1
|
Shimizu T, Tatano Y, Tomioka H. Aldose reductase participates in the downregulation of T cell functions due to suppressor macrophages. Sci Rep 2016; 6:21093. [PMID: 26868163 PMCID: PMC4751572 DOI: 10.1038/srep21093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/15/2016] [Indexed: 02/06/2023] Open
Abstract
The cell-to-cell contact of T lymphocytes with immunosuppressive macrophages causes marked changes in the tyrosine phosphorylation of some cytosolic proteins of T cells. By phosphoproteome analysis, we identified a 36-kDa protein as aldose reductase (AR). The AR expression in T cells was not changed by TCR stimulation or due to cell-to-cell transmission of suppressor signals from immunosuppressive macrophages. Therefore, AR phosphorylation/dephosphorylation is essential for the transduction of TCR-mediated T-cell stimulatory signals, and moreover plays important roles for the cross-talk of immunosuppressive macrophage-derived suppressor signals with the signaling pathways for T-cell activation. Moreover, AR played important roles in the upregulation of ERK1/2-mediated signaling pathways in T lymphocytes. Notably, the enzymatic activity of AR was not required for its signaling action. Taken together, it is concluded that AR mediates intracellular transmission of the suppressor signal of immunosuppressive macrophages toward downstream ERK1/2 pathways, possibly through its direct interaction with acceptor proteins.
Collapse
Affiliation(s)
- Toshiaki Shimizu
- Department of Nutritional Sciences, Yasuda Women's University, Hiroshima 731-0153, Japan
| | - Yutaka Tatano
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Ohtawara 324-8501, Japan
| | - Haruaki Tomioka
- Department of Basic Medical Sciences for Nursing, Yasuda Women's University, Hiroshima 731-0153, Japan.,Department of Microbiology and Immunology, Shimane University School of Medicine, Izumo 693-8501, Japan
| |
Collapse
|
2
|
Tatano Y, Shimizu T, Tomioka H. Unique macrophages different from M1/M2 macrophages inhibit T cell mitogenesis while upregulating Th17 polarization. Sci Rep 2014; 4:4146. [PMID: 24553452 PMCID: PMC3930092 DOI: 10.1038/srep04146] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 02/05/2014] [Indexed: 02/06/2023] Open
Abstract
Mycobacterial infection induces suppressor macrophages (MΦs), causing disease exacerbation. There are two major MΦ subsets (M1 and M2 MΦs) that are phenotypically and functionally different. Here, we examined which of the MΦ subsets the mycobacterial infection-induced suppressor MΦs (MIS-MΦs) belong to. MIS-MΦs down-regulated T cell production of Th1 and Th2 cytokines but markedly increased production of interleukin (IL)-17A and IL-22 through up-regulation of Th17 cell expansion. In this phenomenon, a novel MΦ population, which is functionally distinguishable from M1 and M2 MΦ subsets and possesses unique phenotypes (IL-12(+), IL-1β(high), IL-6(+), tumor necrosis factor (TNF)-α(+), nitric oxide synthase (NOS) 2(+), CCR7(high), IL-10(high), arginase (Arg)-1(-), mannose receptor (MR)(low), Ym1(high), Fizz(low), and CD163(high)), played central roles through the action of IL-6 and transforming growth factor (TGF)-β but not IL-21 and IL-23. This new type of MΦ population was induced in infected mice and actively supported the in vivo expansion of Th17 cells.
Collapse
Affiliation(s)
- Yutaka Tatano
- Department of Microbiology and Immunology, Shimane University School of Medicine, Izumo, Shimane 693-8501, Japan
| | - Toshiaki Shimizu
- Department of Microbiology and Immunology, Shimane University School of Medicine, Izumo, Shimane 693-8501, Japan
| | - Haruaki Tomioka
- Department of Microbiology and Immunology, Shimane University School of Medicine, Izumo, Shimane 693-8501, Japan
| |
Collapse
|
3
|
Tomioka H, Tatano Y, Maw WW, Sano C, Kanehiro Y, Shimizu T. Characteristics of suppressor macrophages induced by mycobacterial and protozoal infections in relation to alternatively activated M2 macrophages. Clin Dev Immunol 2012; 2012:635451. [PMID: 22666284 PMCID: PMC3361169 DOI: 10.1155/2012/635451] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 01/15/2023]
Abstract
In the advanced stages of mycobacterial infections, host immune systems tend to change from a Th1-type to Th2-type immune response, resulting in the abrogation of Th1 cell- and macrophage-mediated antimicrobial host protective immunity. Notably, this type of immune conversion is occasionally associated with the generation of certain types of suppressor macrophage populations. During the course of Mycobacterium tuberculosis (MTB) and Mycobacterium avium-intracellulare complex (MAC) infections, the generation of macrophages which possess strong suppressor activity against host T- and B-cell functions is frequently encountered. This paper describes the immunological properties of M1- and M2-type macrophages generated in tumor-bearing animals and those generated in hosts with certain microbial infections. In addition, this paper highlights the immunological and molecular biological characteristics of suppressor macrophages generated in hosts with mycobacterial infections, especially MAC infection.
Collapse
Affiliation(s)
- Haruaki Tomioka
- Department of Microbiology and Immunology, Shimane University School of Medicine, Izumo, Shimane 693-8501, Japan.
| | | | | | | | | | | |
Collapse
|
4
|
Composto G, Gonzalez D, Bucknum A, Silberman D, Taylor J, Kozlowski M, Bloomfield T, Bartlett T, Riggs J. Peritoneal T lymphocyte regulation by macrophages. Immunobiology 2011; 216:256-64. [PMID: 20488579 PMCID: PMC2935942 DOI: 10.1016/j.imbio.2010.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Revised: 04/03/2010] [Accepted: 04/04/2010] [Indexed: 10/19/2022]
Abstract
The T cell composition of the peritoneal cavity (PerC) in naïve BALB/c, C57BL/6, DBA/2J, and B-1 B cell-defective BALB.xid mice was investigated. The BALB.xid PerC T cell pool had a high CD4:CD8 T cell ratio relative to the other strains whose ratios were similar to those found in their lymph node and spleen. All mice had significant representation of T cells with an activated (CD25(+), GITR(hi), CD44(hi), CD45RB(lo), CD62L(lo)) phenotype and low numbers of Foxp3(+) T(reg) cells in their PerC. Despite a phenotype indicative of activation, peritoneal T cell responses to CD3 ligation were very low for C57BL/6 and BALB.xid, but not BALB/c, mice. Enzyme inhibition and cytokine neutralization studies revealed active suppression of the T cell response mediated by the macrophages that represent a significant portion of PerC leucocytes. Driven by IFNγ to express iNOS, macrophages suppressed T cell activation in vitro by arginine catabolism. Although BALB/c T cells were also in a macrophage-dense environment their limited IFNγ production failed to trigger suppression. This difference between BALB/c and BALB.xid PerC T cells suggests a role for xid in shaping macrophage-mediated immune regulation.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Cell Communication/immunology
- Cells, Cultured
- Forkhead Transcription Factors/biosynthesis
- Glucocorticoid-Induced TNFR-Related Protein
- Immune Tolerance
- Immunologic Memory
- Interleukin-2 Receptor alpha Subunit/biosynthesis
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Macrophages, Peritoneal/pathology
- Mice
- Mice, Inbred Strains
- Mice, Mutant Strains
- Receptors, Nerve Growth Factor/biosynthesis
- Receptors, Tumor Necrosis Factor/biosynthesis
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/pathology
Collapse
Affiliation(s)
- G Composto
- Department of Biology, Rider University, Lawrenceville, NJ 08648-3099, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Silberman D, Bucknum A, Kozlowski M, Matlack R, Riggs J. Cytokine treatment of macrophage suppression of T cell activation. Immunobiology 2009; 215:70-80. [PMID: 19249120 PMCID: PMC2767421 DOI: 10.1016/j.imbio.2009.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 01/28/2009] [Accepted: 01/30/2009] [Indexed: 01/08/2023]
Abstract
High Mphi:T cell ratios suppress the immune response to the retroviral superantigen Mls by IFNgamma-triggered production of the arg- and trp-consuming enzymes iNOS and IDO. Attempts to reverse suppression by treatment with pro-inflammatory cytokines revealed that IL-6 improved the T cell response to Mls and the pro-hematopoietic cyokines IL-3 and GM-CSF increased suppression. GM-CSF treatment increased Mphi expression of CD80, a ligand for the immune suppressive B7H1 and CTLA-4 receptors. These results illustrate potential strategies for reversing the suppression of cell-mediated immunity characteristic of the high Mphi:T cell ratios found in many tumors.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- B7-1 Antigen/genetics
- B7-1 Antigen/immunology
- B7-1 Antigen/metabolism
- CTLA-4 Antigen
- Cell Communication/drug effects
- Cell Communication/immunology
- Cells, Cultured
- Cytokines/biosynthesis
- Cytokines/genetics
- Cytokines/immunology
- Cytokines/pharmacology
- Gene Expression Regulation, Enzymologic/drug effects
- Immune Tolerance/drug effects
- Immunotherapy
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Interferon-gamma/biosynthesis
- Interferon-gamma/genetics
- Interferon-gamma/metabolism
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/immunology
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/pathology
- Mice
- Mice, Inbred BALB C
- Mice, SCID
- Minor Lymphocyte Stimulatory Antigens/immunology
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/pathology
- Neoplasms/therapy
- Nitric Oxide Synthase Type II/genetics
- Nitric Oxide Synthase Type II/immunology
- Nitric Oxide Synthase Type II/metabolism
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- Tumor Escape
Collapse
Affiliation(s)
- Daniel Silberman
- Department of Biology, Rider University, Lawrenceville, NJ 08648-3099, USA
| | | | | | | | | |
Collapse
|
6
|
Cavaleiro R, Brunn GJ, Albuquerque AS, Victorino RMM, Platt JL, Sousa AE. Monocyte-mediated T cell suppression by HIV-2 envelope proteins. Eur J Immunol 2008; 37:3435-44. [PMID: 18000954 DOI: 10.1002/eji.200737511] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
HIV-2 is associated with an attenuated form of HIV disease. We investigate here the immunosuppressive effects of the HIV-2 envelope protein, gp105. We found that gp105 suppresses activation of T cells through a monocyte-mediated mechanism. Suppression of T cell activation by gp105 depends on contact between monocytes and T cells, but not on CD4+CD25+ T cells. The TLR4 pathway is likely involved, since gp105 activates TLR4 signaling and induces TNF-alpha production by monocytes. Immunosuppression is viewed as the main pathophysiologic consequence of infection by HIV. However, the main immunologic defect caused by HIV, depletion of T cells, requires T cell activation. Our findings are consistent with a new concept that HIV-2 envelope proteins act on monocytes to suppress T cell activation and that this property may contribute to the benign course of HIV-2. We hypothesize that the HIV-2 envelope immunosuppressive properties limit bursts of T cell activation, thus reducing viremia and contributing to the slow rate of disease progression that characterizes HIV-2 disease.
Collapse
Affiliation(s)
- Rita Cavaleiro
- Unidade de Imunologia Clínica, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|
7
|
Denis M, Wedlock DN, McCarthy AR, Parlane NA, Cockle PJ, Vordermeier HM, Hewinson RG, Buddle BM. Enhancement of the sensitivity of the whole-blood gamma interferon assay for diagnosis of Mycobacterium bovis infections in cattle. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:1483-9. [PMID: 17881504 PMCID: PMC2168177 DOI: 10.1128/cvi.00291-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this study, we determined if the sensitivity of the currently available in vitro test to detect bovine tuberculosis could be enhanced by adding the following immunomodulators: interleukin-2 (IL-2); granulocyte-macrophage colony-stimulating factor (GM-CSF); antibodies neutralizing IL-10 and transforming growth factor beta (TGF-beta); mono-methyl-l-arginine, which blocks nitric oxide production; and l-methyl-tryptophan, which interferes with the indoleamine dioxygenase pathway. Blood was obtained from uninfected control cattle, experimentally infected cattle, cattle responding positively to the skin test in tuberculosis-free areas (false positives), and cattle naturally infected with Mycobacterium bovis from New Zealand and Great Britain. Gamma interferon (IFN-gamma) responses to bovine purified protein derivative (PPD-b), avian purified protein derivative, and a fusion protein of ESAT-6 and CFP-10 were measured. Mono-methyl-l-arginine, l-methyl-tryptophan, or an antibody neutralizing TGF-beta had minimal impact on IFN-gamma production. IL-2 and GM-CSF promoted IFN-gamma release whether antigen was present or not. In contrast, adding an antibody against IL-10 enhanced only antigen-specific responses. In particular, addition of anti-IL-10 to ESAT-6/CFP-10-stimulated blood cultures enhanced the test sensitivity. Furthermore, whole blood cells from field reactors produced substantial amounts of IL-10 upon stimulation with PPD-b or ESAT-6/CFP-10. Testing "false-positive" cattle from tuberculosis-free areas of New Zealand revealed that addition of anti-IL-10 did not compromise the test specificity. Therefore, the use of ESAT-6/CFP-10 with anti-IL-10 could be useful to detect cattle potentially infected with tuberculosis, which are not detected using current procedures.
Collapse
Affiliation(s)
- Michel Denis
- AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Li G, Aaron S, Kazmierczak K, Lesner A, Li Y, Ivanova A, Bentsman G, Potash MJ, Simm M. Inhibition of HIV‐1 or bacterial activation of macrophages by products of HIV‐1‐resistant human cells. Immunol Cell Biol 2007; 85:603-9. [PMID: 17637699 DOI: 10.1038/sj.icb.7100092] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have recently described the molecular basis of HIV-1 resistance factor (HRF)-mediated anti-viral activity in primary and transformed CD4 T cells. HRF+ cell culture supernatants or partially purified HRF were found to incapacitate the formation of the NF-kappaB/DNA complex, which is indispensable for long terminal promoter-driven transcription of virus genes. In this study, we tested whether HRF might have much broader activity against other organisms whose pathogenesis is linked to NF-kappaB activation. Specifically, we tested the effects of HRF on the NF-kappaB-mediated responses of primary macrophages to HIV-1 or several bacterial antigens. We found that exposure to HRF inhibited HIV-1 expression in macrophages and also induced the production of HRF-like activity by macrophages, which prevented replication of virus in HIV-1-infected peripheral blood lymphocytes cultured in the adjacent compartment. We investigated the mechanism of this inhibition and found that HRF impeded NF-kappaB/DNA binding in macrophages induced by either HIV-1 or lipopolysaccharide from several bacteria species, resulting in impaired tumor necrosis factor-alpha responses to these organisms.
Collapse
Affiliation(s)
- Guanhua Li
- Molecular Virology Division, St Luke's-Roosevelt Hospital Center, Columbia University Medical Center, New York, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Matlack R, Yeh K, Rosini L, Gonzalez D, Taylor J, Silberman D, Pennello A, Riggs J. Peritoneal macrophages suppress T-cell activation by amino acid catabolism. Immunology 2006; 117:386-95. [PMID: 16476058 PMCID: PMC1782234 DOI: 10.1111/j.1365-2567.2005.02312.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
T-lymphocyte activation triggered by anti-CD3, endogenous or exogenous superantigen, and mitogens was suppressed in a cell-dose-dependent fashion by peritoneal cavity (PerC) leucocytes. Study of lymphocyte-deficient mice and the use of multiparameter fluorescence-activated cell sorter analyses revealed that macrophages were responsible for this form of immune regulation. Interferon-gamma was essential to trigger suppression, which, by enzyme inhibition studies, was shown to be the result of tryptophan and arginine catabolism. These results illustrate that macrophages, which are classically defined by their innate effector function as antigen-presenting cells, have the potential to temper adaptive immunity.
Collapse
Affiliation(s)
- R Matlack
- Department of Biology, Rider University, Lawrenceville, NJ 08648-3099, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Cai S, Shimizu T, Tomioka H. Comparative studies on the roles of mediator molecules in expression of the suppressor activity of Mycobacterium avium complex-induced immunosuppressive macrophages against T cell and B cell mitogenic responses. Clin Exp Immunol 2006; 143:560-71. [PMID: 16487256 PMCID: PMC1809612 DOI: 10.1111/j.1365-2249.2006.03016.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2005] [Indexed: 01/05/2023] Open
Abstract
Mycobacterium avium complex-induced immunosuppressive macrophages (MAC-MPhis) exhibit suppressor activity against concanavalin A-induced T cell mitogenesis (T cell Con A mitogenesis). We examined the profiles of the MAC-MPhi-mediated suppression of lipopolysaccharide-induced B cell mitogenesis (B cell LPS mitogenesis) and found the following. First, although N(G)-monomethyl-L-arginine and carboxy-PTIO effectively blocked the MAC-MPhi's suppressor activity against T cell Con A mitogenesis, MAC-MPhi's action against B cell LPS mitogenesis was only weakly affected by these NO-reducing agents. Second, B cell LPS mitogenesis was remarkably more susceptible to MAC-MPhi-derived reactive oxygen intermediates than T cell Con A mitogenesis. Third, B cell LPS mitogenesis was less susceptible to the inhibitory effects of the other MAC-MPhi-derived suppressor mediators, including free fatty acids, TGF-beta and prostaglandin E(2), than T cell Con A mitogenesis. Fourth, MAC-MPhi's suppressor activity was strongly dependent on B7-1 like molecule-mediated cell contact with target cells only in the case of T cell Con A mitogenesis. Therefore, there are significant differences in the modes of suppressor action of MAC-MPhis against T cell and B cell mitogenesis.
Collapse
Affiliation(s)
- S Cai
- Department of Microbiology and Immunology, Shimane University School of Medicine, Izumo, Shimane 693-8501, Japan
| | | | | |
Collapse
|
11
|
Rosini L, Matlack R, Taylor J, Howell KF, Yeh K, Pennello A, Riggs JE. Nonlymphoid peritoneal cells suppress the T cell response to Mls. Immunobiology 2005; 209:575-84. [PMID: 15638126 DOI: 10.1016/j.imbio.2004.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Comparative analyses of the ability of lymphoid tissue to present the minor lymphocyte stimulatory (Mls) superantigen Mls-1a in vitro revealed that all tissues containing mature B cells, except peritoneal cavity (PerC) cells, induced Mls-1a-specific T cell activation. Irradiation and mitomycin C treatment, addition of IL-2 and IL-12, and neutralization of IL-10 and TGF-beta did not restore Mls-1a antigen presentation by PerC cells. Co-culture studies revealed that PerC cells actively suppress the T cell response to Mls-1a. PerC cells from severe-combined immune-defective (SCID) mice also suppressed this response indicating that nonlymphoid cells mediate this effect. These results suggest that in addition to antigen processing and presentation, resident peritoneal cavity cells may temper lymphocyte activation.
Collapse
Affiliation(s)
- Laura Rosini
- Department of Biology, Rider University, Lawrenceville, NJ 08648-3099, USA
| | | | | | | | | | | | | |
Collapse
|