1
|
Taddio MF, Castro Jaramillo CA, Runge P, Blanc A, Keller C, Talip Z, Béhé M, van der Meulen NP, Halin C, Schibli R, Krämer SD. In Vivo Imaging of Local Inflammation: Monitoring LPS-Induced CD80/CD86 Upregulation by PET. Mol Imaging Biol 2021; 23:196-207. [PMID: 32989622 PMCID: PMC7910267 DOI: 10.1007/s11307-020-01543-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/11/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE The co-stimulatory molecules CD80 and CD86 are upregulated on activated antigen-presenting cells (APC). We investigated whether local APC activation, induced by subcutaneous (s.c.) inoculation of lipopolysaccharides (LPS), can be imaged by positron emission tomography (PET) with CD80/CD86-targeting 64Cu-labelled abatacept. PROCEDURES Mice were inoculated s.c. with extracellular-matrix gel containing either LPS or vehicle (PBS). Immune cell populations were analysed by flow cytometry and marker expression by RT-qPCR. 64Cu-NODAGA-abatacept distribution was analysed using PET/CT and ex vivo biodistribution. RESULTS The number of CD80+ and CD86+ immune cells at the LPS inoculation site significantly increased a few days after inoculation. CD68 and CD86 expression were higher at the LPS than the PBS inoculation site, and CD80 was only increased at the LPS inoculation site. CTLA-4 was highest 10 days after LPS inoculation, when CD80/CD86 decreased again. A few days after inoculation, 64Cu-NODAGA-abatacept distribution to the inoculation site was significantly higher for LPS than PBS (4.2-fold). Co-administration of unlabelled abatacept or human immunoglobulin reduced tracer uptake. The latter reduced the number of CD86+ immune cells at the LPS inoculation site. CONCLUSIONS CD80 and CD86 are upregulated in an LPS-induced local inflammation, indicating invasion of activated APCs. 64Cu-NODAGA-abatacept PET allowed following APC activation over time.
Collapse
Affiliation(s)
- Marco F Taddio
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland.
| | - Claudia A Castro Jaramillo
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Peter Runge
- Pharmaceutical Immunology, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Alain Blanc
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - Claudia Keller
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Zeynep Talip
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - Martin Béhé
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - Nicholas P van der Meulen
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Paul Scherrer Institute (PSI), Villigen, Switzerland
- Laboratory of Radiochemistry, Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - Cornelia Halin
- Pharmaceutical Immunology, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - Stefanie D Krämer
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland.
| |
Collapse
|
2
|
Differential Expression of IFN- γ, IL-10, TLR1, and TLR2 and Their Potential Effects on Downgrading Leprosy Reaction and Erythema Nodosum Leprosum. J Immunol Res 2019; 2019:3405103. [PMID: 31781675 PMCID: PMC6875386 DOI: 10.1155/2019/3405103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/16/2019] [Indexed: 01/30/2023] Open
Abstract
Leprosy reactions are acute immunological events that occur during the evolution of chronic infectious disease causing neural damage and disabilities. A study using blood samples of 17 leprosy reaction patients and 17 reaction-free was carried out by means of associations between antigens, receptors, and expression of cytokines, using path analysis providing new insights into the immunological mechanisms involved in triggering leprosy reactions. Toll-like receptors (TLR) such as TLR1 and TLR2, presented balanced expression in the reaction-free multibacillary (MB) group (TLR1: 1.01 ± 0.23, TLR2: 1.22 ± 0.18; p = 0.267). On the other hand, downgrading type 1 reaction (T1R) (TLR1: 1.24 ± 0.17, TLR2: 2.88 ± 0.37; p = 0.002) and erythema nodosum leprosum (ENL) (TLR1: 1.93 ± 0.17, TLR2: 2.81 ± 0.15; p = 0.004) revealed an unbalance in relation to the expression of these receptors. When the path analysis was approached, it was noted that interleukin 10 (IL-10) expression showed a dependence relation with phenolic glycolipid I (PGL-I) in downgrading T1R (direct effect = 0.503 > residual effect = 0.364), whereas in ENL, such relationship occurred with lipoarabinomannan (LAM) (direct effect = 0.778 > residual effect = 0.280). On the contrary, in the reaction-free leprosy group, interferon-gamma (IFN-γ) levels were dependent on the association between TLR2 and TLR1 (0.8735). The high TLR2 expression associated with IL-10 levels, in the leprosy reaction groups, may be hypothetically related to the formation of TLR2/2 homodimers and/or TLR2/6 heterodimers linked to evasion mechanisms in downgrading reactions and pathophysiology of ENL.
Collapse
|
3
|
Polycarpou A, Walker SL, Lockwood DNJ. A Systematic Review of Immunological Studies of Erythema Nodosum Leprosum. Front Immunol 2017; 8:233. [PMID: 28348555 PMCID: PMC5346883 DOI: 10.3389/fimmu.2017.00233] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/17/2017] [Indexed: 01/04/2023] Open
Abstract
Erythema nodosum leprosum (ENL) is a painful inflammatory complication of leprosy occurring in 50% of lepromatous leprosy patients and 5-10% of borderline lepromatous patients. It is a significant cause of economic hardship, morbidity and mortality in leprosy patients. Our understanding of the causes of ENL is limited. We performed a systematic review of the published literature and critically evaluated the evidence for the role of neutrophils, immune complexes (ICs), T-cells, cytokines, and other immunological factors that could contribute to the development of ENL. Searches of the literature were performed in PubMed. Studies, independent of published date, using samples from patients with ENL were included. The search revealed more than 20,000 articles of which 146 eligible studies were included in this systematic review. The studies demonstrate that ENL may be associated with a neutrophilic infiltrate, but it is not clear whether it is an IC-mediated process or that the presence of ICs is an epiphenomenon. Increased levels of tumor necrosis factor-α and other pro-inflammatory cytokines support the role of this cytokine in the inflammatory phase of ENL but not necessarily the initiation. T-cell subsets appear to be important in ENL since multiple studies report an increased CD4+/CD8+ ratio in both skin and peripheral blood of patients with ENL. Microarray data have identified new molecules and whole pathophysiological pathways associated with ENL and provides new insights into the pathogenesis of ENL. Studies of ENL are often difficult to compare due to a lack of case definitions, treatment status, and timing of sampling as well as the use of different laboratory techniques. A standardized approach to some of these issues would be useful. ENL appears to be a complex interaction of various aspects of the immune system. Rigorous clinical descriptions of well-defined cohorts of patients and a systems biology approach using available technologies such as genomics, epigenomics, transcriptomics, and proteomics could yield greater understanding of the condition.
Collapse
Affiliation(s)
- Anastasia Polycarpou
- Faculty of Infectious and Tropical Diseases, Clinical Research Department, London School of Hygiene and Tropical Medicine , London , UK
| | - Stephen L Walker
- Faculty of Infectious and Tropical Diseases, Clinical Research Department, London School of Hygiene and Tropical Medicine , London , UK
| | - Diana N J Lockwood
- Faculty of Infectious and Tropical Diseases, Clinical Research Department, London School of Hygiene and Tropical Medicine , London , UK
| |
Collapse
|
4
|
Modlin RL. The innate immune response in leprosy. Curr Opin Immunol 2010; 22:48-54. [PMID: 20060279 DOI: 10.1016/j.coi.2009.12.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 12/13/2009] [Indexed: 10/20/2022]
Abstract
Investigation into the innate immune response in leprosy has provided insight into immunoregulation in human infectious disease. Key advances include the role of pattern recognition receptors in recognizing pathogen-associated molecular patterns of Mycobacterium leprae, cytokine release by innate immune cells, macrophage and dendritic cell differentiation, as well as antimicrobial effector pathways. These insights provide targets for therapeutic intervention in modulating the course of leprosy and other chronic infectious diseases.
Collapse
Affiliation(s)
- Robert L Modlin
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, CA 90095, USA.
| |
Collapse
|