1
|
Safe S, Farkas E, Hailemariam AE, Oany AR, Sivaram G, Tsui WNT. Activation of Genes by Nuclear Receptor/Specificity Protein (Sp) Interactions in Cancer. Cancers (Basel) 2025; 17:284. [PMID: 39858066 PMCID: PMC11763981 DOI: 10.3390/cancers17020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The human nuclear receptor (NR) superfamily consists of 48 genes that are ligand-activated transcription factors that play a key role in maintaining cellular homeostasis and in pathophysiology. NRs are important drug targets for both cancer and non-cancer endpoints as ligands for these receptors can act as agonists, antagonists or inverse agonists to modulate gene expression. With two exceptions, the classical mechanism of action of NRs involves their interactions as monomers, dimers or heterodimers with their cognate response elements (cis-elements) in target gene promoters. Several studies showed that a number of NR-regulated genes did not directly bind their corresponding cis-elements and promoter analysis identified that NR-responsive gene promoters contained GC-rich sequences that bind specificity protein 1 (Sp1), Sp3 and Sp4 transcription factors (TFs). This review is focused on identifying an important sub-set of Sp-regulated genes that are indirectly coregulated through interactions with NRs. Subsequent studies showed that many NRs directly bind Sp1 (or Sp3 and Sp4), the NR/Sp complexes bind GC-rich sites to regulate gene expression and the NR acts as a ligand-modulated nuclear cofactor. In addition, several reports show that NR-responsive genes contain cis-elements that bind both Sp TFs and NRs, and mutation of either cis-element results in loss of NR-responsive (inducible and/or basal). Regulation of these genes involves interactions between DNA-bound Sp TFs with proximal or distal DNA-bound NRs, and, in some cases, other nuclear cofactors are required for gene expression. Thus, many NR-responsive genes are regulated by NR/Sp complexes, and these genes can be targeted by ligands that target NRs and also by drugs that induce degradation of Sp1, Sp3 and Sp4.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA; (E.F.); (A.E.H.); (A.R.O.); (G.S.); (W.N.T.T.)
| | | | | | | | | | | |
Collapse
|
2
|
Kimura R, Otani T, Shiraishi N, Hagiyama M, Yoneshige A, Wada A, Kajiyama H, Takeuchi F, Mizuguchi N, Morishita K, Ito A. Expression of cell adhesion molecule 1 in human and murine endometrial glandular cells and its increase during the proliferative phase by estrogen and cell density. Life Sci 2021; 283:119854. [PMID: 34332980 DOI: 10.1016/j.lfs.2021.119854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
AIMS Cell adhesion molecule 1 (CADM1) mediates interepithelial adhesion and is upregulated in crowded epithelial monolayers. This study aimed to examine CADM1 expression in the human endometrium of proliferative and secretory phases, and its transcriptional regulation in terms of estrogen stimuli and higher cellularity. MAIN METHODS CADM1 immunohistochemistry was conducted on endometrial tissues from women in their 40s and adult mice subcutaneously injected with estradiol following ovariectomy. Dual-luciferase reporter assays were conducted using human endometrial HEC-50B and HEC-1B cells and reporter plasmids harboring the human CADM1 3.4-kb promoter and its deleted and mutated forms. Cells were transfected with estrogen receptor α cDNA and reporter plasmids, and treated with estradiol before luciferase activity measurement. KEY FINDINGS Immunohistochemistry revealed that CADM1 was clearly expressed on the lateral membranes of the simple columnar glandular cells in the proliferative phase, but not in the secretory phase, from both women and the mouse model. The glandular cell density increased two-fold in the proliferative phase. Reporter assays identified three Sp1-binding sites as estradiol-responsive elements in the proximal region (from -223 to -84) of the transcription start site (+1) in HEC-50B cells. When the cell culture was started at eight-fold higher cell density, the CADM1 3.4-kb promoter was transactivated at a two-fold higher level in HEC-50B cells. This cell density effect was not detected for the CADM1 2.3-kb or 1.6-kb promoter. SIGNIFICANCE Two (proximal and distal) promoter regions are suggested to function additively to transactivate CADM1 in endometrial glandular cells that crowd in the proliferative phase.
Collapse
Affiliation(s)
- Ryuichiro Kimura
- Department of Pathology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka 589-8511, Japan
| | - Tomoyuki Otani
- Department of Pathology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka 589-8511, Japan
| | - Naoki Shiraishi
- Genome Medical Center, Kindai University Hospital, Osaka, Japan
| | - Man Hagiyama
- Department of Pathology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka 589-8511, Japan
| | - Azusa Yoneshige
- Department of Pathology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka 589-8511, Japan
| | - Akihiro Wada
- Department of Pathology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka 589-8511, Japan
| | - Hiroshi Kajiyama
- Department of Pathology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka 589-8511, Japan
| | - Fuka Takeuchi
- Department of Pathology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka 589-8511, Japan
| | | | - Kazuhiro Morishita
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Akihiko Ito
- Department of Pathology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka 589-8511, Japan.
| |
Collapse
|
3
|
Tsuboi Y, Oyama M, Kozuka-Hata H, Ito A, Matsubara D, Murakami Y. CADM1 suppresses c-Src activation by binding with Cbp on membrane lipid rafts and intervenes colon carcinogenesis. Biochem Biophys Res Commun 2020; 529:854-860. [PMID: 32616310 DOI: 10.1016/j.bbrc.2020.05.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022]
Abstract
Cell adhesion molecules act as tumor suppressors primarily by cell attachment activity, but additional mechanisms modifying signal transduction are suggested in some cases. Cell adhesion molecule 1 (CADM1), a membrane-spanning immunoglobulin superfamily, mediates intercellular adhesion by trans-homophilic interaction and acts as a tumor suppressor. Here, we investigated CADM1-associated proteins comprehensively using proteomic analysis of immune-precipitates of CADM1 by mass spectrometry and identified a transmembrane adaptor protein, Csk-binding protein (Cbp), known to suppress Src-mediated transformation, as a binding partner of CADM1. CADM1 localizes to detergent-resistant membrane fractions and co-immunoprecipitated with Cbp and c-Src. Suppression of CADM1 expression using siRNA reduces the amount of co-immunoprecipitated c-Src with Cbp and activates c-Src in colon cancer cells expressing both CADM1 and Cbp. On the other hand, co-replacement of CADM1 and Cbp in colon cancer cells lacking CADM1 and Cbp expression suppresses c-Src activation, wound healing and tumorigenicity in nude mice. Furthermore, expression of Cbp and CADM1 was lost in 55% and 83% of human colon cancer, respectively, preferentially in tumors with larger size and/or lymph node metastasis. CADM1 would act as a colon tumor suppressor by intervening oncogenic c-Src signaling through binding with Cbp besides its authentic cell adhesion activity.
Collapse
Affiliation(s)
- Yumi Tsuboi
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akihiko Ito
- Department of Pathology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Daisuke Matsubara
- Division of Integrative Pathology, Jichii Medical University, Shimotsuke, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
4
|
Ito T, Nakamura A, Tanaka I, Tsuboi Y, Morikawa T, Nakajima J, Takai D, Fukayama M, Sekido Y, Niki T, Matsubara D, Murakami Y. CADM1 associates with Hippo pathway core kinases; membranous co-expression of CADM1 and LATS2 in lung tumors predicts good prognosis. Cancer Sci 2019; 110:2284-2295. [PMID: 31069869 PMCID: PMC6609799 DOI: 10.1111/cas.14040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/22/2019] [Accepted: 04/29/2019] [Indexed: 12/29/2022] Open
Abstract
Cell adhesion molecule‐1 (CADM1) is a member of the immunoglobulin superfamily that functions as a tumor suppressor of lung tumors. We herein demonstrated that CADM1 interacts with Hippo pathway core kinases and enhances the phosphorylation of YAP1, and also that the membranous co–expression of CADM1 and LATS2 predicts a favorable prognosis in lung adenocarcinoma. CADM1 significantly repressed the saturation density elevated by YAP1 overexpression in NIH3T3 cells. CADM1 significantly promoted YAP1 phosphorylation on Ser 127 and downregulated YAP1 target gene expression at confluency in lung adenocarcinoma cell lines. Moreover, CADM1 was co–precipitated with multiple Hippo pathway components, including the core kinases MST1/2 and LATS1/2, suggesting the involvement of CADM1 in the regulation of the Hippo pathway through cell‐cell contact. An immunohistochemical analysis of primary lung adenocarcinomas (n = 145) revealed that the histologically low‐grade subtype frequently showed the membranous co–expression of CADM1 (20/22, 91% of low‐grade; 61/91, 67% of intermediate grade; and 13/32, 41% of high‐grade subtypes; P < 0.0001) and LATS2 (22/22, 100% of low‐grade; 44/91, 48% of intermediate‐grade; and 1/32, 3% of high‐grade subtypes; P < 0.0001). A subset analysis of disease‐free survival revealed that the membranous co–expression of CADM1 and LATS2 was a favorable prognosis factor (5‐year disease‐free survival rate: 83.8%), even with nuclear YAP1‐positive expression (5‐year disease‐free survival rate: 83.7%), whereas nuclear YAP1‐positive cases with the negative expression of CADM1 and LATS2 had a poorer prognosis (5‐year disease‐free survival rate: 33.3%). These results indicate that the relationship between CADM1 and Hippo pathway core kinases at the cell membrane is important for suppressing the oncogenic role of YAP1.
Collapse
Affiliation(s)
- Takeshi Ito
- Molecular Pathology Laboratory, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Atsuko Nakamura
- Molecular Pathology Laboratory, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ichidai Tanaka
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Yumi Tsuboi
- Molecular Pathology Laboratory, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Teppei Morikawa
- Human Pathology Department, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Nakajima
- Department of Thoracic Surgery, The University of Tokyo, Tokyo, Japan
| | - Daiya Takai
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashi Fukayama
- Human Pathology Department, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Sekido
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Aichi, Japan
| | - Toshiro Niki
- Division of Integrative Pathology, Jichi Medical University, Tochigi, Japan
| | - Daisuke Matsubara
- Molecular Pathology Laboratory, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Division of Integrative Pathology, Jichi Medical University, Tochigi, Japan
| | - Yoshinori Murakami
- Molecular Pathology Laboratory, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Chen G, Wang Q, Yang Q, Li Z, Du Z, Ren M, Zhao H, Song Y, Zhang G. Circular RNAs hsa_circ_0032462, hsa_circ_0028173, hsa_circ_0005909 are predicted to promote CADM1 expression by functioning as miRNAs sponge in human osteosarcoma. PLoS One 2018; 13:e0202896. [PMID: 30153287 PMCID: PMC6112665 DOI: 10.1371/journal.pone.0202896] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 08/07/2018] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Osteosarcoma (OS) is a primary malignant bone tumor with a high fatality rate. Many circRNAs have been proved to play important roles in the pathogenesis of some diseases. However, the occurrence of circRNAs in OS remains little known. METHODS The circular RNA (circRNA) expression file GSE96964 dataset, which included seven osteosarcoma cell lines and one control sample (osteoblast cell line), was downloaded from the Gene Expression Omnibus (GEO) database to explore the potential function of circRNAs in osteosarcoma by competing endogenous RNA (ceRNA) analysis. Three gene expression profiles of OS were downloaded from GEO database and then used for the pathway enrichment analysis, Venn analysis and protein-protein interaction (PPI) network analysis. Real-time qPCR validation and RNA interference were conducted to verify our prediction. RESULTS Differentially expressed circRNAs between OS and control, including 8 up-regulated and 102 down-regulated circRNAs, were generated and ceRNA analysis for 5 most up-regulated or 5 most down-regulated circRNAs in OS were then performed. The pathway enrichment analysis of gene expression profiles indicated differentially expressed genes (DEGs) of three gene profiles significantly enriched in cell cycle pathway, cell adhesion molecules (CAMs) pathway, oxidative phosphorylation pathway, cytokine-cytokine receptor interaction pathway, p53 signaling pathway and proteoglycans in cancer pathway, which were critical important pathways in the pathogenesis of OS. The Venn analysis showed that 2 (one is a pseudogene) up-regulated and 39 down-regulated DEGs were co-expressed in all three gene profiles. Then PPI networks of 41 co-expressed DEGs (up- and down-regulated DEGs) were constructed to predict their functions using the GeneMANIA. The expression levels of these related RNAs also matched our predictions really well. CONCLUSION Ultimately, we found cell adhesion molecule 1 (CADM1) gene was not only a co-expression mRNA of the three mRNA expression profiles of OS, but also are predicted to be regulated by hsa_circ_0032462, hsa_circ_0028173, hsa_circ_0005909 by functioning as miRNAs 'Sponge' in human osteosarcoma. These over-expressed circRNAs may result in the over expression of CADM1 which promote the development of OS. We envision this discovery of these important moleculars, incuding hsa_circ_0032462, hsa_circ_0028173, hsa_circ_0005909 and CADM1 may lead to further development of new concepts, thus allowing for more opportunities in diagnosis and therapy of OS.
Collapse
Affiliation(s)
- Gaoyang Chen
- Department of Orthopedics of the Second Hospital of Jilin University, Changchun, Jilin, China
- Research Centre of the Second Hospital of Jilin University, Changchun, Jilin, China
- The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Changchun, Jilin, China
| | - Qingyu Wang
- Department of Orthopedics of the Second Hospital of Jilin University, Changchun, Jilin, China
- Research Centre of the Second Hospital of Jilin University, Changchun, Jilin, China
- The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Changchun, Jilin, China
| | - Qiwei Yang
- Research Centre of the Second Hospital of Jilin University, Changchun, Jilin, China
- The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Changchun, Jilin, China
| | - Zhaoyan Li
- Department of Orthopedics of the Second Hospital of Jilin University, Changchun, Jilin, China
- The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Changchun, Jilin, China
| | - Zhenwu Du
- Department of Orthopedics of the Second Hospital of Jilin University, Changchun, Jilin, China
- Research Centre of the Second Hospital of Jilin University, Changchun, Jilin, China
- The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Changchun, Jilin, China
| | - Ming Ren
- Department of Orthopedics of the Second Hospital of Jilin University, Changchun, Jilin, China
- The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Changchun, Jilin, China
| | - Haiyue Zhao
- Research Centre of the Second Hospital of Jilin University, Changchun, Jilin, China
- The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Changchun, Jilin, China
| | - Yang Song
- Department of Orthopedics of the Second Hospital of Jilin University, Changchun, Jilin, China
- The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Changchun, Jilin, China
- * E-mail: (GZ); (YS)
| | - Guizhen Zhang
- Department of Orthopedics of the Second Hospital of Jilin University, Changchun, Jilin, China
- Research Centre of the Second Hospital of Jilin University, Changchun, Jilin, China
- The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Changchun, Jilin, China
- * E-mail: (GZ); (YS)
| |
Collapse
|
6
|
Ito T, Kasai Y, Kumagai Y, Suzuki D, Ochiai-Noguchi M, Irikura D, Miyake S, Murakami Y. Quantitative Analysis of Interaction Between CADM1 and Its Binding Cell-Surface Proteins Using Surface Plasmon Resonance Imaging. Front Cell Dev Biol 2018; 6:86. [PMID: 30131958 PMCID: PMC6090299 DOI: 10.3389/fcell.2018.00086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/20/2018] [Indexed: 12/11/2022] Open
Abstract
The cell adhesion molecule (CADM) family of the immunoglobulin superfamily (IgSF) comprises four members, CADM1-CADM4, and participates in the formation of epithelial and synaptic adhesion through cell-cell homophilic and heterophilic interactions. To identify the partners that interact with each member of the CADM family proteins, we set up a platform for multiple detection of the extracellular protein-protein interactions using surface plasmon resonance imaging (SPRi) and analyzed the interactions between the CADM family proteins and 10 IgSF of their structurally related cell adhesion molecules. SPRi analysis identified a new interaction between CADM1 and CADM4, where this heterophilic interaction was shown to be involved in morphological spreading of adult T-cell leukemia (ATL) cells expressing CADM1 when incubated on CADM4-coated glass. Moreover, class-I MHC-restricted T-cell-associated molecule (CRTAM) was identified to show the highest affinity to CADM1 among its binding partners by comparing the dissociation constants calculated from the SPR sensorgrams. These results suggest that the SPRi platform would provide a novel screening tool to characterize extracellular protein-protein interactions among cell-surface and secreted proteins, including IgSF molecules.
Collapse
Affiliation(s)
- Takeshi Ito
- Division of Molecular Pathology, The Institute of Medical Science The University of Tokyo, Tokyo, Japan
| | - Yutaka Kasai
- Division of Molecular Pathology, The Institute of Medical Science The University of Tokyo, Tokyo, Japan
| | - Yuki Kumagai
- Division of Molecular Pathology, The Institute of Medical Science The University of Tokyo, Tokyo, Japan
| | - Daisuke Suzuki
- Division of Molecular Pathology, The Institute of Medical Science The University of Tokyo, Tokyo, Japan
| | - Misaki Ochiai-Noguchi
- Division of Molecular Pathology, The Institute of Medical Science The University of Tokyo, Tokyo, Japan
| | - Daisuke Irikura
- Bio/Life Science Team, Advanced R&D Center HORIBA Ltd., Kyoto, Japan
| | - Shiro Miyake
- Bio/Life Science Team, Advanced R&D Center HORIBA Ltd., Kyoto, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, The Institute of Medical Science The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Verma I, Seshagiri PB. Directed differentiation of mouse P19 embryonal carcinoma cells to neural cells in a serum- and retinoic acid-free culture medium. In Vitro Cell Dev Biol Anim 2018; 54:567-579. [PMID: 30030768 DOI: 10.1007/s11626-018-0275-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 06/15/2018] [Indexed: 11/25/2022]
Abstract
P19 embryonal carcinoma cells (EC-cells) provide a simple and robust culture system for studying neural development. Most protocols developed so far for directing neural differentiation of P19 cells depend on the use of culture medium supplemented with retinoic acid (RA) and serum, which has an undefined composition. Hence, such protocols are not suitable for many molecular studies. In this study, we achieved neural differentiation of P19 cells in a serum- and RA-free culture medium by employing the knockout serum replacement (KSR) supplement. In the KSR-containing medium, P19 cells underwent predominant differentiation into neural lineage and by day 12 of culture, neural cells were present in 100% of P19-derived embryoid bodies (EBs). This was consistently accompanied by the increased expression of various neural lineage-associated markers during the course of differentiation. P19-derived neural cells comprised of NES+ neural progenitors (~ 46%), TUBB3+ immature neurons (~ 6%), MAP2+ mature neurons (~ 2%), and GFAP+ astrocytes (~ 50%). A heterogeneous neuronal population consisting of glutamatergic, GABAergic, serotonergic, and dopaminergic neurons was generated. Taken together, our study shows that the KSR medium is suitable for the differentiation of P19 cells to neural lineage without requiring additional (serum and RA) supplements. This stem cell differentiation system could be utilized for gaining mechanistic insights into neural differentiation and for identifying potential neuroactive compounds.
Collapse
Affiliation(s)
- Isha Verma
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Sir CV Raman Road, Bangalore, 560012, India
| | - Polani B Seshagiri
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Sir CV Raman Road, Bangalore, 560012, India.
| |
Collapse
|
8
|
Ito T, Matsubara D, Tanaka I, Makiya K, Tanei ZI, Kumagai Y, Shiu SJ, Nakaoka HJ, Ishikawa S, Isagawa T, Morikawa T, Shinozaki-Ushiku A, Goto Y, Nakano T, Tsuchiya T, Tsubochi H, Komura D, Aburatani H, Dobashi Y, Nakajima J, Endo S, Fukayama M, Sekido Y, Niki T, Murakami Y. Loss of YAP1 defines neuroendocrine differentiation of lung tumors. Cancer Sci 2016; 107:1527-1538. [PMID: 27418196 PMCID: PMC5084673 DOI: 10.1111/cas.13013] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/21/2016] [Accepted: 07/12/2016] [Indexed: 01/24/2023] Open
Abstract
YAP1, the main Hippo pathway effector, is a potent oncogene and is overexpressed in non‐small‐cell lung cancer (NSCLC); however, the YAP1 expression pattern in small‐cell lung cancer (SCLC) has not yet been elucidated in detail. We report that the loss of YAP1 is a special feature of high‐grade neuroendocrine lung tumors. A hierarchical cluster analysis of 15 high‐grade neuroendocrine tumor cell lines containing 14 SCLC cell lines that depended on the genes of Hippo pathway molecules and neuroendocrine markers clearly classified these lines into two groups: the YAP1‐negative and neuroendocrine marker‐positive group (n = 11), and the YAP1‐positive and neuroendocrine marker‐negative group (n = 4). Among the 41 NSCLC cell lines examined, the loss of YAP1 was only observed in one cell line showing the strong expression of neuroendocrine markers. Immunostaining for YAP1, using the sections of 189 NSCLC, 41 SCLC, and 30 large cell neuroendocrine carcinoma (LCNEC) cases, revealed that the loss of YAP1 was common in SCLC (40/41, 98%) and LCNEC (18/30, 60%), but was rare in NSCLC (6/189, 3%). Among the SCLC and LCNEC cases tested, the loss of YAP1 correlated with the expression of neuroendocrine markers, and a survival analysis revealed that YAP1‐negative cases were more chemosensitive than YAP1‐positive cases. Chemosensitivity test for cisplatin using YAP1‐positive/YAP1‐negative SCLC cell lines also showed compatible results. YAP1‐sh‐mediated knockdown induced the neuroendocrine marker RAB3a, which suggested the possible involvement of YAP1 in the regulation of neuroendocrine differentiation. Thus, we showed that the loss of YAP1 has potential as a clinical marker for predicting neuroendocrine features and chemosensitivity.
Collapse
Affiliation(s)
- Takeshi Ito
- Molecular Pathology Laboratory, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Daisuke Matsubara
- Molecular Pathology Laboratory, Institute of Medical Science, University of Tokyo, Tokyo, Japan. .,Department of Integrative Pathology, Jichi Medical University, Tochigi, Japan.
| | - Ichidai Tanaka
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Aichi, Japan
| | - Kanae Makiya
- Molecular Pathology Laboratory, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Zen-Ichi Tanei
- Molecular Pathology Laboratory, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yuki Kumagai
- Molecular Pathology Laboratory, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Shu-Jen Shiu
- Molecular Pathology Laboratory, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hiroki J Nakaoka
- Molecular Pathology Laboratory, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Shumpei Ishikawa
- Department of Genomic Pathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayuki Isagawa
- Department of Genomic Pathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Teppei Morikawa
- Department of Human Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Aya Shinozaki-Ushiku
- Department of Human Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yasushi Goto
- Department of Respiratory Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Tomoyuki Nakano
- Department of Thoracic Surgery, Jichi Medical University, Tochigi, Japan
| | | | - Hiroyoshi Tsubochi
- Department of Thoracic Surgery, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Daisuke Komura
- Division of Genome Science, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | - Hiroyuki Aburatani
- Division of Genome Science, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | - Yoh Dobashi
- Department of Pathology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Jun Nakajima
- Department of Thoracic Surgery, University of Tokyo, Tokyo, Japan
| | - Shunsuke Endo
- Department of Thoracic Surgery, Jichi Medical University, Tochigi, Japan
| | - Masashi Fukayama
- Department of Human Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yoshitaka Sekido
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Aichi, Japan
| | - Toshiro Niki
- Department of Integrative Pathology, Jichi Medical University, Tochigi, Japan
| | - Yoshinori Murakami
- Molecular Pathology Laboratory, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Iwasaki T, Matsushita M, Nonaka D, Nagata K, Kato M, Kuwamoto S, Murakami I, Hayashi K. Lower expression of CADM1 and higher expression of MAL in Merkel cell carcinomas are associated with Merkel cell polyomavirus infection and better prognosis. Hum Pathol 2016; 48:1-8. [DOI: 10.1016/j.humpath.2015.09.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/06/2015] [Accepted: 09/23/2015] [Indexed: 11/15/2022]
|
10
|
Guo H, Cao C, Chi X, Zhao J, Liu X, Zhou N, Han S, Yan Y, Wang Y, Xu Y, Yan Y, Cui H, Sun H. Specificity protein 1 regulates topoisomerase IIβ expression in SH-SY5Y cells during neuronal differentiation. J Neurosci Res 2014; 92:1374-83. [DOI: 10.1002/jnr.23403] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 04/01/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Hui Guo
- Cell Biology Division; Institute of Basic Medicine; Hebei Medical University; Shijiazhuang Hebei China
| | - Cuili Cao
- Cell Biology Division; Institute of Basic Medicine; Hebei Medical University; Shijiazhuang Hebei China
- Laboratory of Neurobiology; Institute of Basic Medicine; Hebei Medical University; Shijiazhuang Hebei China
| | - Xueqian Chi
- Department of Endodontics; The Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Junxia Zhao
- Cell Biology Division; Institute of Basic Medicine; Hebei Medical University; Shijiazhuang Hebei China
| | - Xia Liu
- Cell Biology Division; Institute of Basic Medicine; Hebei Medical University; Shijiazhuang Hebei China
| | - Najing Zhou
- Cell Biology Division; Institute of Basic Medicine; Hebei Medical University; Shijiazhuang Hebei China
| | - Shuo Han
- Department of Anatomy; College of Basic Medicine; Hebei Medical University; Shijiazhuang Hebei China
| | - Yongxin Yan
- Cell Biology Division; Institute of Basic Medicine; Hebei Medical University; Shijiazhuang Hebei China
| | - Yanling Wang
- Cell Biology Division; Institute of Basic Medicine; Hebei Medical University; Shijiazhuang Hebei China
| | - Yannan Xu
- Cell Biology Division; Institute of Basic Medicine; Hebei Medical University; Shijiazhuang Hebei China
| | - Yunli Yan
- Cell Biology Division; Institute of Basic Medicine; Hebei Medical University; Shijiazhuang Hebei China
| | - Huixian Cui
- Department of Anatomy; College of Basic Medicine; Hebei Medical University; Shijiazhuang Hebei China
| | - Hongxia Sun
- Department of Pathology and Laboratory Medicine; University of Texas Health Science Center at Houston; Houston Texas
| |
Collapse
|
11
|
Inoue T, Hagiyama M, Enoki E, Sakurai MA, Tan A, Wakayama T, Iseki S, Murakami Y, Fukuda K, Hamanishi C, Ito A. Cell adhesion molecule 1 is a new osteoblastic cell adhesion molecule and a diagnostic marker for osteosarcoma. Life Sci 2012; 92:91-9. [PMID: 23142238 DOI: 10.1016/j.lfs.2012.10.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 10/12/2012] [Accepted: 10/30/2012] [Indexed: 12/18/2022]
Abstract
AIMS An immunohistochemical screen for mouse embryos showed that cell adhesion molecule 1 (CADM1), which is an immunoglobulin superfamily member, was expressed in developing bones. Here, we determined the cell types expressing CADM1 and examined its usefulness in the differential diagnosis of osteosarcoma. MAIN METHODS Serial sections of murine developing mandibles were stained with anti-CADM1 antibody, by a coloring substrate reactive to alkaline phosphatase (ALP), a broad osteoblastic marker for preosteoblasts to osteoblasts, and by in situ hybridization for osteopontin (OPN), a marker for mature osteoblasts. CADM1 immunohistochemistry was also performed on human remodeling bones, osteosarcomas and other soft tissue tumors. KEY FINDINGS CADM1 immunohistochemistry for the mandible revealed that morphologically identifiable osteoblasts expressed CADM1 on their plasma membranes, but neither osteocytes nor bone lining cells did. At the mandibular margin, not only OPN-positive cells but also OPN-negative, ALP-positive cells were CADM1-positive, whereas inside the mandible, OPN-positive cells were often CADM1-negative. Clear membranous staining was detected in the majority of osteosarcomas (46/57), whereas only 13% (6/46) of the other soft tissue tumors were CADM1-positive (P<0.001). SIGNIFICANCE These results indicated that CADM1 was a novel osteoblastic adhesion molecule that is expressed transiently during osteoblastic maturation, and a useful diagnostic marker for osteosarcoma cells.
Collapse
Affiliation(s)
- Takao Inoue
- Department of Pathology, Faculty of Medicine, Kinki University, Osaka 589-8511, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|