1
|
Harithpriya K, Jayasuriya R, Adhikari T, Rai A, Ramkumar KM. Modulation of transcription factors by small molecules in β-cell development and differentiation. Eur J Pharmacol 2023; 946:175606. [PMID: 36809813 DOI: 10.1016/j.ejphar.2023.175606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/21/2023]
Abstract
Transcription factors regulate gene expression and play crucial roles in development and differentiation of pancreatic β-cell. The expression and/or activities of these transcription factors are reduced when β-cells are chronically exposed to hyperglycemia, which results in loss of β-cell function. Optimal expression of such transcription factors is required to maintain normal pancreatic development and β-cell function. Over many other methods of regenerating β-cells, using small molecules to activate transcription factors has gained insights, resulting in β-cells regeneration and survival. In this review, we discuss the broad spectrum of transcription factors regulating pancreatic β-cell development, differentiation and regulation of these factors in normal and pathological states. Also, we have presented set of potential pharmacological effects of natural and synthetic compounds on activities of transcription factor involved in pancreatic β-cell regeneration and survival. Exploring these compounds and their action on transcription factors responsible for pancreatic β-cell function and survival could be useful in providing new insights for development of small molecule modulators.
Collapse
Affiliation(s)
- Kannan Harithpriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Ravichandran Jayasuriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Trishla Adhikari
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Awantika Rai
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
2
|
Abstract
Pancreatic islet beta cells (β-cells) synthesize and secrete insulin in response to rising glucose levels and thus are a prime target in both major forms of diabetes. Type 1 diabetes ensues due to autoimmune destruction of β-cells. On the other hand, the prevailing insulin resistance and hyperglycemia in type 2 diabetes (T2D) elicits a compensatory response from β-cells that involves increases in β-cell mass and function. However, the sustained metabolic stress results in β-cell failure, characterized by severe β-cell dysfunction and loss of β-cell mass. Dynamic changes to β-cell mass also occur during pancreatic development that involves extensive growth and morphogenesis. These orchestrated events are triggered by multiple signaling pathways, including those representing the transforming growth factor β (TGF-β) superfamily. TGF-β pathway ligands play important roles during endocrine pancreas development, β-cell proliferation, differentiation, and apoptosis. Furthermore, new findings are suggestive of TGF-β's role in regulation of adult β-cell mass and function. Collectively, these findings support the therapeutic utility of targeting TGF-β in diabetes. Summarizing the role of the various TGF-β pathway ligands in β-cell development, growth and function in normal physiology, and during diabetes pathogenesis is the topic of this mini-review.
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Cell Growth and Metabolism Section, Diabetes, Endocrinology & Obesity Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Clinical Research Center, Bethesda, MD, USA
| | - Ji-Hyeon Lee
- Cell Growth and Metabolism Section, Diabetes, Endocrinology & Obesity Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Clinical Research Center, Bethesda, MD, USA
| | - Sushil G Rane
- Cell Growth and Metabolism Section, Diabetes, Endocrinology & Obesity Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Clinical Research Center, Bethesda, MD, USA
- Correspondence: Sushil G. Rane, PhD, Cell Growth and Metabolism Section, Diabetes, Endocrinology and Obesity Branch, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Clinical Research Center, Building 10, CRC-West 5-5940, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Al-Khawaga S, Memon B, Butler AE, Taheri S, Abou-Samra AB, Abdelalim EM. Pathways governing development of stem cell-derived pancreatic β cells: lessons from embryogenesis. Biol Rev Camb Philos Soc 2017. [DOI: 10.1111/brv.12349] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sara Al-Khawaga
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| | - Bushra Memon
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| | - Alexandra E. Butler
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine; University of California; Los Angeles CA 90095 U.S.A
| | - Shahrad Taheri
- Department of Medicine; Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, PO BOX 24144; Doha Qatar
- Department of Medicine; Qatar Metabolic Institute, Hamad Medical Corporation; Doha Qatar
| | - Abdul B. Abou-Samra
- Department of Medicine; Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, PO BOX 24144; Doha Qatar
- Department of Medicine; Qatar Metabolic Institute, Hamad Medical Corporation; Doha Qatar
| | - Essam M. Abdelalim
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| |
Collapse
|
4
|
Abdelalim EM, Emara MM. Pluripotent Stem Cell-Derived Pancreatic β Cells: From In Vitro Maturation to Clinical Application. RECENT ADVANCES IN STEM CELLS 2016. [DOI: 10.1007/978-3-319-33270-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Leshansky L, Aberdam D, Itskovitz-Eldor J, Berrih-Aknin S. Human embryonic stem cells prevent T-cell activation by suppressing dendritic cells function via TGF-beta signaling pathway. Stem Cells 2015; 32:3137-49. [PMID: 25186014 DOI: 10.1002/stem.1833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 07/23/2014] [Indexed: 12/25/2022]
Abstract
Human embryonic stem cells (hESCs) represent a potential source of transplantable cells for regenerative medicine, but development of teratoma even in syngenic recipients represents a critical obstacle to safe stem cell-based therapies. We hypothesized that hESCs escape the immune surveillance by regulating the environmental immune system. Using cocultures of hESCs with allogenic peripheral blood mononuclear cells, we demonstrated that hESCs prevent proliferation and activation of human CD4+ T lymphocytes, an effect dependent upon monocytes. Altered expression of key signaling molecules responsible for the crosstalk of monocytes with T cells was detected in the presence of hESCs. Analyzing the mechanism of action, we demonstrated that hESCs were able to downregulate intracellular glutathione levels in both monocytes and CD4+ cells by suppressing glutamate cysteine ligase expression and to alter MHCII and CD80 expression in monocytes. These effects were achieved at least partially via TGF-beta signaling, and both monocyte phenotype and GCLC expression were affected by Caspase-3 proteolytic activity. Altogether, our results demonstrate a novel immune-suppressive mechanism used by hESCs.
Collapse
Affiliation(s)
- Lucy Leshansky
- INSERTECH Stem Cell Center, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel; Stem Cell Center, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | | | | | | |
Collapse
|
6
|
Kume S. [Signals guiding differentiation of pluripotent stem cells into pancreatic beta cells]. Nihon Yakurigaku Zasshi 2014; 144:8-12. [PMID: 25007805 DOI: 10.1254/fpj.144.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Mansouri A, Esmaeili F, Nejatpour A, Houshmand F, Shabani L, Ebrahimie E. Differentiation of P19 embryonal carcinoma stem cells into insulin-producing cells promoted by pancreas-conditioned medium. J Tissue Eng Regen Med 2014; 10:600-12. [DOI: 10.1002/term.1927] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 04/25/2014] [Accepted: 05/05/2014] [Indexed: 12/27/2022]
Affiliation(s)
- Akram Mansouri
- Department of Biology, Faculty of Basic Sciences; Shahrekord University; Iran
| | - Fariba Esmaeili
- Research Institute of Biotechnology; Shahrekord University; Iran
- Department of Biology, Faculty of Basic Sciences; University of Isfahan; Iran
| | | | - Fariba Houshmand
- Department of Physiology, Faculty of Medical Sciences; Shahrekord University of Medical Sciences; Iran
| | - Leila Shabani
- Department of Biology, Faculty of Basic Sciences; Shahrekord University; Iran
- Research Institute of Biotechnology; Shahrekord University; Iran
| | - Esmaeil Ebrahimie
- Institute of Biotechnology; Shiraz University; Shiraz Iran
- School of Molecular and Biomedical Science; The University of Adelaide; Adelaide Australia
| |
Collapse
|
8
|
Wu YJ, Fang ZH, Zheng SG, Wu YB, Fan AH. [Effects of Chinese herbal medicine Danzhi Jiangtang Capsule and exercise on JNK signaling pathway in pancreatic tissues of diabetic rats]. ACTA ACUST UNITED AC 2012; 10:1279-85. [PMID: 23158947 DOI: 10.3736/jcim20121112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To explore the effects of exercise and Danzhi Jiangtang Capsule (DJC), a compound traditional herbal medicine, on the JNK signaling pathway in pancreatic tissues of diabetic rats and to investigate the possible mechanisms of exercise and DJC in treating diabetes. METHODS Seventy-eight male Wistar rats were injected with low dose of streptozotocin and fed a high-fat diet to establish a diabetic model in rats. Then 60 diabetic rats were divided into diabetes group, exercise group, DJC group and exercise combined with DJC group. Another twelve rats were used as normal control. After eight months of treatment, the expression levels of phosphor-c-Jun N-terminal kinase (p-JNK), pancreatic and duodenal homeobox-1 (PDX-1), and insulin protein in pancreatic tissues from rats were detected by immunohistochemical method and Western blotting. RESULTS In pancreatic tissues of diabetes group, the expression level of p-JNK protein was significantly higher than that in the normal group (P<0.01), and the expression levels of PDX-1 and insulin protein were significantly decreased (P<0.01). After administration of exercise and DJC, the expression level of p-JNK protein in pancreatic tissues of the diabetes group was decreased significantly, while the expression levels of PDX-1 and insulin protein were increased significantly (P<0.05 or P<0.01). CONCLUSION Exercise and DJC effectively protect isletβ-cell function in diabetic rats, which might be due to a decreased JNK signaling pathway.
Collapse
Affiliation(s)
- Yuan-jie Wu
- Department of Basic Theory of Traditional Chinese Medicine, Anhui College of Traditional Chinese Medicine, Anhui Province, China.
| | | | | | | | | |
Collapse
|
9
|
Pereira LA, Wong MS, Mei Lim S, Stanley EG, Elefanty AG. The Mix family of homeobox genes—Key regulators of mesendoderm formation during vertebrate development. Dev Biol 2012; 367:163-77. [DOI: 10.1016/j.ydbio.2012.04.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 04/24/2012] [Accepted: 04/30/2012] [Indexed: 10/28/2022]
|
10
|
Pereira LA, Wong MS, Mossman AK, Sourris K, Janes ME, Knezevic K, Hirst CE, Lim SM, Pimanda JE, Stanley EG, Elefanty AG. Pdgfrα and Flk1 are direct target genes of Mixl1 in differentiating embryonic stem cells. Stem Cell Res 2011; 8:165-79. [PMID: 22265737 DOI: 10.1016/j.scr.2011.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 09/28/2011] [Indexed: 11/25/2022] Open
Abstract
The Mixl1 homeodomain protein plays a key role in mesendoderm patterning during embryogenesis, but its target genes remain to be identified. We compared gene expression in differentiating heterozygous Mixl1(GFP/w) and homozygous null Mixl1(GFP/Hygro) mouse embryonic stem cells to identify potential downstream transcriptional targets of Mixl1. Candidate Mixl1 regulated genes whose expression was reduced in GFP+ cells isolated from differentiating Mixl1(GFP/Hygro) embryoid bodies included Pdgfrα and Flk1. Mixl1 bound to ATTA sequences located in the Pdgfrα and Flk1 promoters and chromatin immunoprecipitation assays confirmed Mixl1 occupancy of these promoters in vivo. Furthermore, Mixl1 transactivated the Pdgfrα and Flk1 promoters through ATTA sequences in a DNA binding dependent manner. These data support the hypothesis that Mixl1 directly regulates Pdgfrα and Flk1 gene expression and strengthens the position of Mixl1 as a key regulator of mesendoderm development during mammalian gastrulation.
Collapse
Affiliation(s)
- Lloyd A Pereira
- Differentiation and Transcription Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, 3002, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Katsumoto K, Shiraki N, Miki R, Kume S. Embryonic and adult stem cell systems in mammals: ontology and regulation. Dev Growth Differ 2010; 52:115-29. [PMID: 20078654 DOI: 10.1111/j.1440-169x.2009.01160.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stem cells are defined as having the ability to self-renew and to generate differentiated cells. During embryogenesis, cells are initially proliferative and pluripotent and then they gradually become restricted to different cell fates. In the adult, tissue stem cells are normally quiescent, but become proliferative upon injury. Knowledge from developmental biology and insights into the properties of stem cells are keys to further understanding and successful manipulation. Here, we first focus on ES cells, then on embryonic development, and then on tissue stem cells of endodermally derived tissues, particularly the liver and pancreas.
Collapse
Affiliation(s)
- Keiichi Katsumoto
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Honjo 2-2-1, Kumamoto 860-0811, Japan
| | | | | | | |
Collapse
|
12
|
Shiraki N, Higuchi Y, Kume S. Guiding ES cell differentiation into the definitive endoderm lineages. Inflamm Regen 2010. [DOI: 10.2492/inflammregen.30.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
13
|
Lim SM, Pereira L, Wong MS, Hirst CE, Van Vranken BE, Pick M, Trounson A, Elefanty AG, Stanley EG. Enforced expression of Mixl1 during mouse ES cell differentiation suppresses hematopoietic mesoderm and promotes endoderm formation. Stem Cells 2009; 27:363-74. [PMID: 19038793 DOI: 10.1634/stemcells.2008-1008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Mixl1 gene encodes a homeodomain transcription factor that is required for normal mesoderm and endoderm development in the mouse. We have examined the consequences of enforced Mixl1 expression during mouse embryonic stem cell (ESC) differentiation. We show that three independently derived ESC lines constitutively expressing Mixl1 (Mixl1(C) ESCs) differentiate into embryoid bodies (EBs) containing a higher proportion of E-cadherin (E-Cad)(+) cells. Our analysis also shows that this differentiation occurs at the expense of hematopoietic mesoderm differentiation, with Mixl1(C) ESCs expressing only low levels of Flk1 and failing to develop hemoglobinized cells. Immunohistochemistry and immunofluorescence studies revealed that Mixl1(C) EBs have extensive areas containing cells with an epithelial morphology that express E-Cad, FoxA2, and Sox17, consistent with enhanced endoderm formation. Luciferase reporter transfection experiments indicate that Mixl1 can transactivate the Gsc, Sox17, and E-Cad promoters, supporting the hypothesis that Mixl1 has a direct role in definitive endoderm formation. Taken together, these studies suggest that high levels of Mixl1 preferentially allocate cells to the endoderm during ESC differentiation.
Collapse
Affiliation(s)
- Sue Mei Lim
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Matsuura K, Katsumoto K, Fukuda K, Kume K, Kume S. Conserved origin of the ventral pancreas in chicken. Mech Dev 2009; 126:817-27. [PMID: 19651207 DOI: 10.1016/j.mod.2009.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 07/25/2009] [Accepted: 07/28/2009] [Indexed: 11/17/2022]
Abstract
To determine the origin of the ventral pancreas, a fate map of the ventral pancreas was constructed using DiI crystal or CM-DiI to mark regions of the early chick endoderm: this allowed correlations to be established between specific endoderm sites and the positions of their descendants. First, the region lateral to the 7- to 9-somite level, which has been reported to contribute to the ventral pancreas, was shown to contribute mainly to the intestine or the dorsal pancreas. At the 10 somite stage (ss), the ventral pre-pancreatic cells reside laterally at the 2-somite level, at the lateral boarder of the somite. At this stage, however, the fate of these cells has not yet segregated and they contribute to the ventral pancreas and to the intestine or bile duct. The ventral pancreas fate segregated at the 17 ss; the cells residing at the somite boarder at the 4-somite level at the 17 ss were revealed to contribute to the ventral pancreas. Interestingly, the dorsal and the ventral pancreatic buds are different in both origin and function. These two pancreatic buds begin to fuse at day 7 (HH 30) of embryonic development. However, whereas the dorsal pancreas gives rise to both Insulin-expressing endocrine and Amylase-expressing exocrine cells, the ventral pancreas gives rise to Amylase-expressing exocrine cells, but not insulin-expressing endocrine cells before day 7 (HH 30) of embryonic development.
Collapse
Affiliation(s)
- Kumi Matsuura
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan
| | | | | | | | | |
Collapse
|
15
|
Yoshida T, Murata K, Shiraki N, Kume K, Kume S. Analysis of gene expressions of embryonic stem-derived Pdx1-expressing cells: implications of genes involved in pancreas differentiation. Dev Growth Differ 2009; 51:463-72. [PMID: 19382941 DOI: 10.1111/j.1440-169x.2009.01109.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We have recently reported the method by which embryonic stem (ES) cells were induced into Pdx1-expressing cells. To gain insights into the ES cell-derived Pdx1-expressing cells, we examined gene expression profiles of the cells by microarray experiments. Microarray analyses followed by a comparison with the data of the cells in developing pancreatic and adult islet suggested that the ES cell-derived Pdx1-positive cells were immature pancreatic progenitor cells with endodermal characteristics. The analyses of the genes upregulated in the ES cell-derived Pdx1-positive cells would give us knowledge on early pancreatic development. Here, we first listed the genes and found that these contained not only those known to be expressed in the endoderm or pancreatic progenitor cells, but also those known to be involved in left-right axis formation. Second, we examined the gene expression patterns and found that several genes were expressed in the ventral foregut lip at the anterior intestinal portal in E8.5 embryo. Given that the Pdx1/GFP-expressing cells are first observed in the same region at the anterior intestinal portal, these results suggest that the pancreatic progenitor cells first give rise at the ventral endoderm prior to the formation of dorsal and ventral pancreatic buds.
Collapse
Affiliation(s)
- Tetsu Yoshida
- Division of Stem Cell Biology, Department of Regeneration Medicine, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Kumamoto, Japan
| | | | | | | | | |
Collapse
|
16
|
Katsumoto K, Fukuda K, Kimura W, Shimamura K, Yasugi S, Kume S. Origin of pancreatic precursors in the chick embryo and the mechanism of endoderm regionalization. Mech Dev 2009; 126:539-51. [PMID: 19341795 DOI: 10.1016/j.mod.2009.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Revised: 03/18/2009] [Accepted: 03/23/2009] [Indexed: 11/16/2022]
Abstract
To study the developmental origin of the pancreas we used DiI crystals to mark regions of the early chick endoderm: this allowed correlations to be established between specific endoderm sites and the positions of their descendants. Endodermal precursor cells for the stomach, pancreas and intestine were found to segregate immediately after completion of gastrulation. Transplantation experiments showed that region-specific endodermal fates are determined sequentially in the order stomach, intestine, and then pancreas. Non-pancreatic endoderm transplanted to the stomach region generated ectopic pancreas expressing both insulin and glucagon. These results imply that a pancreas-inducing signal is emitted from somitic mesoderm underlying the pre-pancreatic region, and this extends rostrally beyond the stomach endoderm region at the early somite stage. Transplantation experiments revealed that the endoderm responding to these pancreatic-inducing signals lies within the pre-pancreatic region and extends caudally beyond the region of the intestinal endoderm. The results indicate that pancreatic fate is determined in the area of overlap between these two regions.
Collapse
Affiliation(s)
- Keiichi Katsumoto
- Division of Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Honjo Kumamoto, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Yoshida T, Shiraki N, Baba H, Goto M, Fujiwara S, Kume K, Kume S. Expression patterns of epiplakin1 in pancreas, pancreatic cancer and regenerating pancreas. Genes Cells 2008; 13:667-78. [PMID: 18498355 DOI: 10.1111/j.1365-2443.2008.01196.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epiplakin1 (Eppk1) is a plakin family gene with its function remains largely unknown, although the plakin genes are known to function in interconnecting cytoskeletal filaments and anchoring them at plasma membrane-associated adhesive junction. Here we analyzed the expression patterns of Eppk1 in the developing and adult pancreas in the mice. In the embryonic pancreas, Eppk1+/Pdx1+ and Eppk1+/Sox9+ pancreatic progenitor cells were observed in early pancreatic epithelium. Since Pdx1 expression overlapped with that of Sox9 at this stage, these multipotent progenitor cells are Eppk1+/Pdx1+/Sox9+ cells. Then Eppk1 expression becomes confined to Ngn3+ or Sox9+ endocrine progenitor cells, and p48+ exocrine progenitor cells, and then restricted to the duct cells and a cells at birth. In the adult pancreas, Eppk1 is expressed in centroacinar cells (CACs) and in duct cells. Eppk1 is observed in pancreatic intraepithelial neoplasia (PanIN), previously identified as pancreatic ductal adenocarcinoma (PDAC) precursor lesions. In addition, the expansion of Eppk1-positive cells occurs in a caerulein-induced acute pancreatitis, an acinar cell regeneration model. Furthermore, in the partial pancreatectomy (Px) regeneration model using mice, Eppk1 is expressed in "ducts in foci", a tubular structure transiently induced. These results suggest that Eppk1 serves as a useful marker for detecting pancreatic progenitor cells in developing and regenerating pancreas.
Collapse
Affiliation(s)
- Tetsu Yoshida
- Division of Stem Cell Biology, Department of Regeneration Medicine, Institute of Molecular Embryology and Genetics, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Shiraki N, Yoshida T, Araki K, Umezawa A, Higuchi Y, Goto H, Kume K, Kume S. Guided differentiation of embryonic stem cells into Pdx1-expressing regional-specific definitive endoderm. Stem Cells 2008; 26:874-85. [PMID: 18238854 DOI: 10.1634/stemcells.2007-0608] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The generation of specific lineages of the definitive endoderm from embryonic stem (ES) cells is an important issue in developmental biology, as well as in regenerative medicine. This study demonstrates that ES cells are induced sequentially into regional-specific gut endoderm lineages, such as pancreatic, hepatic, and other cell lineages, when they are cultured directly on a monolayer of mesoderm-derived supporting cells. A detailed chronological analysis revealed that Activin, fibroblast growth factor, or bone morphogenetic protein signals are critical at various steps and that additional short-range signals are required for differentiation into Pdx1-expressing cells. Under selective culture conditions, definitive endoderm (47%) or Pdx1-positive pancreatic progenitors (30%) are yielded at a high efficiency. When transplanted under the kidney capsule, the Pdx1-positive cells further differentiated into all three pancreatic lineages, namely endocrine, exocrine, and duct cells.
Collapse
Affiliation(s)
- Nobuaki Shiraki
- Division of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Embryonic stem cell therapy for diabetes mellitus. Semin Cell Dev Biol 2007; 18:827-38. [DOI: 10.1016/j.semcdb.2007.09.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Accepted: 09/06/2007] [Indexed: 12/20/2022]
|
20
|
Mfopou JK, Bouwens L. Hedgehog signals in pancreatic differentiation from embryonic stem cells: revisiting the neglected. Differentiation 2007; 76:107-17. [PMID: 17573915 DOI: 10.1111/j.1432-0436.2007.00191.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Recent demonstrations of insulin expression by progenies of mouse and human embryonic stem (ES) cells have attracted interest in setting up these cells as alternative sources of beta-cells needed in diabetes cell therapy. It is widely acknowledged that information gathered in the field of developmental biology as applied to the pancreas is of relevance for designing in vitro differentiation strategies. However, looking back at the protocols used so far, it appears that the natural route toward the pancreas, which goes via the definitive endoderm, was usually bypassed. As a consequence Hedgehog signaling, the earliest inhibitor of pancreas initiation from the endoderm, was generally not considered. A recall of the status of this pathway during ES cell differentiation appears necessary, especially in the light of findings that Activin A treatment of mouse and human ES cells coax them into definitive endoderm, a lineage showing wide Hedgehog ligands expression with the potential to hinder pancreatic programming.
Collapse
Affiliation(s)
- J K Mfopou
- Cell Differentiation Unit, Diabetes Research Center, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | | |
Collapse
|
21
|
Lees JG, Tuch BE. Conversion of embryonic stem cells into pancreatic beta-cell surrogates guided by ontogeny. Regen Med 2007; 1:327-36. [PMID: 17465786 DOI: 10.2217/17460751.1.3.327] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cellular therapies to treat Type 1 diabetes are being devised and the use of human embryonic stem cells (hESCs) offers a solution to the issue of supply, because hESCs can be maintained in a pluripotent state indefinitely. Furthermore, hESCs have advantages in terms of their plasticity and reduced immunogenicity. Several strategies that have so far been investigated indicate that hESCs are capable of differentiating into insulin producing beta-cell surrogates. However the efficiency of the differentiation procedures used is generally quite low and the cell populations derived are often highly heterogenous. A strategy that appears to have long term potential is to design differentiation procedures based on the ontogeny of the beta-cell. The focus of this strategy is to replicate signaling processes that are known to be involved in the maturation of a beta-cell. The earliest pancreatic progenitors found in the developing vertebrate fetus are produced via a process known as gastrulation and form part of the definitive endoderm germ layer. hESCs have recently been differentiated into definitive endoderm with high efficiency using a differentiation procedure that mimics the signaling that occurs during gastrulation and the formation of the definitive endoderm. Subsequent events during pancreas development involve a section of the definitive endoderm forming into pancreatic epithelium, which then branches into the pancreatic mesenchyme to form islet clusters of endocrine cells. A proportion of the endocrine precursor cells within islets develop into insulin producing beta-cells. The challenge currently is to design hESC differentiation procedures that mimic the combined events of these stages of beta-cell development.
Collapse
Affiliation(s)
- Justin G Lees
- Diabetes Transplant Unit, Prince of Wales Hospital/University of New South Wales, Randwick, New South Wales, Australia
| | | |
Collapse
|
22
|
Abstract
Recent success in transplantation of islets raises the hopes of diabetic patients that replacement therapies may be a feasible treatment of their disease. Although several lines of evidence suggest that stem cells exist in the pancreas, it is still technically hard for us to isolate or maintain the stem cells in vitro. The establishment of human embryonic stem (ES) cells has excited scientists regarding their potential medical use in tissue replacement therapy. When applied with appropriate signals, ES cells can be directed to differentiate into a specific cell lineage. Therefore, ES cells are no doubt an excellent source not only for regenerative medicine but also for studies of early events of pancreatic development, and to portray the pancreatic progenitor cells. Despite many attempts that have been tried, the efficiency of differentiation of ES cells into islets is still very low. This low efficiency reflects our lack of understanding of the intrinsic and extrinsic signals which regulate the developmental processes of the pancreas. In this review, I present a summary of recent works on ES cells, the identification of pancreatic progenitor cells from the adult pancreas, and refer to the possibilities of transdifferentiation from adult stem cells derived from other tissues.
Collapse
Affiliation(s)
- Shoen Kume
- Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Kumamoto 860-0811, Japan.
| |
Collapse
|