1
|
Vaiasicca S, James DW, Melone G, Saeed O, Francis LW, Corradetti B. Amniotic fluid-derived mesenchymal stem cells as a therapeutic tool against cytokine storm: a comparison with umbilical cord counterparts. Stem Cell Res Ther 2025; 16:151. [PMID: 40156072 PMCID: PMC11951844 DOI: 10.1186/s13287-025-04262-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 03/04/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Several immunosuppressive therapies have been proposed as key treatment options for critically ill patients since the first appearance of severe acute respiratory syndrome coronavirus 2. Mesenchymal stem cells (MSCs) from different sources have been considered for their potential to attenuate the cytokine storm associated to COVID-19 and the consequent multi-organ failure, providing evidence for safe and efficacious treatments. Among them, administration of umbilical cord-derived MSCs (UC-MSCs) has demonstrated a significant increase in survival rates, largely due to their potent immunosuppressive properties. METHODS We applied next-generation sequencing (NGS) analysis to compare the transcriptomic profiles of MSCs isolated from two gestational sources: amniotic fluid (AF) obtained during prenatal diagnosis and their clinically relevant umbilical cord counterparts, for which datasets were publicly available. A full meta-analysis was performed to identify suitable GEO and NGS datasets for comparison between AF- and UC-MSC samples. RESULTS Transcriptome analysis revelaed significant differences between groups, despite both cell lines being strongly involved in the tissue development, crucial to achieve the complex task of wound healing. Significantly enriched hallmark genes suggest AF-MSC superior immunomodulatory features against signaling pathways actively involved in the cytokine storm (i.e., IL-2/STAT, TNF-a/NFkB, IL-2/STAT5, PI3K/AKT/mTOR). CONCLUSIONS The data presented here suggest that AF-MSCs hold significant promise for treating not only COVID-19-associated cytokine storms but also a variety of other inflammatory syndromes (i.e., those induced by bacterial infections, autoimmune disorders, and therapeutic interventions). Realizing the full potential of AF-MSCs as a comprehensive therapeutic approach in inflammatory disease management will require more extensive clinical trials and in-depth mechanistic studies.
Collapse
Affiliation(s)
- Salvatore Vaiasicca
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
- Department of Life and Environmental Life, Polytechnic University of Marche, Ancona, Italy
| | - David W James
- Centre of NanoHealth, Swansea University Medical School, Swansea, UK
| | - Gianmarco Melone
- Centre of NanoHealth, Swansea University Medical School, Swansea, UK
| | - Omar Saeed
- Centre of NanoHealth, Swansea University Medical School, Swansea, UK
| | - Lewis W Francis
- Centre of NanoHealth, Swansea University Medical School, Swansea, UK
| | - Bruna Corradetti
- Centre of NanoHealth, Swansea University Medical School, Swansea, UK.
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA.
- Department of Medicine, Section Oncology/Hematology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
Han XX, Jin S, Yu LM, Wang M, Hu XY, Hu DY, Ren J, Zhang MH, Huang W, Deng JJ, Chen QQ, Gao Z, He H, Cai C. Interferon-beta inhibits human glioma stem cell growth by modulating immune response and cell cycle related signaling pathways. CELL REGENERATION 2022; 11:23. [PMID: 35778531 PMCID: PMC9249963 DOI: 10.1186/s13619-022-00123-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/06/2022] [Indexed: 11/19/2022]
Abstract
Malignant Glioma is characterized by strong self-renewal potential and immature differentiation potential. The main reason is that malignant glioma holds key cluster cells, glioma stem cells (GSCs). GSCs contribute to tumorigenesis, tumor progression, recurrence, and treatment resistance. Interferon-beta (IFN-β) is well known for its anti-proliferative efficacy in diverse cancers. IFN-β also displayed potent antitumor effects in malignant glioma. IFN-β affect both GSCs and Neural stem cells (NSCs) in the treatment of gliomas. However, the functional comparison, similar or different effects of IFN-β on GSCs and NSCs are rarely reported. Here, we studied the similarities and differences of the responses to IFN-β between human GSCs and normal NSCs. We found that IFN-β preferentially inhibited GSCs over NSCs. The cell body and nucleus size of GSCs increased after IFN-β treatment, and the genomic analysis revealed the enrichment of the upregulated immune response, cell adhesion genes and down regulated cell cycle, ribosome pathways. Several typical cyclin genes, including cyclin A2 (CCNA2), cyclin B1 (CCNB1), cyclin B2 (CCNB2), and cyclin D1 (CCND1), were significantly downregulated in GSCs after IFN-β stimulation. We also found that continuous IFN-β stimulation after passage further enhanced the inhibitory effect. Our study revealed how genetic diversity resulted in differential effects in response to IFN-β treatment. These results may contribute to improve the applications of IFN-β in anti-cancer immunotherapy. In addition, these results may also help to design more effective pharmacological strategies to target cancer stem cells while protecting normal neural stem cells.
Collapse
|
3
|
Wang YH, Tao YC, Wu DB, Wang ML, Tang H, Chen EQ. Cell heterogeneity, rather than the cell storage solution, affects the behavior of mesenchymal stem cells in vitro and in vivo. Stem Cell Res Ther 2021; 12:391. [PMID: 34256842 PMCID: PMC8278752 DOI: 10.1186/s13287-021-02450-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/06/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have to be expanded in vitro to reach a sufficient cell dose for the treatment of various diseases. During the process of expansion, some obstacles remain to be overcome. The purpose of this study was to investigate the effects of storage solutions and heterogeneity on the behavior of MSCs in vitro and in vivo. METHODS Umbilical cord MSCs (UC-MSCs) of similar sizes within normal ranges were suspended in three different storage solutions, phosphate buffer solution, normal saline, and Dulbecco's modified Eagle medium. Then, the ultrastructure, viability, and safety of these cells were compared. Other two UC-MSC populations of different sizes were categorized based on their mean diameters. The ultrastructure, proliferation, immunosuppression, hepatic differentiation potential, and number of senescent cells were investigated and compared. The survival rates of mice after the infusion of UC-MSCs of different sizes were compared. RESULTS For UC-MSCs suspended in different storage solutions, the cell apoptosis rates, ultrastructure, and survival rates of mice were similar, and no differences were observed. Cells with a diameter of 19.14 ± 4.89 μm were categorized as the larger UC-MSC population, and cells with a diameter of 15.58 ± 3.81 μm were categorized as the smaller population. The mean diameter of the larger UC-MSC population was significantly larger than that of the smaller UC-MSC population (p < 0.01). Smaller UC-MSCs had more powerful proliferation and immunosuppressive potential and a higher nucleus-cytoplasm ratio than those of large UC-MSCs. The number of cells positive for β-galactosidase staining was higher in the larger UC-MSC population than in the smaller UC-MSC population. The survival rates of mice receiving 1 × 106 or 2 × 106 smaller UC-MSCs were 100%, both of which were higher than those of mice receiving the same amounts of larger UC-MSCs (p < 0.01). The cause of mouse death was explored and it was found that some larger UC-MSCs accumulated in the pulmonary capillary in dead mice. CONCLUSION Different storage solutions showed no significant effects on cell behavior, whereas heterogeneity was quite prevalent in MSC populations and might limit cells application. Hence, it is necessary to establish a more precise standardization for culture-expanded MSCs.
Collapse
Affiliation(s)
- Yong-Hong Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ya-Chao Tao
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Dong-Bo Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Meng-Lan Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.
| | - En-Qiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
4
|
Seo MS, Kang KK, Oh SK, Sung SE, Kim KS, Kwon YS, Yun S. Isolation and Characterization of Feline Wharton's Jelly-Derived Mesenchymal Stem Cells. Vet Sci 2021; 8:vetsci8020024. [PMID: 33562192 PMCID: PMC7915203 DOI: 10.3390/vetsci8020024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Wharton’s jelly is a well-known mesenchymal stem cell source in many species, including humans. However, there have been no reports confirming the presence of mesenchymal stem cells in Wharton’s jelly in cats. The purpose of this study was to isolate mesenchymal stem cells (MSCs) from the Wharton’s jelly of cats and to characterize stem cells. In this study, feline Wharton’s jelly-derived mesenchymal stem cells (fWJ-MSCs) were isolated and successfully cultured. fWJ-MSCs were maintained and the proliferative potential was measured by cumulative population doubling level (CPDL) test, scratch test, and colony forming unit (CFU) test. Stem cell marker, karyotyping and immunophenotyping analysis by flow cytometry showed that fWJ-MSCs possessed characteristic mesenchymal stem cell markers. To confirm the differentiation potential, we performed osteogenic, adipogenic and chondrogenic induction under each differentiation condition. fWJ-MSCs has the ability to differentiate into multiple lineages, including osteogenic, adipogenic and chondrogenic differentiation. This study shows that Wharton’s jelly of cat can be a good source of mesenchymal stem cells. In addition, fWJ-MSCs may be useful for stem cell-based therapeutic applications in feline medicine.
Collapse
Affiliation(s)
- Min-Soo Seo
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (M.-S.S.); (K.-K.K.); (S.-K.O.); (S.-E.S.); (K.-S.K.)
| | - Kyung-Ku Kang
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (M.-S.S.); (K.-K.K.); (S.-K.O.); (S.-E.S.); (K.-S.K.)
| | - Se-Kyung Oh
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (M.-S.S.); (K.-K.K.); (S.-K.O.); (S.-E.S.); (K.-S.K.)
| | - Soo-Eun Sung
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (M.-S.S.); (K.-K.K.); (S.-K.O.); (S.-E.S.); (K.-S.K.)
| | - Kil-Soo Kim
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (M.-S.S.); (K.-K.K.); (S.-K.O.); (S.-E.S.); (K.-S.K.)
- Department of Veterinary Toxicology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Young-Sam Kwon
- Department of Veterinary Surgery, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (Y.-S.K.); (S.Y.); Tel.: +82 53-950-5963 (S.Y.); Fax: +82-52-950-5955 (S.Y.)
| | - Sungho Yun
- Department of Veterinary Surgery, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (Y.-S.K.); (S.Y.); Tel.: +82 53-950-5963 (S.Y.); Fax: +82-52-950-5955 (S.Y.)
| |
Collapse
|
5
|
Yang Q, Lopez MJ. The Equine Hoof: Laminitis, Progenitor (Stem) Cells, and Therapy Development. Toxicol Pathol 2019; 49:1294-1307. [PMID: 31741428 DOI: 10.1177/0192623319880469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The equine hoof capsule, composed of modified epidermis and dermis, is vital for protecting the third phalanx from forces of locomotion. There are descriptions of laminitis, defined as inflammation of sensitive hoof tissues but recognized as pathologic changes with or without inflammatory mediators, in the earliest records of domesticated horses. Laminitis can range from mild to serious, and signs can be acute, chronic, or transition from acute, severe inflammation to permanently abnormal tissue. Damage within the intricate dermal and epidermal connections of the primary and secondary lamellae is often associated with lifelong changes in hoof growth, repair, and conformation. Decades of research contribute to contemporary standards of care that include systemic and local therapies as well as mechanical hoof support. Despite this, consistent mechanisms to restore healthy tissue formation following a laminitic insult are lacking. Endogenous and exogenous progenitor cell contributions to healthy tissue formation is established for most tissues. There is comparably little information about equine hoof progenitor cells. Equine hoof anatomy, laminitis, and progenitor cells are covered in this review. The potential of progenitor cells to advance in vitro equine hoof tissue models and translate to clinical therapies may significantly improve prevention and treatment of a devastating condition that has afflicted equine companions throughout history.
Collapse
Affiliation(s)
- Qingqiu Yang
- Department of Veterinary Clinical Sciences, Laboratory for Equine and Comparative Orthopedic Research, Baton Rouge, LA, USA
| | - Mandi J Lopez
- Department of Veterinary Clinical Sciences, Laboratory for Equine and Comparative Orthopedic Research, Baton Rouge, LA, USA
| |
Collapse
|
6
|
Merlo B, Teti G, Lanci A, Burk J, Mazzotti E, Falconi M, Iacono E. Comparison between adult and foetal adnexa derived equine post-natal mesenchymal stem cells. BMC Vet Res 2019; 15:277. [PMID: 31375144 PMCID: PMC6679462 DOI: 10.1186/s12917-019-2023-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
Background Little is known about the differences among adult and foetal equine mesenchymal stem cells (MSCs), and no data exist about their comparative ultrastructural morphology. The aim of this study was to describe and compare characteristics, immune properties, and ultrastructural morphology of equine adult (bone marrow: BM, and adipose tissue: AT) and foetal adnexa derived (umbilical cord blood: UCB, and Wharton’s jelly: WJ) MSCs. Results No differences were observed in proliferation during the first 3 passages. While migration ability was similar among cells, foetal MSCs showed a higher adhesion ability, forming smaller spheroids after hanging drop culture (P < 0.05). All MSCs differentiated toward adipogenic, chondrogenic and osteogenic lineages, only tenogenic differentiation was less evident for WJ-MSCs. Data obtained by PCR confirmed MHC1 expression and lack of MHC2 expression in all four cell types. Foetal adnexa MSCs were positive for genes specific for anti-inflammatory and angiogenic factors (IL6, IL8, ILβ1) and WJ-MSCs were the only positive for OCT4 pluripotency gene. At immunofluorescence all cells expressed typical mesenchymal markers (α-SMA, N-cadherin), except for BM-MSCs, which did not express N-cadherin. By transmission electron microscopy, it was observed that WJ-MSCs had a higher (P < 0.05) number of microvesicles compared to adult MSCs, and UCB-MSCs showed more microvesicles than BM-MSCs (P < 0.05). AT-MSCs had a lower number of mitochondria than WJ-MSCs (P < 0.05), and mitochondrial area was higher for WJ-MSCs compared to UCB and AT-MSCs (P < 0.05). Conclusions Results demonstrate that MSCs from adult and foetal tissues have different characteristics, and foetal MSCs, particularly WJ derived ones, seem to have some charactestics that warrant further investigation into potential advantages for clinical application.
Collapse
Affiliation(s)
- B Merlo
- Department of Veterinary Medical Sciences, University of Bologna, via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy.,Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy
| | - G Teti
- Department for Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - A Lanci
- Department of Veterinary Medical Sciences, University of Bologna, via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy
| | - J Burk
- Saxon Incubator for Clinical Translation, University of Leipzig, Leipzig, Germany.,Equine Clinic (Surgery), Justus Liebig University Giessen, Giessen, Germany
| | - E Mazzotti
- Department of Comparative Biomedical Sciences, University of Teramo, Teramo, Italy
| | - M Falconi
- Department for Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - E Iacono
- Department of Veterinary Medical Sciences, University of Bologna, via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy. .,Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy.
| |
Collapse
|
7
|
Yang Q, Pinto VMR, Duan W, Paxton EE, Dessauer JH, Ryan W, Lopez MJ. In vitro Characteristics of Heterogeneous Equine Hoof Progenitor Cell Isolates. Front Bioeng Biotechnol 2019; 7:155. [PMID: 31355191 PMCID: PMC6637248 DOI: 10.3389/fbioe.2019.00155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/10/2019] [Indexed: 12/12/2022] Open
Abstract
Damage to an ectodermal-mesodermal interface like that in the equine hoof and human finger nail bed can permanently alter tissue structure and associated function. The purpose of this study was to establish and validate in vitro culture of primary progenitor cell isolates from the ectodermal-mesodermal tissue junction in equine hooves, the stratum internum, with and without chronic inflammation known to contribute to lifelong tissue defects. The following were evaluated in hoof stratum internum cell isolates up to 5 cell passages (P): expansion capacity by cell doublings and doubling time; plasticity with multi-lineage differentiation and colony-forming unit (CFU) frequency percentage; immunophenotype with immunocytochemistry and flow cytometry; gene expression with RT-PCR; and ultrastructure with transmission electron microscopy. The presence of keratin (K)14, 15 and K19 as well as cluster of differentiation (CD)44 and CD29 was determined in situ with immunohistochemistry. To confirm in vivo extracellular matrix (ECM) formation, cell-scaffold (polyethylene glycol/poly-L-lactic acid and tricalcium phosphate/hydroxyapatite) constructs were evaluated with scanning electron microscopy 9 weeks after implantation in athymic mice. Cultured cells had characteristic progenitor cell morphology, expansion, CFU frequency percentage and adipocytic, osteoblastic, and neurocytic differentiation capacity. CD44, CD29, K14, K15 and K19 proteins were present in native hoof stratum internum. Cultured cells also expressed K15, K19 and desmogleins 1 and 3. Gene expression of CD105, CD44, K14, K15, sex determining region Y-box 2 (SOX2) and octamer-binding transcription factor 4 (OCT4) was confirmed in vitro. Cultured cells had large, eccentric nuclei, elongated mitochondria, and intracellular vacuoles. Scaffold implants with cells contained fibrous ECM 9 weeks after implantation compared to little or none on acellular scaffolds. In vitro expansion and plasticity and in vivo ECM deposition of heterogeneous, immature cell isolates from the ectodermal-mesodermal tissue interface of normal and chronically inflamed hooves are typical of primary cell isolates from other adult tissues, and they appear to have both mesodermal and ectodermal qualities in vitro. These results establish a unique cell culture model to target preventative and restorative therapies for ectodermal-mesodermal tissue junctions.
Collapse
Affiliation(s)
- Qingqiu Yang
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Vanessa Marigo Rocha Pinto
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Wei Duan
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Erica E Paxton
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Jenna H Dessauer
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - William Ryan
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Mandi J Lopez
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
8
|
Barboni B, Russo V, Berardinelli P, Mauro A, Valbonetti L, Sanyal H, Canciello A, Greco L, Muttini A, Gatta V, Stuppia L, Mattioli M. Placental Stem Cells from Domestic Animals: Translational Potential and Clinical Relevance. Cell Transplant 2019; 27:93-116. [PMID: 29562773 PMCID: PMC6434480 DOI: 10.1177/0963689717724797] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The field of regenerative medicine is moving toward clinical practice in veterinary science. In this context, placenta-derived stem cells isolated from domestic animals have covered a dual role, acting both as therapies for patients and as a valuable cell source for translational models. The biological properties of placenta-derived cells, comparable among mammals, make them attractive candidates for therapeutic approaches. In particular, stemness features, low immunogenicity, immunomodulatory activity, multilineage plasticity, and their successful capacity for long-term engraftment in different host tissues after autotransplantation, allo-transplantation, or xenotransplantation have been demonstrated. Their beneficial regenerative effects in domestic animals have been proven using preclinical studies as well as clinical trials starting to define the mechanisms involved. This is, in particular, for amniotic-derived cells that have been thoroughly studied to date. The regenerative role arises from a mutual tissue-specific cell differentiation and from the paracrine secretion of bioactive molecules that ultimately drive crucial repair processes in host tissues (e.g., anti-inflammatory, antifibrotic, angiogenic, and neurogenic factors). The knowledge acquired so far on the mechanisms of placenta-derived stem cells in animal models represent the proof of concept of their successful use in some therapeutic treatments such as for musculoskeletal disorders. In the next future, legislation in veterinary regenerative medicine will be a key element in order to certify those placenta-derived cell-based protocols that have already demonstrated their safety and efficacy using rigorous approaches and to improve the degree of standardization of cell-based treatments among veterinary clinicians.
Collapse
Affiliation(s)
- B Barboni
- 1 Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - V Russo
- 1 Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - P Berardinelli
- 1 Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - A Mauro
- 1 Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - L Valbonetti
- 1 Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - H Sanyal
- 1 Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - A Canciello
- 1 Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - L Greco
- 1 Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - A Muttini
- 1 Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - V Gatta
- 1 Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - L Stuppia
- 2 Medical Genetics, University "G. d'Annunzio" of Chieti Pescara, Chieti, Italy
| | - M Mattioli
- 3 Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| |
Collapse
|
9
|
Burk J, Holland H, Lauermann AF, May T, Siedlaczek P, Charwat V, Kasper C. Generation and characterization of a functional human adipose-derived multipotent mesenchymal stromal cell line. Biotechnol Bioeng 2019; 116:1417-1426. [PMID: 30739319 DOI: 10.1002/bit.26950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 12/12/2022]
Abstract
Multipotent mesenchymal stromal cells (MSC) and MSC-derived products have emerged as promising therapeutic tools. To fully exploit their potential, further mechanistic studies are still necessary and bioprocessing needs to be optimized, which requires an abundant supply of functional MSC for basic research. To address this need, here we used a novel technology to establish a human adipose-derived MSC line with functional characteristics representative of primary MSC. Primary MSC were isolated and subjected to lentiviral transduction with a library of expansion genes. Clonal cell lines were generated and evaluated on the basis of their morphology, immunophenotype, and proliferation potential. One clone (K5 iMSC) was then selected for further characterization. This clone had integrated a specific transgene combination including genes involved in stemness and maintenance of adult stem cells. Favorably, the K5 iMSC showed cell characteristics resembling juvenile MSC, as they displayed a shorter cell length and enhanced migration and proliferation compared with the non-immortalized original primary MSC (p < 0.05). Still, their immunophenotype and differentiation potential corresponded to the original primary MSC and the MSC definition criteria, and cytogenetic analyses revealed no clonal aberrations. We conclude that the technology used is applicable to generate functional MSC lines for basic research and possible future bioprocessing applications.
Collapse
Affiliation(s)
- Janina Burk
- Institute of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Heidrun Holland
- Saxon Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
| | - Anne F Lauermann
- Institute of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Philipp Siedlaczek
- Institute of Physics and Materials Science, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Verena Charwat
- Institute of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Cornelia Kasper
- Institute of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
10
|
Ortved KF. Regenerative Medicine and Rehabilitation for Tendinous and Ligamentous Injuries in Sport Horses. Vet Clin North Am Equine Pract 2018; 34:359-373. [DOI: 10.1016/j.cveq.2018.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
11
|
Pericytes in Veterinary Species: Prospective Isolation, Characterization and Tissue Regeneration Potential. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1109:67-77. [DOI: 10.1007/978-3-030-02601-1_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Fatima Q, Choudhry N, Choudhery MS. Umbilical Cord Tissue Derived Mesenchymal Stem Cells can Differentiate into Skin Cells. Open Life Sci 2018; 13:544-552. [PMID: 33817125 PMCID: PMC7874732 DOI: 10.1515/biol-2018-0065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 10/31/2018] [Indexed: 02/05/2023] Open
Abstract
Autologous skin grafts are used to treat severe burn wounds, however, the availability of adequate donor sites makes this option less practical. Recently, stem cells have been used successfully in tissue engineering and in regenerative medicine. The current study aims to differentiate umbilical cord tissue derived mesenchymal stem cells (CT-MSCs) into skin cells (fibroblasts and keratinocytes) for use to treat severe burn wounds. After isolation, MSCs were characterized and their growth characteristics were determined. The cells were induced to differentiate into fibroblasts and keratinocytes using respective induction medium. Results indicated that CT-MSCs were spindle shaped, plastic adherent and positive for CD29, CD44, CD73, CD90 markers. CT-MSCs also showed high proliferative potential as indicated by cumulative population doubling, doubling time and plating efficiency. The MSCs were successfully differentiated into fibroblast and keratinocytes as indicated by morphological changes and expression of lineage specific genes. We propose that these differentiated skin cells which are derived from CT-MSCs can thus be used for the development of bioengineered skin; however, further studies are required to evaluate the utility of these substitutes.
Collapse
Affiliation(s)
- Qandeel Fatima
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Sciences, King Edward Medical University, Lahore, Pakistan
| | - Nakhshab Choudhry
- Department of Biochemistry, King Edward Medical University, Lahore, Pakistan
| | - Mahmood S Choudhery
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Sciences, King Edward Medical University, Lahore, Pakistan
| |
Collapse
|
13
|
Iacono E, Pascucci L, Rossi B, Bazzucchi C, Lanci A, Ceccoli M, Merlo B. Ultrastructural characteristics and immune profile of equine MSCs from fetal adnexa. Reproduction 2017; 154:509-519. [PMID: 28733347 DOI: 10.1530/rep-17-0032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 12/20/2022]
Abstract
Both in human and equine species, mesenchymal stem cells (MSCs) from amniotic membrane (AM) and Wharton's jelly (WJ), may be particularly useful for immediate use or in later stages of life, after cryopreservation in cell bank. The aim of this study was to compare equine AM- and WJ-MSCs in vitro features that may be relevant for their clinical employment. MSCs were more easily isolated from WJ, even if MSCs derived from AM exhibited more rapid proliferation (P < 0.05). Osteogenic and chondrogenic differentiation were more prominent in MSCs derived from WJ. This is also suggested by the lower adhesion of AM cells, demonstrated by the greater volume of spheroids after hanging drop culture (P < 0.05). Data obtained by PCR confirmed the immunosuppressive function of AM and WJ-MSCs and the presence of active genes specific for anti-inflammatory and angiogenic factors (IL-6, IL 8, IL-β1). For the first time, by means of transmission electron microscopy (TEM), we ascertained that equine WJ-MSCs constitutively contain a very impressive number of large vesicular structures, scattered throughout the cytoplasm. Moreover, an abundant extracellular fibrillar matrix was located in the intercellular spaces among WJ-MSCs. Data recorded in this study reveal that MSCs from different fetal tissues have different characteristics that may drive their therapeutic use. These finding could be noteworthy for horses as well as for other mammalian species, including humans.
Collapse
Affiliation(s)
- Eleonora Iacono
- Department of Veterinary Medical SciencesUniversity of Bologna, Ozzano Emilia (BO), Italy
| | - Luisa Pascucci
- Department of Veterinary MedicineUniversity of Perugia, Perugia, Italy
| | - Barbara Rossi
- Department of Veterinary Medical SciencesUniversity of Bologna, Ozzano Emilia (BO), Italy
| | - Cinzia Bazzucchi
- Department of Veterinary MedicineUniversity of Perugia, Perugia, Italy
| | - Aliai Lanci
- Department of Veterinary Medical SciencesUniversity of Bologna, Ozzano Emilia (BO), Italy
| | - Monica Ceccoli
- Department of Veterinary Medical SciencesUniversity of Bologna, Ozzano Emilia (BO), Italy
| | - Barbara Merlo
- Department of Veterinary Medical SciencesUniversity of Bologna, Ozzano Emilia (BO), Italy
| |
Collapse
|
14
|
MEM α Promotes Cell Proliferation and Expression of Bone Marrow Derived Equine Mesenchymal Stem Cell Gene Markers but Depresses Differentiation Gene Markers. J Equine Vet Sci 2017. [DOI: 10.1016/j.jevs.2016.10.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Taguchi T, Cho JY, Hao J, Nout-Lomas YS, Kang KS, Griffon DJ. Influence of hypoxia on the stemness of umbilical cord matrix-derived mesenchymal stem cells cultured on chitosan films. J Biomed Mater Res B Appl Biomater 2017; 106:501-511. [PMID: 28188976 DOI: 10.1002/jbm.b.33864] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 11/20/2016] [Accepted: 01/26/2017] [Indexed: 12/13/2022]
Abstract
Chitosan is attractive as a substrate for stem cell expansion because it improves stemness through formation of spheroids. Hypoxia has also been proposed as a strategy to enhance stemness and survival of stem cells after in vivo implantation. This study was therefore designed to evaluate the influence of hypoxia on chitosan-induced behavior of stem cells. Umbilical cord matrix-derived stem cells were cultured on chitosan film or standard plate under normoxia and hypoxia, for 3 and 7 days. Based on immunophenotyping, chitosan strongly suppresses the expression of CD90 and CD105 cell surface markers, changes partially reversed by combined exposure to hypoxia. Hypoxia generally increased the volume and number of spheroids formed on chitosan, but the cellularity of cultures on chitosan films remained lower than that of standard plates. After 7 days of culture, the expression of stemness related genes (Oct4, Sox2, and Nanog) was best stimulated by combined exposure to chitosan and hypoxia. Based on our results, conditioning stem cells for 7 days on chitosan films under hypoxic conditions is recommended to enhance the stemness of stem cells, and minimize cell loss due to lack of attachment on chitosan. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 501-511, 2018.
Collapse
Affiliation(s)
- Takashi Taguchi
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California
| | - Jane Y Cho
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California
| | - Jijun Hao
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California
| | - Yvette S Nout-Lomas
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Kyung-Sun Kang
- College of Veterinary Medicine, Korean Adult Stem Cell Research Center, Seoul National University, Seoul, Korea
| | - Dominique J Griffon
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California
| |
Collapse
|
16
|
Dias MC, Landim-Alvarenga FDC, de Moraes CN, da Costa LD, Geraldini CM, de Vasconcelos Machado VM, Maia L. Intramuscular Transplantation of Allogeneic Mesenchymal Stromal Cells Derived from Equine Umbilical Cord. Int J Stem Cells 2016; 9:239-249. [PMID: 27572709 PMCID: PMC5155720 DOI: 10.15283/ijsc16011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2016] [Indexed: 12/13/2022] Open
Abstract
Background and Objectives Mesenchymal stromal cells (MSCs) have great therapeutic potential, particularly in the process of tissue repair and immunomodulation through the secretion of biomolecules. Thus, the aim of this study was to evaluate the hypothesis that intramuscular transplantation of allogeneic MSCs obtained from equine umbilical cord (UC-MSCs) is safe, demonstrating that this is a suitable source of stem cells for therapeutic use. Methods and Results For this, UC-MSCs were cultured, characterized and cryopreserved for future transplantation in six healthy mares. On day 0, transplantation of three million UC-MSCs diluted in Hank's Balanced Solution (HBSS) was performed on right and left sides of the rump muscle. As a control, HBSS injections were performed caudally in the same muscle. Muscle biopsies were obtained as a control 30 days before transplantation (D-30). The biopsies were collected again on day 2 (left side) and day 7 (right side) post transplantation and examined histologically. All procedures were preceded by ultrasound examination and blood sampling. Hematologic evaluation remained within normal limits and no differences were observed between time points (p>0.05). Ultrasound examination was suggestive of inflammation 48 hours after transplantation in both groups (control and treated). At histological evaluation it was found only discrete inflammation signals between D-30×D2 (p<0.05) in the treated group, without differences (p> 0.05) between the groups at different time points. Conclusions Equine UC-MSCs under the experimental conditions did not promote severe inflammation that causes tissue damage or lead to its rejection by the host organism and therefore has a good potential for clinical use.
Collapse
Affiliation(s)
- Marianne Camargos Dias
- Department of Animal Reproduction and Veterinary Radiology, College of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Fernanda da Cruz Landim-Alvarenga
- Department of Animal Reproduction and Veterinary Radiology, College of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Carolina Nogueira de Moraes
- Department of Animal Reproduction and Veterinary Radiology, College of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Leonardo Dourado da Costa
- Department of Veterinary Pathology, College of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Caroline Medeiros Geraldini
- Department of Animal Reproduction and Veterinary Radiology, College of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Vânia Maria de Vasconcelos Machado
- Department of Animal Reproduction and Veterinary Radiology, College of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Leandro Maia
- Department of Animal Reproduction and Veterinary Radiology, College of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, SP, Brazil
| |
Collapse
|
17
|
Lange-Consiglio A, Perrini C, Bertero A, Esposti P, Cremonesi F, Vincenti L. Isolation, molecular characterization, and in vitro differentiation of bovine Wharton jelly-derived multipotent mesenchymal cells. Theriogenology 2016; 89:338-347. [PMID: 28341078 DOI: 10.1016/j.theriogenology.2016.09.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 12/16/2022]
Abstract
Extrafetal tissues are a noncontroversial and inexhaustible source of mesenchymal stem cells that can be harvested noninvasively at low cost. In the veterinary field, as in man, stem cells derived from extrafetal tissues express plasticity, reduced immunogenicity, and have high anti-inflammatory potential making them promising candidates for treatment of many diseases. Umbilical cord mesenchymal cells have been isolated and characterized in different species and have recently been investigated as potential candidates in regenerative medicine. In this study, cells derived from bovine Wharton jelly (WJ) were isolated for the first time by enzymatic methods, frozen/thawed, cultivated for at least 10 passages, and characterized. Wharton jelly-derived cells readily attached to plastic culture dishes displaying typical fibroblast-like morphology and, although their proliferative capacity decreased to the seventh passage, these cells showed a mean doubling time of 34.55 ± 6.33 hours and a mean frequency of one colony-forming unit fibroblast like for every 221.68 plated cells. The results of molecular biology studies and flow cytometry analyses revealed that WJ-derived cells showed the typical antigen profile of mesenchymal stem cells and were positive for CD29, CD44, CD105, CD166, Oct-4, and c-Myc. They were negative for CD34 and CD14. Remarkably, WJ-derived cells showed differentiation ability. After culture in induced media, WJ-derived cells were able to differentiate into osteogenic, adipogenic, chondrogenic, and neurogenic lines as shown by positive staining and expression of specific markers. On polymerase chain reaction analysis, these cells were negative for MHC-II and positive for MHC-I, thus reinforcing the role of extrafetal tissue as an allogenic source for bovine cell-based therapies. These results provide evidence that bovine WJ-derived cells may have the potential to differentiate to repair damaged tissues and reinforce the importance of extrafetal tissues as stem cell sources in veterinary regenerative medicine. A more detailed evaluation of their immunologic properties is necessary to better understand their potential role in cellular therapy.
Collapse
Affiliation(s)
- Anna Lange-Consiglio
- Reproduction Unit, Large Animal Hospital, Università degli Studi di Milano, Lodi, Italy
| | - Claudia Perrini
- Reproduction Unit, Large Animal Hospital, Università degli Studi di Milano, Lodi, Italy
| | - Alessia Bertero
- Department of Animal Science, Università degli Studi di Torino, Torino, Italy
| | - Paola Esposti
- Reproduction Unit, Large Animal Hospital, Università degli Studi di Milano, Lodi, Italy
| | - Fausto Cremonesi
- Reproduction Unit, Large Animal Hospital, Università degli Studi di Milano, Lodi, Italy.
| | - Leila Vincenti
- Department of Animal Science, Università degli Studi di Torino, Torino, Italy
| |
Collapse
|
18
|
Lobo SE, Leonel LCP, Miranda CM, Coelho TM, Ferreira GA, Mess A, Abrão MS, Miglino MA. The Placenta as an Organ and a Source of Stem Cells and Extracellular Matrix: A Review. Cells Tissues Organs 2016; 201:239-52. [DOI: 10.1159/000443636] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 11/19/2022] Open
Abstract
The placenta is a temporal, dynamic and diverse organ with important immunological features that facilitate embryonic and fetal development and survival, notwithstanding the fact that several aspects of its formation and function closely resemble tumor progression. Placentation in mammals is commonly used to characterize the evolution of species, including insights into human evolution. Although most placentas are discarded after birth, they are a high-yield source for the isolation of stem/progenitor cells and are rich in extracellular matrix (ECM), representing an important resource for regenerative medicine purposes. Interactions among cells, ECM and bioactive molecules regulate tissue and organ generation and comprise the foundation of tissue engineering. In the present article, differences among several mammalian species regarding the placental types and classifications, phenotypes and potency of placenta-derived stem/progenitor cells, placental ECM components and current placental ECM applications were reviewed to highlight their potential clinical and biomedical relevance.
Collapse
|
19
|
Lange-Consiglio A, Romaldini A, Correani A, Corradetti B, Esposti P, Cannatà MF, Perrini C, Marini MG, Bizzaro D, Cremonesi F. Does the Bovine Pre-Ovulatory Follicle Harbor Progenitor Stem Cells? Cell Reprogram 2016; 18:116-26. [PMID: 26982278 DOI: 10.1089/cell.2015.0062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent studies have revealed the presence of a mesenchymal stem cell (MSC) population in human and in gilt granulosa cells (GCs), thus increasing the interest in identifying the same population in the bovine species. We first isolated GCs by scraping from bovine preovulatory follicles and then tested several different media to define the ideal conditions to select granulosa-derived stem cells. Although expressing MSC-associated markers, none of the media tested proven to be efficient in selecting MSC-like cells that were able to differentiate into mesodermic or ectodermic lineages. We performed another experimental approach exposing cells to a chemical stress, such as lowering of pH, as a system to select a more plastic population. Following the treatment, granulosa-specific granulose markers [follicle-stimulating hormone receptor (FSHR), follistatin (FST), and leukemia inhibitory factor receptor (LIFR)] were lost in bovine GCs, whereas an increase in multi- (CD29, CD44, CD73) and pluripotent (Oct-4 and c-Myc) genes was noticed. The stress allowed up-regulation of tumor necrosis factor-α and interleukin-1β expression and the dedifferentiation of GCs, which was demonstrated by differentiation studies. Indeed, pH-treated cells were able to differentiate into the mesodermic and ectodermic lineages, thus suggesting that the chemical stress allows for the selection of cells that are more prone to adjust and respond to the environmental changes.
Collapse
Affiliation(s)
- Anna Lange-Consiglio
- 1 Large Animal Hospital, Reproduction Unit, Università degli Studi di Milano , Lodi, Italy
| | - Alessio Romaldini
- 2 Department of Life and Environmental Sciences, Università Politecnica delle Marche , Ancona, Italy
| | - Alessio Correani
- 2 Department of Life and Environmental Sciences, Università Politecnica delle Marche , Ancona, Italy
| | - Bruna Corradetti
- 2 Department of Life and Environmental Sciences, Università Politecnica delle Marche , Ancona, Italy
| | - Paola Esposti
- 1 Large Animal Hospital, Reproduction Unit, Università degli Studi di Milano , Lodi, Italy
| | - Maria Francesca Cannatà
- 2 Department of Life and Environmental Sciences, Università Politecnica delle Marche , Ancona, Italy
| | - Claudia Perrini
- 1 Large Animal Hospital, Reproduction Unit, Università degli Studi di Milano , Lodi, Italy
| | - Maria Giovanna Marini
- 2 Department of Life and Environmental Sciences, Università Politecnica delle Marche , Ancona, Italy
| | - Davide Bizzaro
- 2 Department of Life and Environmental Sciences, Università Politecnica delle Marche , Ancona, Italy
| | - Fausto Cremonesi
- 1 Large Animal Hospital, Reproduction Unit, Università degli Studi di Milano , Lodi, Italy .,3 Department of Veterinary Science for Animal Health, Production and Food Safety, Università degli Studi di Milano , Milan, Italy
| |
Collapse
|
20
|
Fülber J, Maria DA, da Silva LCLC, Massoco CO, Agreste F, Baccarin RYA. Comparative study of equine mesenchymal stem cells from healthy and injured synovial tissues: an in vitro assessment. Stem Cell Res Ther 2016; 7:35. [PMID: 26944403 PMCID: PMC4779201 DOI: 10.1186/s13287-016-0294-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 02/10/2016] [Accepted: 02/17/2016] [Indexed: 02/07/2023] Open
Abstract
Background Bone marrow and adipose tissues are known sources of mesenchymal stem cells (MSCs) in horses; however, synovial tissues might be a promising alternative. The aim of this study was to evaluate phenotypic characteristics and differentiation potential of equine MSCs from synovial fluid (SF) and synovial membrane (SM) of healthy joints (SF-H and SM-H), joints with osteoarthritis (SF-OA and SM-OA) and joints with osteochondritis dissecans (SF-OCD and SM-OCD) to determine the most suitable synovial source for an allogeneic therapy cell bank. Methods Expression of the markers CD90, CD105, CD44, and CD34 in SF-H, SM-H, SF-OA, SM-OA, SF-OCD and SM-OCD was verified by flow cytometry, and expression of cytokeratin, vimentin, PGP 9.5, PCNA, lysozyme, nanog, and Oct4 was verified by immunocytochemistry. MSCs were cultured and evaluated for their chondrogenic, osteogenic and adipogenic differentiation potential. Final quantification of extracellular matrix and mineralized matrix was determined using AxioVision software. A tumorigenicity test was conducted in Balb-Cnu/nu mice to verify the safety of the MSCs from these sources. Results Cultured cells from SF and SM exhibited fibroblastoid morphology and the ability to adhere to plastic. The time elapsed between primary culture and the third passage was approximately 73 days for SF-H, 89 days for SF-OCD, 60 days for SF-OA, 68 days for SM-H, 57 days for SM-OCD and 54 days for SM-OA. The doubling time for SF-OCD was higher than that for other cells at the first passage (P < 0.05). MSCs from synovial tissues showed positive expression of the markers CD90, CD44, lysozyme, PGP 9.5, PCNA and vimentin and were able to differentiate into chondrogenic (21 days) and osteogenic (21 days) lineages, and, although poorly, into adipogenic lineages (14 days). The areas staining positive for extracellular matrix in the SF-H and SM-H groups were larger than those in the SF-OA and SM-OA groups (P < 0.05). The positive mineralized matrix area in the SF-H group was larger than those in all the other groups (P < 0.05). The studied cells exhibited no tumorigenic effects. Conclusions SF and SM are viable sources of equine MSCs. All sources studied provide suitable MSCs for an allogeneic therapy cell bank; nevertheless, MSCs from healthy joints may be preferable for cell banking purposes because they exhibit better chondrogenic differentiation capacity.
Collapse
Affiliation(s)
- Joice Fülber
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Avenida Prof. Orlando Marques de Paiva, 87, 05508-270, São Paulo, SP, Brazil.
| | - Durvanei A Maria
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Avenida Vital Brasil 1500, São Paulo, 05503-900, SP, Brazil.
| | - Luis Cláudio Lopes Correia da Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Avenida Prof. Orlando Marques de Paiva, 87, SP, 05508-270, SP, Brazil.
| | - Cristina O Massoco
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Avenida Prof. Orlando Marques de Paiva, 87, São Paulo, 05508-270, SP, Brazil.
| | - Fernanda Agreste
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Avenida Prof. Orlando Marques de Paiva, 87, 05508-270, São Paulo, SP, Brazil.
| | - Raquel Y Arantes Baccarin
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Avenida Prof. Orlando Marques de Paiva, 87, 05508-270, São Paulo, SP, Brazil.
| |
Collapse
|
21
|
Petersen GF, Hilbert BJ, Trope GD, Kalle WHJ, Strappe PM. Direct Conversion of Equine Adipose-Derived Stem Cells into Induced Neuronal Cells Is Enhanced in Three-Dimensional Culture. Cell Reprogram 2015; 17:419-26. [PMID: 26579833 DOI: 10.1089/cell.2015.0046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ability to culture neurons from horses may allow further investigation into equine neurological disorders. In this study, we demonstrate the generation of induced neuronal cells from equine adipose-derived stem cells (EADSCs) using a combination of lentiviral vector expression of the neuronal transcription factors Brn2, Ascl1, Myt1l (BAM) and NeuroD1 and a defined chemical induction medium, with βIII-tubulin-positive induced neuronal cells displaying a distinct neuronal morphology of rounded and compact cell bodies, extensive neurite outgrowth, and branching of processes. Furthermore, we investigated the effects of dimensionality on neuronal transdifferentiation, comparing conventional two-dimensional (2D) monolayer culture against three-dimensional (3D) culture on a porous polystyrene scaffold. Neuronal transdifferentiation was enhanced in 3D culture, with evenly distributed cells located on the surface and throughout the scaffold. Transdifferentiation efficiency was increased in 3D culture, with an increase in mean percent conversion of more than 100% compared to 2D culture. Additionally, induced neuronal cells were shown to transit through a Nestin-positive precursor state, with MAP2 and Synapsin 2 expression significantly increased in 3D culture. These findings will help to increase our understanding of equine neuropathogenesis, with prospective roles in disease modeling, drug screening, and cellular replacement for treatment of equine neurological disorders.
Collapse
Affiliation(s)
- Gayle F Petersen
- 1 School of Biomedical Sciences, Charles Sturt University , Wagga Wagga, New South Wales, Australia
| | - Bryan J Hilbert
- 2 School of Animal and Veterinary Sciences, Charles Sturt University , Wagga Wagga, New South Wales, Australia
| | - Gareth D Trope
- 2 School of Animal and Veterinary Sciences, Charles Sturt University , Wagga Wagga, New South Wales, Australia
| | - Wouter H J Kalle
- 1 School of Biomedical Sciences, Charles Sturt University , Wagga Wagga, New South Wales, Australia
| | - Padraig M Strappe
- 1 School of Biomedical Sciences, Charles Sturt University , Wagga Wagga, New South Wales, Australia
| |
Collapse
|
22
|
Lange-Consiglio A, Corradetti B, Bertani S, Notarstefano V, Perrini C, Marini MG, Arrighi S, Bosi G, Belloli A, Pravettoni D, Locatelli V, Cremonesi F, Bizzaro D. Peculiarity of Porcine Amniotic Membrane and Its Derived Cells: A Contribution to the Study of Cell Therapy from a Large Animal Model. Cell Reprogram 2015; 17:472-83. [PMID: 26540004 DOI: 10.1089/cell.2015.0029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The aim of this work was to provide, for the first time, a protocol for isolation and characterization of stem cells from porcine amniotic membrane in view of their potential uses in regenerative medicine. From three samples of allanto-amnion recovered at delivery, the amniotic membrane was stripped from overlying allantois and digested with trypsin and collagenase to isolate epithelial (amniotic epithelial cells [AECs]) and mesenchymal cells, respectively. Proliferation, differentiation, and characterization studies by molecular biology and flow cytometry were performed. Histological examination revealed very few mesenchymal cells in the stromal layer, and a cellular yield of AECs of 10 × 10(6)/gram of digested tissue was achieved. AECs readily attached to plastic culture dishes displaying typical cuboidal morphology and, although their proliferative capacity decreased to the fifth passage, AECs showed a mean doubling time of 24.77 ± 6 h and a mean frequency of one fibroblast colony-forming unit (CFU-F) for every 116.75 plated cells. AECs expressed mesenchymal stem cell (MSC) mRNA markers (CD29, CD166, CD90, CD73, CD117) and pluripotent markers (Nanog and Oct 4), whereas they were negative for CD34 and MHCII. Mesodermic, ectodermic, and endodermic differentiation was confirmed by staining and expression of specific markers. We conclude that porcine amniotic membrane can provide an attractive source of stem cells that may be a useful tool for biomedical research.
Collapse
Affiliation(s)
- Anna Lange-Consiglio
- 1 Large Animal Hospital, Reproduction Unit, Università degli Studi di Milano , Lodi, Italy
| | - Bruna Corradetti
- 2 Department of Life and Environmental Sciences, Università Politecnica delle Marche , Ancona, Italy
| | - Sabrina Bertani
- 1 Large Animal Hospital, Reproduction Unit, Università degli Studi di Milano , Lodi, Italy
| | - Valentina Notarstefano
- 2 Department of Life and Environmental Sciences, Università Politecnica delle Marche , Ancona, Italy
| | - Claudia Perrini
- 1 Large Animal Hospital, Reproduction Unit, Università degli Studi di Milano , Lodi, Italy
| | - Maria Giovanna Marini
- 2 Department of Life and Environmental Sciences, Università Politecnica delle Marche , Ancona, Italy
| | - Silvana Arrighi
- 3 Department of Health, Animal Science and Food Safety, Università degli Studi di Milano , Milan, Italy
| | - Giampaolo Bosi
- 3 Department of Health, Animal Science and Food Safety, Università degli Studi di Milano , Milan, Italy
| | - Angelo Belloli
- 4 Large Animal Hospital, Clinic for Ruminants and Pigs, Università degli Studi di Milano , Lodi, Italy
| | - Davide Pravettoni
- 4 Large Animal Hospital, Clinic for Ruminants and Pigs, Università degli Studi di Milano , Lodi, Italy
| | - Valentina Locatelli
- 4 Large Animal Hospital, Clinic for Ruminants and Pigs, Università degli Studi di Milano , Lodi, Italy
| | - Fausto Cremonesi
- 1 Large Animal Hospital, Reproduction Unit, Università degli Studi di Milano , Lodi, Italy .,3 Department of Health, Animal Science and Food Safety, Università degli Studi di Milano , Milan, Italy
| | - Davide Bizzaro
- 2 Department of Life and Environmental Sciences, Università Politecnica delle Marche , Ancona, Italy
| |
Collapse
|
23
|
Fernandez-Moure JS, Corradetti B, Chan P, Van Eps JL, Janecek T, Rameshwar P, Weiner BK, Tasciotti E. Enhanced osteogenic potential of mesenchymal stem cells from cortical bone: a comparative analysis. Stem Cell Res Ther 2015; 6:203. [PMID: 26503337 PMCID: PMC4620594 DOI: 10.1186/s13287-015-0193-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/20/2015] [Accepted: 09/24/2015] [Indexed: 12/18/2022] Open
Abstract
Introduction Mesenchymal stem cells (MSCs) hold great promise for regenerative therapies in the musculoskeletal system. Although MSCs from bone marrow (BM-MSCs) and adipose tissue (AD-MSCs) have been extensively characterized, there is still debate as to the ideal source of MSCs for tissue-engineering applications in bone repair. Methods MSCs were isolated from cortical bone fragments (CBF-MSCs) obtained from patients undergoing laminectomy, selected by fluorescence-activated cell sorting analysis, and tested for their potential to undergo mesodermic differentiation. CBF-MSCs were then compared with BM-MSCs and AD-MSCs for their colony-forming unit capability and osteogenic potential in both normoxia and hypoxia. After 2 and 4 weeks in inducing media, differentiation was assessed qualitatively and quantitatively by the evaluation of alkaline phosphatase (ALP) expression and mineral deposition (Von Kossa staining). Transcriptional activity of osteoblastogenesis-associated genes (Alp, RUNX2, Spp1, and Bglap) was also analyzed. Results The cortical fraction of the bone contains a subset of cells positive for MSC-associated markers and capable of tri-lineage differentiation. The hypoxic conditions were generally more effective in inducing osteogenesis for the three cell lines. However, at 2 and 4 weeks, greater calcium deposition and ALP expression were observed in both hypoxic and normoxic conditions in CBF-MSCs compared with AD- and BM-MSCs. These functional observations were further corroborated by gene expression analysis, which showed a significant upregulation of Bglap, Alp, and Spp1, with a 22.50 (±4.55)-, 46.56 (±7.4)-, 71.46 (±4.16)-fold increase compared with their uninduced counterparts. Conclusions This novel population of MSCs retains a greater biosynthetic activity in vitro, which was found increased in hypoxic conditions. The present study demonstrates that quantitative differences between MSCs retrieved from bone marrow, adipose, and the cortical portion of the bone with respect to their osteogenic potential exist and suggests the cortical bone as suitable candidate to use for orthopedic tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Joseph S Fernandez-Moure
- Houston Methodist Hospital Department of Surgery, Houston, USA. .,Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA.
| | - Bruna Corradetti
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA. .,Department of Life and Environmental Sciences, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy.
| | - Paige Chan
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA.
| | - Jeffrey L Van Eps
- Houston Methodist Hospital Department of Surgery, Houston, USA. .,Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA.
| | - Trevor Janecek
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA.
| | - Pranela Rameshwar
- Department of Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA.
| | - Bradley K Weiner
- Houston Methodist Hospital Department of Orthopedic Surgery, 6565 Fannin Street, Houston, TX, 77030, USA.
| | - Ennio Tasciotti
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA.
| |
Collapse
|
24
|
Li Q, Rycaj K, Chen X, Tang DG. Cancer stem cells and cell size: A causal link? Semin Cancer Biol 2015; 35:191-9. [PMID: 26241348 DOI: 10.1016/j.semcancer.2015.07.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/08/2015] [Indexed: 12/18/2022]
Abstract
The majority of normal animal cells are 10-20 μm in diameter. Many signaling mechanisms, notably PI3K/Akt/mTOR, Myc, and Hippo pathways, tightly control and coordinate cell growth, cell size, cell division, and cell number during homeostasis. These regulatory mechanisms are frequently deregulated during tumorigenesis resulting in wide variations in cell sizes and increased proliferation in cancer cells. Here, we first review the evidence that primitive stem cells in adult tissues are quiescent and generally smaller than their differentiated progeny, suggesting a correlation between small cell sizes with the stemness. Conversely, increased cell size positively correlates with differentiation phenotypes. We then discuss cancer stem cells (CSCs) and present some evidence that correlates cell sizes with CSC activity. Overall, a causal link between CSCs and cell size is relatively weak and remains to be rigorously assessed. In the future, optimizing methods for isolating cells based on size should help elucidate the connection between cancer cell size and CSC characteristics.
Collapse
Affiliation(s)
- Qiuhui Li
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | - Kiera Rycaj
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | - Xin Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX 78957, USA.
| | - Dean G Tang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX 78957, USA; Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
25
|
Radtke CL, Nino-Fong R, Rodriguez-Lecompte JC, Esparza Gonzalez BP, Stryhn H, McDuffee LA. Osteogenic potential of sorted equine mesenchymal stem cell subpopulations. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2015; 79:101-108. [PMID: 25852225 PMCID: PMC4365701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 04/20/2014] [Indexed: 06/04/2023]
Abstract
The objectives of this study were to use non-equilibrium gravitational field-flow fractionation (GrFFF), an immunotag-less method of sorting mesenchymal stem cells (MSCs), to sort equine muscle tissue-derived mesenchymal stem cells (MMSCs) and bone marrow-derived mesenchymal stem cells (BMSC) into subpopulations and to carry out assays in order to compare their osteogenic capabilities. Cells from 1 young adult horse were isolated from left semitendinosus muscle tissue and from bone marrow aspirates of the fourth and fifth sternebrae. Aliquots of 800 × 10(3) MSCs from each tissue source were sorted into 5 fractions using non-equilibrium GrFFF (GrFFF proprietary system). Pooled fractions were cultured and expanded for use in osteogenic assays, including flow cytometry, histochemistry, bone nodule assays, and real-time quantitative polymerase chain reaction (qPCR) for gene expression of osteocalcin (OCN), RUNX2, and osterix. Equine MMSCs and BMSCs were consistently sorted into 5 fractions that remained viable for use in further osteogenic assays. Statistical analysis confirmed strongly significant upregulation of OCN, RUNX2, and osterix for the BMSC fraction 4 with P < 0.00001. Flow cytometry revealed different cell size and granularity for BMSC fraction 4 and MMSC fraction 2 compared to unsorted controls and other fractions. Histochemisty and bone nodule assays revealed positive staining nodules without differences in average nodule area, perimeter, or stain intensity between tissues or fractions. As there are different subpopulations of MSCs with different osteogenic capacities within equine muscle- and bone marrow-derived sources, these differences must be taken into account when using equine stem cell therapy to induce bone healing in veterinary medicine.
Collapse
Affiliation(s)
- Catherine L. Radtke
- Address all correspondence to Dr. Catherine Radtke; telephone: (902) 566-0999; fax: (902) 628-4321; e-mail:
| | | | | | | | | | | |
Collapse
|
26
|
Corradetti B, Taraballi F, Powell S, Sung D, Minardi S, Ferrari M, Weiner BK, Tasciotti E. Osteoprogenitor cells from bone marrow and cortical bone: understanding how the environment affects their fate. Stem Cells Dev 2015; 24:1112-23. [PMID: 25517215 DOI: 10.1089/scd.2014.0351] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bone is a dynamic organ where skeletal progenitors and hematopoietic cells share and compete for space. Presumptive mesenchymal stem cells (MSC) have been identified and harvested from the bone marrow (BM-MSC) and cortical bone fragments (CBF-MSC). In this study, we demonstrate that despite the cells sharing a common ancestor, the differences in the structural properties of the resident tissues affect cell behavior and prime them to react differently to stimuli. Similarly to the bone marrow, the cortical portion of the bone contains a unique subset of cells that stains positively for the common MSC-associated markers. These cells display different multipotent differentiation capability, clonogenic expansion, and immunosuppressive potential. In particular, when compared with BM-MSC, CBF-MSC are bigger in size, show a lower proliferation rate at early passages, have a greater commitment toward the osteogenic lineage, constitutively produce nitric oxide as a mediator for bone remodeling, and more readily respond to proinflammatory cytokines. Our data suggest that the effect of the tissue's microenvironment makes the CBF-MSC a superior candidate in the development of new strategies for bone repair.
Collapse
Affiliation(s)
- Bruna Corradetti
- 1 Department of Nanomedicine, Houston Methodist Research Institute , Houston, Texas
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Iacono E, Rossi B, Merlo B. Stem cells from foetal adnexa and fluid in domestic animals: an update on their features and clinical application. Reprod Domest Anim 2015; 50:353-64. [PMID: 25703812 DOI: 10.1111/rda.12499] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/15/2015] [Indexed: 12/25/2022]
Abstract
Over the past decade, stem cell research has emerged as an area of major interest for its potential in regenerative medicine applications. This is in constant need of new cell sources to conceive regenerative medicine approaches for diseases that are still without therapy. Scientists drew the attention towards alternative sources such as foetal adnexa and fluid, as these sources possess many advantages: first of all, cells can be extracted from discarded foetal material and it is non-invasive and inexpensive for the patient; secondly, abundant stem cells can be obtained; and finally, these stem cell sources are free from ethical considerations. Cells derived from foetal adnexa and fluid preserve some of the characteristics of the primitive embryonic layers from which they originate. Many studies have demonstrated the differentiation potential in vitro and in vivo towards mesenchymal and non-mesenchymal cell types; in addition, the immune-modulatory properties make these cells a good candidate for allo- and xenotransplantation. Naturally occurring diseases in domestic animals can be more ideal as disease model of human genetic and acquired diseases and could help to define the potential therapeutic use efficiency and safety of stem cells therapies. This review offers an update on the state of the art of characterization of domestic animals' MSCs derived from foetal adnexa and fluid and on the latest findings in pre-clinical or clinical setting of the stem cell populations isolated from these sources.
Collapse
Affiliation(s)
- E Iacono
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia (Bo), Italy
| | | | | |
Collapse
|
28
|
Calcium-sensing receptor-mediated osteogenic and early-stage neurogenic differentiation in umbilical cord matrix mesenchymal stem cells from a large animal model. PLoS One 2014; 9:e111533. [PMID: 25379789 PMCID: PMC4224416 DOI: 10.1371/journal.pone.0111533] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 10/03/2014] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Umbilical cord matrix mesenchymal stem cells (UCM-MSCs) present a wide range of potential therapeutical applications. The extracellular calcium-sensing receptor (CaSR) regulates physiological and pathological processes. We investigated, in a large animal model, the involvement of CaSR in triggering osteogenic and neurogenic differentiation of two size-sieved UCM-MSC lines, by using AMG641, a novel potent research calcimimetic acting as CaSR agonist. METHODOLOGY/PRINCIPAL FINDINGS Large (>8 µm in diameter) and small (<8 µm) equine UCM-MSC lines were cultured in medium with high calcium (Ca2+) concentration ([Ca2+]o; 2.87 mM) and dose-response effects of AMG641 (0.01 to 3µM) on cell proliferation were evaluated. Both cell lines were then cultured in osteogenic or neurogenic differentiation medium containing: 1) low [Ca2+]o (0.37 mM); 2) high [Ca2+]o (2.87 mM); 3) AMG641 (0.05, 0.1 or 1 µM) with high [Ca2+]o and 4) the CaSR antagonist NPS2390 (10 mM for 30 min) followed by incubation with AMG641 in high [Ca2+]o. Expression of osteogenic or neurogenic differentiation biomarkers was compared among groups. In both cell lines, AMG641 dose-dependently increased cell proliferation (up to P<0.001). Osteogenic molecular markers expression was differentially regulated by AMG641, with stimulatory (OPN up-regulation) in large or inhibitory (RUNX2 and OPN down-regulation) effects in small cells, respectively. AMG641 significantly increased alkaline phosphatase activity and calcium phosphate deposition in both cell lines. Following treatment with AMG641 during osteogenic differentiation, in both cell lines CaSR expression was inversely related to that of osteogenic markers and inhibition of CaSR by NPS2390 blocked AMG641-dependent responses. Early-stage neurogenic differentiation was promoted/triggered by AMG641 in both cell lines, as Nestin and CaSR mRNA transcription up-regulation were observed. CONCLUSIONS/SIGNIFICANCE Calcium- and AMG641-induced CaSR stimulation promoted in vitro proliferation and osteogenic and early-stage neurogenic differentiation of UCM-MSCs. CaSR activation may play a fundamental role in selecting specific differentiation checkpoints of these two differentiation routes, as related to cell commitment status.
Collapse
|
29
|
Amniotic membrane-derived mesenchymal cells and their conditioned media: potential candidates for uterine regenerative therapy in the horse. PLoS One 2014; 9:e111324. [PMID: 25360561 PMCID: PMC4216086 DOI: 10.1371/journal.pone.0111324] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/29/2014] [Indexed: 12/18/2022] Open
Abstract
Amniotic membrane-derived mesenchymal cells (AMCs) are considered suitable candidates for a variety of cell-based applications. In view of cell therapy application in uterine pathologies, we studied AMCs in comparison to cells isolated from the endometrium of mares at diestrus (EDCs) being the endometrium during diestrus and early pregnancy similar from a hormonal standpoint. In particular, we demonstrated that amnion tissue fragments (AM) shares the same transcriptional profile with endometrial tissue fragments (ED), expressing genes involved in early pregnancy (AbdB-like Hoxa genes), pre-implantantion conceptus development (Erα, PR, PGRMC1 and mPR) and their regulators (Wnt7a, Wnt4a). Soon after the isolation, only AMCs express Wnt4a and Wnt7a. Interestingly, the expression levels of prostaglandin-endoperoxide synthase 2 (PTGS2) were found greater in AM and AMCs than their endometrial counterparts thus confirming the role of AMCs as mediators of inflammation. The expression of nuclear progesterone receptor (PR), membrane-bound intracellular progesterone receptor component 1 (PGRMC1) and membrane-bound intracellular progesterone receptor (mPR), known to lead to improved endometrial receptivity, was maintained in AMCs over 5 passages in vitro when the media was supplemented with progesterone. To further explore the potential of AMCs in endometrial regeneration, their capacity to support resident cell proliferation was assessed by co-culturing them with EDCs in a transwell system or culturing in the presence of AMC-conditioned medium (AMC-CM). A significant increase in EDC proliferation rate exhibited the crucial role of soluble factors as mediators of stem cells action. The present investigation revealed that AMCs, as well as their derived conditioned media, have the potential to improve endometrial cell replenishment when low proliferation is associated to pregnancy failure. These findings make AMCs suitable candidates for the treatment of endometrosis in mares.
Collapse
|
30
|
Lopez MJ, Jarazo J. State of the art: stem cells in equine regenerative medicine. Equine Vet J 2014; 47:145-54. [PMID: 24957845 DOI: 10.1111/evj.12311] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 06/01/2014] [Indexed: 12/20/2022]
Abstract
According to Greek mythology, Prometheus' liver grew back nightly after it was removed each day by an eagle as punishment for giving mankind fire. Hence, contrary to popular belief, the concept of tissue and organ regeneration is not new. In the early 20th century, cell culture and ex vivo organ preservation studies by Alexis Carrel, some with famed aviator Charles Lindbergh, established a foundation for much of modern regenerative medicine. While early beliefs and discoveries foreshadowed significant accomplishments in regenerative medicine, advances in knowledge within numerous scientific disciplines, as well as nano- and micromolecular level imaging and detection technologies, have contributed to explosive advances over the last 20 years. Virtually limitless preparations, combinations and applications of the 3 major components of regenerative medicine, namely cells, biomaterials and bioactive molecules, have created a new paradigm of future therapeutic options for most species. It is increasingly clear, however, that despite significant parallels among and within species, there is no 'one-size-fits-all' regenerative therapy. Likewise, a panacea has yet to be discovered that completely reverses the consequences of time, trauma and disease. Nonetheless, there is no question that the promise and potential of regenerative medicine have forever altered medical practices. The horse is a relative newcomer to regenerative medicine applications, yet there is already a large body of work to incorporate novel regenerative therapies into standard care. This review focuses on the current state and potential future of stem cells in equine regenerative medicine.
Collapse
Affiliation(s)
- M J Lopez
- Laboratory for Equine and Comparative Orthopedic Research, Equine Health Studies Program, Department of Veterinary Clinical Sciences, Louisiana State University, Baton Rouge, USA
| | | |
Collapse
|
31
|
Paebst F, Piehler D, Brehm W, Heller S, Schroeck C, Tárnok A, Burk J. Comparative immunophenotyping of equine multipotent mesenchymal stromal cells: an approach toward a standardized definition. Cytometry A 2014; 85:678-87. [PMID: 24894974 DOI: 10.1002/cyto.a.22491] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/01/2014] [Accepted: 05/01/2014] [Indexed: 12/31/2022]
Abstract
Horses are an approved large animal model for therapies of the musculoskeletal system. Especially for tendon disease where cell-based therapy is commonly used in equine patients, the translation of achieved results to human medicine would be a great accomplishment. Immunophenotyping of equine mesenchymal stromal cells (MSCs) remains the last obstacle to meet the criteria of the International Society for Cellular Therapy (ISCT) definition of human MSCs. Therefore, the surface antigen expression of CD 29, CD 44, CD 73, CD 90, CD 105, CD 14, CD 34, CD 45, CD 79α, and MHC II in equine MSCs from adipose tissue, bone marrow, umbilical cord blood, umbilical cord tissue, and tendon tissue was analyzed using flow cytometry. Isolated cells from the different sources and donors varied in their expression pattern of MSC-defining antigens. In particular, CD 90 and 105 showed most heterogeneity. However, cells from all samples were robustly positive for CD 29 and CD 44, while being mostly negative for CD 73 and the exclusion markers CD 14, CD 34, CD 45, CD 79α and MHC II. Furthermore, it was evident that enzymes used for cell detachment after in vitro-culture affected the detection of antigen expression. These results emphasize the need of standardization of MSC isolation, culturing, and harvesting techniques. As the equine MSCs did not meet all criteria the ISCT defined for human MSCs, further investigations for a better characterization of the cell type should be conducted.
Collapse
Affiliation(s)
- Felicitas Paebst
- Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany; Faculty of Veterinary Medicine, Large Animal Clinic for Surgery, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Barberini DJ, Freitas NPP, Magnoni MS, Maia L, Listoni AJ, Heckler MC, Sudano MJ, Golim MA, da Cruz Landim-Alvarenga F, Amorim RM. Equine mesenchymal stem cells from bone marrow, adipose tissue and umbilical cord: immunophenotypic characterization and differentiation potential. Stem Cell Res Ther 2014; 5:25. [PMID: 24559797 PMCID: PMC4055040 DOI: 10.1186/scrt414] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 02/13/2014] [Indexed: 01/01/2023] Open
Abstract
Introduction Studies with mesenchymal stem cells (MSCs) are increasing due to their immunomodulatory, anti-inflammatory and tissue regenerative properties. However, there is still no agreement about the best source of equine MSCs for a bank for allogeneic therapy. The aim of this study was to evaluate the cell culture and immunophenotypic characteristics and differentiation potential of equine MSCs from bone marrow (BM-MSCs), adipose tissue (AT-MSCs) and umbilical cord (UC-MSCs) under identical in vitro conditions, to compare these sources for research or an allogeneic therapy cell bank. Methods The BM-MSCs, AT-MSCs and UC-MSCs were cultured and evaluated in vitro for their osteogenic, adipogenic and chondrogenic differentiation potential. Additionally, MSCs were assessed for CD105, CD44, CD34, CD90 and MHC-II markers by flow cytometry, and MHC-II was also assessed by immunocytochemistry. To interpret the flow cytometry results, statistical analysis was performed using ANOVA. Results The harvesting and culturing procedures of BM-MSCs, AT-MSCs and UC-MSCs were feasible, with an average cell growth until the third passage of 25 days for BM-MSCs, 15 days for AT-MSCs and 26 days for UC-MSCs. MSCs from all sources were able to differentiate into osteogenic (after 10 days for BM-MSCs and AT-MSCs and 15 days for UC-MSCs), adipogenic (after 8 days for BM-MSCs and AT-MSCs and 15 days for UC-MSCs) and chondrogenic (after 21 days for BM-MSCs, AT-MSCs and UC-MSCs) lineages. MSCs showed high expression of CD105, CD44 and CD90 and low or negative expression of CD34 and MHC-II. The MHC-II was not detected by immunocytochemistry techniques in any of the MSCs studied. Conclusions The BM, AT and UC are feasible sources for harvesting equine MSCs, and their immunophenotypic and multipotency characteristics attained minimal criteria for defining MSCs. Due to the low expression of MHC-II by MSCs, all of the sources could be used in clinical trials involving allogeneic therapy in horses. However, the BM-MSCs and AT-MSCs showed fastest ‘‘in vitro’’ differentiation and AT-MSCs showed highest cell growth until third passage. These findings suggest that BM and AT may be preferable for cell banking purposes.
Collapse
|
33
|
Rutigliano L, Corradetti B, Valentini L, Bizzaro D, Meucci A, Cremonesi F, Lange-Consiglio A. Molecular characterization and in vitro differentiation of feline progenitor-like amniotic epithelial cells. Stem Cell Res Ther 2013; 4:133. [PMID: 24405576 PMCID: PMC3854755 DOI: 10.1186/scrt344] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 10/25/2013] [Indexed: 12/21/2022] Open
Abstract
Introduction While amniotic mesenchymal cells have been isolated and characterized in different species, amniotic epithelial cells (AECs) have been found only in humans and horses and are recently considered valid candidates in regenerative medicine. The aim of this work is to obtain and characterize, for the first time in the feline species, presumptive stem cells from the epithelial portion of the amnion (AECs) to be used for clinical applications. Methods In our study, we molecularly characterized and induced in vitro differentiation of feline AECs, obtained after enzymatic digestion of amnion. Results AECs displayed a polygonal morphology and the mean doubling time value was 1.94 ± 0.04 days demonstrating the high proliferating capacity of these cells. By RT-PCR, AECs expressed pluripotent (Oct4, Nanog) and some mesenchymal markers (CD166, CD44) suggesting that an epithelial-mesenchymal transition may occur in these cells that lack the hematopoietic marker CD34. Cells also showed the expression of embryonic marker SSEA-4, but not SSEA-3, as demonstrated by immunocytochemistry and flow cytometry. Moreover, the possibility to use feline AECs in cell therapies resides in their low immunogenicity, due to the absence of MHC-II antigen expression. After induction, AECs differentiated into the mesodermic and ectodermic lineages, demonstrating high plasticity. Conclusions In conclusion, feline AECs appear to be a readily obtainable, highly proliferative, multipotent and non-immunogenic cell line from a source that may represent a good model system for stem cell biology and be useful in allogenic cell-based therapies in order to treat tissue lesions, especially with loss of substance.
Collapse
|
34
|
Lange-Consiglio A, Tassan S, Corradetti B, Meucci A, Perego R, Bizzaro D, Cremonesi F. Investigating the efficacy of amnion-derived compared with bone marrow-derived mesenchymal stromal cells in equine tendon and ligament injuries. Cytotherapy 2013; 15:1011-20. [PMID: 23602577 DOI: 10.1016/j.jcyt.2013.03.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 12/21/2012] [Accepted: 03/11/2013] [Indexed: 11/24/2022]
Abstract
BACKGROUND AIMS This is the first study to compare the treatment of horse tendon and ligament injuries with the use of mesenchymal stromal cells (MSCs) obtained from two different sources: amniotic membrane (AMSCs) and bone marrow (BM-MSCs). The objective was to prove the ability of AMSCs to exert beneficial effects in vivo. METHODS Five million allogeneic frozen-thawed AMSCs or autologous fresh BM-MSCs were injected intralesionally in horses belonging to group A (51 horses) and group B (44 horses). The interval lesion/implantation was of 6-15 days for the AMSCs and 16-35 days for the BM-MSCs. Healing was assessed clinically and ultrasonographically. Follow-up was monitored for 2 further years from return to full work. RESULTS No significant adverse effects after MSCs treatment were seen in any of the horses studied, independent of the type of stromal cell implanted. All animals belonging to group A resumed their activities between 4-5 months after treatment, whereas animals of group B resumed their activities after 4-12 months. The rate of re-injury in horses treated with AMSCs is lower (4.00%) compared with the average observed when horses were treated with BM-MSCs (23.08%). CONCLUSIONS The possibility to inject allogeneic AMSCs in real time, before any ultrasonographic change occurs within the injured tendon and ligament, together with the higher plasticity and proliferative capacity of these cells compared with BM-MSCs, represents the main features of interest for this novel approach for the treatment of equine tendon diseases. An obvious active proliferative healing in the area injected with AMSCs makes these cells more effective than BM-MSCs.
Collapse
Affiliation(s)
- Anna Lange-Consiglio
- Università degli Studi di Milano, Large Animal Hospital, Reproduction Unit, Lodi, Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
Corradetti B, Meucci A, Bizzaro D, Cremonesi F, Lange Consiglio A. Mesenchymal stem cells from amnion and amniotic fluid in the bovine. Reproduction 2013; 145:391-400. [DOI: 10.1530/rep-12-0437] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Amnion and amniotic fluid (AF) are noncontroversial and inexhaustible sources of mesenchymal stem cells (MSCs) that can be harvested noninvasively at low cost. As in humans, also in veterinary field, presumptive stem cells derived from these tissues reveal as promising candidates for disease treatment, specifically for their plasticity, their reduced immunogenicity, and high anti-inflammatory potential. The aim of this work is to obtain and characterize, for the first time in bovine species, presumptive MSCs from the epithelial portion of the amnion (AECs) and from the AF (AF-MSCs) to be used for clinical applications. AECs display a polygonal morphology, whereas AF-MSCs exhibit a fibroblastic-like morphology only starting from the second passage, being heterogeneous during the primary culture. For both lines, the proliferative ability has been found constant over the ten passages studied and AECs show a statistically lower (P<0.05) doubling time with respect to AF-MSCs. AECs express MSC-specific markers (ITGB1(CD29),CD44,ALCAM(CD166),ENG(CD105), andNT5E(CD73)) from P1 to P3; in AF-MSCs, onlyITGB1,CD44, andALCAMmRNAs are detected;NT5Eis expressed from P2 andENGhas not been found at any passage. AF-MSCs and AECs are positive for the pluripotent markers (POU5F1(OCT4) andMYC(c-Myc)) and lack of the hematopoietic markers. When appropriately induced, both cell lines are capable of differentiating into ectodermal and mesodermal lineages. This study contributes to reinforce the emerging importance of these cells as ideal tools in veterinary medicine. A deeper evaluation of the immunological properties needs to be performed in order to better understand their role in cellular therapy.
Collapse
|
36
|
Lange-Consiglio A, Corradetti B, Meucci A, Perego R, Bizzaro D, Cremonesi F. Characteristics of equine mesenchymal stem cells derived from amnion and bone marrow: in vitro proliferative and multilineage potential assessment. Equine Vet J 2013; 45:737-44. [PMID: 23527626 DOI: 10.1111/evj.12052] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 12/30/2012] [Indexed: 11/26/2022]
Abstract
REASONS FOR PERFORMING STUDY This is the first study comparing stemness features of equine mesenchymal progenitor cells derived from amniotic membrane and bone marrow. OBJECTIVES To investigate an alternative and noninvasive stromal cell source for equine tissue engineering. STUDY DESIGN In vitro experimental study of the characteristics of equine mesenchymal progenitor cells derived from amnion and bone marrow. METHODS Cells isolated from amniotic membrane and bone marrow were analysed for proliferation (growth curve, doubling time, colony forming unit). Immunocytochemical detection of pluripotency markers and gene expression of stromal cell markers were also performed and these cells were studied for multilineage plasticity. RESULTS Amniotic stromal cells (AMSCs) and bone marrow mesenchymal cells (BM-MSCs) both exhibited mature stromal cell-specific gene expression and immunocytochemical properties, but showed substantial differences in their proliferative and differentiation potential. The mean doubling time for AMSCs was significantly lower (P<0.05) than that observed for BM-MSCs (1.17 ± 0.15 vs. 3.27 ± 0.19 days, respectively). Compared to AMSCs, BM-MSCs also demonstrated a significantly (P<0.05) lower clonogenic capability (one fibroblast-like colony forming unit from a mean of 590.15 cells seeded for BM-MSCs vs. 242.73 cells seeded for AMSCs). BM-MSCs did not differentiate into glial cells, and the osteogenic differentiation process was longer than for AMSCs. CONCLUSIONS AND POTENTIAL RELEVANCE The amniotic membrane could be a valuable source of MSCs to be used both for allogenic and/or autologous therapies. The noninvasive nature and low cost of collection, the rapid proliferation along with a greater differentiation potential and the 'off the shelf' preparation potential could make AMCs useful for cell therapy.
Collapse
Affiliation(s)
- A Lange-Consiglio
- Large Animal Hospital, Reproduction Unit, Università degli Studi di Milano, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Burk J, Badylak SF, Kelly J, Brehm W. Equine cellular therapy--from stall to bench to bedside? Cytometry A 2012; 83:103-13. [PMID: 23081833 DOI: 10.1002/cyto.a.22216] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pioneering clinical stem cell research is being performed in the horse, a recipient of cutting edge veterinary medicine as well as a unique animal model, paving the way for human medical applications. Although demonstrable progress has been made on the clinical front, in vitro characterization of equine stem cells is still in comparatively early stages. To translate the promising results of clinical stem cell therapy in the horse, advances must be made in the characterization of equine stem cells. Aiming to improve communication between veterinarians and other natural scientists, this review gives an overview of veterinary "bedside" achievements, focusing on stem cell therapies in equine orthopedics as well as the current state of in vitro characterization of equine multipotent mesenchymal stromal cells (MSCs) and equine embryonic stem cells (ESCs).
Collapse
Affiliation(s)
- Janina Burk
- Faculty of Veterinary Medicine, Large Animal Clinic for Surgery, University of Leipzig, Leipzig, Germany
| | | | | | | |
Collapse
|
38
|
Tetta C, Consiglio AL, Bruno S, Tetta E, Gatti E, Dobreva M, Cremonesi F, Camussi G. The role of microvesicles derived from mesenchymal stem cells in tissue regeneration; a dream for tendon repair? Muscles Ligaments Tendons J 2012; 2:212-21. [PMID: 23738299 PMCID: PMC3666529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Tendon injuries represent even today a challenge as repair may be exceedingly slow and incomplete. Regenerative medicine and stem cell technology have shown to be of great promise. Here, we will review the current knowledge on the mechanisms of the regenerative potential of mesenchymal stem cells (MSCs) obtained from different sources (bone marrow, fat, cord blood, placenta). More specifically, we will devote attention to the current use of MSCs that have been used experimentally and in limited numbers of clinical cases for the surgical treatment of subchondral-bone cysts, bone-fracture repair and cartilage repair. Based on the recently emerging role in regenerative mechanisms of soluble factors and of extracellular vesicles, we will discuss the potential of non-cellular therapies in horse tendon injuries.
Collapse
Affiliation(s)
- Ciro Tetta
- Center of Translational Regenerative Medicine, Fresenius Medical Care Deutschland GmbH, Torino, Italy
| | - Anna Lange Consiglio
- Reproduction Section, “Polo Veterinario di Lodi”, Faculty of Veterinary Medicine, University of Milan, Italy
| | - Stefania Bruno
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Italy
| | - Emanuele Tetta
- Faculty of Science of Animal Production, University of Bologna, Italy
| | - Emanuele Gatti
- Center of Translational Regenerative Medicine, Fresenius Medical Care Deutschland GmbH, Torino, Italy
| | - Miryana Dobreva
- Center of Translational Regenerative Medicine, Fresenius Medical Care Deutschland GmbH, Torino, Italy
| | - Fausto Cremonesi
- Reproduction Section, “Polo Veterinario di Lodi”, Faculty of Veterinary Medicine, University of Milan, Italy
| | | |
Collapse
|
39
|
Iacono E, Cunto M, Zambelli D, Ricci F, Tazzari PL, Merlo B. Could fetal fluid and membranes be an alternative source for Mesenchymal Stem Cells (MSCs) in the feline species? A preliminary study. Vet Res Commun 2012; 36:107-18. [DOI: 10.1007/s11259-012-9520-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2012] [Indexed: 12/22/2022]
|
40
|
Stem cell-based tissue engineering in veterinary orthopaedics. Cell Tissue Res 2012; 347:677-688. [PMID: 22287044 DOI: 10.1007/s00441-011-1316-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 12/21/2011] [Indexed: 01/23/2023]
Abstract
Regenerative medicine is one of the most intensively researched medical branches, with enormous progress every year. When it comes to translating research from bench to bedside, many of the pioneering innovations are achieved by cooperating teams of human and veterinary medical scientists. The veterinary profession has an important role to play in this new and evolving technology, holding a great scientific potential, because animals serve widely as models for human medicine and results obtained from animals may serve as preclinical results for human medicine. Regenerative veterinary medicine utilizing mesenchymal stromal cells (MSC) for the treatment of acute injuries as well as chronic disorders is gradually turning into clinical routine. As orthopaedic disorders represent a major part of all cases in veterinary clinical practice, it is not surprising that they are currently taking a leading role in MSC therapies. Therefore, the purpose of this paper is to give an overview on past and current achievements as well as future perspectives in stem cell-based tissue engineering in veterinary orthopaedics.
Collapse
|