1
|
Lacorcia M, Bhattacharjee P, Foster A, Hardy MY, Tye-Din JA, Karas JA, Wentworth JM, Cameron FJ, Mannering SI. BASTA, a simple whole-blood assay for measuring β cell antigen-specific CD4 + T cell responses in type 1 diabetes. Sci Transl Med 2025; 17:eadt2124. [PMID: 40106580 DOI: 10.1126/scitranslmed.adt2124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/21/2025] [Indexed: 03/22/2025]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease where T cells mediate the destruction of the insulin-producing β cells found within the islets of Langerhans in the pancreas. Autoantibodies to β cell antigens are the only tests available to detect β cell autoimmunity. T cell responses to β cell antigens, which are known to cause T1D, can only be measured in research settings because of the complexity of assays and the large blood volumes required. Here, we describe the β cell antigen-specific T cell assay (BASTA). BASTA is a simple whole-blood assay that can detect human CD4+ T cell responses to β cell antigens by measuring antigen-stimulated interleukin-2 (IL-2) production. BASTA is both more sensitive and specific than the CFSE (carboxyfluorescein diacetate succinimidyl ester)-based proliferation assay. We used BASTA to identify the regions of preproinsulin that stimulated T cell responses specifically in blood from people with T1D. BASTA can be done with as little as 2 to 3 milliliters of blood. We found that effector memory CD4+ T cells are the primary producers of IL-2 in response to preproinsulin peptides. We then evaluated responses to individual and pooled preproinsulin peptides in a cross-sectional study of pediatric patients: without T1D, without T1D but with a first-degree relative with T1D, or diagnosed with T1D. In contrast with other preproinsulin peptides, full-length C-peptide (PI33-63) showed high specificity for T1D [area under the curve (AUC) = 0.86)]. We suggest that BASTA will be a useful tool for monitoring changes in β cell-specific CD4+ T cell responses both in research and clinical settings.
Collapse
Affiliation(s)
- Matthew Lacorcia
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Pushpak Bhattacharjee
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Abby Foster
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Melinda Y Hardy
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jason A Tye-Din
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Gastroenterology, Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - John A Karas
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | - John M Wentworth
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
- Department of Medicine, Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Fergus J Cameron
- Department of Endocrinology and Diabetes, Royal Children's Hospital, Parkville, Victoria 3052, Australia
- Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Stuart I Mannering
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
- Department of Medicine, University of Melbourne, St. Vincent's Hospital, Fitzroy, Victoria 3065, Australia
| |
Collapse
|
2
|
Bhattacharjee P, Pakusch M, Lacorcia M, Tresoldi E, Rubin AF, Foster A, King L, Chiu CY, Kay TWH, Karas JA, Cameron FJ, Mannering SI. Proinsulin C-peptide is a major source of HLA-DQ8 restricted hybrid insulin peptides recognized by human islet-infiltrating CD4 + T cells. PNAS NEXUS 2024; 3:pgae491. [PMID: 39554513 PMCID: PMC11565411 DOI: 10.1093/pnasnexus/pgae491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/11/2024] [Indexed: 11/19/2024]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that develops when T cells destroy the insulin-producing beta cells that reside in the pancreatic islets. Immune cells, including T cells, infiltrate the islets and gradually destroy the beta cells. Human islet-infiltrating CD4+ T cells recognize peptide epitopes derived from proinsulin, particularly C-peptide. Hybrid insulin peptides (HIPs) are neoepitopes formed by the fusion of two peptides derived from beta cell granule proteins and are known to be the targets of pathogenic CD4+ T cells in the non-obese diabetic (NOD) mouse and human islet-infiltrating CD4+ T cells. Proinsulin is widely recognized as a central antigen in T1D, but its role in forming HIPs is unclear. We developed a method to functionally screen TCRs derived from human islet-infiltrating CD4+ T cells and applied this to the identification of new proinsulin-derived HIPs. We generated a library of 4,488 candidate HIPs formed by fusion of proinsulin fragments and predicted to bind to HLA-DQ8. This library was screened against 109 islet-infiltrating CD4+ T cell receptors (TCRs) isolated from four organ donors who had T1D. We identified 13 unique HIPs recognized by nine different TCRs from two organ donors. HIP-specific T cell avatars responded specifically to a peptide extract from human islets. These new HIPs predominantly stimulated CD4+ T cell proliferation in peripheral blood mononuclear cells from individuals with T1D in contrast to HLA-matched controls. This is the first unbiased functional, islet-infiltrating T cell based, screen to identify proinsulin-derived HIPs. It has revealed many new HIPs and a central role of proinsulin C-peptide in their formation.
Collapse
Affiliation(s)
- Pushpak Bhattacharjee
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC 3065, Australia
| | - Miha Pakusch
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC 3065, Australia
| | - Matthew Lacorcia
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC 3065, Australia
| | - Eleonora Tresoldi
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC 3065, Australia
| | - Alan F Rubin
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Abby Foster
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC 3065, Australia
| | - Laura King
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC 3065, Australia
| | - Chris Y Chiu
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC 3065, Australia
| | - Thomas W H Kay
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC 3065, Australia
| | - John A Karas
- School of Chemistry, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Fergus J Cameron
- Department of Endocrinology and Diabetes, Royal Children's Hospital, Parkville, Melbourne, VIC 3052, Australia
- Murdoch Children's Research Institute, Parkville, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Stuart I Mannering
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC 3065, Australia
- Murdoch Children's Research Institute, Parkville, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
- Department of Medicine, University of Melbourne, St. Vincent's Hospital, Fitzroy, VIC 3065, Australia
| |
Collapse
|
3
|
Bhattacharjee P, Pakusch M, Lacorcia M, Chiu CY, Liu X, Tresoldi E, Foster A, King L, Cameron FJ, Mannering SI. A minority of proliferating human CD4 + T cells in antigen-driven proliferation assays are antigen specific. Front Immunol 2024; 15:1491616. [PMID: 39530093 PMCID: PMC11550966 DOI: 10.3389/fimmu.2024.1491616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
Antigen-driven T-cell proliferation is often measured using fluorescent dye dilution assays, such as the CFSE-based proliferation assay. Dye dilution assays have been powerful tools to detect human CD4+ T-cell responses, particularly against autoantigens. However, it is not known how many cells within the proliferating population are specific for the stimulating antigen. Here we determined the frequency of CD4+ T cells specific for the stimulating antigen within the antigen-responsive population of CFSE-based proliferation assays. We compared CD4+ T-cell responses to a type 1 diabetes autoantigen (proinsulin C-peptide) and to a vaccine antigen (tetanus toxoid). The TCRs expressed by antigen-responsive CD4+ T cells were sequenced, and their antigen specificity was tested functionally by expressing them in a reporter T-cell line. Responses to C-peptide were weak, but detectable, in PBMC from individuals with T1D, whereas responses to tetanus toxoid were much stronger. The frequency of antigen-specific CD4+ T cells correlated with the strength of the response to antigen in the proliferation assay. However, antigen-specific CD4+ T cells were rare among antigen-responsive CD4+ T cells. For C-peptide, an average frequency of 7.5% (1%-11%, n = 4) of antigen-responsive CD4+ T cells were confirmed to be antigen specific. In the tetanus-toxoid-stimulated cultures, on average, 45% (16%-78%, n = 5) of the antigen-responsive CD4+ T cells were tetanus toxoid specific. These data show that antigen-specific CD4+ T cells are a minority of the cells that proliferate in response to antigen and have important implications for in vitro CD4+ T-cell proliferation assays.
Collapse
Affiliation(s)
- Pushpak Bhattacharjee
- Immunology and Diabetes Unit, St. Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
| | - Miha Pakusch
- Immunology and Diabetes Unit, St. Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
| | - Matthew Lacorcia
- Immunology and Diabetes Unit, St. Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
| | - Chris Y. Chiu
- Immunology and Diabetes Unit, St. Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
| | - Xin Liu
- Immunology and Diabetes Unit, St. Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
- Victorian Centre for Functional Genomics, Melbourne, VIC, Australia
| | - Eleonora Tresoldi
- Immunology and Diabetes Unit, St. Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
| | - Abby Foster
- Immunology and Diabetes Unit, St. Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
| | - Laura King
- Immunology and Diabetes Unit, St. Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
| | - Fergus J. Cameron
- Department of Endocrinology and Diabetes, Royal Children’s Hospital, Melbourne, VIC, Australia
- Diabetes Research Group, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Stuart I. Mannering
- Immunology and Diabetes Unit, St. Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
- Department of Endocrinology and Diabetes, Royal Children’s Hospital, Melbourne, VIC, Australia
- Diabetes Research Group, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, St. Vincent’s Hospital, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Wenzlau JM, DiLisio JE, Barbour G, Dang M, Hohenstein AC, Nakayama M, Delong T, Baker RL, Haskins K. Insulin B-chain hybrid peptides are agonists for T cells reactive to insulin B:9-23 in autoimmune diabetes. Front Immunol 2022; 13:926650. [PMID: 36032090 PMCID: PMC9399855 DOI: 10.3389/fimmu.2022.926650] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Insulin is considered to be a key antigenic target of T cells in Type 1 Diabetes (T1D) and autoimmune diabetes in the NOD mouse with particular focus on the B-chain amino acid sequence B:9-23 as the primary epitope. Our lab previously discovered that hybrid insulin peptides (HIPs), comprised of insulin C-peptide fragments fused to other β-cell granule peptides, are ligands for several pathogenic CD4 T cell clones derived from NOD mice and for autoreactive CD4 T cells from T1D patients. A subset of CD4 T cell clones from our panel react to insulin and B:9-23 but only at high concentrations of antigen. We hypothesized that HIPs might also be formed from insulin B-chain sequences covalently bound to other endogenously cleaved ß-cell proteins. We report here on the identification of a B-chain HIP, termed the 6.3HIP, containing a fragment of B:9-23 joined to an endogenously processed peptide of ProSAAS, as a strong neo-epitope for the insulin-reactive CD4 T cell clone BDC-6.3. Using an I-Ag7 tetramer loaded with the 6.3HIP, we demonstrate that T cells reactive to this B-chain HIP can be readily detected in NOD mouse islet infiltrates. This work suggests that some portion of autoreactive T cells stimulated by insulin B:9-23 may be responding to B-chain HIPs as peptide ligands.
Collapse
Affiliation(s)
- Janet M. Wenzlau
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - James E. DiLisio
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Gene Barbour
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Mylinh Dang
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, CO, United States
| | - Anita C. Hohenstein
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Maki Nakayama
- Department of Pediatrics-Barbara Davis Center, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Thomas Delong
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, CO, United States
| | - Rocky L. Baker
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Kathryn Haskins
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
5
|
Brodnicki TC. A Role for lncRNAs in Regulating Inflammatory and Autoimmune Responses Underlying Type 1 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1363:97-118. [DOI: 10.1007/978-3-030-92034-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Musthaffa Y, Hamilton-Williams EE, Nel HJ, Bergot AS, Mehdi AM, Harris M, Thomas R. Proinsulin-specific T-cell responses correlate with estimated c-peptide and predict partial remission duration in type 1 diabetes. Clin Transl Immunology 2021; 10:e1315. [PMID: 34336205 PMCID: PMC8312239 DOI: 10.1002/cti2.1315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/20/2021] [Accepted: 06/27/2021] [Indexed: 12/11/2022] Open
Abstract
Objective Type 1 diabetes (T1D) is an autoimmune disorder in which autoreactive T cells destroy insulin-producing β-cells. Interventions that preserve β-cell function represent a fundamental therapeutic goal in T1D and biomarkers that predict and monitor β-cell function, and changes in islet autoantigenic signatures are needed. As proinsulin and neoantigens derived from proinsulin peptides (hybrid insulin peptides, HIPs) are important T1D autoantigens, we analysed peripheral blood CD4+ T-cell autoantigen-specific proliferative responses and their relationship to estimated β-cell function. Methods We recruited 72 people with and 42 without T1D, including 17 pre-diabetic islet antibody-positive and 9 antibody-negative first-degree relatives and 16 unrelated healthy controls with T1D-risk HLA types. We estimated C-peptide level at 3-month intervals for 2 years post-diagnosis and measured CD4+ T-cell proliferation to proinsulin epitopes and HIPs using an optimised bioassay. Results We show that CD4+ T-cell proliferation to any islet peptide and to multiple epitopes were significantly more frequent in pre-diabetic islet antibody-positive siblings and participants with T1D ≤ 3 months of duration, than in participants with T1D > 3 months or healthy controls. Among participants with T1D and first-degree relatives, CD4+ T-cell proliferation occurred most frequently in response to proinsulin33-63 (full-length C-peptide). Proinsulin33-63-specific responses were associated with HLA-DR3-DQ2 and/or HLA-DR4/DQ8. In children with T1D, proinsulin33-63-specific T-cell proliferation positively associated with concurrent estimated C-peptide and predicted survival in honeymoon. Conclusion CD4+ T-cell proliferative responses to proinsulin-containing autoantigens are common before and immediately after diagnosis of T1D but decline thereafter. Proinsulin33-63-specific CD4+ T-cell response is a novel marker of estimated residual endogenous β-cell function and predicts a better 2-year disease outcome.
Collapse
Affiliation(s)
- Yassmin Musthaffa
- Department of Endocrinology and Diabetes Queensland Children's Hospital South Brisbane QLD Australia.,The University of Queensland Diamantina Institute The University of Queensland Brisbane QLD Australia
| | - Emma E Hamilton-Williams
- The University of Queensland Diamantina Institute The University of Queensland Brisbane QLD Australia
| | - Hendrik J Nel
- The University of Queensland Diamantina Institute The University of Queensland Brisbane QLD Australia
| | - Anne-Sophie Bergot
- The University of Queensland Diamantina Institute The University of Queensland Brisbane QLD Australia
| | - Ahmed M Mehdi
- The University of Queensland Diamantina Institute The University of Queensland Brisbane QLD Australia
| | - Mark Harris
- Department of Endocrinology and Diabetes Queensland Children's Hospital South Brisbane QLD Australia.,The University of Queensland Diamantina Institute The University of Queensland Brisbane QLD Australia
| | - Ranjeny Thomas
- The University of Queensland Diamantina Institute The University of Queensland Brisbane QLD Australia
| |
Collapse
|
7
|
Mannering SI, Bhattacharjee P. Insulin's other life: an autoantigen in type 1 diabetes. Immunol Cell Biol 2021; 99:448-460. [PMID: 33524197 DOI: 10.1111/imcb.12442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/21/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022]
Abstract
One hundred years ago, Frederick Banting, John Macleod, Charles Best and James Collip, and their collaborators, discovered insulin. This discovery paved the way to saving countless lives and ushered in the "Insulin Era." Since the discovery of insulin, we have made enormous strides in understanding its role in metabolism and diabetes. Insulin has played a dramatic role in the treatment of people with diabetes; particularly type 1 diabetes (T1D). Insulin replacement is a life-saving therapy for people with T1D and some with type 2 diabetes. T1D is an autoimmune disease caused by the T-cell-mediated destruction of the pancreatic insulin-producing beta cells that leads to a primary insulin deficiency. It has become increasingly clear that insulin, and its precursors preproinsulin (PPI) and proinsulin (PI), can play another role-not as a hormone but as an autoantigen in T1D. Here we review the role played by the products of the INS gene as autoantigens in people with T1D. From many elegant animal studies, it is clear that T-cell responses to insulin, PPI and PI are essential for T1D to develop. Here we review the evidence that autoimmune responses to insulin and PPI arise in people with T1D and discuss the recently described neoepitopes derived from the products of the insulin gene. Finally, we look forward to new approaches to deliver epitopes derived from PPI, PI and insulin that may allow immune tolerance to pancreatic beta cells to be restored in people with, or at risk of, T1D.
Collapse
Affiliation(s)
- Stuart I Mannering
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia.,Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Pushpak Bhattacharjee
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| |
Collapse
|
8
|
Mikk ML, Pfeiffer S, Kiviniemi M, Laine AP, Lempainen J, Härkönen T, Toppari J, Veijola R, Knip M, Ilonen J. HLA-DR-DQ haplotypes and specificity of the initial autoantibody in islet specific autoimmunity. Pediatr Diabetes 2020; 21:1218-1226. [PMID: 32613719 DOI: 10.1111/pedi.13073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/09/2020] [Accepted: 06/22/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE We aimed to clarify the association of various HLA risk alleles with different types of autoantibodies initiating islet specific autoimmunity. METHODS Follow-up cohorts from the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) study and children diagnosed with type 1 diabetes (T1D) from the Finnish Pediatric Diabetes Register (FPDR) were analyzed for the presence of autoantibodies to insulin (IAA), glutamic acid decarboxylase (GADA), IA-2 antigen (IA-2A), and zinc transporter 8 (ZnT8A); and genotyped for HLA DR/DQ alleles. In the DIPP study, autoantibodies were regularly analyzed from birth up to 15 years of age. RESULTS In the DIPP cohort, 621 children developed one single persistent autoantibody, GADA in 284, IAA in 268, and IA-2A in 40 cases. Highly significant differences in the specificity of the first autoantibody were observed between HLA genotypes. Homozygotes for the DR3-DQ2 haplotype had almost exclusively GADA as the first autoantibody, whereas a more even distribution between GADA and IAA was found in DR3-DQ2/DR4-DQ8 as well as DR3-DQ/x and DR4-DQ8/x genotypes (x referring to neutral haplotypes). In DR4-DQ8 positive genotypes with the DRB1*04:01 allele IAA was more often the first autoantibody than in DRB1*04:04 positive genotypes. Various neutral haplotypes also significantly affected the relative proportions of different initial autoantibodies. These findings were confirmed and expanded in a series of 1591 T1D children under the age of 10 years from FPDR. CONCLUSIONS These results emphasize the importance of HLA class II polymorphisms in the recognition of autoantigen epitopes in the initiation of various pathways of the autoimmune response.
Collapse
Affiliation(s)
- Mari-Liis Mikk
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sophie Pfeiffer
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Minna Kiviniemi
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Antti-Pekka Laine
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Johanna Lempainen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland.,Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Taina Härkönen
- Pediatric Research Center, Children Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jorma Toppari
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland.,Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Unit, Medical Research Center, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Mikael Knip
- Pediatric Research Center, Children Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland.,Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | | |
Collapse
|
9
|
Chujo D, Kawabe A, Matsushita M, Takahashi N, Tsutsumi C, Haseda F, Imagawa A, Hanafusa T, Ueki K, Kajio H, Yagi K, Tobe K, Shimoda M. Distinct Phenotypes of Islet Antigen-Specific CD4+ T Cells Among the 3 Subtypes of Type 1 Diabetes. J Clin Endocrinol Metab 2020; 105:dgaa447. [PMID: 32652026 DOI: 10.1210/clinem/dgaa447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/08/2020] [Indexed: 01/06/2023]
Abstract
CONTEXT Type 1 diabetes (T1D) is classified into 3 subtypes: acute-onset (AT1D), slowly progressive (SP1D), and fulminant (FT1D). The differences in the type of cellular autoimmunity within each subtype remain largely undetermined. OBJECTIVE To determine the type and frequency of islet antigen-specific CD4+ T cells in each subtype of T1D. PARTICIPANTS Twenty patients with AT1D, 17 with SP1D, 18 with FT1D, and 17 persons without diabetes (ND). METHODS We performed an integrated assay to determine cellular immune responses and T-cell repertoires specific for islet antigens. This assay included an ex vivo assay involving a 48-hour stimulation of peripheral blood mononuclear cells with antigen peptides and an expansion assay involving intracytoplasmic cytokine analysis. RESULTS The results of the ex vivo assay indicated that glutamic acid decarboxylase 65 (GAD65)-specific interleukin-6 and interferon-inducible protein-10 (IP-10) responses and preproinsulin (PPI)-specific IP-10 responses were significantly upregulated in AT1D compared with those of ND. Furthermore, GAD65- and PPI-specific granulocyte colony-stimulating factor responses were significantly upregulated in FT1D. Expansion assay revealed that GAD65- and PPI-specific CD4+ T cells were skewed toward a type 1 helper T (Th1)- cell phenotype in AT1D, whereas GAD65-specific Th2 cells were prevalent in SP1D. GAD65-specific Th1 cells were more abundant in SP1D with human leukocyte antigen-DR9 than in SP1D without DR9. FT1D displayed significantly less type 1 regulatory T (Tr1) cells specific for all 4 antigens than ND. CONCLUSIONS The phenotypes of islet antigen-specific CD4+ T cells differed among the three T1D subtypes. These distinct T-cell phenotypes may be associated with the manner of progressive β-cell destruction.
Collapse
Affiliation(s)
- Daisuke Chujo
- Center for Clinical Research, Toyama University Hospital, Toyama, Japan
- Islet Cell Transplantation Project, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Diabetes, Endocrinology, and Metabolism, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Internal Medicine (I), Toyama University Hospital, Toyama, Japan
| | - Akitsu Kawabe
- Islet Cell Transplantation Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Maya Matsushita
- Department of Diabetes, Endocrinology, and Metabolism, National Center for Global Health and Medicine, Tokyo, Japan
| | - Nobuyuki Takahashi
- Department of Diabetes, Endocrinology, and Metabolism, National Center for Global Health and Medicine, Tokyo, Japan
| | - Chiharu Tsutsumi
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki, Japan
| | - Fumitaka Haseda
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki, Japan
| | - Akihisa Imagawa
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki, Japan
| | - Toshiaki Hanafusa
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki, Japan
- Sakai City Medical Center, Sakai, Japan
| | - Kohjiro Ueki
- Department of Diabetes, Endocrinology, and Metabolism, National Center for Global Health and Medicine, Tokyo, Japan
- Diabetes Research Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroshi Kajio
- Department of Diabetes, Endocrinology, and Metabolism, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kunimasa Yagi
- Department of Internal Medicine (I), Toyama University Hospital, Toyama, Japan
| | - Kazuyuki Tobe
- Center for Clinical Research, Toyama University Hospital, Toyama, Japan
- Department of Internal Medicine (I), Toyama University Hospital, Toyama, Japan
| | - Masayuki Shimoda
- Islet Cell Transplantation Project, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Ihantola EL, Ilmonen H, Kailaanmäki A, Rytkönen-Nissinen M, Azam A, Maillère B, Lindestam Arlehamn CS, Sette A, Motwani K, Seay HR, Brusko TM, Knip M, Veijola R, Toppari J, Ilonen J, Kinnunen T. Characterization of Proinsulin T Cell Epitopes Restricted by Type 1 Diabetes-Associated HLA Class II Molecules. THE JOURNAL OF IMMUNOLOGY 2020; 204:2349-2359. [PMID: 32229538 DOI: 10.4049/jimmunol.1901079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/22/2020] [Indexed: 12/21/2022]
Abstract
Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease in which the insulin-producing β cells within the pancreas are destroyed. Identification of target Ags and epitopes of the β cell-reactive T cells is important both for understanding T1D pathogenesis and for the rational development of Ag-specific immunotherapies for the disease. Several studies suggest that proinsulin is an early and integral target autoantigen in T1D. However, proinsulin epitopes recognized by human CD4+ T cells have not been comprehensively characterized. Using a dye dilution-based T cell cloning method, we generated and characterized 24 unique proinsulin-specific CD4+ T cell clones from the peripheral blood of 17 individuals who carry the high-risk DR3-DQ2 and/or DR4-DQ8 HLA class II haplotypes. Some of the clones recognized previously reported DR4-restricted epitopes within the C-peptide (C25-35) or A-chain (A1-15) of proinsulin. However, we also characterized DR3-restricted epitopes within both the B-chain (B16-27 and B22-C3) and C-peptide (C25-35). Moreover, we identified DQ2-restricted epitopes within the B-chain and several DQ2- or DQ8-restricted epitopes within the C-terminal region of C-peptide that partially overlap with previously reported DQ-restricted epitopes. Two of the DQ2-restricted epitopes, B18-26 and C22-33, were shown to be naturally processed from whole human proinsulin. Finally, we observed a higher frequency of CDR3 sequences matching the TCR sequences of the proinsulin-specific T cell clones in pancreatic lymph node samples compared with spleen samples. In conclusion, we confirmed several previously reported epitopes but also identified novel (to our knowledge) epitopes within proinsulin, which are presented by HLA class II molecules associated with T1D risk.
Collapse
Affiliation(s)
- Emmi-Leena Ihantola
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, FI-70210 Kuopio, Finland
| | - Henna Ilmonen
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, FI-70210 Kuopio, Finland
| | - Anssi Kailaanmäki
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, FI-70210 Kuopio, Finland
| | - Marja Rytkönen-Nissinen
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, FI-70210 Kuopio, Finland
| | - Aurélien Azam
- Commissariat à l'Energie Atomique et aux Energies Alternatives-Saclay, Université Paris-Saclay, Service d'Ingénierie Moléculaire des Protéines, 91191 Gif Sur Yvette, France
| | - Bernard Maillère
- Commissariat à l'Energie Atomique et aux Energies Alternatives-Saclay, Université Paris-Saclay, Service d'Ingénierie Moléculaire des Protéines, 91191 Gif Sur Yvette, France
| | | | - Alessandro Sette
- La Jolla Institute for Immunology, La Jolla, CA 92037.,Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Keshav Motwani
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL 32610
| | - Howard R Seay
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL 32610
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL 32610.,Department of Pediatrics, University of Florida, College of Medicine Gainesville, FL 32610
| | - Mikael Knip
- Tampere Center for Child Health Research, Tampere University Hospital, FI-33520 Tampere, Finland.,Children's Hospital, University of Helsinki and Helsinki University Hospital, FI-00014 Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, FI-00014 Helsinki, Finland.,Folkhälsan Research Center, FI-00290 Helsinki, Finland
| | - Riitta Veijola
- PEDEGO Research Unit, Department of Pediatrics, Medical Research Center, Oulu University Hospital and University of Oulu, FI-90014 Oulu, Finland
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, FI-20521 Turku, Finland.,Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, FI-20520 Turku, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, FI-20520 Turku, Finland.,Clinical Microbiology, Turku University Hospital, FI-20521 Turku, Finland; and
| | - Tuure Kinnunen
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, FI-70210 Kuopio, Finland; .,Eastern Finland Laboratory Centre (ISLAB), FI-70210 Kuopio, Finland
| |
Collapse
|
11
|
Transgenic substitution with Greater Amberjack Seriola dumerili fish insulin 2 in NOD mice reduces beta cell immunogenicity. Sci Rep 2019; 9:4965. [PMID: 30899071 PMCID: PMC6428854 DOI: 10.1038/s41598-019-40768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/14/2019] [Indexed: 11/08/2022] Open
Abstract
Type I diabetes (T1D) is caused by immune-mediated destruction of pancreatic beta cells. This process is triggered, in part, by specific (aa 9–23) epitopes of the insulin Β chain. Previously, fish insulins were used clinically in patients allergic to bovine or porcine insulin. Fish and human insulin differ by two amino acids in the critical immunogenic region (aa 9–23) of the B chain. We hypothesized that β cells synthesizing fish insulin would be less immunogenic in a mouse model of T1D. Transgenic NOD mice in which Greater Amberjack fish (Seriola dumerili) insulin was substituted for the insulin 2 gene were generated (mouse Ins1−/− mouse Ins2−/− fish Ins2+/+). In these mice, pancreatic islets remained free of autoimmune attack. To determine whether such reduction in immunogenicity is sufficient to protect β cells from autoimmunity upon transplantation, we transplanted fish Ins2 transgenic (expressing solely Seriola dumerili Ins2), NOD, or B16:A-dKO islets under the kidney capsules of 5 weeks old female NOD wildtype mice. The B:Y16A Β chain substitution has been previously shown to be protective of T1D in NOD mice. NOD mice receiving Seriola dumerili transgenic islet transplants showed a significant (p = 0.004) prolongation of their euglycemic period (by 6 weeks; up to 18 weeks of age) compared to un-manipulated female NOD (diabetes onset at 12 weeks of age) and those receiving B16:A-dKO islet transplants (diabetes onset at 12 weeks of age). These data support the concept that specific amino acid sequence modifications can reduce insulin immunogenicity. Additionally, our study shows that alteration of a single epitope is not sufficient to halt an ongoing autoimmune response. Which, and how many, T cell epitopes are required and suffice to perpetuate autoimmunity is currently unknown. Such studies may be useful to achieve host tolerance to β cells by inactivating key immunogenic epitopes of stem cell-derived β cells intended for transplantation.
Collapse
|
12
|
Proinsulin C-peptide is an autoantigen in people with type 1 diabetes. Proc Natl Acad Sci U S A 2018; 115:10732-10737. [PMID: 30275329 DOI: 10.1073/pnas.1809208115] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which insulin-producing beta cells, found within the islets of Langerhans in the pancreas, are destroyed by islet-infiltrating T cells. Identifying the antigenic targets of beta-cell reactive T cells is critical to gain insight into the pathogenesis of T1D and develop antigen-specific immunotherapies. Several lines of evidence indicate that insulin is an important target of T cells in T1D. Because many human islet-infiltrating CD4+ T cells recognize C-peptide-derived epitopes, we hypothesized that full-length C-peptide (PI33-63), the peptide excised from proinsulin as it is converted to insulin, is a target of CD4+ T cells in people with T1D. CD4+ T cell responses to full-length C-peptide were detected in the blood of: 14 of 23 (>60%) people with recent-onset T1D, 2 of 15 (>13%) people with long-standing T1D, and 1 of 13 (<8%) HLA-matched people without T1D. C-peptide-specific CD4+ T cell clones, isolated from six people with T1D, recognized epitopes from the entire 31 amino acids of C-peptide. Eighty-six percent (19 of 22) of the C-peptide-specific clones were restricted by HLA-DQ8, HLA-DQ2, HLA-DQ8trans, or HLA-DQ2trans, HLA alleles strongly associated with risk of T1D. We also found that full-length C-peptide was a much more potent agonist of some CD4+ T cell clones than an 18mer peptide encompassing the cognate epitope. Collectively, our findings indicate that proinsulin C-peptide is a key target of autoreactive CD4+ T cells in T1D. Hence, full-length C-peptide is a promising candidate for antigen-specific immunotherapy in T1D.
Collapse
|
13
|
Ramarathinam SH, Gras S, Alcantara S, Yeung AWS, Mifsud NA, Sonza S, Illing PT, Glaros EN, Center RJ, Thomas SR, Kent SJ, Ternette N, Purcell DFJ, Rossjohn J, Purcell AW. Identification of Native and Posttranslationally Modified HLA-B*57:01-Restricted HIV Envelope Derived Epitopes Using Immunoproteomics. Proteomics 2018; 18:e1700253. [PMID: 29437277 DOI: 10.1002/pmic.201700253] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/29/2018] [Indexed: 12/20/2022]
Abstract
The recognition of pathogen-derived peptides by T lymphocytes is the cornerstone of adaptive immunity, whereby intracellular antigens are degraded in the cytosol and short peptides assemble with class I human leukocyte antigen (HLA) molecules in the ER. These peptide-HLA complexes egress to the cell surface and are scrutinized by cytotoxic CD8+ T-cells leading to the eradication of the infected cell. Here, naturally presented HLA-B*57:01 bound peptides derived from the envelope protein of the human immunodeficiency virus (HIVenv) are identified. HIVenv peptides are present at a very small percentage of the overall HLA-B*57:01 peptidome (<0.1%) and both native and posttranslationally modified forms of two distinct HIV peptides are identified. Notably, a peptide bearing a natively encoded C-terminal tryptophan residue is also present in a modified form containing a kynurenine residue. Kynurenine is a major product of tryptophan catabolism and is abundant during inflammation and infection. Binding of these peptides at a molecular level and their immunogenicity in preliminary functional studies are examined. Modest immune responses are observed to the modified HIVenv peptide, highlighting a potential role for kynurenine-modified peptides in the immune response to HIV and other viral infections.
Collapse
Affiliation(s)
- Sri H Ramarathinam
- Infection and Immunity Program, Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Stephanie Gras
- Infection and Immunity Program, Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Australia
| | - Sheilajen Alcantara
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Amanda W S Yeung
- Mechanisms of Disease and Translational Medicine, Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Nicole A Mifsud
- Infection and Immunity Program, Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Secondo Sonza
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Patricia T Illing
- Infection and Immunity Program, Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Elias N Glaros
- Mechanisms of Disease and Translational Medicine, Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Robert J Center
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia.,Burnet Institute, Melbourne, Australia
| | - Shane R Thomas
- Mechanisms of Disease and Translational Medicine, Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia.,Melbourne Sexual Health Centre, Central Clinical School, Monash University, Melbourne, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Australia
| | - Nicola Ternette
- The Jenner Institute, Target Discovery Institute Mass Spectrometry Laboratory, University of Oxford, Oxford, UK
| | - Damian F J Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program, Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Anthony W Purcell
- Infection and Immunity Program, Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| |
Collapse
|
14
|
Kent SC, Mannering SI, Michels AW, Babon JAB. Deciphering the Pathogenesis of Human Type 1 Diabetes (T1D) by Interrogating T Cells from the "Scene of the Crime". Curr Diab Rep 2017; 17:95. [PMID: 28864875 PMCID: PMC5600889 DOI: 10.1007/s11892-017-0915-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Autoimmune-mediated destruction of insulin-producing β-cells within the pancreas results in type 1 diabetes (T1D), which is not yet preventable or curable. Previously, our understanding of the β-cell specific T cell repertoire was based on studies of autoreactive T cell responses in the peripheral blood of patients at risk for, or with, T1D; more recently, investigations have included immunohistochemical analysis of some T cell specificities in the pancreas from organ donors with T1D. Now, we are able to examine live, islet-infiltrating T cells from donors with T1D. RECENT FINDINGS Analysis of the T cell repertoire isolated directly from the pancreatic islets of donors with T1D revealed pro-inflammatory T cells with targets of known autoantigens, including proinsulin and glutamic acid decarboxylase, as well as modified autoantigens. We have assayed the islet-infiltrating T cell repertoire for autoreactivity and function directly from the inflamed islets of T1D organ donors. Design of durable treatments for prevention of or therapy for T1D requires understanding this repertoire.
Collapse
Affiliation(s)
- Sally C Kent
- Department of Medicine, Division of Diabetes, Diabetes Center of Excellence, ASC7-2041, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| | - Stuart I Mannering
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria, 3065, Australia
- Department of Medicine, University of Melbourne, St. Vincent's Hospital, Fitzroy, Victoria, 3065, Australia
| | - Aaron W Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jenny Aurielle B Babon
- Department of Medicine, Division of Diabetes, Diabetes Center of Excellence, ASC7-2041, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
15
|
Gorasia DG, Dudek NL, Safavi-Hemami H, Perez RA, Schittenhelm RB, Saunders PM, Wee S, Mangum JE, Hubbard MJ, Purcell AW. A prominent role of PDIA6 in processing of misfolded proinsulin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:715-723. [PMID: 26947243 DOI: 10.1016/j.bbapap.2016.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 02/22/2016] [Accepted: 03/02/2016] [Indexed: 11/17/2022]
Abstract
Despite its critical role in maintaining glucose homeostasis, surprisingly little is known about proinsulin folding in the endoplasmic reticulum. In this study we aimed to understand the chaperones involved in the maturation and degradation of proinsulin. We generated pancreatic beta cell lines expressing FLAG-tagged proinsulin. Several chaperones (including BiP, PDIA6, calnexin, calreticulin, GRP170, Erdj3 and ribophorin II) co-immunoprecipitated with proinsulin suggesting a role for these proteins in folding. To investigate the chaperones responsible for targeting misfolded proinsulin for degradation, we also created a beta cell line expressing FLAG-tagged proinsulin carrying the Akita mutation (Cys96Tyr). All chaperones found to be associated with wild type proinsulin also co-immunoprecipitated with Akita proinsulin. However, one additional protein, namely P58(IPK), specifically precipitated with Akita proinsulin and approximately ten fold more PDIA6, but not other PDI family members, was bound to Akita proinsulin. The latter suggests that PDIA6 may act as a key reductase and target misfolded proinsulin to the ER-degradation pathway. The preferential association of PDIA6 to Akita proinsulin was also confirmed in another beta cell line (βTC-6). Furthermore, for the first time, a physiologically relevant substrate for PDIA6 has been evidenced. Thus, this study has identified several chaperones/foldases that associated with wild type proinsulin and has also provided a comprehensive interactome for Akita misfolded proinsulin.
Collapse
Affiliation(s)
- Dhana G Gorasia
- Department of Biochemistry and Molecular Biology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Nadine L Dudek
- Department of Biochemistry and Molecular Biology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia; Infection and Immunity Program, Biomolecular Discovery Institute and Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | - Helena Safavi-Hemami
- Department of Biochemistry and Molecular Biology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Rochelle Ayala Perez
- Infection and Immunity Program, Biomolecular Discovery Institute and Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | - Ralf B Schittenhelm
- Infection and Immunity Program, Biomolecular Discovery Institute and Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | - Philippa M Saunders
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Sheena Wee
- Department of Biochemistry and Molecular Biology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Jon E Mangum
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Michael J Hubbard
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia; Infection and Immunity Program, Biomolecular Discovery Institute and Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
16
|
van Lummel M, van Veelen PA, de Ru AH, Pool J, Nikolic T, Laban S, Joosten A, Drijfhout JW, Gómez-Touriño I, Arif S, Aanstoot HJ, Peakman M, Roep BO. Discovery of a Selective Islet Peptidome Presented by the Highest-Risk HLA-DQ8trans Molecule. Diabetes 2016; 65:732-41. [PMID: 26718497 DOI: 10.2337/db15-1031] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/17/2015] [Indexed: 11/13/2022]
Abstract
HLA-DQ2/8 heterozygous individuals are at far greater risk for type 1 diabetes (T1D) development by expressing HLA-DQ8trans on antigen-presenting cells compared with HLA-DQ2 or -DQ8 homozygous individuals. Dendritic cells (DC) initiate and shape adaptive immune responses by presenting HLA-epitope complexes to naïve T cells. To dissect the role of HLA-DQ8trans in presenting natural islet epitopes, we analyzed the islet peptidome of HLA-DQ2, -DQ8, and -DQ2/8 by pulsing DC with preproinsulin (PPI), IA-2, and GAD65. Quality and quantity of islet epitopes presented by HLA-DQ2/8 differed from -DQ2 or -DQ8. We identified two PPI epitopes solely processed and presented by HLA-DQ2/8 DC: an HLA-DQ8trans-binding signal-sequence epitope previously identified as CD8 T-cell epitope and a second epitope that we previously identified as CD4 T-cell epitope with increased binding to HLA-DQ8trans upon posttranslational modification. IA-2 epitopes retrieved from HLA-DQ2/8 and -DQ8 DC bound to HLA-DQ8cis/trans. No GAD65 epitopes were eluted from HLA-DQ. T-cell responses were detected against the novel islet epitopes in blood from patients with T1D but scantly detected in healthy donor subjects. We report the first PPI and IA-2 natural epitopes presented by highest-risk HLA-DQ8trans. The selective processing and presentation of HLA-DQ8trans-binding islet epitopes provides insight in the mechanism of excessive genetic risk imposed by HLA-DQ2/8 heterozygosity and may assist immune monitoring of disease progression and therapeutic intervention as well as provide therapeutic targets for immunotherapy in subjects at risk for T1D.
Collapse
Affiliation(s)
- Menno van Lummel
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter A van Veelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Arnoud H de Ru
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Jos Pool
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Tatjana Nikolic
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Sandra Laban
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Antoinette Joosten
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan W Drijfhout
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Iria Gómez-Touriño
- Department of Immunobiology, School of Medicine, King's College London, London, U.K
| | - Sefina Arif
- Department of Immunobiology, School of Medicine, King's College London, London, U.K
| | - Henk J Aanstoot
- Diabeter, Center for Pediatric and Adolescent Diabetes Care and Research, Rotterdam, the Netherlands
| | - Mark Peakman
- Department of Immunobiology, School of Medicine, King's College London, London, U.K
| | - Bart O Roep
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands Department of Diabetes Immunology, Diabetes & Metabolism Research Institute at the Beckman Research Institute of City of Hope, Duarte, CA
| |
Collapse
|
17
|
Chujo D, Nguyen TS, Foucat E, Blankenship D, Banchereau J, Nepom GT, Chaussabel D, Ueno H. Adult-onset type 1 diabetes patients display decreased IGRP-specific Tr1 cells in blood. Clin Immunol 2015; 161:270-7. [PMID: 26341315 DOI: 10.1016/j.clim.2015.08.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 11/26/2022]
Abstract
The breakdown of immune tolerance against islet antigens causes type 1 diabetes (T1D). The antigens associated with adult-onset T1D (AT1D) remain largely undefined. It is possible that AT1D patients display a unique type of CD4(+) T cells specific for a certain islet antigen. Here we analyzed the cytokine production profiles of CD4(+) helper T (Th) cells that are specific for three islet antigens; GAD65, preproinsulin, and IGRP in patients with AT1D, juvenile-onset T1D (JT1D), and age-, gender- and human leukocyte antigen (HLA)-matched control adults. While IGRP-specific Th cells in AT1D patients were dominantly Th1 cells, IGRP-specific Th cells in control adults and JT1D patients were dominantly Th2 and T regulatory type 1 (Tr1) cells. Notably, the frequency of IGRP-specific Tr1 cells was significantly lower in AT1D patients than in control adults and JT1D patients. In conclusion, our study suggests that IGRP-specific Th cells play a unique pathogenic role in AT1D.
Collapse
Affiliation(s)
- Daisuke Chujo
- Baylor Institute for Immunology Research, Dallas, TX, USA; National Center for Global Health and Medicine, Tokyo, Japan
| | | | - Emile Foucat
- Baylor Institute for Immunology Research, Dallas, TX, USA
| | | | | | - Gerald T Nepom
- Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | | | - Hideki Ueno
- Baylor Institute for Immunology Research, Dallas, TX, USA.
| |
Collapse
|
18
|
Pathiraja V, Kuehlich JP, Campbell PD, Krishnamurthy B, Loudovaris T, Coates PTH, Brodnicki TC, O'Connell PJ, Kedzierska K, Rodda C, Bergman P, Hill E, Purcell AW, Dudek NL, Thomas HE, Kay TWH, Mannering SI. Proinsulin-specific, HLA-DQ8, and HLA-DQ8-transdimer-restricted CD4+ T cells infiltrate islets in type 1 diabetes. Diabetes 2015; 64:172-82. [PMID: 25157096 DOI: 10.2337/db14-0858] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Type 1 diabetes (T1D) develops when insulin-secreting β-cells, found in the pancreatic islets of Langerhans, are destroyed by infiltrating T cells. How human T cells recognize β-cell-derived antigens remains unclear. Genetic studies have shown that HLA and insulin alleles are the most strongly associated with risk of T1D. These long-standing observations implicate CD4(+) T-cell responses against (pro)insulin in the pathogenesis of T1D. To dissect the autoimmune T-cell response against human β-cells, we isolated and characterized 53 CD4(+) T-cell clones from within the residual pancreatic islets of a deceased organ donor who had T1D. These 53 clones expressed 47 unique clonotypes, 8 of which encoded proinsulin-specific T-cell receptors. On an individual clone basis, 14 of 53 CD4(+) T-cell clones (26%) recognized 6 distinct but overlapping epitopes in the C-peptide of proinsulin. These clones recognized C-peptide epitopes presented by HLA-DQ8 and, notably, HLA-DQ8 transdimers that form in HLA-DQ2/-DQ8 heterozygous individuals. Responses to these epitopes were detected in the peripheral blood mononuclear cells of some people with recent-onset T1D but not in HLA-matched control subjects. Hence, proinsulin-specific, HLA-DQ8, and HLA-DQ8-transdimer-restricted CD4(+) T cells are strongly implicated in the autoimmune pathogenesis of human T1D.
Collapse
Affiliation(s)
- Vimukthi Pathiraja
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Janine P Kuehlich
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Peter D Campbell
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Balasubramanian Krishnamurthy
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia Department of Medicine, University of Melbourne, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Thomas Loudovaris
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - P Toby H Coates
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Thomas C Brodnicki
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia Department of Medicine, University of Melbourne, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Philip J O'Connell
- National Pancreas Transplant Unit, University of Sydney at Westmead Hospital, Sydney, New South Wales, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Christine Rodda
- University of Melbourne, NorthWest Academic Centre, Sunshine Hospital, St. Albans, Victoria, Australia
| | - Philip Bergman
- Department of Paediatrics, Monash University, Clayton, Victoria, Australia
| | - Erin Hill
- Department of Paediatrics, Monash University, Clayton, Victoria, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Nadine L Dudek
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Helen E Thomas
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia Department of Medicine, University of Melbourne, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Thomas W H Kay
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia Department of Medicine, University of Melbourne, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Stuart I Mannering
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia Department of Medicine, University of Melbourne, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| |
Collapse
|
19
|
Trujillo JA, Croft NP, Dudek NL, Channappanavar R, Theodossis A, Webb AI, Dunstone MA, Illing PT, Butler NS, Fett C, Tscharke DC, Rossjohn J, Perlman S, Purcell AW. The cellular redox environment alters antigen presentation. J Biol Chem 2014; 289:27979-91. [PMID: 25135637 DOI: 10.1074/jbc.m114.573402] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cysteine-containing peptides represent an important class of T cell epitopes, yet their prevalence remains underestimated. We have established and interrogated a database of around 70,000 naturally processed MHC-bound peptides and demonstrate that cysteine-containing peptides are presented on the surface of cells in an MHC allomorph-dependent manner and comprise on average 5-10% of the immunopeptidome. A significant proportion of these peptides are oxidatively modified, most commonly through covalent linkage with the antioxidant glutathione. Unlike some of the previously reported cysteine-based modifications, this represents a true physiological alteration of cysteine residues. Furthermore, our results suggest that alterations in the cellular redox state induced by viral infection are communicated to the immune system through the presentation of S-glutathionylated viral peptides, resulting in altered T cell recognition. Our data provide a structural basis for how the glutathione modification alters recognition by virus-specific T cells. Collectively, these results suggest that oxidative stress represents a mechanism for modulating the virus-specific T cell response.
Collapse
Affiliation(s)
- Jonathan A Trujillo
- From the Department of Microbiology and the Interdisciplinary Program in Immunology, University of Iowa, Iowa City, Iowa 52242
| | - Nathan P Croft
- the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia, the Department of Biochemistry and Molecular Biology and
| | - Nadine L Dudek
- the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia, the Department of Biochemistry and Molecular Biology and
| | | | | | - Andrew I Webb
- the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - Patricia T Illing
- the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Noah S Butler
- From the Department of Microbiology and the Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia, and
| | | | - David C Tscharke
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Jamie Rossjohn
- the Department of Biochemistry and Molecular Biology and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia, the Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Stanley Perlman
- From the Department of Microbiology and the Interdisciplinary Program in Immunology, University of Iowa, Iowa City, Iowa 52242,
| | - Anthony W Purcell
- the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia, the Department of Biochemistry and Molecular Biology and
| |
Collapse
|
20
|
Li M, Song LJ, Qin XY. Advances in the cellular immunological pathogenesis of type 1 diabetes. J Cell Mol Med 2014; 18:749-58. [PMID: 24629100 PMCID: PMC4119381 DOI: 10.1111/jcmm.12270] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/30/2014] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes is an autoimmune disease caused by the immune-mediated destruction of insulin-producing pancreatic β cells. In recent years, the incidence of type 1 diabetes continues to increase. It is supposed that genetic, environmental and immune factors participate in the damage of pancreatic β cells. Both the immune regulation and the immune response are involved in the pathogenesis of type 1 diabetes, in which cellular immunity plays a significant role. For the infiltration of CD4(+) and CD8(+) T lymphocyte, B lymphocytes, natural killer cells, dendritic cells and other immune cells take part in the damage of pancreatic β cells, which ultimately lead to type 1 diabetes. This review outlines the cellular immunological mechanism of type 1 diabetes, with a particular emphasis to T lymphocyte and natural killer cells, and provides the effective immune therapy in T1D, which is approached at three stages. However, future studies will be directed at searching for an effective, safe and long-lasting strategy to enhance the regulation of a diabetogenic immune system with limited toxicity and without global immunosuppression.
Collapse
Affiliation(s)
- Min Li
- Department of General Surgery, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Lu-Jun Song
- Department of General Surgery, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Xin-Yu Qin
- Department of General Surgery, Zhongshan Hospital, Fudan UniversityShanghai, China
| |
Collapse
|
21
|
La Torre D. Immunobiology of beta-cell destruction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 771:194-218. [PMID: 23393680 DOI: 10.1007/978-1-4614-5441-0_16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Type 1 diabetes is a chronic disease characterized by severe insulin deficiency and hyperglycemia, due to autoimmune destruction of pancreatic islets of Langerhans. A susceptible genetic background is necessary, but not sufficient, for the development of the disease. Epidemiological and clinical observations underscore the importance of environmental factors as triggers of type 1 diabetes, currently under investigation. Islet-specific autoantibodies precede clinical onset by months to years and are established tools for risk prediction, yet minor players in the pathogenesis of the disease. Many efforts have been made to elucidate disease-relevant defects in the key immune effectors of islet destruction, from the early failure of specific tolerance to the vicious circle of destructive insulitis. However, the events triggering islet autoimmunity as well as the transition to overt diabetes are still largely unknown, making prevention and treatment strategies still a challenge.
Collapse
Affiliation(s)
- Daria La Torre
- Lund University, Clinical Research Center (CRC), Department of Clinical Sciences, Malmö, Sweden.
| |
Collapse
|
22
|
Graham KL, Sutherland RM, Mannering SI, Zhao Y, Chee J, Krishnamurthy B, Thomas HE, Lew AM, Kay TWH. Pathogenic mechanisms in type 1 diabetes: the islet is both target and driver of disease. Rev Diabet Stud 2012; 9:148-68. [PMID: 23804258 DOI: 10.1900/rds.2012.9.148] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recent advances in our understanding of the pathogenesis of type 1 diabetes have occurred in all steps of the disease. This review outlines the pathogenic mechanisms utilized by the immune system to mediate destruction of the pancreatic beta-cells. The autoimmune response against beta-cells appears to begin in the pancreatic lymph node where T cells, which have escaped negative selection in the thymus, first meet beta-cell antigens presented by dendritic cells. Proinsulin is an important antigen in early diabetes. T cells migrate to the islets via the circulation and establish insulitis initially around the islets. T cells within insulitis are specific for islet antigens rather than bystanders. Pathogenic CD4⁺ T cells may recognize peptides from proinsulin which are produced locally within the islet. CD8⁺ T cells differentiate into effector T cells in islets and then kill beta-cells, primarily via the perforin-granzyme pathway. Cytokines do not appear to be important cytotoxic molecules in vivo. Maturation of the immune response within the islet is now understood to contribute to diabetes, and highlights the islet as both driver and target of the disease. The majority of our knowledge of these pathogenic processes is derived from the NOD mouse model, although some processes are mirrored in the human disease. However, more work is required to translate the data from the NOD mouse to our understanding of human diabetes pathogenesis. New technology, especially MHC tetramers and modern imaging, will enhance our understanding of the pathogenic mechanisms.
Collapse
Affiliation(s)
- Kate L Graham
- St. Vincent´s Institute of Medical Research, Fitzroy, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Necula A, Chand R, Albatat B, Mannering SI. Extraction of tissue antigens for functional assays. J Vis Exp 2012:4230. [PMID: 22986305 DOI: 10.3791/4230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Many of the antigen targets of adaptive immune response, recognized by B and T cells, have not been defined (1). This is particularly true in autoimmune diseases and cancer(2). Our aim is to investigate the antigens recognized by human T cells in the autoimmune disease type 1 diabetes (1,3,4,5). To analyze human T-cell responses against tissue where the antigens recognized by T cells are not identified we developed a method to extract protein antigens from human tissue in a format that is compatible with functional assays (6). Previously, T-cell responses to unpurified tissue extracts could not be measured because the extraction methods yield a lysate that contained detergents that were toxic to human peripheral blood mononuclear cells. Here we describe a protocol for extracting proteins from human tissues in a format that is not toxic to human T cells. The tissue is homogenized in a mixture of butan-1-ol, acetonitrile and water (BAW). The protein concentration in the tissue extract is measured and a known mass of protein is aliquoted into tubes. After extraction, the organic solvents are removed by lyophilization. Lyophilized tissue extracts can be stored until required. For use in assays of immune function, a suspension of immune cells, in appropriate culture media, can be added directly to the lyophilized extract. Cytokine production and proliferation by PBMC, in response to extracts prepared using this method, were readily measured. Hence, our method allows the rapid preparation of human tissue lysates that can be used as a source of antigens in the analysis of T-cell responses. We suggest that this method will facilitate the analysis of adaptive immune responses to tissues in transplantation, cancer and autoimmunity.
Collapse
Affiliation(s)
- Andra Necula
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research
| | | | | | | |
Collapse
|
24
|
Dunne JL, Overbergh L, Purcell AW, Mathieu C. Posttranslational modifications of proteins in type 1 diabetes: the next step in finding the cure? Diabetes 2012; 61:1907-14. [PMID: 22826307 PMCID: PMC3402302 DOI: 10.2337/db11-1675] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The overall role of modification of β-cell antigens in type 1 diabetes has not been elucidated and was the focus of a recent workshop on posttranslational modification of proteins in type 1 diabetes. The prevailing opinion of the workshop attendees was that novel insights into the mechanism of loss of immune tolerance might be gained and that novel diagnostic and therapeutic approaches could be developed for type 1 diabetes if protein modifications were shown to play a critical role in the disease.
Collapse
Affiliation(s)
- Jessica L Dunne
- Juvenile Diabetes Research Foundation, New York, New York, USA.
| | | | | | | |
Collapse
|
25
|
Pathogenesis of NOD diabetes is initiated by reactivity to the insulin B chain 9-23 epitope and involves functional epitope spreading. J Autoimmun 2012; 39:347-53. [PMID: 22647732 DOI: 10.1016/j.jaut.2012.04.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 04/16/2012] [Accepted: 04/25/2012] [Indexed: 02/07/2023]
Abstract
Type 1 diabetes (T1D) is mediated by destruction of pancreatic β-cells by CD4 and CD8 T cells specific for epitopes on numerous diabetogenic autoantigens resulting in loss of glucose homeostasis. Employing antigen-specific tolerance induced by i.v. administration of syngeneic splenocytes ECDI cross-linked to various diabetogenic antigens/epitopes (Ag-SP), we show that epitope spreading plays a functional role in the pathogenesis of T1D in NOD mice. Specifically, Ag-SP coupled with intact insulin, Ins B(9-23) or Ins B(15-23), but not GAD65(509-528), GAD65(524-543) or IGRP(206-214), protected 4-6 week old NOD mice from the eventual development of clinical disease; infiltration of immune cells to the pancreatic islets; and blocked the induction of DTH responses in a Treg-dependent, antigen-specific manner. However, tolerance induction in 19-21 week old NOD mice was effectively accomplished only by Ins-SP, suggesting Ins B(9-23) is a dominant initiating epitope, but autoimmune responses to insulin epitope(s) distinct from Ins B(9-23) emerge during disease progression.
Collapse
|
26
|
Joffe M, Necula AS, Chand R, McWhinney BC, Krishnamurthy B, Loudovaris T, Goodman D, Thomas HE, Kay TWH, Mannering SI. Residual methylprednisolone suppresses human T-cell responses to spleen, but not islet, extracts from deceased organ donors. Int Immunol 2012; 24:447-53. [PMID: 22378502 DOI: 10.1093/intimm/dxs042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pancreatic islets, transplanted into recipients with type 1 diabetes, are exposed to allogenic and auto-immune T-cell responses. We set out to develop an assay to measure these responses using PBMC. Our approach was to prepare spleen extract from the islet donors (allo-antigen) and islet extracts (auto-antigen). To our surprise, we found that spleen extracts potently inhibited the proliferation of human T cells driven by antigen (tetanus toxoid) and mitogen (anti-CD3 mAb, OKT3), whereas extracts prepared from pancreatic islets from the same donor did not suppress T-cell proliferation. Suppression mediated by spleen extracts was unaffected by blocking mAbs against the IL-10R, transforming growth factor-β or CD152 (CTLA-4). It was also unaffected by denaturing the spleen extracts by heating, exposing to reducing agents or protease digestion. Because deceased organ donors are commonly given the immunosuppressive glucocorticoid methylprednisolone prior to death, we hypothesized that suppression was due to residual methylprednisolone in the spleen extracts. Methylprednisolone could be detected by mass spectrometry in spleen extracts at concentrations that suppress T-cell proliferation. Finally, the glucocorticoid receptor antagonist mifepristone completely reversed the suppression caused by the spleen extracts. We conclude that extracts of human spleen, but not islets, from deceased organ donors contain sufficient residual methylprednisolone to suppress the proliferation of T-cells in vitro.
Collapse
Affiliation(s)
- Max Joffe
- Immunology and Diabetes Unit, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kanatsuna N, Papadopoulos GK, Moustakas AK, Lenmark Å. Etiopathogenesis of insulin autoimmunity. ANATOMY RESEARCH INTERNATIONAL 2012; 2012:457546. [PMID: 22567309 PMCID: PMC3335545 DOI: 10.1155/2012/457546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 01/12/2012] [Indexed: 12/12/2022]
Abstract
Autoimmunity against pancreatic islet beta cells is strongly associated with proinsulin, insulin, or both. The insulin autoreactivity is particularly pronounced in children with young age at onset of type 1 diabetes. Possible mechanisms for (pro)insulin autoimmunity may involve beta-cell destruction resulting in proinsulin peptide presentation on HLA-DR-DQ Class II molecules in pancreatic draining lymphnodes. Recent data on proinsulin peptide binding to type 1 diabetes-associated HLA-DQ2 and -DQ8 is reviewed and illustrated by molecular modeling. The importance of the cellular immune reaction involving cytotoxic CD8-positive T cells to kill beta cells through Class I MHC is discussed along with speculations of the possible role of B lymphocytes in presenting the proinsulin autoantigen over and over again through insulin-carrying insulin autoantibodies. In contrast to autoantibodies against other islet autoantigens such as GAD65, IA-2, and ZnT8 transporters, it has not been possible yet to standardize the insulin autoantibody test. As islet autoantibodies predict type 1 diabetes, it is imperative to clarify the mechanisms of insulin autoimmunity.
Collapse
Affiliation(s)
- Norio Kanatsuna
- Department of Clinical Sciences, Skåne University Hospital (SUS), Lund University, CRC Ing 72 Building 91:10, 205 02 Malmö, Sweden
| | - George K. Papadopoulos
- Laboratory of Biochemistry and Biophysics, Faculty of Agricultural Technology, Technological Educational Institute of Epirus, 47100 Arta, Greece
| | - Antonis K. Moustakas
- Department of Organic Farming, Technological Educational Institute of Ionian Islands, 27100 Argostoli, Greece
| | - Åke Lenmark
- Department of Clinical Sciences, Skåne University Hospital (SUS), Lund University, CRC Ing 72 Building 91:10, 205 02 Malmö, Sweden
| |
Collapse
|
28
|
Autoantigen-specific memory CD4+ T cells are prevalent early in progression to Type 1 diabetes. Cell Immunol 2012; 273:133-9. [PMID: 22270037 DOI: 10.1016/j.cellimm.2011.12.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 12/12/2011] [Accepted: 12/20/2011] [Indexed: 12/23/2022]
Abstract
Autoreactive CD4(+) T cells contribute to the destruction of insulin producing beta cells in Type 1 diabetes (T1D). Using MHC class II tetramers, we have analyzed the frequency of GAD65- (274-286; 555-567) and insulin- (A1-15; A6-21) specific CD4(+) T cells in 31 children with T1D, 65 multiple autoantibody-positive children and 93 HLA- and age-matched controls. In a smaller group of children T-cell responses of memory origin to the same autoantigens were investigated. We observed a higher response to GAD65 555-567 in the autoantibody-positive children than in the controls (P=0.017). Memory T-cell responses to GAD65 555-567 were more frequent among T1D patients (P=0.025) and autoantibody-positive (P=0.054), while all controls were negative (n=28). In summary, the presence of antigen experienced GAD65-specific T cells in the subjects with diabetes-associated autoimmunity is encouraging for further directions in the prediction of T1D.
Collapse
|
29
|
Ciantar JP, Mannering SI. An improved method for growing and analysing human antigen-specific CD4+ T-cell clones. Diabetes Metab Res Rev 2011; 27:906-12. [PMID: 22069283 DOI: 10.1002/dmrr.1271] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND T-cell clones are valuable tools for investigating T-cell specificity in type 1 diabetes. Efficient methods for isolating T-cell clones have been developed, but growing enough cells to undertake a detailed analysis remains a challenge. METHODS We optimized the conditions for isolating and growing antigen-specific human CD4+ effector T-cell clones. T-cell clones were isolated by FACS sorting antigen-responsive cells identified by carboxylfluorescein diacetate succinimidyl ester (CFSE) dilution. The cloning efficiency was compared between T cells cloned in the presence of 21 different combinations of cytokines. Following cloning, the growth of cloned T cells in the presence of seven different combinations of cytokines was compared. Finally, we sought a quicker and more sensitive assay to measure cloned T cells' responses to antigen. RESULTS IL-2+IL-4 were optimal for cloning antigen-specific CD4+ T cells. Following cloning, the most antigen-specific CD4+ T-cell clones grew in the presence of IL-15+IL-21. Antigen recognition by T cells cloned and grown under these conditions was readily detected by the increase in the expression of CD25. Induction of CD25 was a more sensitive measure of antigen recognition than 3H-thymidine incorporation assays. These findings were confirmed with two proinsulin-specific CD4+ T-cell clones isolated from an individual with type 1 diabetes. CONCLUSION The optimal cytokines for isolating, and growing, proinsulin-specific human, CD4+ T-cell clones are IL-2+IL-4 and IL-15+IL-21, respectively. Antigen recognition, by clones isolated and grown under these conditions is best detected by the induction of CD25.
Collapse
Affiliation(s)
- Joseph P Ciantar
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | | |
Collapse
|
30
|
Fourlanos S, Perry C, Gellert SA, Martinuzzi E, Mallone R, Butler J, Colman PG, Harrison LC. Evidence that nasal insulin induces immune tolerance to insulin in adults with autoimmune diabetes. Diabetes 2011; 60:1237-45. [PMID: 21307076 PMCID: PMC3064097 DOI: 10.2337/db10-1360] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Insulin in pancreatic β-cells is a target of autoimmunity in type 1 diabetes. In the NOD mouse model of type 1 diabetes, oral or nasal administration of insulin induces immune tolerance to insulin and protects against autoimmune diabetes. Evidence for tolerance to mucosally administered insulin or other autoantigens is poorly documented in humans. Adults with recent-onset type 1 diabetes in whom the disease process is subacute afford an opportunity to determine whether mucosal insulin induces tolerance to insulin subsequently injected for treatment. RESEARCH DESIGN AND METHODS We randomized 52 adults with recent-onset, noninsulin-requiring type 1 diabetes to nasal insulin or placebo for 12 months. Fasting blood glucose and serum C-peptide, glucagon-stimulated serum C-peptide, and serum antibodies to islet antigens were monitored three times monthly for 24 months. An enhanced ELISpot assay was used to measure the T-cell response to human proinsulin. RESULTS β-Cell function declined by 35% overall, and 23 of 52 participants (44%) progressed to insulin treatment. Metabolic parameters remained similar between nasal insulin and placebo groups, but the insulin antibody response to injected insulin was significantly blunted in a sustained manner in those who had received nasal insulin. In a small cohort, the interferon-γ response of blood T-cells to proinsulin was suppressed after nasal insulin. CONCLUSIONS Although nasal insulin did not retard loss of residual β-cell function in adults with established type 1 diabetes, evidence that it induced immune tolerance to insulin provides a rationale for its application to prevent diabetes in at-risk individuals.
Collapse
Affiliation(s)
- Spiros Fourlanos
- Autoimmunity and Transplantation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Burnet Clinical Research Unit, Royal Melbourne Hospital, Parkville, Australia
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, Australia
| | - Christine Perry
- Burnet Clinical Research Unit, Royal Melbourne Hospital, Parkville, Australia
| | - Shane A. Gellert
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, Australia
| | - Emanuela Martinuzzi
- INSERM, U986, DeAR Laboratory Avenir, Saint Vincent de Paul Hospital, Paris, France
- Université Paris Descartes, Faculté de Médecine René Descartes, Paris, France
| | - Roberto Mallone
- INSERM, U986, DeAR Laboratory Avenir, Saint Vincent de Paul Hospital, Paris, France
- Université Paris Descartes, Faculté de Médecine René Descartes, Paris, France
| | - Jeanne Butler
- Autoimmunity and Transplantation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Peter G. Colman
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, Australia
| | - Leonard C. Harrison
- Autoimmunity and Transplantation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Burnet Clinical Research Unit, Royal Melbourne Hospital, Parkville, Australia
- Corresponding author: Leonard C. Harrison,
| |
Collapse
|
31
|
Mannering SI, Wong FS, Durinovic-Belló I, Brooks-Worrell B, Tree TI, Cilio CM, Schloot NC, Mallone R. Current approaches to measuring human islet-antigen specific T cell function in type 1 diabetes. Clin Exp Immunol 2010; 162:197-209. [PMID: 20846160 DOI: 10.1111/j.1365-2249.2010.04237.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by the T cell-mediated destruction of the pancreatic insulin-producing beta cells. Currently there are no widely accepted and standardized assays available to analyse the function of autoreactive T cells involved in T1D. The development of such an assay would greatly aid efforts to understand the pathogenesis of T1D and is also urgently required to guide the development of antigen-based therapies intended to prevent, or cure, T1D. Here we describe some of the assays used currently to detect autoreactive T cells in human blood and review critically their strengths and weaknesses. The challenges and future prospects for the T cell assays are discussed.
Collapse
Affiliation(s)
- S I Mannering
- St Vincent's Institute, The University of Melbourne, Department of Medicine, St Vincent's Hospital, Fitzroy, Vic, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Description of the immunologic components needed for autoimmune diabetes. RECENT FINDINGS The major histocompatability complex (MHC) class II molecules are the primary susceptibility genes for many autoimmune diseases, including type 1 diabetes. Understanding of the structural interaction between MHC molecules, antigenic peptides, and T-cell receptors (the three components of the trimolecular complex) has increased greatly over the past several years. The components of the anti-insulin trimolecular complex and findings that insulin is a key autoantigen in type 1 diabetes are reviewed. SUMMARY The anti-insulin trimolecular complex is well defined in the nonobese diabetic mouse model. Insulin and specifically, the amino acid sequence 9 to 23 of the insulin B chain, represents a primary antigenic target for islet autoimmunity in the nonobese diabetic mouse model of type 1 diabetes with a specific mutation of this peptide preventing all diabetes. Initial studies suggest the human homologs of the anti-insulin trimolecular complex may be relevant in human disease.
Collapse
Affiliation(s)
- Aaron W Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado 80045, USA.
| | | |
Collapse
|
33
|
Moon HC, Joffe M, Thomas HE, Kay TW, Mannering SI. A method for extracting tissue proteins for use in lymphocyte function assays. J Immunol Methods 2010; 359:56-60. [DOI: 10.1016/j.jim.2010.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 05/03/2010] [Accepted: 05/06/2010] [Indexed: 11/16/2022]
|
34
|
Burster T, Boehm BO. Processing and presentation of (pro)-insulin in the MHC class II pathway: the generation of antigen-based immunomodulators in the context of type 1 diabetes mellitus. Diabetes Metab Res Rev 2010; 26:227-38. [PMID: 20503254 DOI: 10.1002/dmrr.1090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Both CD4(+) and CD8(+) T lymphocytes play a crucial role in the autoimmune process leading to T1D. Dendritic cells take up foreign antigens and autoantigens; within their endocytic compartments, proteases degrade exogenous antigens for subsequent presentation to CD4(+) T cells via MHC class II molecules. A detailed understanding of autoantigen processing and the identification of autoantigenic T cell epitopes are crucial for the development of antigen-based specific immunomodulators. APL are peptide analogues of auto-immunodominant T cell epitopes that bind to MHC class II molecules and can mediate T cell activation. However, APL can be rapidly degraded by proteases occurring in the extracellular space and inside cells, substantially weakening their efficiency. By contrast, protease-resistant APL function as specific immunomodulators and can be used at low doses to examine the functional plasticity of T cells and to potentially interfere with autoimmune responses. Here, we review the latest achievements in (pro)-insulin processing in the MHC class II pathway and the generation of APL to mitigate autoreactive T cells and to activate Treg cells.
Collapse
Affiliation(s)
- Timo Burster
- Division of Endocrinology and Diabetes, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany.
| | | |
Collapse
|
35
|
Surrogate end points in the design of immunotherapy trials: emerging lessons from type 1 diabetes. Nat Rev Immunol 2010; 10:145-52. [DOI: 10.1038/nri2705] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
La Torre D, Lernmark A. Immunology of beta-cell destruction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:537-83. [PMID: 20217514 DOI: 10.1007/978-90-481-3271-3_24] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pancreatic islet beta-cells are the target for an autoimmune process that eventually results in an inability to control blood glucose due to the lack of insulin. The different steps that eventually lead to the complete loss of the beta-cells are reviewed to include the very first step of a triggering event that initiates the development of beta-cell autoimmunity to the last step of appearance of islet-cell autoantibodies, which may mark that insulitis is about to form. The observations that the initial beta-cell destruction by virus or other environmental factors triggers islet autoimmunity not in the islets but in the draining pancreatic lymph nodes are reviewed along with possible basic mechanisms of loss of tolerance to islet autoantigens. Once islet autoimmunity is established the question is how beta-cells are progressively killed by autoreactive lymphocytes which eventually results in chronic insulitis. Many of these series of events have been dissected in spontaneously diabetic mice or rats, but controlled clinical trials have shown that rodent observations are not always translated into mechanisms in humans. Attempts are therefore needed to clarify the step 1 triggering mechanisms and the step to chronic autoimmune insulitis to develop evidence-based treatment approaches to prevent type 1 diabetes.
Collapse
Affiliation(s)
- Daria La Torre
- Lund University, CRC, Department of Clinical Sciences, University Hospital MAS, SE-205 02, Malmö, Sweden.
| | | |
Collapse
|