1
|
Abstract
Among human leukocyte antigen (HLA)-associated disorders, celiac disease has an immunopathogenesis that is particularly well understood. The condition is characterized by hypersensitivity to cereal gluten proteins, and the disease lesion is localized in the gut. Still, the diagnosis can be made by detection of highly disease-specific autoantibodies to transglutaminase 2 in the blood. We now have mechanistic insights into how the disease-predisposing HLA-DQ molecules, via presentation of posttranslationally modified gluten peptides, are connected to the generation of these autoantibodies. This review presents our current understanding of the immunobiology of this common disorder that is positioned in the border zone between food hypersensitivity and autoimmunity.
Collapse
Affiliation(s)
- Rasmus Iversen
- KG Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; .,Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Ludvig M Sollid
- KG Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; .,Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| |
Collapse
|
2
|
Hue SSS, Ng SB, Wang S, Tan SY. Cellular Origins and Pathogenesis of Gastrointestinal NK- and T-Cell Lymphoproliferative Disorders. Cancers (Basel) 2022; 14:2483. [PMID: 35626087 PMCID: PMC9139583 DOI: 10.3390/cancers14102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022] Open
Abstract
The intestinal immune system, which must ensure appropriate immune responses to both pathogens and commensal microflora, comprises innate lymphoid cells and various T-cell subsets, including intra-epithelial lymphocytes (IELs). An example of innate lymphoid cells is natural killer cells, which may be classified into tissue-resident, CD56bright NK-cells that serve a regulatory function and more mature, circulating CD56dim NK-cells with effector cytolytic properties. CD56bright NK-cells in the gastrointestinal tract give rise to indolent NK-cell enteropathy and lymphomatoid gastropathy, as well as the aggressive extranodal NK/T cell lymphoma, the latter following activation by EBV infection and neoplastic transformation. Conventional CD4+ TCRαβ+ and CD8αβ+ TCRαβ+ T-cells are located in the lamina propria and the intraepithelial compartment of intestinal mucosa as type 'a' IELs. They are the putative cells of origin for CD4+ and CD8+ indolent T-cell lymphoproliferative disorders of the gastrointestinal tract and intestinal T-cell lymphoma, NOS. In addition to such conventional T-cells, there are non-conventional T-cells in the intra-epithelial compartment that express CD8αα and innate lymphoid cells that lack TCRs. The central feature of type 'b' IELs is the expression of CD8αα homodimers, seen in monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL), which primarily arises from both CD8αα+ TCRαβ+ and CD8αα+ TCRγδ+ IELs. EATL is the other epitheliotropic T-cell lymphoma in the GI tract, a subset of which arises from the expansion and reprograming of intracytoplasmic CD3+ innate lymphoid cells, driven by IL15 and mutations of the JAK-STAT pathway.
Collapse
Affiliation(s)
- Susan Swee-Shan Hue
- Department of Pathology, National University Hospital, Singapore 119074, Singapore; (S.S.-S.H.); (S.W.)
| | - Siok-Bian Ng
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore;
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Shi Wang
- Department of Pathology, National University Hospital, Singapore 119074, Singapore; (S.S.-S.H.); (S.W.)
| | - Soo-Yong Tan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore;
| |
Collapse
|
3
|
Voisine J, Abadie V. Interplay Between Gluten, HLA, Innate and Adaptive Immunity Orchestrates the Development of Coeliac Disease. Front Immunol 2021; 12:674313. [PMID: 34149709 PMCID: PMC8206552 DOI: 10.3389/fimmu.2021.674313] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/18/2021] [Indexed: 12/26/2022] Open
Abstract
Several environmental, genetic, and immune factors create a "perfect storm" for the development of coeliac disease: the antigen gluten, the strong association of coeliac disease with HLA, the deamidation of gluten peptides by the enzyme transglutaminase 2 (TG2) generating peptides that bind strongly to the predisposing HLA-DQ2 or HLA-DQ8 molecules, and the ensuing unrestrained T cell response. T cell immunity is at the center of the disease contributing to the inflammatory process through the loss of tolerance to gluten and the differentiation of HLA-DQ2 or HLA-DQ8-restricted anti-gluten inflammatory CD4+ T cells secreting pro-inflammatory cytokines and to the killing of intestinal epithelial cells by cytotoxic intraepithelial CD8+ lymphocytes. However, recent studies emphasize that the individual contribution of each of these cell subsets is not sufficient and that interactions between these different populations of T cells and the simultaneous activation of innate and adaptive immune pathways in distinct gut compartments are required to promote disease immunopathology. In this review, we will discuss how tissue destruction in the context of coeliac disease results from the complex interactions between gluten, HLA molecules, TG2, and multiple innate and adaptive immune components.
Collapse
Affiliation(s)
- Jordan Voisine
- Department of Medicine, The University of Chicago, Chicago, IL, United States.,Committee on Immunology, The University of Chicago, Chicago, IL, United States
| | - Valérie Abadie
- Department of Medicine, The University of Chicago, Chicago, IL, United States.,Section of Gastroenterology, Nutrition and Hepatology, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
4
|
A centric view of JAK/STAT5 in intestinal homeostasis, infection, and inflammation. Cytokine 2021; 139:155392. [PMID: 33482575 PMCID: PMC8276772 DOI: 10.1016/j.cyto.2020.155392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
Cytokines, growth factors or hormones take action through the JAK/STAT5 signaling pathway, which plays a critical role in regulating the intestinal response to infection and inflammation. However, the way in which STAT5 regulates intestinal epithelial compartment is largely ignored due to the lack of genetic tools for proper exploration and because the two STAT5 transcription factors (STAT5A and STAT5B) have some redundant but also distinct functions. In this review article, by focusing on STAT5 functions in the intestinal undifferentiated and differentiated epithelia, we discuss major advances of the growth factor/cytokine-JAK/STAT5 research in view of intestinal mucosal inflammation and immunity. We highlight the gap in the research of the intestinal STAT5 signaling to anticipate the gastrointestinal explorative insights. Furthermore, we address the critical questions to illuminate how STAT5 signaling influences intestinal epithelial cell differentiation and stem cell regeneration during homeostasis and injury. Overall, our article provides a centric view of the relevance of the relationship between chronic inflammatory diseases and JAK/STAT5 pathway and it also gives an example of how chronic infection and inflammation pirate STAT5 signaling to worsen intestinal injuries. Importantly, our review suggests how to protect a wound healing from gastrointestinal diseases by modulating intestinal STAT5.
Collapse
|
5
|
Yu X, Vargas J, Green PH, Bhagat G. Innate Lymphoid Cells and Celiac Disease: Current Perspective. Cell Mol Gastroenterol Hepatol 2020; 11:803-814. [PMID: 33309944 PMCID: PMC7851184 DOI: 10.1016/j.jcmgh.2020.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022]
Abstract
Celiac disease (CD) is a common autoimmune disorder triggered by the ingestion of gluten in genetically susceptible individuals. Although the mechanisms underlying gliadin-mediated activation of adaptive immunity in CD have been well-characterized, regulation of innate immune responses and the functions of certain immune cell populations within the epithelium and lamina propria are not well-understood at present. Innate lymphoid cells (ILCs) are types of innate immune cells that have lymphoid morphology, lack antigen-specific receptors, and play important roles in tissue homeostasis, inflammation, and protective immune responses against pathogens. Information regarding the diversity and functions of ILCs in lymphoid organs and at mucosal sites has grown over the past decade, and roles of different ILC subsets in the pathogenesis of some inflammatory intestinal diseases have been proposed. However, our understanding of the contribution of ILCs toward the initiation and progression of CD is still limited. In this review, we discuss current pathophysiological aspects of ILCs within the gastrointestinal tract, findings of recent investigations characterizing ILC alterations in CD and refractory CD, and suggest avenues for future research.
Collapse
Affiliation(s)
- Xuechen Yu
- Department of Medicine, Celiac Disease Center, Columbia University Irving Medical Center, New York, New York
| | - Justin Vargas
- Department of Medicine, Celiac Disease Center, Columbia University Irving Medical Center, New York, New York
| | - Peter H.R. Green
- Department of Medicine, Celiac Disease Center, Columbia University Irving Medical Center, New York, New York
| | - Govind Bhagat
- Department of Medicine, Celiac Disease Center, Columbia University Irving Medical Center, New York, New York,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York,Correspondence Address correspondence to: Govind Bhagat, MD, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630 West 168th Street, VC 14-228, New York, New York 10032. fax: (212) 305-2301.
| |
Collapse
|
6
|
Novais FO, Nguyen BT, Scott P. Granzyme B Inhibition by Tofacitinib Blocks the Pathology Induced by CD8 T Cells in Cutaneous Leishmaniasis. J Invest Dermatol 2020; 141:575-585. [PMID: 32738245 DOI: 10.1016/j.jid.2020.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/30/2020] [Accepted: 07/10/2020] [Indexed: 02/08/2023]
Abstract
In cutaneous leishmaniasis, the immune response is not only protective but also mediates immunopathology. We previously found that cytolytic CD8 T cells promote inflammatory responses that are difficult to treat with conventional therapies that target the parasite. Therefore, we hypothesized that inhibiting CD8 T-cell cytotoxicity would reduce disease severity in patients. IL-15 is a potential target for such a treatment because it is highly expressed in human patients with cutaneous leishmaniasis lesions and promotes granzyme B‒dependent CD8 T-cell cytotoxicity. Here we tested whether tofacitinib, which inhibits IL-15 signaling by blocking Jak3, might decrease CD8-dependent pathology. We found that tofacitinib reduced the expression of granzyme B by CD8 T cells in vitro and in vivo systemic and topical treatment, with tofacitinib protecting mice from developing severe cutaneous leishmaniasis lesions. Importantly, tofacitinib treatment did not alter T helper type 1 responses or parasite control. Collectively, our results suggest that host-directed therapies do not need to be limited to autoimmune disorders and that topical tofacitinib application should be considered a strategy for the treatment of cutaneous leishmaniasis disease in combination with antiparasitic drugs.
Collapse
Affiliation(s)
- Fernanda O Novais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Current address: Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.
| | - Ba T Nguyen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
7
|
Lutter L, Hoytema van Konijnenburg DP, Brand EC, Oldenburg B, van Wijk F. The elusive case of human intraepithelial T cells in gut homeostasis and inflammation. Nat Rev Gastroenterol Hepatol 2018; 15:637-649. [PMID: 29973676 DOI: 10.1038/s41575-018-0039-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The epithelial barrier of the gastrointestinal tract is home to numerous intraepithelial T cells (IETs). IETs are functionally adapted to the mucosal environment and are among the first adaptive immune cells to encounter microbial and dietary antigens. They possess hallmark features of tissue-resident T cells: they are long-lived nonmigratory cells capable of rapidly responding to antigen challenges independent of T cell recruitment from the periphery. Gut-resident T cells have been implicated in the relapsing and remitting course and persisting low-grade inflammation of chronic gastrointestinal diseases, including IBD and coeliac disease. So far, most data IETs have been derived from experimental animal models; however, IETs and the environmental makeup differ between mice and humans. With advances in techniques, the number of human studies has grown exponentially in the past 5 years. Here, we review the literature on the involvement of human IETs in gut homeostasis and inflammation, and how these cells are influenced by the microbiota and dietary antigens. Finally, targeting of IETs in therapeutic interventions is discussed. Broad insight into the function and role of human IETs in gut homeostasis and inflammation is essential to identify future diagnostic, prognostic and therapeutic strategies.
Collapse
Affiliation(s)
- Lisanne Lutter
- Laboratory of Translational Immunology, Department of Pediatric Immunology, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - David P Hoytema van Konijnenburg
- Laboratory of Translational Immunology, Department of Pediatric Immunology, University Medical Center Utrecht, Utrecht, Netherlands.,Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Eelco C Brand
- Laboratory of Translational Immunology, Department of Pediatric Immunology, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Bas Oldenburg
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Femke van Wijk
- Laboratory of Translational Immunology, Department of Pediatric Immunology, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
8
|
Celiac disease: Autoimmunity in response to food antigen. Semin Immunol 2015; 27:343-52. [PMID: 26603490 DOI: 10.1016/j.smim.2015.11.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/02/2015] [Accepted: 11/02/2015] [Indexed: 02/06/2023]
Abstract
Celiac disease (CD) is an increasingly common disease of the small intestine that occurs in genetically susceptible subjects by ingestion of cereal gluten proteins. Gluten is highly abundant in the modern diet and well tolerated by most individuals. In CD, however, an erroneous but highly specific, adaptive immune response is mounted toward certain parts of the gluten proteome. The resulting intestinal destruction is reversible and resolved upon removal of gluten from the diet. Post-translational modification (deamidation) of gluten peptides by transglutaminase 2 (TG2) is essential for the peptides to act as HLA-DQ-restricted T-cell antigens. Characteristically, deamidated gluten and the self-protein TG2 both become targets of highly disease specific B-cell responses. These antibodies share several peculiar characteristics despite being directed against vastly different antigens, which suggests a common mechanism of development. Importantly, no clear function has been ascribed to the antibodies and their contribution to disease may relate to their function as antigen receptors of the B cells rather than as soluble immunoglobulins. Adaptive immunity against gluten and TG2 appears not to be sufficient for establishment of the disease lesion, and it has been suggested that stress responses in the intestinal epithelium are essential for the development of full-blown disease and tissue damage. In this review we will summarize current concepts of the immune pathology of CD with particular focus on recent advances in our understanding of disease specific B-cell responses.
Collapse
|
9
|
van Bergen J, Mulder CJ, Mearin ML, Koning F. Local communication among mucosal immune cells in patients with celiac disease. Gastroenterology 2015; 148:1187-94. [PMID: 25623043 DOI: 10.1053/j.gastro.2015.01.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/14/2015] [Accepted: 01/20/2015] [Indexed: 12/16/2022]
Abstract
In patients with celiac disease, gluten consumption causes inflammation of the duodenum, and, to a lesser extent, the proximal jejunum. Immune-dominant gluten peptides are modified by the enzyme TG2, leading to their high-affinity binding to HLA-DQ2 or HLA-DQ8 molecules, present in people with a predisposition to celiac disease. Gluten peptide-loaded HLA-DQ2 or HLA-DQ8 molecules are recognized by highly conserved receptors on CD4(+) T cells in the lamina propria. B cells specific for TG2 and modified gluten peptides are also abundant in the lamina propria of patients with celiac disease. In the epithelium, interleukin-15 activates intraepithelial lymphocytes that promote destruction of epithelial cells. However, it is not clear how the immune responses in the lamina propria and the epithelium, separated by a basement membrane, are linked. We review the immune processes that occur in the lamina propria and their potential effects on epithelial pathology in celiac disease.
Collapse
Affiliation(s)
- Jeroen van Bergen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Chris J Mulder
- Department of Gastroenterology, Free University Medical Center, Amsterdam, The Netherlands
| | - M Luisa Mearin
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Frits Koning
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
10
|
Abstract
Interleukin-15 (IL-15) exerts many biological functions essential for the maintenance and function of multiple cell types. Although its expression is tightly regulated, IL-15 upregulation has been reported in many organ-specific autoimmune disorders. In celiac disease, an intestinal inflammatory disorder driven by gluten exposure, the upregulation of IL-15 expression in the intestinal mucosa has become a hallmark of the disease. Interestingly, because it is overexpressed both in the gut epithelium and in the lamina propria, IL-15 acts on distinct cell types and impacts distinct immune components and pathways to disrupt intestinal immune homeostasis. In this article, we review our current knowledge of the multifaceted roles of IL-15 with regard to the main immunological processes involved in the pathogenesis of celiac disease.
Collapse
Affiliation(s)
- Valérie Abadie
- Sainte-Justine Hospital Research Center, Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | | |
Collapse
|
11
|
Abadie V, Jabri B. Immunopathology of Celiac Disease. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Abdulahad WH, Lepse N, Stegeman CA, Huitema MG, Doornbos-van der Meer B, Tadema H, Rutgers A, Limburg PC, Kallenberg CGM, Heeringa P. Increased frequency of circulating IL-21 producing Th-cells in patients with granulomatosis with polyangiitis (GPA). Arthritis Res Ther 2014; 15:R70. [PMID: 23799890 PMCID: PMC4060544 DOI: 10.1186/ar4247] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/26/2013] [Accepted: 06/24/2013] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION The present study aimed to explore a possible role for IL-21 producing Th-cells in the immunopathogenesis of granulomatosis with polyangiitis (GPA). METHODS Peripheral blood from 42 GPA patients in remission and 29 age-matched healthy controls (HCs) were stimulated in vitro, and the frequencies of IL-21 producing Th-cells were determined by flow cytometry. Since Th17-cells produce a low level of IL-21, IL-17 was also included in the analysis. Given that IL-21 is a hallmark cytokine for T follicular helper cells (T(FH)), we next evaluated the expression of their key transcription factor BCL-6 by RT-PCR and flow cytometry. To investigate the effect of IL-21 on autoantibody-production, PBMCs from GPA patients were stimulated in vitro with BAFF/IL-21 and total IgG and ANCA levels were measured in supernatants. In addition, the expression of IL-21-receptor on B-cells was analyzed. RESULTS Percentages of IL-21 producing Th-cells were significantly elevated in GPA-patients compared to HCs, and were restricted to ANCA-positive patients. The expression of BCL-6 was significantly higher in ANCA-positive GPA-patients, as compared with ANCA-negative patients and HCs. IL-21 enhanced the production of IgG and ANCA in vitro in stimulated PBMCs from GPA patients. No difference was found in the expression of the IL-21-receptor on B-cells between ANCA-negative patients, ANCA-positive patients, and HCs. CONCLUSION The increased frequency of circulating IL-21 producing Th-cells in ANCA-positive GPA patients and the stimulating capacity of IL-21 on ANCA-production suggest a role for these cells in the immunopathogenesis of GPA. Blockade of IL-21 could constitute a new therapeutic strategy for GPA.
Collapse
|
13
|
Lintermans LL, Stegeman CA, Heeringa P, Abdulahad WH. T cells in vascular inflammatory diseases. Front Immunol 2014; 5:504. [PMID: 25352848 PMCID: PMC4196542 DOI: 10.3389/fimmu.2014.00504] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/28/2014] [Indexed: 12/12/2022] Open
Abstract
Inflammation of the human vasculature is a manifestation of many different diseases ranging from systemic autoimmune diseases to chronic inflammatory diseases, in which multiple types of immune cells are involved. For both autoimmune diseases and chronic inflammatory diseases several observations support a key role for T lymphocytes in these disease pathologies, but the underlying mechanisms are poorly understood. Previous studies in several autoimmune diseases have demonstrated a significant role for a specific subset of CD4+ T cells termed effector memory T (TEM) cells. This expanded population of TEM cells may contribute to tissue injury and disease progression. These cells exert multiple pro-inflammatory functions through the release of effector cytokines. Many of these cytokines have been detected in the inflammatory lesions and participate in the vasculitic reaction, contributing to recruitment of macrophages, neutrophils, dendritic cells, natural killer cells, B cells, and T cells. In addition, functional impairment of regulatory T cells paralyzes anti-inflammatory effects in vasculitic disorders. Interestingly, activation of TEM cells is uniquely dependent on the voltage-gated potassium Kv1.3 channel providing an anchor for specific drug targeting. In this review, we focus on the CD4+ T cells in the context of vascular inflammation and describe the evidence supporting the role of different T cell subsets in vascular inflammation. Selective targeting of pathogenic TEM cells might enable a more tailored therapeutic approach that avoids unwanted adverse side effects of generalized immunosuppression by modulating the effector functions of T cell responses to inhibit the development of vascular inflammation.
Collapse
Affiliation(s)
- Lucas L Lintermans
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen , Groningen , Netherlands
| | - Coen A Stegeman
- Department of Nephrology, University of Groningen, University Medical Center Groningen , Groningen , Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen , Groningen , Netherlands
| | - Wayel H Abdulahad
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen , Groningen , Netherlands
| |
Collapse
|
14
|
Abstract
Interleukin-15 (IL-15) exerts many biological functions essential for the maintenance and function of multiple cell types. Although its expression is tightly regulated, IL-15 upregulation has been reported in many organ-specific autoimmune disorders. In celiac disease, an intestinal inflammatory disorder driven by gluten exposure, the upregulation of IL-15 expression in the intestinal mucosa has become a hallmark of the disease. Interestingly, because it is overexpressed both in the gut epithelium and in the lamina propria, IL-15 acts on distinct cell types and impacts distinct immune components and pathways to disrupt intestinal immune homeostasis. In this article, we review our current knowledge of the multifaceted roles of IL-15 with regard to the main immunological processes involved in the pathogenesis of celiac disease.
Collapse
Affiliation(s)
- Valérie Abadie
- Sainte-Justine Hospital Research Center, Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | | |
Collapse
|
15
|
Wu W, Qiu HJ, Liu ZJ. Immunoregulatory effects of intraepithelial lymphocytes in inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2013; 21:568-573. [DOI: 10.11569/wcjd.v21.i7.568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Intraepithelial lymphocytes (IELs) are found in a wide variety of sites, especially in the mucosa of the intestine, respiratory tract, and genital tract. Intestinal IELs are located between intestinal epithelial cells (IECs) and the basement membrane. The ratio between IECs and IELs in the small intestine is 4-10:1, but is slightly lower in the large intestine. As the first guard of the intestine, IELs play a significant role in maintaining the integrity of the mucosa, immune surveillance and regulating the homeostasis on the intestinal mucosal surface. Recent studies have demonstrated that IELs are also involved in the pathogenesis of inflammatory bowel disease (IBD).
Collapse
|
16
|
Abdulahad WH, De Souza AWS, Kallenberg CGM. L3. Are mononuclear cells predominant actors of endothelial damage in vasculitis? Presse Med 2013; 42:499-503. [PMID: 23477715 DOI: 10.1016/j.lpm.2013.02.305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Wayel H Abdulahad
- University of Groningen, University Medical Center Groningen, Department of Rheumatology, Groningen, Netherlands.
| | | | | |
Collapse
|
17
|
Abadie V, Discepolo V, Jabri B. Intraepithelial lymphocytes in celiac disease immunopathology. Semin Immunopathol 2012; 34:551-66. [PMID: 22660791 DOI: 10.1007/s00281-012-0316-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 04/16/2012] [Indexed: 12/21/2022]
Abstract
Celiac disease is a T cell-mediated immune disorder induced by dietary gluten that is characterized by the development of an inflammatory anti-gluten CD4 T cell response, anti-gluten antibodies, and autoantibodies against tissue transglutaminase 2 and the activation of intraepithelial lymphocytes (IELs) leading to the destruction of the intestinal epithelium. Intraepithelial lymphocytes represent a heterogeneous population of T cells composed mainly of cytotoxic CD8 T cells residing within the epithelial layer, whose main role is to maintain the integrity of the epithelium by eliminating infected cells and promoting epithelial repair. Dysregulated activation of IELs is a hallmark of CD and is critically involved in epithelial cell destruction and the subsequent development of villous atrophy. In this review, we compare and contrast the phenotype and function of human and mouse small intestinal IELs under physiological conditions. Furthermore, we discuss how conditions of epithelial distress associated with overexpression of IL-15 and non-classical MHC class I molecules induce cytotoxic IELs to become licensed killer cells that upregulate activating NKG2D and CD94/NKG2C natural killer receptors, acquiring lymphokine killer activity. Pathways leading to dysregulated IEL activation could eventually be targeted to prevent villous atrophy and treat patients who respond poorly to gluten-free diet.
Collapse
Affiliation(s)
- Valérie Abadie
- Sainte-Justine Hospital Research Centre, Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1C5, Canada.
| | | | | |
Collapse
|
18
|
Sotosek Tokmadzic V, Laskarin G, Mahmutefendic H, Lucin P, Mrakovcic-Sutic I, Zupan Z, Sustic A. Expression of cytolytic protein-perforin in peripheral blood lymphocytes in severe traumatic brain injured patients. Injury 2012; 43:624-31. [PMID: 20537642 DOI: 10.1016/j.injury.2010.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/25/2010] [Accepted: 05/03/2010] [Indexed: 02/02/2023]
Abstract
PURPOSE The purpose of this study was to investigate the changes of cytotoxic protein-perforin in peripheral blood lymphocytes in severe TBI patients and possible correlation between severity of TBI and perforin expression. METHODS Flow cytometry was used for simultaneous detection of intracellular perforin and cell surface antigens of peripheral blood lymphocytes of 20 severe TBI patients on day 1, 4 and 7 after the onset of injury. Peripheral blood mononuclear cells from 20 healthy volunteers were used as control. Clinical and laboratory parameters were also recorded. RESULTS There was a statistically significant decrease of perforin-positive lymphocytes including T, natural killer (NK) and NKT cells on day 4 as compared with day 1 after the brain injury or healthy controls. On day 7, perforin expression was restored in lymphocyte of cytotoxic phenotype (CD8(+) T lymphocytes, NK cells, and NKT cells) compared with day 1. High positive correlation was found between the severity of TBI and frequency of perforin-positive cells on day 4 when the occurrence of the intra-hospital infections was the highest. CONCLUSION Severe TBI significantly decreases perforin expression in T lymphocytes, NK and NKT cells, which indicate a possible mechanism underlying the high susceptibility to infections.
Collapse
Affiliation(s)
- Vlatka Sotosek Tokmadzic
- Department of Anaesthesiology, Reanimatology and Intensive Care, Medical Faculty, University of Rijeka, B. Branchetta 20/1, 51 000 Rijeka, Croatia.
| | | | | | | | | | | | | |
Collapse
|
19
|
Chen YH, Kuo ML, Cheng PJ, Hsaio HS, Lee PT, Lin SJ. Regulation of CD28 expression on umbilical cord blood and adult peripheral blood CD8+ T cells by interleukin(IL)-15/IL-21. Cytokine 2012; 58:40-6. [PMID: 22261234 DOI: 10.1016/j.cyto.2011.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 11/15/2011] [Accepted: 12/21/2011] [Indexed: 10/14/2022]
Abstract
Interleukin (IL)-15 and IL-21, both belonging to common γ-chain-signaling cytokine family, have an important role to maintain homeostatic proliferation of CD8(+) T cells. CD28, an essential co-stimulatory molecule on T cells, may be a marker of replicative senescence. We investigated the effect of IL-15 and IL-21, alone or in combination, on activation, apoptosis, cytokine production and cytotoxic function of magnetic bead purified umbilical cord blood (UCB) and adult peripheral blood (APB) CD8(+) T cells with regards to their CD28 expression. We established that (1) IL-15-induced CD8(+) T cell proliferation was associated with a preferential expansion of CD28(-) population in UCB, which could be partially counteracted by IL-21; (2) UCB CD8(+) T cells were more readily responsive to IL-15 compared to their adult counterparts in terms of CD69 expression, with the majority of CD69-bearing CD8(+) T cells were CD28(-); (3) IL-21 further promoted interferon-gamma, but not tumor necrosis factor-alpha production from IL-15 treated CD8(+) T cells; (4) IL-21 also synergized with IL-15 to enhance perforin and granzyme B expression of CD8(+) T cells, especially in APB CD8(+)CD28(-) subsets; (5) IL-21 resulted in CD8(+) T cells apoptosis both in APB and UCB cells, mainly in CD8(+)CD28(-) subsets. Taken together, we demonstrate differential IL-15/IL-21 response in UCB CD8(+) T cells with regards to CD28 expression. Our results suggest that combining IL-21 and IL-15 immunotherapy may be better than IL-15 alone to ameliorate graft-versus-host disease while preserving antitumor effect in the post-UCB transplantation period.
Collapse
Affiliation(s)
- Yu-Han Chen
- Division of Asthma, Allergy, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
20
|
Tokmadžić VS, Tomaš MI, Sotošek S, Laškarin G, Dominović M, Tulić V, Dorđević G, Sustić A, Mrakovčić-Šutić I. Different perforin expression in peripheral blood and prostate tissue in patients with benign prostatic hyperplasia and prostate cancer. Scand J Immunol 2011; 74:368-76. [PMID: 21535078 DOI: 10.1111/j.1365-3083.2011.02569.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Perforin (P) is a prototypical cytotoxic molecule involved in cell-mediated immunity against various pathogens, alloantigens and particularly different tumours. The purpose of this study was to determine P expression in different lymphocyte subpopulations isolated from peripheral blood and prostate tissue of patients with benign prostatic hyperplasia (BPH) and prostate cancer (PCa) and compare it with the P expression found in the control group. Twenty subjects were recruited in each of the groups. Prostate mononuclear cells of the BPH and PCa tissues were isolated by enzymatic digestion and gradient density centrifugation, whereas peripheral blood mononuclear cells were isolated by gradient density centrifugation alone. Cells and tissue samples were labelled using monoclonal antibodies against P and different surface antigens (CD3, CD4, CD8 and CD56) and analysed by immunofluorescence and flow cytometry. Total P expression in peripheral blood lymphocytes did not differ significantly between BPH/PCa patients and control group, although the BPH and PCa tissue showed lower P expression level. A negative correlation between prostate-specific antigen levels and the overall percentage of P(+), CD3(+) CD56(-) P(+) , and CD3(-) CD56(+) P(+) cells in the prostate tissue was observed only in patients with PCa. Our findings indicate that the low frequency of P(+) lymphocytes, including T, NKT and NK cells, in the prostate tissue of patients with BPH and, particularly, PCa could be the consequence of local tissue microenvironment and one of the mechanisms involved in the pathogenesis of prostate hyperplasia following malignant alteration.
Collapse
Affiliation(s)
- V S Tokmadžić
- Department of Anaesthesiology, Reanimatology and Intensive Care, Medical Faculty, University of Rijeka, Rijeka, Croatia
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chu CY, Lee SC, Liu SS, Lin YM, Shen PC, Yu C, Lee KH, Zhao X, Lee JW. Cytosine-phosphate-guanine oligodeoxynucleotides containing GACGTT motifs enhance the immune responses elicited by keyhole limpet hemocyanin antigen in dairy cattle. Nucleic Acid Ther 2011; 21:323-32. [PMID: 21916610 DOI: 10.1089/nat.2010.0275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adjuvants are important components of vaccine formulations. Effective adjuvants line innate and adaptive immunity by signaling through pathogen recognition receptors. Synthetic cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs) have been shown to have potentials as adjuvants for vaccines. However, the immunostimulatory effect of CpG is species-specific and depends on the sequence of CpG motifs. A CpG ODN (2135), containing 3 identical copies of GTCGTT motif, was previously reported to have the strongest effects on bovine peripheral blood mononuclear cells (PBMC). Based on the sequence of 2135, we replaced the GTCGTT motif with 11 other sequences containing CG and investigated their effects on bovine lymphocyte proliferation. Results showed that the CpG ODNs containing 3 copies of GACGTT motif had the highest lymphocyte stimulation index (7.91±1.18), which was significantly (P<0.05) higher than that of 2135 (4.25±0.56). The CpG ODNs containing 3 copies of GACGTT motif also significantly increased the mRNA expression of interferon (IFN)-α, interleukin (IL)-12, and IL-21 in bovine PBMC. When dairy cows were immunized with the keyhole limpet hemocyanin (KLH) antigen formulated with CpG ODNs containing 3 copies of GACGTT, production of KLH-specific antibodies in serum and in milk whey was significantly (P<0.05) enhanced. IFN-γ in whole blood stimulated by KLH was also significantly (P<0.05) increased in cows immunized with KLH plus CpG ODNs. Our results indicate that CpG ODNs containing 3 copies of the GACGTT motifs is a potential adjuvant for bovine vaccines.
Collapse
Affiliation(s)
- Chun-Yen Chu
- Graduate Institute of Animal Vaccine Technology, National Pingtung University of Science and Technology, Neipu, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
It is generally believed that the role of CD4(+) T cells is to coordinate the different arms of the adaptive immune system to shape an effective response against a pathogen and regulate nonessential or deleterious activities. However, a growing body of evidence suggests that effector CD4(+) T cells can directly display potent antiviral activity themselves. The presence of cytolytic CD4(+) T cells has been demonstrated in the immune response to numerous viral infections in both humans and in animal models and it is likely that they play a critical role in the control of viral replication in vivo. This article describes the current research on virus-specific cytolytic CD4(+) T cells, with a focus on HIV-1 infection and the implications that this immune response has for vaccine design.
Collapse
Affiliation(s)
- Damien Z Soghoian
- Ragon Institute of MGH, MIT and Harvard Massachusetts General Hospital, Harvard Medical School Building 149, 13th Street, 5th floor, #5217, Charlestown, Boston, MA 02129, USA
| | | |
Collapse
|
23
|
Golubovic S, Golubovic V, Sotosek-Tokmadzic V, Sustic A, Petkovic M, Bacic D, Mrakovcic-Sutic I. The proposed mechanism of action during different pain management techniques on expression of cytolytic molecule perforin in patients after colorectal cancer surgery. Med Hypotheses 2011; 76:450-2. [PMID: 21195559 DOI: 10.1016/j.mehy.2010.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Accepted: 11/13/2010] [Indexed: 10/18/2022]
Abstract
The postoperative period is accompanied with neuroendocrine, metabolic and immune alteration which is caused by tissue damage, anesthesia, postoperative pain and psychological stress. Postoperative pain contributes to dysfunction of immune response as a result of interaction between central nervous and immune system. The postoperatively activated hypotalamo-pituitary-adrenocortical axis, sympathic and parasympathic nerve systems are important modulators of immune response. According to bidirectional communication of immune and nervous system, appropriate postoperative pain management could affect immune response in postoperative period. Although the postoperative suppression of immune response has been reported, a very little are known about the influences of different pain management techniques on cytotoxic function of immune cells in patients with colorectal cancer in early postoperative period. Perforin is a cytotoxic molecule expressed by activated lymphocytes which has a crucial role in elimination of tumor cells and virus-infected cells, mostly during the effector's phase of immune response. Immune compromise during the postoperative period could affect the healing processes, incidence of postoperative infections and rate and size of tumor metastases disseminated during operation. The pharmacological management of postoperative pain in patients with malignancies uses very different analgesic techniques whose possible influence on cytotoxic functions of immune cells are still understood poor. For decades the most common way of treating postoperative pain after colorectal cancer surgery was intravenous analgesia with opiods. In the last decade many investigations pointed out that opiods can also contribute to postoperative suppression of immune response. Epidural analgesia is a regional anesthesia technique that acts directly on the origin of pain impulses and pain relief can be achieved with small doses of opiods combined with local anesthetics. Local anesthetics potentate analgesic properties of opiods but per se are also acting as antiinflammatory drugs. Afferent neural blockade by epidural analgesia attenuates neuroendocrine stress response. We propose that epidural analgesia could be more convenient that intravenous analgesia in maintenance of immunological homeostasis that is altered by surgical stress, tumor growth and pain.
Collapse
Affiliation(s)
- S Golubovic
- Department of Anesthesiology, Reanimatology and Intensive Care, Medical Faculty, University of Rijeka, Brace Branchetta 20, Rijeka, Croatia
| | | | | | | | | | | | | |
Collapse
|
24
|
Chi N, Maranchie JK, Appleman LJ, Storkus WJ. Update on vaccine development for renal cell cancer. Res Rep Urol 2010; 2:125-41. [PMID: 24198621 PMCID: PMC3703676 DOI: 10.2147/rru.s7242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma (RCC) remains a significant health concern that frequently presents as metastatic disease at the time of initial diagnosis. Current first-line therapeutics for the advanced-stage RCC include antiangiogenic drugs that have yielded high rates of objective clinical response; however, these tend to be transient in nature, with many patients becoming refractory to chronic treatment with these agents. Adjuvant immunotherapies remain viable candidates to sustain disease-free and overall patient survival. In particular, vaccines designed to optimize the activation, maintenance, and recruitment of specific immunity within or into the tumor site continue to evolve. Based on the integration of increasingly refined immunomonitoring systems in both translational models and clinical trials, allowing for the improved understanding of treatment mechanism(s) of action, further refined (combinational) vaccine protocols are currently being developed and evaluated. This review provides a brief history of RCC vaccine development, discusses the successes and limitations in such approaches, and provides a rationale for developing combinational vaccine approaches that may provide improved clinical benefits to patients with RCC.
Collapse
Affiliation(s)
- Nina Chi
- Department of immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | | | | | | |
Collapse
|
25
|
Tjon JML, van Bergen J, Koning F. Celiac disease: how complicated can it get? Immunogenetics 2010; 62:641-51. [PMID: 20661732 PMCID: PMC2944025 DOI: 10.1007/s00251-010-0465-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 07/05/2010] [Indexed: 02/06/2023]
Abstract
In the small intestine of celiac disease patients, dietary wheat gluten and similar proteins in barley and rye trigger an inflammatory response. While strict adherence to a gluten-free diet induces full recovery in most patients, a small percentage of patients fail to recover. In a subset of these refractory celiac disease patients, an (aberrant) oligoclonal intraepithelial lymphocyte population develops into overt lymphoma. Celiac disease is strongly associated with HLA-DQ2 and/or HLA-DQ8, as both genotypes predispose for disease development. This association can be explained by the fact that gluten peptides can be presented in HLA-DQ2 and HLA-DQ8 molecules on antigen presenting cells. Gluten-specific CD4+ T cells in the lamina propria respond to these peptides, and this likely enhances cytotoxicity of intraepithelial lymphocytes against the intestinal epithelium. We propose a threshold model for the development of celiac disease, in which the efficiency of gluten presentation to CD4+ T cells determines the likelihood of developing celiac disease and its complications. Key factors that influence the efficiency of gluten presentation include: (1) the level of gluten intake, (2) the enzyme tissue transglutaminase 2 which modifies gluten into high affinity binding peptides for HLA-DQ2 and HLA-DQ8, (3) the HLA-DQ type, as HLA-DQ2 binds a wider range of gluten peptides than HLA-DQ8, (4) the gene dose of HLA-DQ2 and HLA-DQ8, and finally,(5) additional genetic polymorphisms that may influence T cell reactivity. This threshold model might also help to understand the development of refractory celiac disease and lymphoma.
Collapse
Affiliation(s)
- Jennifer May-Ling Tjon
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, RC Leiden, The Netherlands.
| | | | | |
Collapse
|
26
|
Pouw N, Treffers-Westerlaken E, Kraan J, Wittink F, ten Hagen T, Verweij J, Debets R. Combination of IL-21 and IL-15 enhances tumour-specific cytotoxicity and cytokine production of TCR-transduced primary T cells. Cancer Immunol Immunother 2010; 59:921-31. [PMID: 20101507 PMCID: PMC11030877 DOI: 10.1007/s00262-010-0818-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Accepted: 01/06/2010] [Indexed: 12/22/2022]
Abstract
IL-21, and to a lesser extent IL-15, inhibits differentiation of antigen-primed CD8 T cells and promotes their homeostasis and anti-tumour activity. Here, we investigated molecular mechanisms behind tumour-specific responses of primary murine T lymphocytes engineered to express a TCR directed against human gp100/HLA-A2 following short-term exposure to IL-15 and/or IL-21. We demonstrated that IL-15 + IL-21, and to a lesser extent IL-21, enhanced antigen-specific T-cell cytotoxicity, which was related to enhanced expression of granzymes A and B, and perforin 1. Furthermore, IL-15 + IL-21 synergistically enhanced release levels and kinetics of T-cell IFNgamma and IL-2, but not IL-10. Enhanced secretion of IFNgamma was accompanied by increased gene expression and cytosolic protein content, and was restricted to effector memory T cells. To summarize, we show that IL-15 + IL-21 improves antigen-specific responses of TCR-transduced effector T cells at multiple levels, which provides a rationale to treat T cells with a combination of these cytokines prior to their use in adoptive TCR gene therapy.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/immunology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Cell Line, Tumor
- Cytokines/genetics
- Cytokines/metabolism
- Cytotoxicity, Immunologic/drug effects
- Cytotoxicity, Immunologic/immunology
- Drug Synergism
- Granzymes/biosynthesis
- Granzymes/genetics
- HLA-A2 Antigen/immunology
- Humans
- Immunologic Memory
- Immunotherapy, Adoptive
- Interleukin-15/pharmacology
- Interleukins/pharmacology
- Melanoma/immunology
- Melanoma/metabolism
- Melanoma/pathology
- Melanoma/therapy
- Membrane Glycoproteins/immunology
- Mice
- Perforin/biosynthesis
- Perforin/genetics
- Protein Engineering
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Transduction, Genetic
- gp100 Melanoma Antigen
Collapse
Affiliation(s)
- Nadine Pouw
- Laboratory of Experimental Tumour Immunology, Department of Medical Oncology, Erasmus MC-Daniel den Hoed Cancer Center, Groene Hilledijk 301, 3075 EA, Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
27
|
De Nitto D, Monteleone I, Franzè E, Pallone F, Monteleone G. Involvement of interleukin-15 and interleukin-21, two γ-chain-related cytokines, in celiac disease. World J Gastroenterol 2009; 15:4609-14. [PMID: 19787822 PMCID: PMC2754507 DOI: 10.3748/wjg.15.4609] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Celiac disease (CD), an enteropathy caused by dietary gluten in genetically susceptible individuals, is histologically characterized by villous atrophy, crypt cell hyperplasia, and increased number of intra-epithelial lymphocytes. The nature of CD pathogenesis remains unclear, but recent evidence indicates that both innate and adaptive immune responses are necessary for the phenotypic expression and pathologic changes characteristic of CD. Extensive studies of molecules produced by immune cells in the gut of CD patients have led to identification of two cytokines, namely interleukin (IL)-15 and IL-21, which are thought to play a major role in orchestrating the mucosal inflammatory response in CD. Here we review the current knowledge of the expression and function of IL-15 and IL-21 in CD.
Collapse
|