1
|
Brunetti M, Iasenza IA, Jenner AL, Raynal NJM, Eppert K, Craig M. Mathematical modelling of clonal reduction therapeutic strategies in acute myeloid leukemia. Leuk Res 2024; 140:107485. [PMID: 38579483 DOI: 10.1016/j.leukres.2024.107485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/21/2024] [Accepted: 03/12/2024] [Indexed: 04/07/2024]
Abstract
Over the years, the overall survival of older patients diagnosed with acute myeloid leukemia (AML) has not significantly increased. Although standard cytotoxic therapies that rapidly eliminate dividing myeloblasts are used to induce remission, relapse can occur due to surviving therapy-resistant leukemic stem cells (LSCs). Hence, anti-LSC strategies have become a key target to cure AML. We have recently shown that previously approved cardiac glycosides and glucocorticoids target LSC-enriched CD34+ cells in the primary human AML 8227 model with more efficacy than normal hematopoietic stem cells (HSCs). To translate these in vitro findings into humans, we developed a mathematical model of stem cell dynamics that describes the stochastic evolution of LSCs in AML post-standard-of-care. To this, we integrated population pharmacokinetic-pharmacodynamic (PKPD) models to investigate the clonal reduction potential of several promising candidate drugs in comparison to cytarabine, which is commonly used in high doses for consolidation therapy in AML patients. Our results suggest that cardiac glycosides (proscillaridin A, digoxin and ouabain) and glucocorticoids (budesonide and mometasone) reduce the expansion of LSCs through a decrease in their viability. While our model predicts that effective doses of cardiac glycosides are potentially too toxic to use in patients, simulations show the possibility of mometasone to prevent relapse through the glucocorticoid's ability to drastically reduce LSC population size. This work therefore highlights the prospect of these treatments for anti-LSC strategies and underlines the use of quantitative approaches to preclinical drug translation in AML.
Collapse
Affiliation(s)
- Mia Brunetti
- Département de Mathématiques et de Statistiques, Université de Montréal, 2900 Édouard Montpetit Blvd, Montréal, Québec H3T 1J4, Canada; Sainte-Justine University Hospital Azrieli Research Center, 3175 Chem. de la Côte-Sainte-Catherine, Montréal, Québec H3T 1C5, Canada
| | - Isabella A Iasenza
- Division of Experimental Medicine, Department of Medicine, McGill University, 845 Sherbrooke St W, Montréal, Québec H3A 0G4, Canada; Research Institute of the McGill University Health Centre, 1001 Décarie Blvd, Montréal, Québec H4A 3J1, Canada
| | - Adrianne L Jenner
- School of Mathematical Sciences, Queensland University of Technology, 2 George St, Brisbane, QLD 4000, Australia
| | - Noël J-M Raynal
- Sainte-Justine University Hospital Azrieli Research Center, 3175 Chem. de la Côte-Sainte-Catherine, Montréal, Québec H3T 1C5, Canada; Département de Pharmacologie et Physiologie, Université de Montréal, 2900 Édouard Montpetit Blvd, Montréal, Québec H3T 1J4, Canada
| | - Kolja Eppert
- Research Institute of the McGill University Health Centre, 1001 Décarie Blvd, Montréal, Québec H4A 3J1, Canada; Department of Pediatrics, McGill University, 845 Sherbrooke St W, Montréal, Québec H3A 0G4, Canada
| | - Morgan Craig
- Département de Mathématiques et de Statistiques, Université de Montréal, 2900 Édouard Montpetit Blvd, Montréal, Québec H3T 1J4, Canada; Sainte-Justine University Hospital Azrieli Research Center, 3175 Chem. de la Côte-Sainte-Catherine, Montréal, Québec H3T 1C5, Canada.
| |
Collapse
|
2
|
Understanding Hematopoietic Stem Cell Dynamics—Insights from Mathematical Modelling. CURRENT STEM CELL REPORTS 2023. [DOI: 10.1007/s40778-023-00224-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Abstract
Purpose of review
Hematopoietic stem cells (HSCs) drive blood-cell production (hematopoiesis). Out-competition of HSCs by malignant cells occurs in many hematologic malignancies like acute myeloid leukemia (AML). Through mathematical modelling, HSC dynamics and their impact on healthy blood cell formation can be studied, using mathematical analysis and computer simulations. We review important work within this field and discuss mathematical modelling as a tool for attaining biological insight.
Recent findings
Various mechanism-based models of HSC dynamics have been proposed in recent years. Key properties of such models agree with observations and medical knowledge and suggest relations between stem cell properties, e.g., rates of division and the temporal evolution of the HSC population. This has made it possible to study how HSC properties shape clinically relevant processes, including engraftment following an HSC transplantation and the response to different treatment.
Summary
Understanding how properties of HSCs affect hematopoiesis is important for efficient treatment of diseases. Mathematical modelling can contribute significantly to these efforts.
Collapse
|
3
|
Multistage feedback-driven compartmental dynamics of hematopoiesis. iScience 2021; 24:102326. [PMID: 33889822 PMCID: PMC8050392 DOI: 10.1016/j.isci.2021.102326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/02/2021] [Accepted: 03/15/2021] [Indexed: 11/22/2022] Open
Abstract
Human hematopoiesis is surprisingly resilient to disruptions, providing suitable responses to severe bleeding, long-lasting immune activation, and even bone marrow transplants. Still, many blood disorders exist which push the system past its natural plasticity, resulting in abnormalities in the circulating blood. While proper treatment of such diseases can benefit from understanding the underlying cell dynamics, these are non-trivial to predict due to the hematopoietic system's hierarchical nature and complex feedback networks. To characterize the dynamics following different types of perturbations, we investigate a model representing hematopoiesis as a sequence of compartments covering all maturation stages-from stem to mature cells-where feedback regulates cell production to ongoing necessities. We find that a stable response to perturbations requires the simultaneous adaptation of cell differentiation and self-renewal rates, and show that under conditions of continuous disruption-as found in chronic hemolytic states-compartment cell numbers evolve to novel stable states.
Collapse
|
4
|
Knauer F, Stiehl T, Marciniak-Czochra A. Oscillations in a white blood cell production model with multiple differentiation stages. J Math Biol 2019; 80:575-600. [DOI: 10.1007/s00285-019-01432-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 07/02/2019] [Indexed: 12/15/2022]
|
5
|
A stochastic model of myeloid cell lineages in hematopoiesis and pathway mutations in acute myeloid leukemia. PLoS One 2018; 13:e0204393. [PMID: 30273383 PMCID: PMC6166954 DOI: 10.1371/journal.pone.0204393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/07/2018] [Indexed: 01/13/2023] Open
Abstract
A model for hematopoiesis is presented that explicitly includes the erythrocyte, granulocyte, and thrombocyte lineages and their common precursors. A small number of stem cells proliferate and differentiate through different compartments to produce the vast number of blood cells needed every day. Growth factors regulate the proliferation of cells dependent on the current demand. We provide a steady state analysis of the model and rough parameter estimates. Furthermore, we extend the model to include mutations that alter the replicative capacity of cells and introduce differentiation blocks. With these mutations the model develops signs of acute myeloid leukemia.
Collapse
|
6
|
Abstract
Severe congenital neutropenias are a heterogeneous group of rare haematological diseases characterized by impaired maturation of neutrophil granulocytes. Patients with severe congenital neutropenia are prone to recurrent, often life-threatening infections beginning in their first months of life. The most frequent pathogenic defects are autosomal dominant mutations in ELANE, which encodes neutrophil elastase, and autosomal recessive mutations in HAX1, whose product contributes to the activation of the granulocyte colony-stimulating factor (G-CSF) signalling pathway. The pathophysiological mechanisms of these conditions are the object of extensive research and are not fully understood. Furthermore, severe congenital neutropenias may predispose to myelodysplastic syndromes or acute myeloid leukaemia. Molecular events in the malignant progression include acquired mutations in CSF3R (encoding G-CSF receptor) and subsequently in other leukaemia-associated genes (such as RUNX1) in a majority of patients. Diagnosis is based on clinical manifestations, blood neutrophil count, bone marrow examination and genetic and immunological analyses. Daily subcutaneous G-CSF administration is the treatment of choice and leads to a substantial increase in blood neutrophil count, reduction of infections and drastic improvement of quality of life. Haematopoietic stem cell transplantation is the alternative treatment. Regular clinical assessments (including yearly bone marrow examinations) to monitor treatment course and detect chromosomal abnormalities (for example, monosomy 7 and trisomy 21) as well as somatic pre-leukaemic mutations are recommended.
Collapse
Affiliation(s)
- Julia Skokowa
- Department of Hematology, Oncology, Clinical Immunology, University of Tübingen, Tübingen, Germany
| | - David C Dale
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Ivo P Touw
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Cornelia Zeidler
- Department of Hematology and Oncology, Medical School Hannover, Hannover, Germany
| | - Karl Welte
- University Children's Hospital, Department of General Pediatrics and Pediatric Hematology and Oncology, Hoppe-Seyler-Str. 1, Tübingen 72076, Germany
| |
Collapse
|
7
|
Bukowska-Strakova K, Ciesla M, Szade K, Nowak WN, Straka R, Szade A, Tyszka-Czochara M, Najder K, Konturek A, Siedlar M, Dulak J, Jozkowicz A. Reprint of: Heme oxygenase 1 affects granulopoiesis in mice through control of myelocyte proliferation. Immunobiology 2017; 222:846-857. [PMID: 28576353 DOI: 10.1016/j.imbio.2017.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 11/29/2022]
Abstract
Heme oxygenase-1 (HO-1) is stress-inducible, cytoprotective enzyme degrading heme to carbon monoxide (CO), biliverdin and Fe2+. We showed that HO-1 knock-out mice (HO-1-/-) have a twofold higher level of granulocytes than wild type (WT) mice, despite decreased concentration of granulocyte colony-stimulating factor (G-CSF) in the blood and reduced surface expression of G-CSF receptor on the hematopoietic precursors. This suggests the effect of HO-1 on granulopoiesis. Here we aimed to determine the stage of granulopoiesis regulated by HO-1. The earliest stages of hematopoiesis were not biased toward myeloid differentiation in HO-1-/- mice. Within committed granulocytic compartment, in WT mice, HO-1 was up-regulated starting from myelocyte stage. This was concomitant with up-regulation of miR-155, which targets Bach1, the HO-1 repressor. In HO-1-/- mice granulopoiesis was accelerated between myelocyte and metamyelocyte stage. There was a higher fraction of proliferating myelocytes, with increased nuclear expression of pro-proliferative C/EBPβ (CCAAT/enhancer binding protein beta) protein, especially its active LAP (liver-enriched activator proteins) isoform. Also our mathematical model confirmed shortening the myelocyte cyclic-time and prolonged mitotic expansion in absence of HO-1. It seems that changes in C/EBPβ expression and activity in HO-1-/- myelocytes can be associated with reduced level of its direct repressor miR-155 or with decreased concentration of CO, known to reduce nuclear translocation of C/EBPs. Mature HO-1-/- granulocytes were functionally competent as determined by oxidative burst capacity. In conclusion, HO-1 influences granulopoiesis through regulation of myelocyte proliferation. It is accompanied by changes in expression of transcriptionally active C/EBPβ protein. As HO-1 expression vary in human and is up-regulated in response to chemotherapy, it can potentially influence chemotherapy-induced neutropenia.
Collapse
Affiliation(s)
- Karolina Bukowska-Strakova
- Department of Medical Biotechnology, Faculty Of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Department of Clinical Immunology and Transplantology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Maciej Ciesla
- Department of Medical Biotechnology, Faculty Of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Szade
- Department of Medical Biotechnology, Faculty Of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Witold Norbert Nowak
- Department of Medical Biotechnology, Faculty Of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Robert Straka
- AGH University of Science and Technology, Faculty of Metal Engineering and Industrial Computer Science, Department of Heat Engineering and Environment Protection, Poland
| | - Agata Szade
- Department of Medical Biotechnology, Faculty Of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Malgorzata Tyszka-Czochara
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Karolina Najder
- Department of Medical Biotechnology, Faculty Of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Konturek
- Department of Medical Biotechnology, Faculty Of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology and Transplantology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty Of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty Of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
8
|
Bukowska-Strakova K, Ciesla M, Szade K, Nowak WN, Straka R, Szade A, Tyszka-Czochara M, Najder K, Konturek A, Siedlar M, Dulak J, Jozkowicz A. Heme oxygenase 1 affects granulopoiesis in mice through control of myelocyte proliferation. Immunobiology 2016; 222:506-517. [PMID: 27817989 DOI: 10.1016/j.imbio.2016.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 12/12/2022]
Abstract
Heme oxygenase-1 (HO-1) is stress-inducible, cytoprotective enzyme degrading heme to carbon monoxide (CO), biliverdin and Fe2+. We showed that HO-1 knock-out mice (HO-1-/-) have a twofold higher level of granulocytes than wild type (WT) mice, despite decreased concentration of granulocyte colony-stimulating factor (G-CSF) in the blood and reduced surface expression of G-CSF receptor on the hematopoietic precursors. This suggests the effect of HO-1 on granulopoiesis. Here we aimed to determine the stage of granulopoiesis regulated by HO-1. The earliest stages of hematopoiesis were not biased toward myeloid differentiation in HO-1-/- mice. Within committed granulocytic compartment, in WT mice, HO-1 was up-regulated starting from myelocyte stage. This was concomitant with up-regulation of miR-155, which targets Bach1, the HO-1 repressor. In HO-1-/- mice granulopoiesis was accelerated between myelocyte and metamyelocyte stage. There was a higher fraction of proliferating myelocytes, with increased nuclear expression of pro-proliferative C/EBPβ (CCAAT/enhancer binding protein beta) protein, especially its active LAP (liver-enriched activator proteins) isoform. Also our mathematical model confirmed shortening the myelocyte cyclic-time and prolonged mitotic expansion in absence of HO-1. It seems that changes in C/EBPβ expression and activity in HO-1-/- myelocytes can be associated with reduced level of its direct repressor miR-155 or with decreased concentration of CO, known to reduce nuclear translocation of C/EBPs. Mature HO-1-/- granulocytes were functionally competent as determined by oxidative burst capacity. In conclusion, HO-1 influences granulopoiesis through regulation of myelocyte proliferation. It is accompanied by changes in expression of transcriptionally active C/EBPβ protein. As HO-1 expression vary in human and is up-regulated in response to chemotherapy, it can potentially influence chemotherapy-induced neutropenia.
Collapse
Affiliation(s)
- Karolina Bukowska-Strakova
- Department of Medical Biotechnology, Faculty Of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Department of Clinical Immunology and Transplantology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Maciej Ciesla
- Department of Medical Biotechnology, Faculty Of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Szade
- Department of Medical Biotechnology, Faculty Of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Witold Norbert Nowak
- Department of Medical Biotechnology, Faculty Of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Robert Straka
- AGH University of Science and Technology, Faculty of Metal Engineering and Industrial Computer Science, Department of Heat Engineering and Environment Protection, Poland
| | - Agata Szade
- Department of Medical Biotechnology, Faculty Of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Malgorzata Tyszka-Czochara
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Karolina Najder
- Department of Medical Biotechnology, Faculty Of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Konturek
- Department of Medical Biotechnology, Faculty Of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology and Transplantology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty Of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty Of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
9
|
Buzi G, Lander AD, Khammash M. Cell lineage branching as a strategy for proliferative control. BMC Biol 2015; 13:13. [PMID: 25857410 PMCID: PMC4378012 DOI: 10.1186/s12915-015-0122-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/23/2015] [Indexed: 12/25/2022] Open
Abstract
Background How tissue and organ sizes are specified is one of the great unsolved mysteries in biology. Experiments and mathematical modeling implicate feedback control of cell lineage progression, but a broad understanding of what lineage feedback accomplishes is lacking. Results By exploring the possible effects of various biologically relevant disturbances on the dynamic and steady state behaviors of stem cell lineages, we find that the simplest and most frequently studied form of lineage feedback - which we term renewal control - suffers from several serious drawbacks. These reflect fundamental performance limits dictated by universal conservation-type laws, and are independent of parameter choice. Here we show that introducing lineage branches can circumvent all such limitations, permitting effective attenuation of a wide range of perturbations. The type of feedback that achieves such performance - which we term fate control - involves promotion of lineage branching at the expense of both renewal and (primary) differentiation. We discuss the evidence that feedback of just this type occurs in vivo, and plays a role in tissue growth control. Conclusions Regulated lineage branching is an effective strategy for dealing with disturbances in stem cell systems. The existence of this strategy provides a dynamics-based justification for feedback control of cell fate in vivo. See commentary article: http://dx.doi.org/10.1186/s12915-015-0123-7. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0122-8) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Abstract
BACKGROUND Mutations within the ELANE gene, which encodes human neutrophil elastase, are the most common genetic causes of severe congenital neutropenia (SCN). No cases of SCN have been previously described from a Chinese population. Herein, we describe the clinical, hematologic and molecular characteristics of 7 Chinese SCN cases with novel ELANE mutations. METHODS Seven Chinese pediatric patients (4 males and 3 females) with suspected SCN were enrolled in this study. Clinical data, peripheral blood, bone marrow and immune function were evaluated for SCN. ELANE genomic DNA and cDNA sequences from patients and potential carriers were analyzed using polymerase chain reaction (PCR) and direct sequencing. RESULTS All the7 patients experienced recurrent infection (soft tissue, lung, oral cavity) during a period of 120 days. Noninfectious conditions such as anemia and osteopenia were found in most patients, and absolute peripheral neutrophil counts varied. DNA and cDNA sequencing demonstrated that the patients harbored a range of heterozygous ELANE gene mutations, including substitution, deletion, insertion and frame shift alterations. All the mutations had not been reported previously; however, no mutation carriers were identified among the parents or siblings, even in a family with 2 affected offspring. CONCLUSION SCN cases were identified for the first time in China, and all patients carried novel ELANE mutations. Granulocyte-colony stimulating factor (G-CSF) was an effective treatment for most of the SCN patients and prevented life-threatening bacterial infections.
Collapse
|
11
|
Werner B, Gallagher RE, Paietta EM, Litzow MR, Tallman MS, Wiernik PH, Slack JL, Willman CL, Sun Z, Traulsen A, Dingli D. Dynamics of leukemia stem-like cell extinction in acute promyelocytic leukemia. Cancer Res 2014; 74:5386-96. [PMID: 25082816 PMCID: PMC4184925 DOI: 10.1158/0008-5472.can-14-1210] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Many tumors are believed to be maintained by a small number of cancer stem-like cells, where cure is thought to require eradication of this cell population. In this study, we investigated the dynamics of acute promyelocytic leukemia (APL) before and during therapy with regard to disease initiation, progression, and therapeutic response. This investigation used a mathematical model of hematopoiesis and a dataset derived from the North American Intergroup Study INT0129. The known phenotypic constraints of APL could be explained by a combination of differentiation blockade of PML-RARα-positive cells and suppression of normal hematopoiesis. All-trans retinoic acid (ATRA) neutralizes the differentiation block and decreases the proliferation rate of leukemic stem cells in vivo. Prolonged ATRA treatment after chemotherapy can cure patients with APL by eliminating the stem-like cell population over the course of approximately one year. To our knowledge, this study offers the first estimate of the average duration of therapy that is required to eliminate stem-like cancer cells from a human tumor, with the potential for the refinement of treatment strategies to better manage human malignancy.
Collapse
Affiliation(s)
- Benjamin Werner
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | | | | - Mark R Litzow
- Division of Hematology and Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | | | | | - James L Slack
- Division of Hematology, Mayo Clinic Arizona, Scottsdale, Arizona
| | | | - Zhuoxin Sun
- Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts
| | - Arne Traulsen
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - David Dingli
- Division of Hematology and Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota. Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
12
|
Traulsen A, Lenaerts T, Pacheco JM, Dingli D. On the dynamics of neutral mutations in a mathematical model for a homogeneous stem cell population. J R Soc Interface 2012; 10:20120810. [PMID: 23221988 DOI: 10.1098/rsif.2012.0810] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The theory of the clonal origin of cancer states that a tumour arises from one cell that acquires mutation(s) leading to the malignant phenotype. It is the current belief that many of these mutations give a fitness advantage to the mutant population allowing it to expand, eventually leading to disease. However, mutations that lead to such a clonal expansion need not give a fitness advantage and may in fact be neutral--or almost neutral--with respect to fitness. Such mutant clones can be eliminated or expand stochastically, leading to a malignant phenotype (disease). Mutations in haematopoietic stem cells give rise to diseases such as chronic myeloid leukaemia (CML) and paroxysmal nocturnal haemoglobinuria (PNH). Although neutral drift often leads to clonal extinction, disease is still possible, and in this case, it has important implications both for the incidence of disease and for therapy, as it may be more difficult to eliminate neutral mutations with therapy. We illustrate the consequences of such dynamics, using CML and PNH as examples. These considerations have implications for many other tumours as well.
Collapse
Affiliation(s)
- Arne Traulsen
- Evolutionary Theory Group, Max Planck Institute for Evolutionary Biology, August-Thienemann Strasse 2, 24306 Plön, Germany.
| | | | | | | |
Collapse
|
13
|
Vainas O, Ariad S, Amir O, Mermershtain W, Vainstein V, Kleiman M, Inbar O, Ben-Av R, Mukherjee A, Chan S, Agur Z. Personalising docetaxel and G-CSF schedules in cancer patients by a clinically validated computational model. Br J Cancer 2012; 107:814-22. [PMID: 22814580 PMCID: PMC3425973 DOI: 10.1038/bjc.2012.316] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background: This study was aimed to develop a new method for personalising chemotherapeutic and granulocyte colony-stimulating factor (G-CSF) combined schedules, and use it for suggesting efficacious chemotherapy with reduced neutropenia. Methods: Clinical data from 38 docetaxel (Doc)-treated metastatic breast cancer patients were employed for validating a new pharmacokinetic/pharmacodynamics model for Doc, combined with a mathematical model for granulopoiesis. An optimisation procedure was constructed and used for selecting improved treatment schedules. Results: The combined model accurately predicted observed nadir timing (r=0.99), grade 3 or 4 neutropenia (86% success) and neutrophil counts over time in individual patients (r=0.63), and showed robustness to CYP3A-induced variability in Doc clearance. For average patients, the predicted optimal support for the standard chemotherapy regimen, Doc 100 μg m−2 tri-weekly, is G-CSF, 300 μg, Q1D × 3, starting day 7 post-Doc. This regimen largely moderates chemotherapy-induced neutrophil nadir and neutropenia duration. The more intensive Doc dose, 150 mg m−2, is optimally supported by the slightly less cost-effective G-CSF 300 μg, Q1D × 4, 5 days post-Doc. The latter regimen is optimal for borderline patients (2000 neutrophils per μl) under Doc, 100–150 mg m−2 tri-weekly. Conclusions: The new computational method can serve for tailoring efficacious cytotoxic and supportive treatments, minimising side effects to individual patients. Prospective clinical validation is warranted.
Collapse
Affiliation(s)
- O Vainas
- Optimata Ltd, 7 Abba Hillel Street, Ramat-Gan 52522, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nakaoka S, Aihara K. Mathematical study on kinetics of hematopoietic stem cells--theoretical conditions for successful transplantation. JOURNAL OF BIOLOGICAL DYNAMICS 2011; 6:836-854. [PMID: 22873618 DOI: 10.1080/17513758.2011.588343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Numerous haematological diseases occur due to dysfunctions during homeostasis processes of blood cell production. Haematopoietic stem cell transplantation (HSCT) is a therapeutic option for the treatment of haematological malignancy and congenital immunodeficiency. Today, HSCT is widely applied as an alternative method to bone marrow transplantation; however, HSCT can be a risky procedure because of potential side effects and complications after transplantations. Although an optimal regimen to achieve successful HSCT while maintaining quality of life is to be developed, even theoretical considerations such as the evaluations of successful engraftments and proposals of clinical management strategies have not been fully discussed yet. In this paper, we construct and investigate mathematical models that describe the kinetics of hematopoietic stem cell self-renewal and granulopoiesis under the influence of growth factors. Moreover, we derive theoretical conditions for successful HSCT, primarily on the basis of the idea that the basic reproduction number R (0) represents a threshold condition for a population to successfully grow in a given steady-state environment. Successful engraftment of transplanted haematopoietic stem cells (HSCs) is subsequently ensured by employing a concept of dynamical systems theory known as 'persistence'. On the basis of the implications from the modelling study, we discuss how the conditions derived for a successful HSCT are used to link to experimental studies.
Collapse
Affiliation(s)
- Shinji Nakaoka
- FIRST, Aihara Innovative Mathematical Modelling Project, Japan Science and Technology Agency, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | | |
Collapse
|
15
|
Dingli D, Pacheco JM. Stochastic dynamics and the evolution of mutations in stem cells. BMC Biol 2011; 9:41. [PMID: 21649942 PMCID: PMC3110138 DOI: 10.1186/1741-7007-9-41] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 06/07/2011] [Indexed: 11/17/2022] Open
Abstract
Stem cells are the target of mutations that can lead to life threatening diseases. However, stem cell populations tend to be small and therefore clonal expansion of mutant cells is highly sensitive to stochastic fluctuations. The evolutionary dynamics of mutations in these cells is discussed, taking into consideration the impact of such mutations on the reproductive fitness of cells. We show how stochastic effects can explain clinical observations, including extinction of acquired clonal stem cell disorders.
Collapse
Affiliation(s)
- David Dingli
- Division of Hematology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| | | |
Collapse
|
16
|
|
17
|
Dingli D, Pacheco JM. Modeling the architecture and dynamics of hematopoiesis. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 2:235-244. [DOI: 10.1002/wsbm.56] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- David Dingli
- Division of Hematology, Department of Molecular Medicine, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Biomathematics Research Group, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jorge M. Pacheco
- Applied Theoretical Physics Group, Departamento de Fisica de Faculdade de Ciencias, Universidade de Lisboa, 1649‐003 Lisboa Codex, Portugal
| |
Collapse
|