1
|
Li B, He YY, Yao WX, Jin DD, Luo HN, Li MY, Wu Y, Yang ZM. Primary cilia prevent activation of the cGAS-STING pathway during mouse decidualization. Commun Biol 2025; 8:607. [PMID: 40229503 PMCID: PMC11997147 DOI: 10.1038/s42003-025-08030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/02/2025] [Indexed: 04/16/2025] Open
Abstract
Primary cilia are antenna-like organelles that sense extracellular signals and function as signaling hubs essential for vertebrate development and homeostasis. Decidualization is crucial for pregnancy establishment and maintenance in both humans and mice. While primary cilia are present in endometrial stromal cells, their role in pregnancy remains unknown. Here, we identify TMEM67, a key component of the ciliary transition zone, as a critical regulator of mouse decidualization. Loss of primary cilia triggers RhoA-MLC2-dependent actomyosin contraction, which transmits mechanical forces to the nuclear lamina, leading to micronuclei formation. Within these micronuclei, double-stranded DNA (dsDNA) can directly bind to cyclic GMP-AMP synthase (cGAS) in situ, initiating downstream signaling. This activation of the cGAS-STING pathway reduces CCL6 production and impairs decidualization. Furthermore, pharmacological inhibition of actin polymerization or RhoA-ROCK signaling alleviates mechanical forces surrounding stromal cells, restores ciliogenesis, maintains nuclear integrity, suppresses the cGAS-STING pathway activation, and ultimately rescues decidualization. Our findings reveal a previously unrecognized mechanism by which primary cilia regulate the actin cytoskeleton to maintain nuclear integrity and prevent DNA leakage. This safeguards against aberrant activation of the cGAS-STING pathway, which would otherwise trigger detrimental immune signaling and impair decidualization.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang, 550025, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yu-Ying He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Xu Yao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Dan-Dan Jin
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Hui-Na Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Meng-Yuan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zeng-Ming Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Shi Y, Wang CC, Wu L, Zhang Y, Xu A, Wang Y. Pathophysiological Insight into Fatty Acid-Binding Protein-4: Multifaced Roles in Reproduction, Pregnancy, and Offspring Health. Int J Mol Sci 2023; 24:12655. [PMID: 37628833 PMCID: PMC10454382 DOI: 10.3390/ijms241612655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Fatty acid-binding protein-4 (FABP4), commonly known as adipocyte-fatty acid-binding protein (A-FABP), is a pleiotropic adipokine that broadly affects immunity and metabolism. It has been increasingly recognized that FABP4 dysfunction is associated with various metabolic syndromes, including obesity, diabetes, cardiovascular diseases, and metabolic inflammation. However, its explicit roles within the context of women's reproduction and pregnancy remain to be investigated. In this review, we collate recent studies probing the influence of FABP4 on female reproduction, pregnancy, and even fetal health. Elevated circulating FABP4 levels have been found to correlate with impaired reproductive function in women, such as polycystic ovary syndrome and endometriosis. Throughout pregnancy, FABP4 affects maternal-fetal interface homeostasis by affecting both glycolipid metabolism and immune tolerance, leading to adverse pregnancy outcomes, including miscarriage, gestational obesity, gestational diabetes, and preeclampsia. Moreover, maternal FABP4 levels exhibit a substantial linkage with the metabolic health of offspring. Herein, we discuss the emerging significance and potential application of FABP4 in reproduction and pregnancy health and delve into its underlying mechanism at molecular levels.
Collapse
Affiliation(s)
- Yue Shi
- The Second Clinical Medical School, Beijing University of Chinese Medicine, Beijing 100078, China; (Y.S.); (Y.Z.)
| | - Chi-Chiu Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong;
- Li Ka Shing Institute of Health Sciences, School of Biomedical Sciences, Chinese University of Hong Kong-Sichuan University Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Liqun Wu
- Department of Pediatrics, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China;
| | - Yunqing Zhang
- The Second Clinical Medical School, Beijing University of Chinese Medicine, Beijing 100078, China; (Y.S.); (Y.Z.)
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong;
- Department of Medicine, The University of Hong Kong, Hong Kong
| | - Yao Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong;
| |
Collapse
|
3
|
Kandasamy K, Johana NB, Tan LG, Tan Y, Yeo JSL, Yusof NNB, Li Z, Koh J, Ginhoux F, Chan JKY, Choolani M, Mattar CNZ. Maternal dendritic cells influence fetal allograft response following murine in-utero hematopoietic stem cell transplantation. Stem Cell Res Ther 2023; 14:136. [PMID: 37226255 DOI: 10.1186/s13287-023-03366-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Intrauterine hematopoietic stem cell transplantation (IUT), potentially curative in congenital haematological disease, is often inhibited by deleterious immune responses to donor cells resulting in subtherapeutic donor cell chimerism (DCC). Microchimerism of maternal immune cells (MMc) trafficked into transplanted recipients across the placenta may directly influence donor-specific alloresponsiveness, limiting DCC. We hypothesized that dendritic cells (DC) among trafficked MMc influence the development of tolerogenic or immunogenic responses towards donor cells, and investigated if maternal DC-depletion reduced recipient alloresponsiveness and enhanced DCC. METHODS Using transgenic CD11c.DTR (C57BL/6) female mice enabled transient maternal DC-depletion with a single dose of diphtheria toxin (DT). CD11c.DTR females and BALB/c males were cross-mated, producing hybrid pups. IUT was performed at E14 following maternal DT administration 24 h prior. Bone marrow-derived mononuclear cells were transplanted, obtained from semi-allogenic BALB/c (paternal-derived; pIUT), C57BL/6 (maternal-derived; mIUT), or fully allogenic (aIUT) C3H donor mice. Recipient F1 pups were analyzed for DCC, while maternal and IUT-recipient immune cell profile and reactivity were examined via mixed lymphocyte reactivity functional assays. T- and B-cell receptor repertoire diversity in maternal and recipient cells were examined following donor cell exposure. RESULTS DCC was highest and MMc was lowest following pIUT. In contrast, aIUT recipients had the lowest DCC and the highest MMc. In groups that were not DC-depleted, maternal cells trafficked post-IUT displayed reduced TCR & BCR clonotype diversity, while clonotype diversity was restored when dams were DC-depleted. Additionally, recipients displayed increased expression of regulatory T-cells and immune-inhibitory proteins, with reduced proinflammatory cytokine and donor-specific antibody production. DC-depletion did not impact initial donor chimerism. Postnatal transplantation without immunosuppression of paternal donor cells did not increase DCC in pIUT recipients; however there were no donor-specific antibody production or immune cell changes. CONCLUSIONS Though maternal DC depletion did not improve DCC, we show for the first time that MMc influences donor-specific alloresponsiveness, possibly by expanding alloreactive clonotypes, and depleting maternal DC promotes and maintains acquired tolerance to donor cells independent of DCC, presenting a novel approach to enhancing donor cell tolerance following IUT. This may have value when planning repeat HSC transplantations to treat haemoglobinopathies.
Collapse
Affiliation(s)
- Karthikeyan Kandasamy
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | | | - Lay Geok Tan
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
- Department of Obstetrics and Gynaecology, National University Health System, National University Hospital, Singapore, Singapore
| | - Yvonne Tan
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Julie Su Li Yeo
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Nur Nazneen Binte Yusof
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Zhihui Li
- Genome Research Informatics and Data Science Platform, Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Jiayu Koh
- Genome Research Informatics and Data Science Platform, Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, The Academia, Singapore, Singapore
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jerry K Y Chan
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Mahesh Choolani
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
- Department of Obstetrics and Gynaecology, National University Health System, National University Hospital, Singapore, Singapore
| | - Citra N Z Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore.
- Department of Obstetrics and Gynaecology, National University Health System, National University Hospital, Singapore, Singapore.
| |
Collapse
|
4
|
Weng J, Couture C, Girard S. Innate and Adaptive Immune Systems in Physiological and Pathological Pregnancy. BIOLOGY 2023; 12:402. [PMID: 36979094 PMCID: PMC10045867 DOI: 10.3390/biology12030402] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
The dynamic immunological changes occurring throughout pregnancy are well-orchestrated and important for the success of the pregnancy. One of the key immune adaptations is the maternal immune tolerance towards the semi-allogeneic fetus. In this review, we provide a comprehensive overview of what is known about the innate and adaptive immunological changes in pregnancy and the role(s) of specific immune cells during physiological and pathological pregnancy. Alongside this, we provided details of remaining questions and challenges, as well as future perspectives for this growing field of research. Understanding the immunological changes that occur can inform potential strategies on treatments for the optimal health of the neonate and pregnant individual both during and after pregnancy.
Collapse
Affiliation(s)
- Jessica Weng
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
| | - Camille Couture
- Department of Microbiology, Infectiology and Immunology, Universite de Montreal, Ste-Justine Hospital Research Center, Montreal, QC H3T 1C5, Canada
| | - Sylvie Girard
- Department of Obstetrics & Gynecology, Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Busse M, Zenclussen AC. IL-10 Producing B Cells Protect against LPS-Induced Murine Preterm Birth by Promoting PD1- and ICOS-Expressing T Cells. Cells 2022; 11:cells11172690. [PMID: 36078100 PMCID: PMC9454497 DOI: 10.3390/cells11172690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
B cells and in particular IL-10-secreting B cells emerge as important players in immune balance during pregnancy. We have recently revealed that CD19-deficient (CD19−/−), B cell-specific IL-10-deficient (BIL-10−/−) and B cell-deficient µMT pregnant mice are highly susceptible to LPS-induced preterm birth (PTB). We aimed to analyze the ability of IL-10-secreting cells to protect from PTB and the underlying mechanisms. Wild type (WT), CD19−/−, BIL-10−/− and µMT mice were treated with LPS at gd16 and the cellular immune response was investigated 24 h later. LPS-treated BIL-10−/− dams showed a more pronounced PTB phenotype compared to WT, CD19−/− and µMT females, and increased inflammatory and reduced anti-inflammatory mediator concentrations in the peritoneal cavity and serum. CD19−/−, BIL-10−/− and µMT mice displayed altered immune cell population frequencies in the blood and uterus with lower numbers of IL-10-secreting B cells and T cells. BIL-10−/− mothers presented decreased frequencies of uterine CD4+CD25+Foxp3+ Treg cells. Co-stimulatory molecules are critical for feto-maternal tolerance and IL-10 secretion. We found dysregulated PD-1 expression in peripheral blood and ICOS expression in the uterus of CD19−/−, BIL-10−/− and µMT dams. Our data show that B cell-specific IL-10-signaling is essential for a balanced maternal immune response to an inflammatory stimulant that cannot be hampered without IL-10-secreting B cells.
Collapse
Affiliation(s)
- Mandy Busse
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, 39108 Magdeburg, Germany
| | - Ana Claudia Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
- Saxonian Incubator for Translation Research, Leipzig University, 04103 Leipzig, Germany
- Correspondence: ; Tel.: +49-341-2351265
| |
Collapse
|
6
|
Zhang S, Ding J, Zhang Y, Liu S, Yang J, Yin T. Regulation and Function of Chemokines at the Maternal–Fetal Interface. Front Cell Dev Biol 2022; 10:826053. [PMID: 35938162 PMCID: PMC9354654 DOI: 10.3389/fcell.2022.826053] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/22/2022] [Indexed: 11/28/2022] Open
Abstract
Successful pregnancy requires the maternal immune system to tolerate the semi-allogeneic embryo. A good trophoblast function is also essential for successful embryo implantation and subsequent placental development. Chemokines are initially described in recruiting leukocytes. There are rich chemokines and chemokine receptor system at the maternal–fetal interface. Numerous studies have reported that they not only regulate trophoblast biological behaviors but also participate in the decidual immune response. At the same time, the chemokine system builds an important communication network between fetally derived trophoblast cells and maternally derived decidual cells. However, abnormal functions of chemokines or chemokine receptors are involved in a series of pregnancy complications. As growing evidence points to the roles of chemokines in pregnancy, there is a great need to summarize the available data on this topic. This review aimed to describe the recent research progress on the regulation and function of the main chemokines in pregnancy at the maternal–fetal interface. In addition, we also discussed the potential relationship between chemokines and pregnancy complications.
Collapse
Affiliation(s)
- Sainan Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Jinli Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
- *Correspondence: Su Liu, ; Jing Yang, ; Tailang Yin,
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
- *Correspondence: Su Liu, ; Jing Yang, ; Tailang Yin,
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
- *Correspondence: Su Liu, ; Jing Yang, ; Tailang Yin,
| |
Collapse
|
7
|
Bonney EA, Johnson MR. The role of maternal T cell and macrophage activation in preterm birth: Cause or consequence? Placenta 2019; 79:53-61. [PMID: 30929747 DOI: 10.1016/j.placenta.2019.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/06/2019] [Indexed: 12/18/2022]
Abstract
The role of the immune system in term (TL) and preterm labor (PTL) is unknown. Despite the fact that globally, PTL remains the most important cause of childhood mortality. Infection, typically of the fetal membranes, termed chorioamnionitis, is the best-understood driver of PTL, but the mechanisms underpinning other causes, including idiopathic and stretch-induced PTL, are unclear, but may well involve activation of the maternal immune system. The final common pathway of placental dysfunction, fetal membrane rupture, cervical dilation and uterine contractions are highly complex processes. At term, choriodecidual rather than myometrial inflammation is thought to drive the onset of labor and similar findings are present in different types of PTL including idiopathic PTL. Although accumulated data has confirmed an association between the immune response and preterm birth, there is yet a need to understand if this response is an initiator or a consequence of tissue-level dysregulation. This review focuses on the potential role of macrophages and T cells in innate and adaptive immunity relevant to preterm birth in humans and animal models.
Collapse
Affiliation(s)
- Elizabeth A Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences University of Vermont, Larner College of Medicine, Burlington, VT, USA.
| | - Mark R Johnson
- Faculty of Medicine, Department of Surgery & Cancer, Imperial College, London, United Kingdom
| |
Collapse
|
8
|
Maymon E, Romero R, Bhatti G, Chaemsaithong P, Gomez-Lopez N, Panaitescu B, Chaiyasit N, Pacora P, Dong Z, Hassan SS, Erez O. Chronic inflammatory lesions of the placenta are associated with an up-regulation of amniotic fluid CXCR3: A marker of allograft rejection. J Perinat Med 2018; 46:123-137. [PMID: 28829757 PMCID: PMC5797487 DOI: 10.1515/jpm-2017-0042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/19/2017] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The objective of this study is to determine whether the amniotic fluid (AF) concentration of soluble CXCR3 and its ligands CXCL9 and CXCL10 changes in patients whose placentas show evidence of chronic chorioamnionitis or other placental lesions consistent with maternal anti-fetal rejection. METHODS This retrospective case-control study included 425 women with (1) preterm delivery (n=92); (2) term in labor (n=68); and (3) term not in labor (n=265). Amniotic fluid CXCR3, CXCL9 and CXCL10 concentrations were determined by ELISA. RESULTS (1) Amniotic fluid concentrations of CXCR3 and its ligands CXCL9 and CXCL10 are higher in patients with preterm labor and maternal anti-fetal rejection lesions than in those without these lesions [CXCR3: preterm labor and delivery with maternal anti-fetal rejection placental lesions (median, 17.24 ng/mL; IQR, 6.79-26.68) vs. preterm labor and delivery without these placental lesions (median 8.79 ng/mL; IQR, 4.98-14.7; P=0.028)]; (2) patients with preterm labor and chronic chorioamnionitis had higher AF concentrations of CXCL9 and CXCL10, but not CXCR3, than those without this lesion [CXCR3: preterm labor with chronic chorioamnionitis (median, 17.02 ng/mL; IQR, 5.57-26.68) vs. preterm labor without chronic chorioamnionitis (median, 10.37 ng/mL; IQR 5.01-17.81; P=0.283)]; (3) patients with preterm labor had a significantly higher AF concentration of CXCR3 than those in labor at term regardless of the presence or absence of placental lesions. CONCLUSION Our findings support a role for maternal anti-fetal rejection in a subset of patients with preterm labor.
Collapse
Affiliation(s)
- Eli Maymon
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Gaurav Bhatti
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
| | - Piya Chaemsaithong
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Block E East Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin New Territories, Hong Kong
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bogdan Panaitescu
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Noppadol Chaiyasit
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Percy Pacora
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhong Dong
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Offer Erez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
9
|
Scott NM, Lauzon-Joset JF, Jones AC, Mincham KT, Troy NM, Leffler J, Serralha M, Prescott SL, Robertson SA, Pasquali C, Bosco A, Holt PG, Strickland DH. Protection against maternal infection-associated fetal growth restriction: proof-of-concept with a microbial-derived immunomodulator. Mucosal Immunol 2017; 10:789-801. [PMID: 27759021 DOI: 10.1038/mi.2016.85] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 08/17/2016] [Indexed: 02/04/2023]
Abstract
Infection-associated inflammatory stress during pregnancy is the most common cause of fetal growth restriction and/or miscarriage. Treatment strategies for protection of at-risk mothers are limited to a narrow range of vaccines, which do not cover the bulk of the common pathogens most frequently encountered. Using mouse models, we demonstrate that oral treatment during pregnancy with a microbial-derived immunomodulator (OM85), currently used clinically for attenuation of infection-associated airway inflammatory symptoms in infants-adults, markedly reduces risk for fetal loss/growth restriction resulting from maternal challenge with bacterial lipopolysaccharide or influenza. Focusing on LPS exposure, we demonstrate that the key molecular indices of maternal inflammatory stress, notably high levels of RANTES, MIP-1α, CCL2, KC, and G-CSF (granulocyte colony-stimulating factor) in gestational tissues/serum, are abrogated by OM85 pretreatment. Systems-level analyses conducted in parallel using RNASeq revealed that OM85 pretreatment selectively tunes LPS-induced activation in maternal gestational tissues for attenuated expression of TNF, IL1, and IFNG-driven proinflammatory networks, without constraining Type1-IFN-associated networks central to first-line antimicrobial defense. This study suggests that broad-spectrum protection-of-pregnancy against infection-associated inflammatory stress, without compromising capacity for efficient pathogen eradication, represents an achievable therapeutic goal.
Collapse
Affiliation(s)
- N M Scott
- Telethon Kids Institute, The University of Western Australia, West Perth, Western Australia, Australia
| | - J F Lauzon-Joset
- Telethon Kids Institute, The University of Western Australia, West Perth, Western Australia, Australia
| | - A C Jones
- Telethon Kids Institute, The University of Western Australia, West Perth, Western Australia, Australia
| | - K T Mincham
- Telethon Kids Institute, The University of Western Australia, West Perth, Western Australia, Australia
| | - N M Troy
- Telethon Kids Institute, The University of Western Australia, West Perth, Western Australia, Australia
| | - J Leffler
- Telethon Kids Institute, The University of Western Australia, West Perth, Western Australia, Australia
| | - M Serralha
- Telethon Kids Institute, The University of Western Australia, West Perth, Western Australia, Australia
| | - S L Prescott
- Telethon Kids Institute, The University of Western Australia, West Perth, Western Australia, Australia.,School of Paediatrics and Child Health, The University of Western Australia, West Perth, Western Australia, Australia
| | - S A Robertson
- Robinson Research Institute and School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - C Pasquali
- OM Pharma, SA Geneva, Geneva, Switzerland
| | - A Bosco
- Telethon Kids Institute, The University of Western Australia, West Perth, Western Australia, Australia
| | - P G Holt
- Telethon Kids Institute, The University of Western Australia, West Perth, Western Australia, Australia
| | - D H Strickland
- Telethon Kids Institute, The University of Western Australia, West Perth, Western Australia, Australia
| |
Collapse
|
10
|
Hall SM, Coulter SJ, Knudsen GA, Sanders JM, Birnbaum LS. Gene expression changes in immune response pathways following oral administration of tetrabromobisphenol A (TBBPA) in female Wistar Han rats. Toxicol Lett 2017; 272:68-74. [PMID: 28300664 DOI: 10.1016/j.toxlet.2017.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/08/2017] [Accepted: 03/10/2017] [Indexed: 11/19/2022]
Abstract
Tetrabromobisphenol A (TBBPA) is a brominated flame retardant used globally at high volumes, primarily in the epoxy resin of circuit boards. It has been detected in the environment and in humans. The National Toxicology Program found that chronic oral TBBPA treatment of 250mg/kg and higher caused an increased incidence of uterine lesions in female Wistar Han rats. The present laboratory has previously reported changes in gene expression associated with estrogen homeostasis in liver and uterine tissue of adult female Wistar Han rats after five days of gavage with 250mg/kg of TBBPA. Microarray analysis of tissue from these same TBBPA-treated rats was performed to detect additional pathways perturbed by TBBPA. Microarray analysis of uterine tissue detected downregulation of genes in pathways of the immune response following TBBPA treatment. These results, along with validation of associated gene expression changes using droplet digital PCR, are reported here. Our findings suggest mechanisms that may be related to estrogen-mediated immunosuppression.
Collapse
Affiliation(s)
- Samantha M Hall
- Laboratory of Toxicology and Toxicokinetics, National Cancer Institute at the National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, United States
| | - Sherry J Coulter
- Laboratory of Toxicology and Toxicokinetics, National Cancer Institute at the National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, United States
| | - Gabriel A Knudsen
- Laboratory of Toxicology and Toxicokinetics, National Cancer Institute at the National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, United States.
| | - J Michael Sanders
- Laboratory of Toxicology and Toxicokinetics, National Cancer Institute at the National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, United States
| | - Linda S Birnbaum
- Laboratory of Toxicology and Toxicokinetics, National Cancer Institute at the National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, United States
| |
Collapse
|
11
|
Abstract
The maternal immune system is complex and governed by multiple hormonal and metabolic factors, including those provided to the mother via the fetus. Understanding of the balance between maternal tolerance and protection of the fetus may require thinking from multiple theoretical approaches to the general problem of immune activation and tolerance. This article provides a brief review of the immune system, with aspects relevant to pregnancy. The references include reviews that expand on the elements discussed. The article also uses different models of immune system activation and tolerance to provide a theoretical understanding of the problem of maternal tolerance.
Collapse
Affiliation(s)
- Elizabeth A Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont College of Medicine, Given Building Room C-246, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| |
Collapse
|
12
|
Abstract
The maternal immune system is complex and governed by multiple hormonal and metabolic factors, including those provided to the mother via the fetus. Understanding of the balance between maternal tolerance and protection of the fetus may require thinking from multiple theoretical approaches to the general problem of immune activation and tolerance. This article provides a brief review of the immune system, with aspects relevant to pregnancy. The references include reviews that expand on the elements discussed. The article also uses different models of immune system activation and tolerance to provide a theoretical understanding of the problem of maternal tolerance.
Collapse
Affiliation(s)
- Elizabeth A Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont College of Medicine, Given Building Room C-246, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| |
Collapse
|
13
|
Furcron AE, Romero R, Mial TN, Balancio A, Panaitescu B, Hassan SS, Sahi A, Nord C, Gomez-Lopez N. Human Chorionic Gonadotropin Has Anti-Inflammatory Effects at the Maternal-Fetal Interface and Prevents Endotoxin-Induced Preterm Birth, but Causes Dystocia and Fetal Compromise in Mice. Biol Reprod 2016; 94:136. [PMID: 27146032 PMCID: PMC4946806 DOI: 10.1095/biolreprod.116.139345] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/13/2016] [Accepted: 05/02/2016] [Indexed: 12/18/2022] Open
Abstract
Human chorionic gonadotropin (hCG) is implicated in the maintenance of uterine quiescence by down-regulating myometrial gap junctions during pregnancy, and it was considered as a strategy to prevent preterm birth after the occurrence of preterm labor. However, the effect of hCG on innate and adaptive immune cells implicated in parturition is poorly understood. Herein, we investigated the immune effects of hCG at the maternal-fetal interface during late gestation, and whether this hormone can safely prevent endotoxin-induced preterm birth. Using immunophenotyping, we demonstrated that hCG has immune effects at the maternal-fetal interface (decidual tissues) by: 1) increasing the proportion of regulatory T cells; 2) reducing the proportion of macrophages and neutrophils; 3) inducing an M1 → M2 macrophage polarization; and 4) increasing the proportion of T helper 17 cells. Next, ELISAs were used to determine whether the local immune changes were associated with systemic concentrations of progesterone, estradiol, and/or cytokines (IFNgamma, IL1beta, IL2, IL4, IL5, IL6, IL10, IL12p70, KC/GRO, and TNFalpha). Plasma concentrations of IL1beta, but not progesterone, estradiol, or any other cytokine, were increased following hCG administration. Pretreatment with hCG prevented endotoxin-induced preterm birth by 44%, proving the effectiveness of this hormone as an anti-inflammatory agent. However, hCG administration alone caused dystocia and fetal compromise, as proven by Doppler ultrasound. These results provide insight into the mechanisms whereby hCG induces an anti-inflammatory microenvironment at the maternal-fetal interface during late gestation, and demonstrate its effectiveness in preventing preterm labor/birth. However, the deleterious effects of this hormone on mothers and fetuses warrant caution.
Collapse
Affiliation(s)
- Amy-Eunice Furcron
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Roberto Romero
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan Center for Molecular Obstetrics and Genetics, Wayne State University, Detroit, Michigan
| | - Tara N Mial
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Amapola Balancio
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan
| | - Bogdan Panaitescu
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| | - Sonia S Hassan
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Aashna Sahi
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Claire Nord
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
14
|
St Louis D, Romero R, Plazyo O, Arenas-Hernandez M, Panaitescu B, Xu Y, Milovic T, Xu Z, Bhatti G, Mi QS, Drewlo S, Tarca AL, Hassan SS, Gomez-Lopez N. Invariant NKT Cell Activation Induces Late Preterm Birth That Is Attenuated by Rosiglitazone. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:1044-59. [PMID: 26740111 PMCID: PMC4724534 DOI: 10.4049/jimmunol.1501962] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/24/2015] [Indexed: 12/13/2022]
Abstract
Preterm birth (PTB) is the leading cause of neonatal morbidity and mortality worldwide. Although intra-amniotic infection is a recognized cause of spontaneous preterm labor, the noninfection-related etiologies are poorly understood. In this article, we demonstrated that the expansion of activated CD1d-restricted invariant NKT (iNKT) cells in the third trimester by administration of α-galactosylceramide (α-GalCer) induced late PTB and neonatal mortality. In vivo imaging revealed that fetuses from mice that underwent α-GalCer-induced late PTB had bradycardia and died shortly after delivery. Yet, administration of α-GalCer in the second trimester did not cause pregnancy loss. Peroxisome proliferator-activated receptor (PPAR)γ activation, through rosiglitazone treatment, reduced the rate of α-GalCer-induced late PTB and improved neonatal survival. Administration of α-GalCer in the third trimester suppressed PPARγ activation, as shown by the downregulation of Fabp4 and Fatp4 in myometrial and decidual tissues, respectively; this suppression was rescued by rosiglitazone treatment. Administration of α-GalCer in the third trimester induced an increase in the activation of conventional CD4(+) T cells in myometrial tissues and the infiltration of activated macrophages, neutrophils, and mature dendritic cells to myometrial and/or decidual tissues. All of these effects were blunted after rosiglitazone treatment. Administration of α-GalCer also upregulated the expression of inflammatory genes at the maternal-fetal interface and systemically, and rosiglitazone treatment partially attenuated these responses. Finally, an increased infiltration of activated iNKT-like cells in human decidual tissues is associated with noninfection-related preterm labor/birth. Collectively, these results demonstrate that iNKT cell activation in vivo leads to late PTB by initiating innate and adaptive immune responses and suggest that the PPARγ pathway has potential as a target for prevention of this syndrome.
Collapse
Affiliation(s)
- Derek St Louis
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201; Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health/U.S. Department of Health and Human Services, Bethesda, MD 20892 and Detroit, MI 48201
| | - Roberto Romero
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health/U.S. Department of Health and Human Services, Bethesda, MD 20892 and Detroit, MI 48201; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48825; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201
| | - Olesya Plazyo
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201; Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health/U.S. Department of Health and Human Services, Bethesda, MD 20892 and Detroit, MI 48201
| | - Marcia Arenas-Hernandez
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201; Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health/U.S. Department of Health and Human Services, Bethesda, MD 20892 and Detroit, MI 48201
| | - Bogdan Panaitescu
- Department of Pediatrics, Neonatology Division, Wayne State University School of Medicine, Detroit, MI 48201
| | - Yi Xu
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health/U.S. Department of Health and Human Services, Bethesda, MD 20892 and Detroit, MI 48201
| | - Tatjana Milovic
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Zhonghui Xu
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201; Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health/U.S. Department of Health and Human Services, Bethesda, MD 20892 and Detroit, MI 48201
| | - Gaurav Bhatti
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201; Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health/U.S. Department of Health and Human Services, Bethesda, MD 20892 and Detroit, MI 48201
| | - Qing-Sheng Mi
- Immunology Program, Henry Ford Health System, Detroit, MI 48202; Department of Dermatology, Henry Ford Health System, Detroit, MI 48202; and Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Sascha Drewlo
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Adi L Tarca
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201; Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health/U.S. Department of Health and Human Services, Bethesda, MD 20892 and Detroit, MI 48201
| | - Sonia S Hassan
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201; Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health/U.S. Department of Health and Human Services, Bethesda, MD 20892 and Detroit, MI 48201
| | - Nardhy Gomez-Lopez
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201; Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health/U.S. Department of Health and Human Services, Bethesda, MD 20892 and Detroit, MI 48201; Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI 48201
| |
Collapse
|
15
|
Prins JR, Zhang B, Schjenken JE, Guerin LR, Barry SC, Robertson SA. Unstable Foxp3+ regulatory T cells and altered dendritic cells are associated with lipopolysaccharide-induced fetal loss in pregnant interleukin 10-deficient mice. Biol Reprod 2015. [PMID: 26224007 DOI: 10.1095/biolreprod.115.128694] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Maternal interleukin (IL) 10 deficiency elevates susceptibility to fetal loss induced by the model Toll-like receptor agonist lipopolysaccharide, but the mechanisms are not well elucidated. Here, we show that Il10 null mutant (Il10(-/-)) mice exhibit altered local T cell responses in pregnancy, exhibiting pronounced hyperplasia in para-aortic lymph nodes draining the uterus with >6-fold increased CD4(+) and CD8(+) T cells compared with wild-type controls. Among these CD4(+) cells, Foxp3(+) T regulatory (Treg) cells were substantially enriched, with 11-fold higher numbers at Day 9.5 postcoitum. Lymph node hypertrophy in Il10(-/-) mice was associated with more activated phenotypes in dendritic cells and macrophages, with elevated expression of MHCII, scavenger receptor, and CD80. Affymetrix microarray revealed an altered transcriptional profile in Treg cells from pregnant Il10(-/-) mice, with elevated expression of Ctse (cathepsin E), Il1r1, Il12rb2, and Ifng. In vitro, Il10(-/-) Treg cells showed reduced steady-state Foxp3 expression, and polyclonal stimulation caused greater loss of Foxp3 and reduced capacity to suppress IL17 in CD4(+)Foxp3(-) T cells. We conclude that despite a substantially expanded Treg cell pool, the diminished stability of Treg cells, increased numbers of effector T cells, and altered phenotypes in dendritic cells and macrophages in pregnancy all potentially confer vulnerability to inflammation-induced fetal loss in Il10(-/-) mice. These findings suggest that IL10 has a pivotal role in facilitating robust immune protection of the fetus from inflammatory challenge and that IL10 deficiency could contribute to human gestational disorders in which altered T cell responses are implicated.
Collapse
Affiliation(s)
- Jelmer R Prins
- The Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bihong Zhang
- The Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - John E Schjenken
- The Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Leigh R Guerin
- The Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Simon C Barry
- The Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Sarah A Robertson
- The Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
16
|
Gomez-Lopez N, StLouis D, Lehr MA, Sanchez-Rodriguez EN, Arenas-Hernandez M. Immune cells in term and preterm labor. Cell Mol Immunol 2014; 11:571-81. [PMID: 24954221 PMCID: PMC4220837 DOI: 10.1038/cmi.2014.46] [Citation(s) in RCA: 338] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 05/14/2014] [Accepted: 04/15/2014] [Indexed: 12/14/2022] Open
Abstract
Labor resembles an inflammatory response that includes secretion of
cytokines/chemokines by resident and infiltrating immune cells into reproductive
tissues and the maternal/fetal interface. Untimely activation of these inflammatory
pathways leads to preterm labor, which can result in preterm birth. Preterm birth is
a major determinant of neonatal mortality and morbidity; therefore, the elucidation
of the process of labor at a cellular and molecular level is essential for
understanding the pathophysiology of preterm labor. Here, we summarize the role of
innate and adaptive immune cells in the physiological or pathological activation of
labor. We review published literature regarding the role of innate and adaptive
immune cells in the cervix, myometrium, fetal membranes, decidua and the fetus in
late pregnancy and labor at term and preterm. Accumulating evidence suggests that
innate immune cells (neutrophils, macrophages and mast cells) mediate the process of
labor by releasing pro-inflammatory factors such as cytokines, chemokines and matrix
metalloproteinases. Adaptive immune cells (T-cell subsets and B cells) participate in
the maintenance of fetomaternal tolerance during pregnancy, and an alteration in
their function or abundance may lead to labor at term or preterm. Also, immune cells
that bridge the innate and adaptive immune systems (natural killer T (NKT) cells and
dendritic cells (DCs)) seem to participate in the pathophysiology of preterm labor.
In conclusion, a balance between innate and adaptive immune cells is required in
order to sustain pregnancy; an alteration of this balance will lead to labor at term
or preterm.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- 1] Department of Obstetrics & Gynecology and Immunology & Microbiology, Wayne State University, Detroit, MI, USA [2] Perinatology Research Branch NICHD/NIH, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Derek StLouis
- Department of Obstetrics & Gynecology and Immunology & Microbiology, Wayne State University, Detroit, MI, USA
| | - Marcus A Lehr
- Department of Obstetrics & Gynecology and Immunology & Microbiology, Wayne State University, Detroit, MI, USA
| | - Elly N Sanchez-Rodriguez
- Department of Obstetrics & Gynecology and Immunology & Microbiology, Wayne State University, Detroit, MI, USA
| | - Marcia Arenas-Hernandez
- Department of Obstetrics & Gynecology and Immunology & Microbiology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
17
|
Rowe JH, Ertelt JM, Xin L, Way SS. Regulatory T cells and the immune pathogenesis of prenatal infection. Reproduction 2013; 146:R191-203. [PMID: 23929902 DOI: 10.1530/rep-13-0262] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pregnancy in placental mammals offers exceptional comprehensive benefits of in utero protection, nutrition, and metabolic waste elimination for the developing fetus. However, these benefits also require durable strategies to mitigate maternal rejection of fetal tissues expressing foreign paternal antigens. Since the initial postulate of expanded maternal immune tolerance by Sir Peter Medawar 60 years ago, an amazingly elaborate assortment of molecular and cellular modifications acting both locally at the maternal-placental interface and systemically have been shown to silence potentially detrimental maternal immune responses. In turn, simultaneously maintaining host defense against the infinite array of potential pathogens during pregnancy is equally important. Fortunately, resistance against most infections is preserved seamlessly throughout gestation. On the other hand, recent studies on pathogens with unique predisposition for prenatal infections have uncovered distinctive holes in host defense associated with the reproductive process. Using these infections to probe the response during pregnancy, the immune suppressive regulatory subset of maternal CD4 T cells has been increasingly shown to dictate the inter-workings between prenatal infection susceptibility and pathogenesis of ensuing pregnancy complications. Herein, the recent literature suggesting a necessity for maternal regulatory T cells (Tregs) in pregnancy-induced immunological shifts that sustain fetal tolerance is reviewed. Additional discussion is focused on how expansion of maternal Treg suppression may become exploited by pathogens that cause prenatal infections and the perilous potential of infection-induced immune activation that may mitigate fetal tolerance and inadvertently inject hostility into the protective in utero environment.
Collapse
Affiliation(s)
- Jared H Rowe
- Division of Infectious Diseases, Cincinnati Children's Hospital, 3333 Burnet Avenue, MLC 7017, Cincinnati, Ohio 45229, USA
| | | | | | | |
Collapse
|
18
|
Parker VJ, Solano ME, Arck PC, Douglas AJ. Diet-induced obesity may affect the uterine immune environment in early-mid pregnancy, reducing NK-cell activity and potentially compromising uterine vascularization. Int J Obes (Lond) 2013; 38:766-74. [PMID: 24080794 DOI: 10.1038/ijo.2013.164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 08/16/2013] [Accepted: 08/27/2013] [Indexed: 12/29/2022]
Abstract
OBJECTIVES To investigate the effect of obesity in early-mid pregnancy on crucial pregnancy hormones and the uterine immune environment. BACKGROUND Obesity impacts reproductive ability, adversely affecting conception and leading to complications in pregnancy. Obesity is often regarded as a stress state and an immune disease, both of which may contribute to pregnancy failure. We previously demonstrated that stress in early pregnancy greatly alters progesterone secretion. As progesterone is an immunomodulator, altered progesterone secretion may adversely modify the maternal immune system. In the current study, we test the hypothesis that obesity during pregnancy adversely alters the uterine immune environment. METHODS An obese mouse model was created by feeding C57/BL6 mice on a high-fat (HF)/sugar diet for 12 weeks before pregnancy. Control mice were fed on lower-fat/sugar chow. Mice were mated, and on day 7.5 of pregnancy plasma progesterone and prolactin were measured by immunoassay. Cells from the uterus-draining inguinal lymph nodes were collected for analysis of the uterine immune response by flow cytometry. RESULTS Diet-induced obesity increased the secretion of progesterone and altered a number of uterine natural killer (NK)- and T-cell responses. These included a marked reduction in the percentage of leucocyte-derived NK cells and reduced expression of interferon-γ (IFN-γ) in the NK cells compared with control mice. CONCLUSIONS Maternal obesity, induced by an HF diet, may lead to a reduction in the expression of IFN-γ in NK cells. NK-cell-derived IFN-γ is reported to be involved in supporting uterine spiral artery remodelling. Thus, obesity in early pregnancy may compromise vascularization by reducing the expression of IFN-γ-positive NK cells. Furthermore, the expression of uterine CD8(+) cells was reduced in the HF diet-fed mice, suggesting obesity may adversely alter the maternal immune adaptation that is essential for effective pregnancy.
Collapse
Affiliation(s)
- V J Parker
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - M E Solano
- Laboratory for Experimental Feto-Maternal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - P C Arck
- Laboratory for Experimental Feto-Maternal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - A J Douglas
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
19
|
Bonney EA. Demystifying animal models of adverse pregnancy outcomes: touching bench and bedside. Am J Reprod Immunol 2013; 69:567-84. [PMID: 23448345 DOI: 10.1111/aji.12102] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 01/28/2013] [Indexed: 01/21/2023] Open
Abstract
This represents an overview of the use of animal models to study the adverse pregnancy outcomes seen in humans. The purpose is to entice clinicians to utilize some of this information to seek out the literature and have more meaningful and profitable discussions with their academic colleagues and enhance transdisciplinary research in reproductive health.
Collapse
Affiliation(s)
- Elizabeth A Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont College of Medicine, Burlington, VT, USA.
| |
Collapse
|
20
|
Abstract
Work on the mechanisms of fetomaternal tolerance has undergone a renaissance in recent years, and the general outlines of a solution to this long-standing paradox of 'transplantation' immunology have come into view. Here, we discuss several mechanisms, recently described in mice, that either minimize the activation of maternal T cells with fetal or placental specificity, or minimize the possibility that such T cells, if activated, are able to harm the fetus. The T cell response to antigens expressed by the conceptus serves as a paradigm for the study of tissue-specific immune tolerance and is relevant to the pathogenesis of immune-mediated pregnancy complications.
Collapse
|
21
|
Negishi Y, Wakabayashi A, Shimizu M, Ichikawa T, Kumagai Y, Takeshita T, Takahashi H. Disruption of maternal immune balance maintained by innate DC subsets results in spontaneous pregnancy loss in mice. Immunobiology 2012; 217:951-61. [DOI: 10.1016/j.imbio.2012.01.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 11/19/2011] [Accepted: 01/06/2012] [Indexed: 10/14/2022]
|
22
|
Bozorgmehr M, Zarnani AH, Nikoo S, Moazzeni SM. Suppressive effect of pregnant serum on murine dendritic cell function. J Obstet Gynaecol Res 2012; 38:797-803. [PMID: 22435462 DOI: 10.1111/j.1447-0756.2011.01803.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AIM Tolerance to the semi-allogenic fetal graft by the maternal immune system is a medical enigma. Many aspects of immunoregulation at the feto-maternal interface have been clarified, but systemic effects of pregnancy on the immune system are still elusive. The present study was undertaken to determine whether mid-pregnancy mouse serum has an inhibitory effect on dendritic cells (DC) function. MATERIAL AND METHODS Mid-gestational sera were obtained from allogenic pregnant Balb/c mice (Balb/c × C57BL/6) on days 9-11 of gestation. Splenic DC were purified from Balb/c mice, and treated with mid-pregnancy mouse serum. Antigen pulsed DC were injected into mice palms. After 5 days, draining lymph nodes were removed, cultured in the presence of cognate antigen, and proliferation of responding cells was measured by (3)H-thymidin incorporation. Interleukin (IL)-10 and interferon-gamma (IFN-γ) production by stimulated lymph node antigen-specific cells was also measured in culture supernatants using sandwich ELISA. RESULTS Treatment of DC with pregnant mouse serum markedly blocked their ability to induce antigen-specific lymphocyte proliferation and IFN-γ and IL-10 production by primed lymph node cells in comparison with non-pregnant serum-treated DC. CONCLUSION Pregnant mouse serum has an inhibitory effect on DC capacity to induce antigen-specific proliferation and cytokine secretion by lymph node cells. The suppressive effects of pregnant serum on DC could be considered as one of the mechanisms responsible for the systemic immunomodulation observed during pregnancy.
Collapse
Affiliation(s)
- Mahmood Bozorgmehr
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | |
Collapse
|
23
|
Bonney EA, Shepard MT, Bizargity P. Transient modification within a pool of CD4 T cells in the maternal spleen. Immunology 2011; 134:270-80. [PMID: 21977997 DOI: 10.1111/j.1365-2567.2011.03486.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Classic models suggest maternal tolerance is dependent on regulation of fetal antigen-specific T cell responses. We hypothesize that factors unique to a particular fetal antigen-specific T cell, rather than the state of pregnancy per se, are important determinants of T cell fate during pregnancy. To investigate the fate of fetal antigen-specific CD4 T cells in the systemic circulation, we examined spleen cells in a CD4 T cell receptor transgenic mouse specific for the male antigen H-Y. We observed a transient decrease in CD4(+) Vβ6(+) cell numbers and, due to transient internalization of CD4, an increase in CD4(-) Vβ6(+) T cells. Antigen-specific in vitro responsiveness was not depressed by pregnancy. These data suggest that pregnancy supports fluidity in this particular CD4 T cell pool that may, in turn, help to meet competing requirements of maternal immune responsiveness and fetal tolerance.
Collapse
Affiliation(s)
- Elizabeth A Bonney
- Department of Obstetrics, Gynecology, and Reproductive Sciences, The University of Vermont College of Medicine, Burlington, VT 05405, USA.
| | | | | |
Collapse
|
24
|
Da Silva N, Cortez-Retamozo V, Reinecker HC, Wildgruber M, Hill E, Brown D, Swirski FK, Pittet MJ, Breton S. A dense network of dendritic cells populates the murine epididymis. Reproduction 2011; 141:653-63. [PMID: 21310816 DOI: 10.1530/rep-10-0493] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
One of the most intriguing aspects of male reproductive physiology is the ability to generate spermatogenic cells - which are 'foreign' to the host - without triggering immune activation. After leaving the testis, spermatozoa enter the epididymis where they mature and are stored. In this study, we report a previously unrecognized dense network of dendritic cells (DCs) located at the base of the epididymal epithelium. This network was detected in transgenic mice expressing CD11c-EYFP and CX3CR1-GFP reporters. Epididymal DCs (eDCs) establish intimate interactions with the epithelium and project long dendrites between epithelial cells toward the lumen. We show that isolated eDCs express numerous leukocyte markers described previously in other organs that are in contact with the external environment, and present and cross-present ovalbumin to T cells in vitro. eDCs are, therefore, strategically positioned to regulate the complex interplay between immune tolerance and activation, a balance that is fundamental to male fertility.
Collapse
Affiliation(s)
- Nicolas Da Silva
- Program in Membrane Biology and Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, CPZN 8.206, Boston, Massachusetts 02114-2790, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Norton MT, Fortner KA, Oppenheimer KH, Bonney EA. Evidence that CD8 T-cell homeostasis and function remain intact during murine pregnancy. Immunology 2011; 131:426-37. [PMID: 20553337 DOI: 10.1111/j.1365-2567.2010.03316.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Evolving models of immune tolerance have challenged the view that the response of the maternal immune system to environmental or fetal antigens must be suppressed or deviated. CD8 T cells play a central role in the immune response to viruses and intracellular pathogens so the maintenance of both the number and function of these cells is critical to protect both the mother and fetus. We show that the numbers of maternal CD8 T cells in both the spleen and the uterine draining lymph nodes are transiently increased at mid-gestation and this correlates with enhanced CD8 T-cell proliferation and an increased relative expression of both pro-survival and pro-apoptotic molecules. In transgenic mice bearing T-cell antigen receptors specific for the male HY or allo-antigens, the transgenic CD8 T cells retain the ability to proliferate and function during pregnancy. Moreover, anti-HY T-cell receptor transgenic mice have normal numbers of male pups despite the presence of CD8 T cells at the maternal-fetal interface. These data suggest that pregnancy is a dynamic state in which CD8 T-cell turnover is increased while the function and ending size of the CD8 T-cell compartment are maintained.
Collapse
Affiliation(s)
- Michelle T Norton
- University of Vermont College of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
26
|
Moldenhauer LM, Hayball JD, Robertson SA. Utilising T cell receptor transgenic mice to define mechanisms of maternal T cell tolerance in pregnancy. J Reprod Immunol 2010; 87:1-13. [DOI: 10.1016/j.jri.2010.05.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 05/19/2010] [Accepted: 05/31/2010] [Indexed: 12/21/2022]
|
27
|
TLR-mediated preterm birth in response to pathogenic agents. Infect Dis Obstet Gynecol 2010; 2010. [PMID: 20827416 PMCID: PMC2933901 DOI: 10.1155/2010/378472] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 06/28/2010] [Accepted: 07/02/2010] [Indexed: 11/17/2022] Open
Abstract
The incidence of preterm birth in developed countries has risen in the past decades. Underlying causes for this enigmatic pregnancy complication are numerous, yet infectious agents that induce dysregulation of immunity at the maternal-fetal interface pose one of the most probable causes of preterm birth. This paper highlights two factors regarding maternal infections that trigger unscheduled inflammatory sequences that are deleterious to the maternal-fetal balance necessary to maintain pregnancy. Firstly, we discuss the role of Toll-like receptors (TLRs) as sentinels of uterine immunity in the context of response to pathogens. We highlight the idea that particular TLR activations lead to differential immune cascades that induce preterm birth. Secondly, two alternative routes of pathogenic entry may prove to be critical for inducing preterm birth via a cytokine storm or a secondary and currently unknown cell-mediated mechanism of uterine inflammation. This paper summarizes pathways that underlie activation of adverse and diverse immune responses to foreign agents that may result in preterm birth.
Collapse
|
28
|
Taglauer ES, Adams Waldorf KM, Petroff MG. The hidden maternal-fetal interface: events involving the lymphoid organs in maternal-fetal tolerance. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2010; 54:421-30. [PMID: 19876825 DOI: 10.1387/ijdb.082800et] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The genetic disparity between the mother and fetus has long enticed immunologists to search for mechanisms of maternal tolerance to fetal antigens. The study of antigen-specific tolerance in murine and human pregnancy has gained new momentum in recent years through the focus on antigen-presenting cells, uterine lymphatics and fetal antigen-specific maternal T cell responses. In mice, we now know that these responses occur within the secondary lymphoid structures as they can be conveniently tracked through the use of defined, often transgenic fetal antigens and maternal T cell receptors. Although the secondary lymphoid organs are sites of both immunization and tolerization to antigens, the immunological processes that occur in response to fetal antigens during the healthy pregnancy must invariably lead to tolerance. The molecular properties of these maternal-fetal tolerogenic interactions are still being unraveled, and are likely to be greatly influenced by tissue-specific microenvironments and the hormonal milieu of pregnancy. In this article, we discuss the events leading to antigen-specific maternal tolerance, including the trafficking of fetal antigens to secondary lymphoid organs, the properties of the antigen-presenting cells that display them to maternal T lymphocytes, and the nature of the ensuing tolerogenic response. Experimental data generated from human biological specimens as well as murine transgenic models are considered.
Collapse
Affiliation(s)
- Elizabeth S Taglauer
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | | |
Collapse
|
29
|
Mallidi TV, Craig LE, Schloemann SR, Riley JK. Murine endometrial and decidual NK1.1+ natural killer cells display a B220+CD11c+ cell surface phenotype. Biol Reprod 2009; 81:310-8. [PMID: 19369645 DOI: 10.1095/biolreprod.109.076448] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Uterine natural killer (uNK) cells accumulate at the maternal-fetal interface during gestation and are thought to have an important role during pregnancy in both mice and humans. While the cell surface phenotype of human uNK cells is increasingly well defined, less is known regarding the cell surface expression profile of murine uNK cells both before and during gestation. Herein, we demonstrate that murine NK1.1(+) (KLRB1C) endometrial NK (eNK) cells, derived from virgin mice, and NK1.1(+) decidual NK (dNK) cells, obtained from pregnant mice, belong to the B220(+) (PTPRC) CD11c(+) (ITGAX) subset of NK cells. While B220 expression was low on NK1.1(+) eNK cells, it was increased on a subset of NK1.1(+) dNK cells at Embryonic Day 10.5. Endometrial NK and dNK cells also differed somewhat in their expression patterns of two activation markers, namely, CD69 and inducible costimulator (ICOS). The eNK cells acquired a B220(hi)ICOS(+) dNK cell surface phenotype when cultured in vitro in the presence of uterine cells and murine interleukin 15. Thus, the cell surface profiles generated for both NK1.1(+) eNK cells and dNK cells demonstrate that they belong to the recently described B220(+)CD11c(+) subset of NK cells, which are potent cytokine producers.
Collapse
Affiliation(s)
- Thomas V Mallidi
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, Missouri, USA
| | | | | | | |
Collapse
|