | | | |
Collapse
|
31
|
Marcos-Gragera R, Galceran J, Martos C, de Munain AL, Vicente-Raneda M, Navarro C, Quirós-Garcia JR, Sánchez MJ, Ardanaz E, Ramos M, Mateos A, Salmerón D, Felipe S, Peris-Bonet R. Incidence and survival time trends for Spanish children and adolescents with leukaemia from 1983 to 2007. Clin Transl Oncol 2017; 19:301-316. [PMID: 27447899 DOI: 10.1007/s12094-016-1531-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/12/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVE We have analysed incidence and survival trends of children and adolescents with leukaemia registered in Spanish population-based cancer registries during the period 1983-2007. METHODS Childhood and adolescent leukaemia cases were drawn from the 11 Spanish population-based cancer registries. For survival, registries with data for the period 1991-2005 and follow-up until 31-12-2010 were included. Overall incidence trends were evaluated using joinpoint analysis. Observed survival rates were estimated using Kaplan-Meier, and trends were tested using the log-rank test. RESULTS Based on 2606 cases (2274 children and 332 adolescents), the overall age-adjusted incidence rate (ASRw) of leukaemia was 47.9 cases per million child-years in children and 23.8 in adolescents. The ASRw of leukaemia increased with an annual percentage change of 9.6 % (95 % CI: 2.2-17.6) until 1990 followed by a stabilisation of rates. In adolescents, incidence did not increase. Five-year survival increased from 66 % in 1991-1995 to 76 % in 2001-2005. By age, survival was dramatically lower in infants (0) and adolescents (15-19) than in the other age groups and no improvement was observed. In both children and adolescents, differences in 5-year survival rates among major subgroups of leukaemias were significant. CONCLUSIONS The increasing incidence trends observed in childhood leukaemias during the study period were confined to the beginning of the period. Remarkable improvements in survival have been observed in Spanish children with leukaemias. However, this improvement was not observed in infants and adolescents.
Collapse
Affiliation(s)
- R Marcos-Gragera
- Epidemiology Unit and Girona Cancer Registry (UERCG), Oncology Coordination Plan (PDO), Department of Health, Autonomous Government of Catalonia, Girona, Spain.
- Descriptive Epidemiology, Genetics and Cancer Prevention Group [Girona Biomedical Research Institute] IDIBGI, Catalan Institute of Oncology-Girona (ICO), Girona, Spain.
- Nursing Department, University of Girona (UdG), Girona, Spain.
| | - J Galceran
- Tarragona Cancer Registry, Foundation Society for Cancer Research and Prevention (FUNCA), Reus, Spain
- Pere Virgili Health Research Institute, Reus, Spain
- Rovira i Virgili University (URV), Reus, Spain
| | - C Martos
- Zaragoza Cancer Registry, Aragon Government, Saragossa, Spain
- Centre of Public Health Research-FISABIO, Valencia, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER en Epidemiología y Salud Pública CIBERESP), Madrid, Spain
| | - A L de Munain
- Basque Country Cancer Registry, Basque Government, Vitoria-Gasteiz, Spain
| | - M Vicente-Raneda
- Community Valenciana Childhood Cancer Registry, Public Health Directorate, Conselleria de Sanitat Universal i Salut Pública, Generalitat Valenciana, Valencia, Spain
| | - C Navarro
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
- Department of Health and Social Sciences, Universidad de Murcia, Murcia, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER en Epidemiología y Salud Pública CIBERESP), Madrid, Spain
| | | | - M-J Sánchez
- Granada Cancer Registry, Andalusian School of Public Health, Granada, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER en Epidemiología y Salud Pública CIBERESP), Madrid, Spain
| | - E Ardanaz
- Navarre Cancer Registry, Navarre Public Health Institute, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER en Epidemiología y Salud Pública CIBERESP), Madrid, Spain
| | - M Ramos
- Mallorca Cancer Registry, Epidemiology Department, Directorate-General of Public Health and Participation, Palma de Mallorca, Spain
| | - A Mateos
- Albacete Cancer Registry, Health and Social Welfare Authority, Albacete, Spain
| | - D Salmerón
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
- Department of Health and Social Sciences, Universidad de Murcia, Murcia, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER en Epidemiología y Salud Pública CIBERESP), Madrid, Spain
| | - S Felipe
- Spanish Childhood Cancer Registry (RETI-SEHOP), Spanish Society of Paediatric Haematology and Oncology, University of Valencia, Valencia, Spain
| | - R Peris-Bonet
- Spanish Childhood Cancer Registry (RETI-SEHOP), Spanish Society of Paediatric Haematology and Oncology, University of Valencia, Valencia, Spain
| |
Collapse
|
32
|
Tüfekçi Ö, Koçak Ü, Kaya Z, Yenicesu İ, Albayrak C, Albayrak D, Yılmaz Bengoa Ş, Patıroğlu T, Karakükçü M, Ünal E, Ünal İnce E, İleri T, Ertem M, Celkan T, Özdemir GN, Sarper N, Kaçar D, Yaralı N, Özbek NY, Küpesiz A, Karapınar T, Vergin C, Çalışkan Ü, Tokgöz H, Sezgin Evim M, Baytan B, Güneş AM, Yılmaz Karapınar D, Karaman S, Uygun V, Karasu G, Yeşilipek MA, Koç A, Erduran E, Atabay B, Öniz H, Ören H. Juvenile Myelomonocytic Leukemia in Turkey: A Retrospective Analysis of Sixty-five Patients. Turk J Haematol 2017; 35:27-34. [PMID: 28179213 PMCID: PMC5843771 DOI: 10.4274/tjh.2017.0021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE This study aimed to define the status of juvenile myelomonocytic leukemia (JMML) patients in Turkey in terms of time of diagnosis, clinical characteristics, mutational studies, clinical course, and treatment strategies. MATERIALS AND METHODS Data including clinical and laboratory characteristics and treatment strategies of JMML patients were collected retrospectively from pediatric hematology-oncology centers in Turkey. RESULTS Sixty-five children with JMML diagnosed between 2002 and 2016 in 18 institutions throughout Turkey were enrolled in the study. The median age at diagnosis was 17 months (min-max: 2-117 months). Splenomegaly was present in 92% of patients at the time of diagnosis. The median white blood cell, monocyte, and platelet counts were 32.9x109/L, 5.4x109/L, and 58.3x109/L, respectively. Monosomy 7 was present in 18% of patients. JMML mutational analysis was performed in 32 of 65 patients (49%) and PTPN11 was the most common mutation. Hematopoietic stem cell transplantation (HSCT) could only be performed in 28 patients (44%), the majority being after the year 2012. The most frequent reason for not performing HSCT was the inability to find a suitable donor. The median time from diagnosis to HSCT was 9 months (min-max: 2-63 months). The 5-year cumulative survival rate was 33% and median estimated survival time was 30±17.4 months (95% CI: 0-64.1) for all patients. Survival time was significantly better in the HSCT group (log-rank p=0.019). Older age at diagnosis (>2 years), platelet count of less than 40x109/L, and PTPN11 mutation were the factors significantly associated with shorter survival time. CONCLUSION Although there has recently been improvement in terms of definitive diagnosis and HSCT in JMML patients, the overall results are not satisfactory and it is necessary to put more effort into this issue in Turkey.
Collapse
Affiliation(s)
- Özlem Tüfekçi
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Hematology, İzmir, Turkey
| | - Ülker Koçak
- Gazi University Faculty of Medicine, Department of Pediatric Hematology, Ankara, Turkey
| | - Zühre Kaya
- Gazi University Faculty of Medicine, Department of Pediatric Hematology, Ankara, Turkey
| | - İdil Yenicesu
- Gazi University Faculty of Medicine, Department of Pediatric Hematology, Ankara, Turkey
| | - Canan Albayrak
- Ondokuz Mayıs University Faculty of Medicine, Department of Pediatric Hematology, Samsun, Turkey
| | - Davut Albayrak
- Ondokuz Mayıs University Faculty of Medicine, Department of Pediatric Hematology, Samsun, Turkey
| | - Şebnem Yılmaz Bengoa
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Hematology, İzmir, Turkey
| | - Türkan Patıroğlu
- Erciyes University Faculty of Medicine, Department of Pediatric Hematology and Oncology, Kayseri, Turkey
| | - Musa Karakükçü
- Erciyes University Faculty of Medicine, Department of Pediatric Hematology and Oncology, Kayseri, Turkey
| | - Ekrem Ünal
- Erciyes University Faculty of Medicine, Department of Pediatric Hematology and Oncology, Kayseri, Turkey
| | - Elif Ünal İnce
- Ankara University Faculty of Medicine, Department of Pediatric Hematology and Oncology, Ankara, Turkey
| | - Talia İleri
- Ankara University Faculty of Medicine, Department of Pediatric Hematology and Oncology, Ankara, Turkey
| | - Mehmet Ertem
- Ankara University Faculty of Medicine, Department of Pediatric Hematology and Oncology, Ankara, Turkey
| | - Tiraje Celkan
- İstanbul University Cerrahpaşa Faculty of Medicine, Department of Pediatric Hematology and Oncology, İstanbul, Turkey
| | - Gül Nihal Özdemir
- İstanbul University Cerrahpaşa Faculty of Medicine, Department of Pediatric Hematology and Oncology, İstanbul, Turkey
| | - Nazan Sarper
- Kocaeli University Faculty of Medicine, Department of Pediatric Hematology, Kocaeli, Turkey
| | - Dilek Kaçar
- Ankara Children's Hematology and Oncology Training and Research Hospital, Ankara, Turkey
| | - Neşe Yaralı
- Ankara Children's Hematology and Oncology Training and Research Hospital, Ankara, Turkey
| | - Namık Yaşar Özbek
- Ankara Children's Hematology and Oncology Training and Research Hospital, Ankara, Turkey
| | - Alphan Küpesiz
- Akdeniz University Faculty of Medicine, Department of Pediatric Hematology and Oncology, Antalya, Turkey
| | - Tuba Karapınar
- Dr. Behçet Uz Children Training and Research Hospital, Clinic of Pediatric Hematology and Oncology, İzmir, Turkey
| | - Canan Vergin
- Dr. Behçet Uz Children Training and Research Hospital, Clinic of Pediatric Hematology and Oncology, İzmir, Turkey
| | - Ümran Çalışkan
- Necmettin Erbakan University Meram Faculty of Medicine, Department of Pediatric Hematology, Konya, Turkey
| | - Hüseyin Tokgöz
- Necmettin Erbakan University Meram Faculty of Medicine, Department of Pediatric Hematology, Konya, Turkey
| | - Melike Sezgin Evim
- Uludağ University Faculty of Medicine, Department of Pediatric Hematology, Bursa, Turkey
| | - Birol Baytan
- Uludağ University Faculty of Medicine, Department of Pediatric Hematology, Bursa, Turkey
| | - Adalet Meral Güneş
- Uludağ University Faculty of Medicine, Department of Pediatric Hematology, Bursa, Turkey
| | | | - Serap Karaman
- Şişli Hamidiye Etfal Training and Research Hospital, Clinic of Pediatric Hematology and Oncology, İstanbul, Turkey
| | - Vedat Uygun
- Bahçeşehir University Faculty of Medicine, Department of Pediatric Hematology and Oncology, İstanbul, Turkey
| | - Gülsun Karasu
- Bahçeşehir University Faculty of Medicine, Department of Pediatric Hematology and Oncology, İstanbul, Turkey
| | - Mehmet Akif Yeşilipek
- Bahçeşehir University Faculty of Medicine, Department of Pediatric Hematology and Oncology, İstanbul, Turkey
| | - Ahmet Koç
- Marmara University Faculty of Medicine, Department of Pediatric Hematology and Oncology, İstanbul, Turkey
| | - Erol Erduran
- Karadeniz Technical University Faculty of Medicine, Department of Pediatric Hematology and Oncology, Trabzon, Turkey
| | - Berna Atabay
- Tepecik Training and Research Hospital, Clinic of Pediatric Hematology and Oncology, İzmir, Turkey
| | - Haldun Öniz
- Tepecik Training and Research Hospital, Clinic of Pediatric Hematology and Oncology, İzmir, Turkey
| | - Hale Ören
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Hematology, İzmir, Turkey
| |
Collapse
|
33
|
Vasekova P, Plank L. The Differencies in Adult and Pediatric Myelodysplastic Syndrome: A Review. ACTA MEDICA MARTINIANA 2016. [DOI: 10.1515/acm-2016-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Myelodysplastic syndrome (MDS) represent very heterogenous group of clonal stem cell bone marrow disorders with ineffective haematopoesis leading to cytopenias in peripheral blood and increased risk of blastic transformation and evolution of acute myeloid leukemia. MDS is a disease of older age mostly, in children it seems to be very rare. There are several significant morphological, cytogenetic and prognostic differencies of the disease in adults and in children. Adult MDS patients most commonly manifest with symptoms of anemia, bleeding and infection are uncommon. In childhood, MDS manifests predominantly by neutropenia and thrombocytopenia. In addition, some pediatric MDS patients present also with constitutional disease’s signs and symptoms. Early and correct diagnosis in both age groups is essential for the choice of appropriate therapy and also for next life of patients. However, the diagnosis of MDS is challenging, complex and requiring close correlation of clinical symptoms, laboratory parameters and standardized examination of BM biopsies. The authors present an overview focused on biology of MDS in adults and children, on the differences in the incidence, clinical presentation and treatment. They summarize the possibilities and limits of histopathological diagnosis and differential diagnosis of the disease in different age groups. A major problem in the morphological diagnosis of MDS remains the determination, whether the myelodysplasia is due to clonal disorder. It might result also from some other factors, as significant dysplasia can also occur in reactive conditions, and vice versa, only discrete dysplasia is sometimes observed in MDS patients. Although histomorphological and immunohistochemical analysis of BM biopsy is invasive and time-consuming examination, it has its value in the diagnosis, differential diagnosis and evaluation of therapeutic effect.
Collapse
Affiliation(s)
- P Vasekova
- Comenius University in Bratislava, Jessenius Faculty of Medicine and University Hospital in Martin, Department of Pathological Anatomy, Slovakia
| | - L Plank
- Comenius University in Bratislava, Jessenius Faculty of Medicine and University Hospital in Martin, Department of Pathological Anatomy, Slovakia
- Martin s Biopsy Center, Ltd in Martin, Slovakia
| |
Collapse
|
34
|
Waespe N, Van Den Akker M, Klaassen RJ, Lieberman L, Irwin MS, Ali SS, Abdelhaleem M, Zlateska B, Liebman M, Cada M, Schechter T, Dror Y. Response to treatment with azacitidine in children with advanced myelodysplastic syndrome prior to hematopoietic stem cell transplantation. Haematologica 2016; 101:1508-1515. [PMID: 27540140 DOI: 10.3324/haematol.2016.145821] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/18/2016] [Indexed: 12/14/2022] Open
Abstract
Advanced myelodysplastic syndrome harbors a high risk of progression to acute myeloid leukemia and poor prognosis. In children, there is no established treatment to prevent or delay progression to leukemia prior to hematopoietic stem cell transplantation. Azacitidine is a hypomethylating agent, which was shown to slow progression to leukemia in adults with myelodysplastic syndrome. There is little data on the efficacy of azacitidine in children. We reviewed 22 pediatric patients with advanced myelodysplastic syndrome from a single center, diagnosed between January 2000 and December 2015. Of those, eight patients received off-label azacitidine before hematopoietic stem cell transplantation. A total of 31 cycles were administered and modification or delay occurred in four of them due to cytopenias, infection, nausea/vomiting, and transient renal impairment. Bone marrow blast percentages in azacitidine-treated patients decreased significantly from a median of 15% (range 9-31%) at the start of treatment to 5.5% (0-12%, P=0.02) before hematopoietic stem cell transplantation. Following azacitidine treatment, four patients (50%) achieved marrow remission, and none progressed. In contrast, three untreated patients (21.4%) had progressive disease characterized by >50% increase in blast counts or progression to leukemia. Azacitidine-treated patients had significantly increased 4-year event-free survival (P=0.04); predicted 4-year overall survival was 100% versus 69.3% in untreated patients (P=0.1). In summary, azacitidine treatment prior to hematopoietic stem cell transplantation was well tolerated in pediatric patients with advanced myelodysplastic syndrome, led to partial or complete bone marrow response in seven of eight patients (87.5%), and correlated with superior event-free survival in this cohort.
Collapse
Affiliation(s)
- Nicolas Waespe
- Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada.,Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Machiel Van Den Akker
- Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada.,Pediatric Hematology/Oncology, UZ Brussel, Jette, Belgium
| | - Robert J Klaassen
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Lani Lieberman
- Department of Laboratory Medicine, University Health Network, Toronto, Canada
| | - Meredith S Irwin
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
| | - Salah S Ali
- Bone Marrow Transplantation Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
| | - Mohamed Abdelhaleem
- Department of Pediatric Laboratory Medicine, Division of Hematopathology, The Hospital for Sick Children, Toronto, Canada
| | - Bozana Zlateska
- Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada.,Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Mira Liebman
- Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
| | - Michaela Cada
- Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
| | - Tal Schechter
- Bone Marrow Transplantation Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
| | - Yigal Dror
- Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada .,Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Institute of Medical Science, University of Toronto, Canada
| |
Collapse
|
35
|
Madhusoodhan PP, Carroll WL, Bhatla T. Progress and Prospects in Pediatric Leukemia. Curr Probl Pediatr Adolesc Health Care 2016; 46:229-241. [PMID: 27283082 DOI: 10.1016/j.cppeds.2016.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pediatric leukemia is the single most common malignancy affecting children, representing up to 30% of all pediatric cancers. Dramatic improvements in survival for acute lymphoblastic leukemia (ALL) have taken place over the past 4 decades with outcomes approaching 90% in the latest studies. However, progress has been slower for myeloid leukemia and certain subgroups like infant ALL, adolescent/young adult ALL, and relapsed ALL. Recent advances include recognition of molecularly defined subgroups, which has ushered in precision medicine approaches. We discuss the current understanding of the biology of the various childhood leukemias, recent advances in research, and future challenges in this field.
Collapse
Affiliation(s)
- P Pallavi Madhusoodhan
- Division of Pediatric Hematology Oncology, Department of Pediatrics, Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY.
| | - William L Carroll
- Division of Pediatric Hematology Oncology, Department of Pediatrics, Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY
| | - Teena Bhatla
- Division of Pediatric Hematology Oncology, Department of Pediatrics, Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY
| |
Collapse
|
36
|
Sochacki AL, Fischer MA, Savona MR. Therapeutic approaches in myelofibrosis and myelodysplastic/myeloproliferative overlap syndromes. Onco Targets Ther 2016; 9:2273-86. [PMID: 27143923 PMCID: PMC4844455 DOI: 10.2147/ott.s83868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The discovery of JAK2 (V617F) a decade ago led to optimism for a rapidly developing treatment revolution in Ph(-) myeloproliferative neoplasms. Unlike BCR-ABL, however, JAK2 was found to have a more heterogeneous role in carcinogenesis. Therefore, for years, development of new therapies was slow, despite standard treatment options that did not address the overwhelming symptom burden in patients with primary myelofibrosis (MF), post-essential thrombocythemia MF, post-polycythemia vera MF, and myelodysplastic syndrome (MDS)/myeloproliferative neoplasm (MPN) syndromes. JAK-STAT inhibitors have changed this, drastically ameliorating symptoms and ultimately beginning to show evidence of impact on survival. Now, the genetic foundations of myelofibrosis and MDS/MPN are rapidly being elucidated and contributing to targeted therapy development. This has been empowered through updated response criteria for MDS/MPN and refined prognostic scoring systems in these diseases. The aim of this article is to summarize concisely the current and rationally designed investigational therapeutics directed at JAK-STAT, hedgehog, PI3K-Akt, bone marrow fibrosis, telomerase, and rogue epigenetic signaling. The revolution in immunotherapy and novel treatments aimed at previously untargeted signaling pathways provides hope for considerable advancement in therapy options for those with chronic myeloid disease.
Collapse
Affiliation(s)
- Andrew L Sochacki
- Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Melissa A Fischer
- Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael R Savona
- Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| |
Collapse
|
37
|
Clara JA, Sallman DA, Padron E. Clinical management of myelodysplastic syndrome/myeloproliferative neoplasm overlap syndromes. Cancer Biol Med 2016; 13:360-372. [PMID: 27807503 PMCID: PMC5069836 DOI: 10.20892/j.issn.2095-3941.2016.0043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The myelodysplastic/myeloproliferative neoplasms (MDS/MPNs) are a unique group of hematologic malignancies characterized by concomitant myelodysplastic and myeloproliferative features. According to the 2008 WHO classification, the category includes atypical chronic myeloid leukemia (aCML), chronic myelomonocytic leukemia (CMML), juvenile myelomonocytic leukemia (JMML), MDS/MPN-unclassifiable (MDS/MPN-U), and the provisional entity refractory anemia with ring sideroblasts and thrombocytosis (RARS-T). Although diagnosis currently remains based on clinicopathologic features, the incorporation of next-generation platforms has allowed for the recent molecular characterization of these diseases which has revealed unique and complex mutational profiles that support their distinct biology and is anticipated to soon play an integral role in diagnosis, prognostication, and treatment. Future goals of research should include the development of disease-modifying therapies, and further genetic understanding of the category will likely form the foundation of these efforts.
Collapse
Affiliation(s)
- Joseph A Clara
- Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL 33606, USA
| | - David A Sallman
- Malignant Hematology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Eric Padron
- Malignant Hematology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
38
|
Boztug H, Sykora KW, Slatter M, Zecca M, Veys P, Lankester A, Cant A, Skinner R, Wachowiak J, Glogova E, Pötschger U, Peters C. European Society for Blood and Marrow Transplantation Analysis of Treosulfan Conditioning Before Hematopoietic Stem Cell Transplantation in Children and Adolescents With Hematological Malignancies. Pediatr Blood Cancer 2016; 63:139-48. [PMID: 26398915 DOI: 10.1002/pbc.25764] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 08/08/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND Standard myeloablative conditioning regimens for children with hematological malignancies undergoing allogeneic HSCT are based mainly on total body irradiation or busulfan. Their serious short- and long-term side effects warranted the exploration of less toxic alternatives. Treosulfan is increasingly used for adults and children before HSCT due to its potent immunosuppressive and cytotoxic effects combined with low organ toxicity. PROCEDURE To further investigate the role of treosulfan conditioning in children, the EBMT Pediatric diseases working party performed a retrospective analysis of 193 children with hematological malignancies (ALL n = 71, AML n = 47, MDS/MPS n = 40, other leukemia/lymphoma n = 25) undergoing allogeneic HSCT following treosulfan between January 2005 and July 2010. RESULTS Early regimen-related toxicity was low and mainly gastrointestinal. Veno-occlusive disease and neurological toxicity were rare. There was no association of toxicity with type of disease or treosulfan dose. High-grade early toxicity was not higher in infants or patients undergoing second or later transplantation. Treatment related mortality was low at 14%. Three-year event-free survival was 45 ± 4% and not significantly influenced by number of transplants, however it appeared to be significantly better for infants (P = 0.022). When compared to treosulfan plus fludarabine, the combination of treosulfan, fludarabine and an alkylator (either thiotepa or melphalan) resulted in significantly better overall survival (OS, P = 0.048) and a trend toward better EFS. CONCLUSIONS Treosulfan based conditioning is a safe and effective approach for children with hematological malignancies, including and importantly for infants and those patients undergoing second or later transplantation.
Collapse
Affiliation(s)
- Heidrun Boztug
- St. Anna Kinderspital and Childrens Cancer Research Institute, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Karl-Walter Sykora
- Department of Pediatric Hematology/Oncology, Hannover Medical School, Hannover, Germany
| | - Mary Slatter
- Children's HSCT Unit, Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Marco Zecca
- Pediatric Hematology/Oncology, Fondazione IRCCS, Policlinico San Matteo, Pavia, Italy
| | - Paul Veys
- Great Ormond Street Hospital for Children National Health Service Trust, London, United Kingdom
| | - Arjan Lankester
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew Cant
- Children's HSCT Unit, Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Roderick Skinner
- Children's HSCT Unit, Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Jacek Wachowiak
- Department of Pediatric Hematology, Oncology, and Hematopoietic Stem Cell Transplantation, University of Medical Sciences, Poznań, Poland
| | - Evgenia Glogova
- St. Anna Kinderspital and Childrens Cancer Research Institute, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Ulrike Pötschger
- St. Anna Kinderspital and Childrens Cancer Research Institute, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Christina Peters
- St. Anna Kinderspital and Childrens Cancer Research Institute, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
39
|
Niemeyer CM, Loh ML, Cseh A, Cooper T, Dvorak CC, Chan R, Xicoy B, Germing U, Kojima S, Manabe A, Dworzak M, De Moerloose B, Starý J, Smith OP, Masetti R, Catala A, Bergstraesser E, Ussowicz M, Fabri O, Baruchel A, Cavé H, Zwaan M, Locatelli F, Hasle H, van den Heuvel-Eibrink MM, Flotho C, Yoshimi A. Criteria for evaluating response and outcome in clinical trials for children with juvenile myelomonocytic leukemia. Haematologica 2015; 100:17-22. [PMID: 25552679 DOI: 10.3324/haematol.2014.109892] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Juvenile myelomonocytic leukemia is a rare myeloproliferative disease in young children. While hematopoietic stem cell transplantation remains the only curative therapeutic option for most patients, children with juvenile myelomonocytic leukemia increasingly receive novel agents in phase I-II clinical trials as pre-transplant therapy or therapy for relapse after transplantation. However, response criteria or definitions of outcome for standardized evaluation of treatment effect in patients with juvenile myelomonocytic leukemia are currently lacking. Here we propose criteria to evaluate the response to the non-transplant therapy and definitions of remission status after hematopoietic stem cell transplantation. For the evaluation of non-transplant therapy, we defined 6 clinical variables (white blood cell count, platelet count, hematopoietic precursors and blasts in peripheral blood, bone marrow blast percentage, spleen size and extramedullary disease) and 3 genetic variables (cytogenetic, molecular and chimerism response) which serve to describe the heterogeneous picture of response to therapy in each individual case. It is hoped that these criteria will facilitate the comparison of results between clinical trials in juvenile myelomonocytic leukemia.
Collapse
Affiliation(s)
- Charlotte M Niemeyer
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology University of Freiburg, Germany
| | - Mignon L Loh
- Department of Pediatrics and the Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Annamaria Cseh
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology University of Freiburg, Germany
| | - Todd Cooper
- Aflac Cancer and Blood Disorders Center/Children's Healthcare of Atlanta/Emory University, Atlanta, GA, USA
| | - Christopher C Dvorak
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplant, Benioff Children's Hospital, University of California, San Francisco, CA, USA
| | - Rebecca Chan
- Department of Pediatrics, The Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Blanca Xicoy
- Department of Hematology, Hospital Germans Trias i Pujol and Institut Català d'Oncologia-José Carreras Leukemia Research Institute, Badalona, Spain
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Japan
| | - Atsushi Manabe
- Department of Pediatrics, St. Luke's International Hospital, Tokyo, Japan
| | - Michael Dworzak
- St. Anna Children's Hospital and Children's Cancer Research Institute, Department of Pediatrics, Medical University of Vienna, Austria
| | | | - Jan Starý
- Department of Pediatric Hematology and Oncology, Charles University and University Hospital Motol, Czech Pediatric Hematology Working Group, Prague, Czech Republic
| | - Owen P Smith
- Pediatric Oncology and Hematology, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Riccardo Masetti
- Department of Pediatric Oncology and Hematology, University of Bologna, Italy
| | - Albert Catala
- Department of Hematology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Eva Bergstraesser
- Department of Hematology and Oncology, University Children's Hospital, Zurich, Switzerland
| | - Marek Ussowicz
- Department of Pediatric Oncology, Hematology and BMT, Wroclaw Medical University, Poland
| | - Oskana Fabri
- Department of Hematology and Transfusiology, Comenius University, Bratislava, Slovakia
| | - André Baruchel
- Department of Pediatric Hematology of Robert Debré Hospital and Paris Diderot University, Paris, France
| | - Hélène Cavé
- Department of Genetics, Hôpital Robert Debré, and Paris Diderot University, Paris, France
| | - Michel Zwaan
- ErasmusMC-Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, and the Netherlands and ITCC
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Rome, University of Pavia, Italy
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Marry M van den Heuvel-Eibrink
- ErasmusMC-Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, and Dutch Childhood Oncology Group, The Hague, The Netherlands
| | - Christian Flotho
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology University of Freiburg, Germany
| | - Ayami Yoshimi
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology University of Freiburg, Germany
| |
Collapse
|
40
|
Serial investigation of PTPN11 mutation in nonhematopoietic tissues in a patient with juvenile myelomonocytic leukemia who was treated with unrelated cord blood transplantation. Int J Hematol 2015; 102:719-22. [DOI: 10.1007/s12185-015-1877-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/09/2015] [Accepted: 09/28/2015] [Indexed: 11/24/2022]
|
41
|
Tüfekçi Ö, Ören H, Demir Yenigürbüz F, Gözmen S, Karapınar TH, İrken G. Management of Two Juvenile Myelomonocytic Leukemia Patients According to Clinical and Genetic Features. Turk J Haematol 2015; 32:175-9. [PMID: 26316488 PMCID: PMC4451488 DOI: 10.4274/tjh.2014.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is a rare clonal myeloproliferative disorder of childhood. Major progress has been achieved in diagnosis and the understanding of the pathogenesis of JMML by identifying the genetic pathologies that occur in patients. Mutations of RAS, NF1, PTPN11, and CBL are found in approximately 80% of JMML patients. Distinct clinical features have been reported to be associated with specific gene mutations. The advent of genomic studies and recent identification of novel genetic mutations in JMML are important not only in diagnosis but also in the management and prognosis of the disease. Herein, we present 2 patients with JMML harboring different mutations, NRAS and c-CBL, respectively, with distinct clinical features and different therapeutic approaches.
Collapse
Affiliation(s)
| | - Hale Ören
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Hematology, İzmir, Turkey Phone: +90 232 412 61 41 E-mail:
| | | | | | | | | |
Collapse
|
42
|
Calkoen FGJ, Vervat C, Eising E, Vijfhuizen LS, 't Hoen PBAC, van den Heuvel-Eibrink MM, Egeler RM, van Tol MJD, Ball LM. Gene-expression and in vitro function of mesenchymal stromal cells are affected in juvenile myelomonocytic leukemia. Haematologica 2015; 100:1434-41. [PMID: 26294732 DOI: 10.3324/haematol.2015.126938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 08/17/2015] [Indexed: 12/29/2022] Open
Abstract
An aberrant interaction between hematopoietic stem cells and mesenchymal stromal cells has been linked to disease and shown to contribute to the pathophysiology of hematologic malignancies in murine models. Juvenile myelomonocytic leukemia is an aggressive malignant disease affecting young infants. Here we investigated the impact of juvenile myelomonocytic leukemia on mesenchymal stromal cells. Mesenchymal stromal cells were expanded from bone marrow samples of patients at diagnosis (n=9) and after hematopoietic stem cell transplantation (n=7; from 5 patients) and from healthy children (n=10). Cells were characterized by phenotyping, differentiation, gene expression analysis (of controls and samples obtained at diagnosis) and in vitro functional studies assessing immunomodulation and hematopoietic support. Mesenchymal stromal cells from patients did not differ from controls in differentiation capacity nor did they differ in their capacity to support in vitro hematopoiesis. Deep-SAGE sequencing revealed differential mRNA expression in patient-derived samples, including genes encoding proteins involved in immunomodulation and cell-cell interaction. Selected gene expression normalized during remission after successful hematopoietic stem cell transplantation. Whereas natural killer cell activation and peripheral blood mononuclear cell proliferation were not differentially affected, the suppressive effect on monocyte to dendritic cell differentiation was increased by mesenchymal stromal cells obtained at diagnosis, but not at time of remission. This study shows that active juvenile myelomonocytic leukemia affects the immune response-related gene expression and function of mesenchymal stromal cells. In contrast, the differential gene expression of hematopoiesis-related genes could not be supported by functional data. Decreased immune surveillance might contribute to the therapy resistance and progression in juvenile myelomonocytic leukemia.
Collapse
Affiliation(s)
- Friso G J Calkoen
- Department of Pediatrics, Immunology, Hematology/Oncology and Hematopoietic Stem Cell Transplantation, Leiden University Medical Center, the Netherlands
| | - Carly Vervat
- Department of Pediatrics, Immunology, Hematology/Oncology and Hematopoietic Stem Cell Transplantation, Leiden University Medical Center, the Netherlands
| | - Else Eising
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Lisanne S Vijfhuizen
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Marry M van den Heuvel-Eibrink
- Dutch Childhood Oncology Group (DCOG), The Hague, the Netherlands Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - R Maarten Egeler
- Department of Pediatrics, Immunology, Hematology/Oncology and Hematopoietic Stem Cell Transplantation, Leiden University Medical Center, the Netherlands Department of Hematology/Oncology and Hematopoietic Stem Cell Transplantation, Hospital for Sick Children, University of Toronto, ON, Canada
| | - Maarten J D van Tol
- Department of Pediatrics, Immunology, Hematology/Oncology and Hematopoietic Stem Cell Transplantation, Leiden University Medical Center, the Netherlands
| | - Lynne M Ball
- Department of Pediatrics, Immunology, Hematology/Oncology and Hematopoietic Stem Cell Transplantation, Leiden University Medical Center, the Netherlands
| |
Collapse
|
43
|
Nonsyndromic Juvenile Myelomonocytic Leukemia With PTPN11 Mutation in a 9-Year-old Girl. J Pediatr Hematol Oncol 2015; 37:486-7. [PMID: 26181421 DOI: 10.1097/mph.0000000000000363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A 9.5-year-old girl with malaise, fever, massive hepatosplenomegaly, anemia, leukocytosis (37.9 × 10(9)/L), monocytosis (1.48 × 10(9)/L), and thrombocytopenia is presented. Hemoglobin F was increased (18%). Bone marrow erythroid/myeloid ratio was 40/1 with 7% myeloblast and 5% monocyte suggesting erythroleukemia or juvenile myelomonocytic leukemia (JMML). The patient had a fulminant course with respiratory compromise and died in 2 weeks before heterozygous somatic mutation in the PTPN11 gene was shown. JMML must be considered also in the patients older than 6 years. A cytopenic phase may precede JMML. Leucocytosis may be transient and there may be predominance of erythroid precursors in the bone marrow.
Collapse
|
44
|
Inagaki J, Fukano R, Kurauchi K, Noguchi M, Tanioka S, Okamura J. Hematopoietic Stem Cell Transplantation in Children with Refractory Cytopenia of Childhood: Single-Center Experience Using High-Dose Cytarabine Containing Myeloablative and Aplastic Anemia Oriented Reduced-Intensity Conditioning Regimens. Biol Blood Marrow Transplant 2015; 21:565-9. [DOI: 10.1016/j.bbmt.2014.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/01/2014] [Indexed: 11/15/2022]
|
45
|
Hyakuna N, Muramatsu H, Higa T, Chinen Y, Wang X, Kojima S. Germline mutation of CBL is associated with moyamoya disease in a child with juvenile myelomonocytic leukemia and Noonan syndrome-like disorder. Pediatr Blood Cancer 2015; 62:542-4. [PMID: 25283271 DOI: 10.1002/pbc.25271] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 08/20/2014] [Indexed: 02/03/2023]
Abstract
Germline mutations in CBL have been identified in patients with Noonan syndrome-like phenotypes, while juvenile myelomonocytic leukemia (JMML) harbors duplication of a germline CBL, resulting in acquired isodisomy. The association between moyamoya disease and Noonan syndrome carrying a PTPN11 mutation has recently been reported. We present a patient with JMML who developed moyamoya disease and neovascular glaucoma. Our patient exhibited a Noonan syndrome-like phenotype. Genetic analysis revealed acquired isodisomy and a germline heterozygous mutation in CBL. This is a rare case of CBL mutation associated with moyamoya disease. Prolonged RAS pathway signaling may cause disruption of cerebrovascular development.
Collapse
Affiliation(s)
- Nobuyuki Hyakuna
- Center of Bone Marrow Transplantation, Hospital of University of the Ryukyus, Nishihara, Japan
| | | | | | | | | | | |
Collapse
|
46
|
JMML and RALD (Ras-associated autoimmune leukoproliferative disorder): common genetic etiology yet clinically distinct entities. Blood 2015; 125:2753-8. [PMID: 25691160 DOI: 10.1182/blood-2014-11-567917] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/09/2015] [Indexed: 12/15/2022] Open
Abstract
Ras-associated autoimmune leukoproliferative disorder (RALD) is a chronic, nonmalignant condition that presents with persistent monocytosis and is often associated with leukocytosis, lymphoproliferation, and autoimmune phenomena. RALD has clinical and laboratory features that overlap with those of juvenile myelomonocytic leukemia (JMML) and chronic myelomonocytic leukemia (CMML), including identical somatic mutations in KRAS or NRAS genes noted in peripheral blood mononuclear cells. Long-term follow-up of these patients suggests that RALD has an indolent clinical course whereas JMML is fatal if left untreated. Immunophenotyping peripheral blood from RALD patients shows characteristic circulating activated monocytes and polyclonal CD10(+) B cells. Distinguishing RALD from JMML and CMML has implications for clinical care and prognosis.
Collapse
|
47
|
Abstract
Abstract
Juvenile myelomonocytic leukemia (JMML) is a unique, aggressive hematopoietic disorder of infancy/early childhood caused by excessive proliferation of cells of monocytic and granulocytic lineages. Approximately 90% of patients carry either somatic or germline mutations of PTPN-11, K-RAS, N-RAS, CBL, or NF1 in their leukemic cells. These genetic aberrations are largely mutually exclusive and activate the Ras/mitogen-activated protein kinase pathway. Allogeneic hematopoietic stem cell transplantation (HSCT) remains the therapy of choice for most patients with JMML, curing more than 50% of affected children. We recommend that this option be promptly offered to any child with PTPN-11-, K-RAS-, or NF1-mutated JMML and to the majority of those with N-RAS mutations. Because children with CBL mutations and few of those with N-RAS mutations may have spontaneous resolution of hematologic abnormalities, the decision to proceed to transplantation in these patients must be weighed carefully. Disease recurrence remains the main cause of treatment failure after HSCT. A second allograft is recommended if overt JMML relapse occurs after transplantation. Recently, azacytidine, a hypomethylating agent, was reported to induce hematologic/molecular remissions in some children with JMML, and its role in both reducing leukemia burden before HSCT and in nontransplant settings requires further studies.
Collapse
|
48
|
Abstract
Juvenile myelomonocytic leukemia (JMML), a rare myeloid malignancy that occurs in young children, is considered a clonal disease originating in pluripotent stem cells of the hematopoietic system. The pathogenesis of JMML involves disruption of signal transduction through the RAS pathway, with resultant selective hypersensitivity of JMML cells to granulocyte-macrophage colony-stimulating factor. Progress has been made in understanding aspects of the molecular basis of JMML. How these molecular mechanisms may lead to targeted therapeutics and improved outcomes remains to be elucidated. Allogeneic hematopoietic stem cell transplant is the only curative option for children with JMML, and it is fraught with frequent relapse and significant toxicity.
Collapse
Affiliation(s)
- Prakash Satwani
- Division of Pediatric Hematology/Oncology and Stem Cell Transplantation, Columbia University Medical Center Morgan Stanley Children's Hospital of New York-Presbyterian, 3959 Broadway, CHN-1002, New York, NY 10032, USA.
| | - Justine Kahn
- Division of Pediatric Hematology/Oncology and Stem Cell Transplantation, Columbia University Medical Center Morgan Stanley Children's Hospital of New York-Presbyterian, 3959 Broadway, CHN-1002, New York, NY 10032, USA
| | - Christopher C Dvorak
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplant, Benioff Children's Hospital, University of California San Francisco, 505 Parnassus Ave., M-659, San Francisco, CA, 94143-1278, USA
| |
Collapse
|
49
|
An international consortium proposal of uniform response criteria for myelodysplastic/myeloproliferative neoplasms (MDS/MPN) in adults. Blood 2015; 125:1857-65. [PMID: 25624319 DOI: 10.1182/blood-2014-10-607341] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Myelodysplastic syndromes (MDS) and myeloproliferative neoplasms (MPN) are hematologically diverse stem cell malignancies sharing phenotypic features of both myelodysplastic syndromes and myeloproliferative neoplasms. There are currently no standard treatment recommendations for most adult patients with MDS/MPN. To optimize efforts to improve the management and disease outcomes, it is essential to identify meaningful clinical and biologic end points and standardized response criteria for clinical trials. The dual dysplastic and proliferative features in these stem cell malignancies define their uniqueness and challenges. We propose response assessment guidelines to harmonize future clinical trials with the principal objective of establishing suitable treatment algorithms. An international panel comprising laboratory and clinical experts in MDS/MPN was established involving 3 independent academic MDS/MPN workshops (March 2013, December 2013, and June 2014). These recommendations are the result of this collaborative project sponsored by the MDS Foundation.
Collapse
|
50
|
Jans SRR, Schomerus E, Bygum A. Neurofibromatosis type 1 diagnosed in a child based on multiple juvenile xanthogranulomas and juvenile myelomonocytic leukemia. Pediatr Dermatol 2015; 32:e29-32. [PMID: 25516272 DOI: 10.1111/pde.12478] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An association between juvenile xanthogranuloma (JXG), neurofibromatosis type 1 (NF1), and juvenile myelomonocytic leukemia (JMML) has been described in the literature but has only been documented in approximately 20 cases. We diagnosed a patient with NF1 at 25 months of age, before any cutaneous stigmata of this disease had appeared, because we decided to screen for the NF1 gene mutation because of his presentation with multiple JXGs and moderate macrocephaly (2.5 standard deviations) at 9 months of age and JMML diagnosed at 20 months of age. The child is well today after treatment with chemotherapy and allogenic bone marrow transplantation. With increased awareness, patients with JXG and NF1 who develop symptoms possibly related to JMML, such as paleness, skin bleeding, cough, unexplained fever, and hepatosplenomegaly, should be further evaluated. We also emphasize that multiple JXG lesions can be an early marker of NF1.
Collapse
Affiliation(s)
- Sune R R Jans
- Department of Pediatrics, Roskilde Hospital, Roskilde, Denmark
| | | | | |
Collapse
|