1
|
Sabja-Llanos EN, Paredes-Molina FJ, Averbuj A, Büchner-Miranda JA, Salas-Yanquin LP, Pardo LM, Pechenik JA, Chaparro OR. Microscale intertidal habitats modulate shell break resistance of the prey; Implications for prey selection. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106955. [PMID: 39799853 DOI: 10.1016/j.marenvres.2025.106955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/19/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Intertidal microhabitats provide special conditions to the organisms that inhabit them and to some of their morpho-protective characteristics. Tidal pools, under the influence of acidified freshwater, may affect the characteristics of the protective shells of prey and have repercussions on predation. The shells of Perumytilus purpuratus from such tidepools are more fragile than those of their counterparts from the vertical intertidal walls of the same area. Those from the tidepools also have tissue content values intermediate between those from the lower and higher limits of the intertidal wall, possibly due to different feeding regimens of the bivalves. Also, the shells of tidepool individuals have a shell thickness that is intermediate between those from the lower and higher limits of their distribution. In a common garden, the predatory muricid Acanthina monodon prefers to attack individuals from the tide pool. This selection is not based on a higher energetic input from the prey, nor on the thickness of the prey's shell, but on the lower hardness of the shell that implies an easier and less-energetically expensive attack and possibly of shorter duration.
Collapse
Affiliation(s)
- Elayne N Sabja-Llanos
- Universidad Austral de Chile, Instituto de Ciencias Marinas y Limnológicas, Valdivia, Chile
| | | | - Andrés Averbuj
- LARBIM- IBIOMAR. CCT CONICET-CENPAT, Bvd. Brown 2915, U9120ACV, Puerto Madryn, Chubut, Argentina
| | | | - Luis P Salas-Yanquin
- Universidad Austral de Chile, Instituto de Ciencias Marinas y Limnológicas, Valdivia, Chile
| | - Luis M Pardo
- Universidad Austral de Chile, Instituto de Ciencias Marinas y Limnológicas, Valdivia, Chile; Centro FONDAP de Investigación de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Jan A Pechenik
- Biology Department, Tufts University, Medford, MA, 02155, USA
| | - Oscar R Chaparro
- Universidad Austral de Chile, Instituto de Ciencias Marinas y Limnológicas, Valdivia, Chile; Programa de Pós-Graduação em Sistemas Aquáticos Tropicais, Universidade Estadual de Santa Cruz (UESC), Salobrinho, 45662-900, Ihéus, Brazil.
| |
Collapse
|
2
|
Amstutz A, Firth LB, Spicer JI, Hanley ME. Facing up to climate change: Community composition varies with aspect and surface temperature in the rocky intertidal. MARINE ENVIRONMENTAL RESEARCH 2021; 172:105482. [PMID: 34656855 DOI: 10.1016/j.marenvres.2021.105482] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Marine rocky intertidal organisms are amongst those most affected by climate change with regional distributional changes observed for many species. Although often ascribed to increased sea surface temperatures, precise assessment of the local habitat conditions underpinning observed and predicted changes in community assembly is lacking. Here we examine how aspect (i.e. north-south orientation) affects intertidal community composition and how rock surface temperatures and stress responses of two dominant grazer species (Patella spp.) elucidate emergent differences. We quantified year-round temperature variation and surveyed intertidal community composition on paired natural rock gullies with Equator- (EF) and Pole-facing (PF) surfaces. We also investigated variation in limpet (Patella spp.) reproductive phenology and osmotic stress. Average annual temperatures were 0.8 °C (1.6 °C at low tide) higher, with six-fold more frequent extremes (i.e. > 30 °C) on EF than PF surfaces. Intertidal community composition varied with aspect across trophic levels with greater overall species richness, abundance of primary producers and grazers on PF-surfaces, and greater barnacle abundance on EF-surfaces. Although species richness of organisms from different biogeographical origins ('Boreal' or 'Lusitanian') did not vary, the Lusitanian limpet Patella depressa exhibited earlier reproductive development on EF-surfaces and both limpet species exhibited greater thermal stress on EF-surfaces. We argue that our study system provides a good model for understanding how temperature variation at local scales can affect community composition, as well as ecophysiological and ecological responses to climate change and so better inform and predict regional range shifts over coming decades.
Collapse
Affiliation(s)
- A Amstutz
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon, PL4 8AA, UK
| | - L B Firth
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon, PL4 8AA, UK
| | - J I Spicer
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon, PL4 8AA, UK
| | - M E Hanley
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon, PL4 8AA, UK.
| |
Collapse
|
3
|
Dong YW, Liao ML, Han GD, Somero GN. An integrated, multi-level analysis of thermal effects on intertidal molluscs for understanding species distribution patterns. Biol Rev Camb Philos Soc 2021; 97:554-581. [PMID: 34713568 DOI: 10.1111/brv.12811] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022]
Abstract
Elucidating the physiological mechanisms that underlie thermal stress and discovering how species differ in capacities for phenotypic acclimatization and evolutionary adaptation to this stress is critical for understanding current latitudinal and vertical distribution patterns of species and for predicting their future state in a warming world. Such mechanistic analyses require careful choice of study systems (species and temperature-sensitive traits) and design of laboratory experiments that reflect the complexities of in situ conditions. Here, we critically review a wide range of studies of intertidal molluscs that provide mechanistic accounts of thermal effects across all levels of biological organization - behavioural, organismal, organ level, cellular, molecular, and genomic - and show how temperature-sensitive traits govern distribution patterns and capacities for coping with thermal stress. Comparisons of congeners from different thermal habitats are especially effective means for identifying adaptive variation. We employ these mechanistic analyses to illustrate how species differ in the severity of threats posed by rising temperature. Counterintuitively, we show that some of the most heat-tolerant species may be most threatened by increases in temperatures because of their small thermal safety margins and minimal abilities to acclimatize to higher temperatures. We discuss recent molecular biological and genomic studies that provide critical foundations for understanding the types of evolutionary changes in protein structure, RNA secondary structure, genome content, and gene expression capacities that underlie adaptation to temperature. Duplication of stress-related genes, as found in heat-tolerant molluscs, may provide enhanced capacity for coping with higher temperatures. We propose that the anatomical, behavioural, physiological, and genomic diversity found among intertidal molluscs, which commonly are of critical importance and high abundance in these ecosystems, makes this group of animals a highly appropriate study system for addressing questions about the mechanistic determinants of current and future distribution patterns of intertidal organisms.
Collapse
Affiliation(s)
- Yun-Wei Dong
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, 266003, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Ming-Ling Liao
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Guo-Dong Han
- College of Life Science, Yantai University, Yantai, 264005, China
| | - George N Somero
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California, 93950, U.S.A
| |
Collapse
|
4
|
Ho P, Nguyen HQ, Kern EMA, Won Y. Locomotor responses to salt stress in native and invasive mud-tidal gastropod populations ( Batillaria). Ecol Evol 2021; 11:458-470. [PMID: 33437442 PMCID: PMC7790626 DOI: 10.1002/ece3.7065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 11/30/2022] Open
Abstract
Plasticity in salt tolerance can be crucial for successful biological invasions of novel habitats by marine gastropods. The intertidal snail Batillaria attramentaria, which is native to East Asia but invaded the western shores of North America from Japan 80 years ago, provides an opportunity to examine how environmental salinity may shape behavioral and morphological traits. In this study, we compared the movement distance of four B. attramentaria populations from native (Korea and Japan) and introduced (United States) habitats under various salinity levels (13, 23, 33, and 43 PSU) during 30 days of exposure in the lab. We sequenced a partial mitochondrial CO1 gene to infer phylogenetic relationships among populations and confirmed two divergent mitochondrial lineages constituting our sample sets. Using a statistical model-selection approach, we investigated the effects of geographic distribution and genetic composition on locomotor performance in response to salt stress. Snails exposed to acute low salinity (13 PSU) reduced their locomotion and were unable to perform at their normal level (the moving pace of snails exposed to 33 PSU). We did not detect any meaningful differences in locomotor response to salt stress between the two genetic lineages or between the native snails (Japan vs. Korea populations), but we found significant locomotor differences between the native and introduced groups (Japan or Korea vs. the United States). We suggest that the greater magnitude of tidal salinity fluctuation at the US location may have influenced locomotor responses to salt stress in introduced snails.
Collapse
Affiliation(s)
- Phuong‐Thao Ho
- Institute of Fundamental and Applied SciencesDuy Tan UniversityHo Chi Minh CityVietnam
- Faculty of Natural SciencesDuy Tan UniversityDanang CityVietnam
| | - Hoa Quynh Nguyen
- Interdisciplinary Program of EcoCreativeEwha Womans UniversitySeoulKorea
- Division of EcoScienceEwha Womans UniversitySeoulKorea
- Institute of ChemistryVietnam Academy of Science and TechnologyHanoiVietnam
| | | | - Yong‐Jin Won
- Interdisciplinary Program of EcoCreativeEwha Womans UniversitySeoulKorea
- Division of EcoScienceEwha Womans UniversitySeoulKorea
| |
Collapse
|
5
|
Pechenik JA, Chaparro OR, Lazarus ZM, Tellado GV, Ostapovich EM, Clark D. Impact of short-term elevated temperature stress on winter-acclimated individuals of the marine gastropod Crepidula fornicata. MARINE ENVIRONMENTAL RESEARCH 2020; 162:105180. [PMID: 33126112 DOI: 10.1016/j.marenvres.2020.105180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
The intertidal zone is an especially stressful thermal habitat, typically exposing residents to air temperatures for up to 6 h at a time, twice daily. Tolerance to elevated temperatures has been particularly well-studied for a variety of intertidal species, especially with regard to upper thermal limits during summers. However, in recent years, as climates have been changing around the world, temperate zone intertidal organisms have sometimes been exposed to periods of unusually high air temperatures during the winter. The present study sought to examine the impact of elevated temperatures on survival and clearance rates of winter-acclimated intertidal individuals of the sedentary marine suspension-feeding gastropod Crepidula fornicata. Individuals were collected intertidally from Nahant, Massachusetts from late January to early April each year for 5 years, maintained in the laboratory at the acclimation temperature of 6 °C, and exposed in the laboratory for 3 h to temperatures as high as 37 °C in seawater either once or twice, 24 h apart. Although mean clearance rates were substantially reduced for at least the next 12-24 h after individuals were returned to the 6 °C control condition following exposures to elevated temperatures as low as 21-26 °C, we saw little mortality even following two 3 h exposures to 35 °C, or single exposures to 37 °C. Mortality was substantial, however, in one experiment following a double exposure to 37 °C. Smaller individuals (~5-12 mm in shell length) were somewhat more sensitive to the thermal stress than adults were. Intertidal members of C. fornicata in Massachusetts seem well-prepared to deal with the increasing range of winter air temperatures associated with the global climate confusion predicted for future years. Additional studies will be required to understand the physiological and biochemical mechanisms used by winter-acclimated individuals of this species to tolerate such periodic substantial temperature increases of 29-31 °C.
Collapse
Affiliation(s)
- Jan A Pechenik
- Biology Department, Tufts University, 200 College Ave., Medford, MA, 02155, USA.
| | | | - Zoe M Lazarus
- Biology Department, Tufts University, 200 College Ave., Medford, MA, 02155, USA
| | - Grace V Tellado
- Biology Department, Tufts University, 200 College Ave., Medford, MA, 02155, USA
| | - Emma M Ostapovich
- Biology Department, Tufts University, 200 College Ave., Medford, MA, 02155, USA
| | - Daria Clark
- Biology Department, Tufts University, 200 College Ave., Medford, MA, 02155, USA
| |
Collapse
|
6
|
Dal Bello M, Rindi L, Benedetti-Cecchi L. Temporal clustering of extreme climate events drives a regime shift in rocky intertidal biofilms. Ecology 2019; 100:e02578. [PMID: 30516273 DOI: 10.1002/ecy.2578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 10/16/2018] [Accepted: 11/06/2018] [Indexed: 01/16/2023]
Abstract
Research on regime shifts has focused primarily on how changes in the intensity and duration of press disturbances precipitate natural systems into undesirable, alternative states. By contrast, the role of recurrent pulse perturbations, such as extreme climatic events, has been largely neglected, hindering our understanding of how historical processes regulate the onset of a regime shift. We performed field manipulations to evaluate whether combinations of extreme events of temperature and sediment deposition that differed in their degree of temporal clustering generated alternative states in rocky intertidal epilithic microphytobenthos (biofilms) on rocky shores. The likelihood of biofilms to shift from a vegetated to a bare state depended on the degree of temporal clustering of events, with biofilm biomass showing both states under a regime of non-clustered (60 d apart) perturbations while collapsing in the clustered (15 d apart) scenario. Our results indicate that time since the last perturbation can be an important predictor of collapse in systems exhibiting alternative states and that consideration of historical effects in studies of regime shifts may largely improve our understanding of ecosystem dynamics under climate change.
Collapse
Affiliation(s)
- Martina Dal Bello
- Department of Biology, University of Pisa, CoNISMa, Via Derna 1, Pisa, Italy
| | - Luca Rindi
- Department of Biology, University of Pisa, CoNISMa, Via Derna 1, Pisa, Italy
| | | |
Collapse
|
7
|
Adaptive marine conservation planning in the face of climate change: What can we learn from physiological, ecological and genetic studies? Glob Ecol Conserv 2019. [DOI: 10.1016/j.gecco.2019.e00566] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
8
|
Judge R, Choi F, Helmuth B. Recent Advances in Data Logging for Intertidal Ecology. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00213] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
9
|
Cheng MCF, Sarà G, Williams GA. Combined effects of thermal conditions and food availability on thermal tolerance of the marine bivalve, Perna viridis. J Therm Biol 2018; 78:270-276. [PMID: 30509647 DOI: 10.1016/j.jtherbio.2018.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/12/2018] [Accepted: 10/13/2018] [Indexed: 11/24/2022]
Abstract
Organisms can mitigate the effects of long term variation in environmental conditions through acclimation, which involves changes in various physiological responses. To elucidate the possible effects of temperature and food concentrations on acclimation capacity, physiological responses of the mussel, Perna viridis, were measured after individuals were held for six weeks under varying temperatures and food availability. Warm-acclimated mussels experiencing higher food levels had significantly greater upper thermal limits than those maintained on lower food levels. In contrast, the upper thermal limits of cold-acclimated mussels were not affected by food levels. For warm-acclimated mussels, differences in upper thermal limits were likely due to rapid depletion of energy storage as predicted by Dynamic Energy Budget model simulations for P. viridis exposed to lower food levels. Clearance rates of cold-acclimated mussels were significantly lower than warm-acclimated mussels, regardless of food availability. The impacts of lower food acquisition on energy storage, however, could be compensated by lower metabolic rates of the cold-acclimated mussels. The availability and the ability to acquire food are not, therefore, the main drivers differentiating between the upper thermal tolerances of cold- and warm-acclimated mussels, but these differences are driven by the past thermal history the mussels experienced. The temperature tolerance range of P. viridis showed a positive shift to tolerate higher temperatures after acclimation. Such flexibility in thermal tolerance implies P. viridis has high capacity to acclimate to novel environments, which will enhance its future success given its commercial importance as an aquaculture species.
Collapse
Affiliation(s)
- Martin C F Cheng
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Gianluca Sarà
- Department of Earth and Marine Sciences, University of Palermo, Palermo, Italy
| | - Gray A Williams
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
10
|
McAfee D, Bishop MJ, Yu T, Williams GA. Structural traits dictate abiotic stress amelioration by intertidal oysters. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13210] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dominic McAfee
- School of Biological Sciences The University of Adelaide Adelaide South Australia Australia
- Department of Biological Sciences Macquarie University Sydney New South Wales Australia
| | - Melanie J. Bishop
- Department of Biological Sciences Macquarie University Sydney New South Wales Australia
| | - Tai‐Nga Yu
- The Swire Institute of Marine Science and School of Biological Sciences The University of Hong Kong Hong Kong, SAR China
| | - Gray A. Williams
- The Swire Institute of Marine Science and School of Biological Sciences The University of Hong Kong Hong Kong, SAR China
| |
Collapse
|
11
|
Rivera-Ingraham GA, Lignot JH. Osmoregulation, bioenergetics and oxidative stress in coastal marine invertebrates: raising the questions for future research. ACTA ACUST UNITED AC 2018; 220:1749-1760. [PMID: 28515169 DOI: 10.1242/jeb.135624] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Osmoregulation is by no means an energetically cheap process, and its costs have been extensively quantified in terms of respiration and aerobic metabolism. Common products of mitochondrial activity are reactive oxygen and nitrogen species, which may cause oxidative stress by degrading key cell components, while playing essential roles in cell homeostasis. Given the delicate equilibrium between pro- and antioxidants in fueling acclimation responses, the need for a thorough understanding of the relationship between salinity-induced oxidative stress and osmoregulation arises as an important issue, especially in the context of global changes and anthropogenic impacts on coastal habitats. This is especially urgent for intertidal/estuarine organisms, which may be subject to drastic salinity and habitat changes, leading to redox imbalance. How do osmoregulation strategies determine energy expenditure, and how do these processes affect organisms in terms of oxidative stress? What mechanisms are used to cope with salinity-induced oxidative stress? This Commentary aims to highlight the main gaps in our knowledge, covering all levels of organization. From an energy-redox perspective, we discuss the link between environmental salinity changes and physiological responses at different levels of biological organization. Future studies should seek to provide a detailed understanding of the relationship between osmoregulatory strategies and redox metabolism, thereby informing conservation physiologists and allowing them to tackle the new challenges imposed by global climate change.
Collapse
Affiliation(s)
| | - Jehan-Hervé Lignot
- UMR 9190 MARBEC, Université de Montpellier, Place Eugène Bataillon, Montpellier 34095, France
| |
Collapse
|
12
|
Principe SC, Augusto A, Costa TM. Differential effects of water loss and temperature increase on the physiology of fiddler crabs from distinct habitats. J Therm Biol 2018; 73:14-23. [PMID: 29549987 DOI: 10.1016/j.jtherbio.2018.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 01/29/2018] [Accepted: 02/04/2018] [Indexed: 01/13/2023]
Abstract
Temperature is one of the main environmental constraints to organism distribution, affecting physiology and survival. Organisms that inhabit the intertidal zone are exposed to temperature variation and, with climate change, they should face different conditions which include higher temperatures, leading to higher rates of water loss through evaporation and then fitness reduction or mortality. Here we tested the effects of desiccation and increased temperature in two fiddler crabs species that occupy distinct habitats in regard to vegetation cover and position on the intertidal zone and thus may respond differently to these stressors. Leptuca thayeri, which is restricted to the mid-tide zone and vegetated areas, had higher desiccation and mortality rates than Minuca rapax, a generalist species, when exposed to desiccation for 120 min. Also, compared to M. rapax, L. thayeri had a more permeable carapace. Temperature elevation of 10 °C and 20 °C for 72 h caused no mortality in either species. However, there were changes in hemolymph osmolality and muscle hydration in both species. Leptuca thayeri osmolality was low in the intermediate temperature, suggesting that at this temperature this species has a better salt secretion capability. Minuca rapax, however, had an increase in hemolymph osmolality at the highest temperatures with no LDH increase, which indicates that osmotic control in this species is more sensitive to temperature increase. Our results show that L. thayeri suffers more from desiccation, due to a more permeable carapace. However, because of this higher permeability L. thayeri is capable of lowering its temperature more than M. rapax. As temperature elevation produces great physiological changes in M. rapax, a reduced ability to keep a low temperature can be an issue for this species if temperature increases. However, higher water loss to keep body temperature low may decrease L. thayeri survivability in the same scenario.
Collapse
Affiliation(s)
- Silas C Principe
- Biosciences Institute, São Paulo State University (UNESP), Coastal Campus, São Vicente - SP, Brazil.
| | - Alessandra Augusto
- Biosciences Institute, São Paulo State University (UNESP), Botucatu Campus, Botucatu - SP, Brazil.
| | - Tânia Marcia Costa
- Biosciences Institute, São Paulo State University (UNESP), Coastal Campus, São Vicente - SP, Brazil; Biosciences Institute, São Paulo State University (UNESP), Botucatu Campus, Botucatu - SP, Brazil.
| |
Collapse
|
13
|
Bible JM, Cheng BS, Chang AL, Ferner MC, Wasson K, Zabin CJ, Latta M, Sanford E, Deck A, Grosholz ED. Timing of stressors alters interactive effects on a coastal foundation species. Ecology 2017; 98:2468-2478. [PMID: 28653399 DOI: 10.1002/ecy.1943] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 11/09/2022]
Abstract
The effects of climate-driven stressors on organismal performance and ecosystem functioning have been investigated across many systems; however, manipulative experiments generally apply stressors as constant and simultaneous treatments, rather than accurately reflecting temporal patterns in the natural environment. Here, we assessed the effects of temporal patterns of high aerial temperature and low salinity on survival of Olympia oysters (Ostrea lurida), a foundation species of conservation and restoration concern. As single stressors, low salinity (5 and 10 psu) and the highest air temperature (40°C) resulted in oyster mortality of 55.8, 11.3, and 23.5%, respectively. When applied on the same day, low salinity and high air temperature had synergistic negative effects that increased oyster mortality. This was true even for stressor levels that were relatively mild when applied alone (10 psu and 35°C). However, recovery times of two or four weeks between stressors eliminated the synergistic effects. Given that most natural systems threatened by climate change are subject to multiple stressors that vary in the timing of their occurrence, our results suggest that it is important to examine temporal variation of stressors in order to more accurately understand the possible biological responses to global change.
Collapse
Affiliation(s)
- Jillian M Bible
- Bodega Marine Laboratory, 2099 Westshore Road, Bodega Bay, California, 94923, USA.,Department of Evolution and Ecology, University of California, One Shields Avenue, Davis, California, 95616, USA
| | - Brian S Cheng
- Bodega Marine Laboratory, 2099 Westshore Road, Bodega Bay, California, 94923, USA.,Department of Environmental Science and Policy, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Andrew L Chang
- San Francisco Bay National Estuarine Research Reserve, San Francisco State University, 3152 Paradise Drive, Tiburon, California, 94920, USA.,Smithsonian Environmental Research Center, 3152 Paradise Drive, Tiburon, California, 94920, USA
| | - Matthew C Ferner
- San Francisco Bay National Estuarine Research Reserve, San Francisco State University, 3152 Paradise Drive, Tiburon, California, 94920, USA
| | - Kerstin Wasson
- Elkhorn Slough National Estuarine Research Reserve, 1700 Elkhorn Road, Watsonville, California, 95076, USA
| | - Chela J Zabin
- Department of Environmental Science and Policy, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA.,Smithsonian Environmental Research Center, 3152 Paradise Drive, Tiburon, California, 94920, USA
| | - Marilyn Latta
- California State Coastal Conservancy, 1515 Clay Street, Oakland, California, 94612, USA
| | - Eric Sanford
- Bodega Marine Laboratory, 2099 Westshore Road, Bodega Bay, California, 94923, USA.,Department of Evolution and Ecology, University of California, One Shields Avenue, Davis, California, 95616, USA
| | - Anna Deck
- San Francisco Bay National Estuarine Research Reserve, San Francisco State University, 3152 Paradise Drive, Tiburon, California, 94920, USA
| | - Edwin D Grosholz
- Bodega Marine Laboratory, 2099 Westshore Road, Bodega Bay, California, 94923, USA.,Department of Environmental Science and Policy, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| |
Collapse
|
14
|
Dal Bello M, Rindi L, Benedetti-Cecchi L. Legacy effects and memory loss: how contingencies moderate the response of rocky intertidal biofilms to present and past extreme events. GLOBAL CHANGE BIOLOGY 2017; 23:3259-3268. [PMID: 28181716 DOI: 10.1111/gcb.13656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 06/06/2023]
Abstract
Understanding how historical processes modulate the response of ecosystems to perturbations is becoming increasingly important. In contrast to the growing interest in projecting biodiversity and ecosystem functioning under future climate scenarios, how legacy effects originating from historical conditions drive change in ecosystems remains largely unexplored. Using experiments in combination with stochastic antecedent modelling, we evaluated how extreme warming, sediment deposition and grazing events modulated the ecological memory of rocky intertidal epilithic microphytobenthos (EMPB). We found memory effects in the non-clustered scenario of disturbance (60 days apart), where EMPB biomass fluctuated in time, but not under clustered disturbances (15 days apart), where EMPB biomass was consistently low. A massive grazing event impacted on EMPB biomass in a second run of the experiment, also muting ecological memory. Our results provide empirical support to the theoretical expectation that stochastic fluctuations promote ecological memory, but also show that contingencies may lead to memory loss.
Collapse
Affiliation(s)
- Martina Dal Bello
- Department of Biology, University of Pisa, CoNISMa, Via Derna 1, Pisa, Italy
| | - Luca Rindi
- Department of Biology, University of Pisa, CoNISMa, Via Derna 1, Pisa, Italy
| | | |
Collapse
|
15
|
Response of Two Mytilids to a Heatwave: The Complex Interplay of Physiology, Behaviour and Ecological Interactions. PLoS One 2016; 11:e0164330. [PMID: 27736896 PMCID: PMC5063473 DOI: 10.1371/journal.pone.0164330] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 09/25/2016] [Indexed: 11/19/2022] Open
Abstract
Different combinations of behavioural and physiological responses may play a crucial role in the ecological success of species, notably in the context of biological invasions. The invasive mussel Xenostrobus securis has successfully colonised the inner part of the Galician Rias Baixas (NW Spain), where it co-occurs with the commercially-important mussel Mytilus galloprovincialis. This study investigated the effect of a heatwave on the physiological and behavioural responses in monospecific or mixed aggregations of these species. In a mesocosm experiment, mussels were exposed to simulated tidal cycles and similar temperature conditions to those experienced in the field during a heat-wave that occurred in the summer of 2013, when field robo-mussels registered temperatures up to 44.5°C at low tide. The overall responses to stress differed markedly between the two species. In monospecific aggregations M. galloprovincialis was more vulnerable than X. securis to heat exposure during emersion. However, in mixed aggregations, the presence of the invader was associated with lower mortality in M. galloprovincialis. The greater sensitivity of M. galloprovincialis to heat exposure was reflected in a higher mortality level, greater induction of Hsp70 protein and higher rates of respiration and gaping activity, which were accompanied by a lower heart rate (bradycardia). The findings show that the invader enhanced the physiological performance of M. galloprovincialis, highlighting the importance of species interactions in regulating responses to environmental stress. Understanding the complex interactions between ecological factors and physiological and behavioural responses of closely-related species is essential for predicting the impacts of invasions in the context of future climate change.
Collapse
|
16
|
Monaco CJ, Wethey DS, Helmuth B. Thermal sensitivity and the role of behavior in driving an intertidal predator–prey interaction. ECOL MONOGR 2016. [DOI: 10.1002/ecm.1230] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Cristián J. Monaco
- Department of Biological Sciences University of South Carolina Columbia South Carolina 29208 USA
| | - David S. Wethey
- Department of Biological Sciences University of South Carolina Columbia South Carolina 29208 USA
| | - Brian Helmuth
- Marine Science Center Northeastern University Nahant Massachusetts 01908 USA
| |
Collapse
|
17
|
Dong Y, Zhang S. Ecological relevance of energy metabolism: transcriptional responses in energy sensing and expenditure to thermal and osmotic stresses in an intertidal limpet. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12625] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Yun‐wei Dong
- State Key Laboratory of Marine Environmental Science College of Ocean and Earth Sciences Xiang'an Campus Xiamen University 361102 Xiamen China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources Xiang'an Campus Xiamen University 361102 Xiamen China
| | - Shu Zhang
- State Key Laboratory of Marine Environmental Science College of Ocean and Earth Sciences Xiang'an Campus Xiamen University 361102 Xiamen China
| |
Collapse
|
18
|
Giomi F, Mandaglio C, Ganmanee M, Han GD, Dong YW, Williams GA, Sarà G. The importance of thermal history: costs and benefits of heat exposure in a tropical, rocky shore oyster. J Exp Biol 2016; 219:686-94. [DOI: 10.1242/jeb.128892] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/17/2015] [Indexed: 12/12/2022]
Abstract
Although thermal performance is widely recognized to be pivotal in determining species' distributions, assessment of this performance is often based on laboratory acclimated individuals, neglecting their proximate thermal history. The thermal history of a species sums the evolutionary history and, importantly, the thermal events recently experienced by individuals, including short-term acclimation to environmental variations. Thermal history is perhaps of greatest importance for species inhabiting thermally challenging environments and therefore assumed to be living close to their thermal limits, such as in the tropics. To test the importance of thermal history the responses of the tropical oyster, Isognomon nucleus, to short term differences in thermal environments were investigated. Critical and lethal temperatures and oxygen consumption were improved in oysters which previously experienced elevated air temperatures and were associated with an enhanced heat shock response, indicating that recent thermal history affects physiological performance as well as inducing short-term acclimation to acute conditions. These responses were, however, associated with trades offs in feeding activity, with oysters which experienced elevated temperatures showing reduced energy gain. Recent thermal history, therefore, seems to rapidly invoke physiological mechanisms which enhance survival to short-term thermal challenge but also longer-term climatic changes and consequently need to be incorporated into assessments of species' thermal performances.
Collapse
Affiliation(s)
- Folco Giomi
- Laboratory of Experimental Ecology, Dipartimento di Scienze della Terra e del Mare (DISTEM), University of Palermo, Italy
| | - Concetta Mandaglio
- Laboratory of Experimental Ecology, Dipartimento di Scienze della Terra e del Mare (DISTEM), University of Palermo, Italy
| | - Monthon Ganmanee
- Department of Animal Production Technology and Fisheries, Faculty of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Guo-Dong Han
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, China
| | - Yun-Wei Dong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, China
| | - Gray A. Williams
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Gianluca Sarà
- Laboratory of Experimental Ecology, Dipartimento di Scienze della Terra e del Mare (DISTEM), University of Palermo, Italy
| |
Collapse
|
19
|
Helmuth B, Russell BD, Connell SD, Dong Y, Harley CDG, Lima FP, Sará G, Williams GA, Mieszkowska N. Beyond long-term averages: making biological sense of a rapidly changing world. ACTA ACUST UNITED AC 2014. [DOI: 10.1186/s40665-014-0006-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Dong YW, Han GD, Huang XW. Stress modulation of cellular metabolic sensors: interaction of stress from temperature and rainfall on the intertidal limpet Cellana toreuma. Mol Ecol 2014; 23:4541-54. [PMID: 25130589 DOI: 10.1111/mec.12882] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 12/23/2022]
Abstract
In the natural environment, organisms are exposed to large variations in physical conditions. Quantifying such physiological responses is, however, often performed in laboratory acclimation studies, in which usually only a single factor is varied. In contrast, field acclimatization may expose organisms to concurrent changes in several environmental variables. The interactions of these factors may have strong effects on organismal function. In particular, rare events that occur stochastically and have relatively short duration may have strong effects. The present experiments studied levels of expression of several genes associated with cellular stress and metabolic regulation in a field population of limpet Cellana toreuma that encountered a wide range of temperatures plus periodic rain events. Physiological responses to these variable conditions were quantified by measuring levels of mRNA of genes encoding heat-shock proteins (Hsps) and metabolic sensors (AMPKs and Sirtuin 1). Our results reveal high ratios of individuals in upregulation group of stress-related gene expression at high temperature and rainy days, indicating the occurrence of stress from both prevailing high summer temperatures and occasional rainfall during periods of emersion. At high temperature, stress due to exposure to rainfall may be more challenging than heat stress alone. The highly variable physiological performances of limpets in their natural habitats indicate the possible differences in capability for physiological regulation among individuals. Our results emphasize the importance of studies of field acclimatization in unravelling the effects of environmental change on organisms, notably in the context of multiple changes in abiotic factors that are accompanying global change.
Collapse
Affiliation(s)
- Yun-Wei Dong
- State Key Laboratory of Marine Environmental Science, College of Marine and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | | | | |
Collapse
|
21
|
Zhang S, Han GD, Dong YW. Temporal patterns of cardiac performance and genes encoding heat shock proteins and metabolic sensors of an intertidal limpet Cellana toreuma during sublethal heat stress. J Therm Biol 2014; 41:31-7. [DOI: 10.1016/j.jtherbio.2014.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 01/07/2014] [Accepted: 02/01/2014] [Indexed: 01/08/2023]
|
22
|
Santini G, Ngan A, Burrows MT, Chelazzi G, Williams GA. What drives foraging behaviour of the intertidal limpetCellana grata? A quantitative test of a dynamic optimization model. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12241] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Giacomo Santini
- Department of Biology; University of Florence; Via Madonna del Piano 6 50019 Sesto Fiorentino Italy
| | - Avis Ngan
- The Swire Institute of Marine Science and School of Biological Sciences; The University of Hong Kong; Pokfulam Road Hong Kong China
| | - Michael T. Burrows
- Scottish Association for Marine Science; Scottish Marine Institute; Oban Argyll PA37 1QA UK
| | - Guido Chelazzi
- Department of Biology; University of Florence; Via Madonna del Piano 6 50019 Sesto Fiorentino Italy
| | - Gray A. Williams
- The Swire Institute of Marine Science and School of Biological Sciences; The University of Hong Kong; Pokfulam Road Hong Kong China
| |
Collapse
|
23
|
|
24
|
Pincebourde S, Sanford E, Casas J, Helmuth B. Temporal coincidence of environmental stress events modulates predation rates. Ecol Lett 2012; 15:680-8. [DOI: 10.1111/j.1461-0248.2012.01785.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|