1
|
Oku Y, Noda S, Yamada A, Nakaoka K, Goseki-Sone M. wenty-eight days of vitamin D restriction and/or a high-fat diet influenced bone mineral density and body composition in young adult female rats. Ann Anat 2022; 243:151945. [DOI: 10.1016/j.aanat.2022.151945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 12/31/2022]
|
2
|
Mariano TB, de Souza Castilho AC, de Almeida Sabela AKD, de Oliveira AC, Cury SS, Aguiar AF, Dias RDJD, Cicogna AC, Okoshi K, Junior LAJ, Carvalho RF, Pacagnelli FL. Preventive training does not interfere with mRNA-encoding myosin and collagen expression during pulmonary arterial hypertension. PLoS One 2021; 16:e0244768. [PMID: 34495964 PMCID: PMC8425576 DOI: 10.1371/journal.pone.0244768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 08/17/2021] [Indexed: 11/22/2022] Open
Abstract
To gain insight on the impact of preventive exercise during pulmonary arterial hypertension (PAH), we evaluated the gene expression of myosins and gene-encoding proteins associated with the extracellular matrix remodeling of right hypertrophied ventricles. We used 32 male Wistar rats, separated in four groups: Sedentary Control (S, n = 8); Control with Training (T, n = 8); Sedentary with Pulmonary Arterial Hypertension (SPAH, n = 8); and Pulmonary Arterial Hypertension with Training (TPAH, n = 8). All rats underwent a two-week adaptation period; T and TPAH group rats then proceeded to an eight-week training period on a treadmill. At the beginning of the 11th week, S and T groups received an intraperitoneal injection of saline, and SPAH and TPAH groups received an injection of monocrotaline (60 mg/kg). Rats in the T and TPAH groups then continued with the training protocol until the 13th week. We assessed exercise capacity, echocardiography analysis, Fulton's index, cross-sectional areas of cardiomyocytes, collagen content and types, and fractal dimension (FD). Transcript abundance of myosins and extracellular matrix genes were estimated through reverse transcription-quantitative PCR (RT-qPCR). When compared to the SPAH group, the TPAH group showed increases in functional capacity and pulmonary artery acceleration time/pulmonary ejection time ratio and decreases in Fulton's index and cross-sectional areas of myocyte cells. However, preventive exercise did not induce alterations in col1a1 and myh7 gene expression. Our findings demonstrate that preventive exercise improved functional capacity, reduced cardiac hypertrophy, and attenuated PH development without interfering in mRNA-encoding myosin and collagen expression during PAH.
Collapse
MESH Headings
- Animals
- Male
- Rats, Wistar
- Physical Conditioning, Animal
- Rats
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Collagen/metabolism
- Collagen/genetics
- Pulmonary Arterial Hypertension/genetics
- Pulmonary Arterial Hypertension/metabolism
- Myosins/metabolism
- Myosins/genetics
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/prevention & control
- Monocrotaline
- Gene Expression Regulation
- Hypertrophy, Right Ventricular/genetics
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/prevention & control
Collapse
Affiliation(s)
- Thaoan Bruno Mariano
- Postgraduate Program in Animal Science, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | | | | | - André Casanova de Oliveira
- Postgraduate Program in Animal Science, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | - Sarah Santiloni Cury
- Department of Structural and Functional Biology, Institute of Biosciences, UNESP, Botucatu, São Paulo, Brazil
| | - Andreo Fernando Aguiar
- Postgraduate Program in Physical Exercise in Health Promotion, Northern University of Paraná, Londrina, Paraná, Brazil
| | - Raisa de Jesus Dutra Dias
- Department of Physiotherapy, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | - Antonio Carlos Cicogna
- Department of Internal Medicine, Botucatu Medical School, UNESP, Botucatu, São Paulo, Brazil
| | - Katashi Okoshi
- Department of Internal Medicine, Botucatu Medical School, UNESP, Botucatu, São Paulo, Brazil
| | | | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, UNESP, Botucatu, São Paulo, Brazil
| | - Francis Lopes Pacagnelli
- Postgraduate Program in Animal Science, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
- Department of Physiotherapy, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
| |
Collapse
|
3
|
Cabrera-Aguilera I, Falcones B, Calvo-Fernández A, Benito B, Barreiro E, Gea J, Farré R, Almendros I, Farré N. The conventional isoproterenol-induced heart failure model does not consistently mimic the diaphragmatic dysfunction observed in patients. PLoS One 2020; 15:e0236923. [PMID: 32730329 PMCID: PMC7392250 DOI: 10.1371/journal.pone.0236923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/16/2020] [Indexed: 11/25/2022] Open
Abstract
Heart failure (HF) impairs diaphragm function. Animal models realistically mimicking HF should feature both the cardiac alterations and the diaphragmatic dysfunction characterizing this disease. The isoproterenol-induced HF model is widely used, but whether it presents diaphragmatic dysfunction is unknown. However, indirect data from research in other fields suggest that isoproterenol could increase diaphragm function. The aim of this study was to test the hypothesis that the widespread rodent model of isoproterenol-induced HF results in increased diaphragmatic contractility. Forty C57BL/6J male mice were randomized into 2 groups: HF and healthy controls. After 30 days of isoproterenol infusion to establish HF, in vivo diaphragmatic excursion and ex vivo isolated diaphragm contractibility were measured. As compared with healthy controls, mice with isoproterenol-induced HF showed the expected changes in structural and functional echocardiographic parameters and lung edema. isoproterenol-induced HF increased in vivo diaphragm excursion (by ≈30%, p<0.01) and increased by ≈50% both ex vivo peak specific force (p<0.05) and tetanic force (p<0.05) at almost all 10–100 Hz frequencies (p<0.05), with reduced fatigue resistance (p<0.01) when compared with healthy controls. Expression of myosin genes encoding the main muscle fiber types revealed that Myh4 was higher in isoproterenol-induced HF than in healthy controls (p<0.05), suggesting greater distribution of type IIb fibers. These results show that the conventional isoproterenol-induced HF model increases diaphragm contraction, a finding contrary to what is observed in patients with HF. Therefore, this specific model seems limited for translational an integrative HF research, especially when cardio-respiratory interactions are investigated.
Collapse
Affiliation(s)
- Ignacio Cabrera-Aguilera
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Heart Diseases Biomedical Research Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Department of Human Movement Sciences, School of Kinesiology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Bryan Falcones
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Alicia Calvo-Fernández
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Heart Failure Unit, Department of Cardiology, Hospital del Mar, Barcelona, Spain
| | - Begoña Benito
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Cardiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Esther Barreiro
- Respiratory Department, Hospital del Mar and Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Joaquim Gea
- Respiratory Department, Hospital del Mar and Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Núria Farré
- Heart Diseases Biomedical Research Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Heart Failure Unit, Department of Cardiology, Hospital del Mar, Barcelona, Spain
| |
Collapse
|
4
|
Long non-coding RNA MALAT1 promotes cardiac remodeling in hypertensive rats by inhibiting the transcription of MyoD. Aging (Albany NY) 2019; 11:8792-8809. [PMID: 31619581 PMCID: PMC6834407 DOI: 10.18632/aging.102265] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022]
Abstract
Hypertension is the leading preventable cause of premature deaths worldwide. Although long non-coding RNA (lncRNA) metastasis associated lung adenocarcinoma transcript 1 (MALAT1) has been identified to play important roles in the development of cardiovascular diseases, the regulatory function of lncRNA MALAT1 in hypertension remains poorly understood. This study aimed to explore the role of lncRNA MALAT1 in spontaneously hypertensive rats (SHRs). LncRNA MALAT1 was determined to be elevated and MyoD to be reduced in myocardial tissues and thoracic aortic vascular tissues of SHRs. Over-expression of lncRNA MALAT1 caused severe myocardial fibrosis in SHRs. In addition, lncRNA MALAT1 over-expression in vitro enhanced arterial smooth muscle cells (ASMCs) activity and fibrosis of SHRs, which, was rescued by over-expressed MyoD. Furthermore, lncRNA MALAT1 transcripts were found to be highly enriched in the nucleus, and lncRNA MALAT1 suppressed the transactivation of MyoD. Moreover, lncRNA MALAT1 was found to recruit Suv39h1 to MyoD-binding loci, leading to H3K9me3 trimethylation and down-regulation of the target gene. Taken conjointly, this study revealed an important role of lncRNA MALAT1 in promoting cardiac remodeling in hypertensive rats by inhibiting the transcription of MyoD. These results highlight the value of lncRNA MALAT1 as a therapeutic target for the management of hypertension.
Collapse
|
5
|
Influence of dietary vitamin D deficiency on bone strength, body composition, and muscle in ovariectomized rats fed a high-fat diet. Nutrition 2019; 60:87-93. [DOI: 10.1016/j.nut.2018.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 11/23/2022]
|
6
|
Pacagnelli FL, Aguiar AF, Campos DHS, Castan EP, de Souza RWA, de Almeida FLA, Carani F, Carvalho RF, Cicogna AC, Silva MDP. Training improves the oxidative phenotype of muscle during the transition from cardiac hypertrophy to heart failure without altering MyoD and myogenin. Exp Physiol 2016; 101:1075-85. [PMID: 27219629 DOI: 10.1113/ep085552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 05/19/2016] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? We investigated the effects of physical training on phenotypic (fibre-type content) and myogenic features (MyoD and myogenin expression) in skeletal muscle during the transition from cardiac hypertrophy to heart failure. What is the main finding and its importance? We provide new insight into skeletal muscle adaptations by showing that physical training increases the type I fibre content during the transition from cardiac hypertrophy to heart failure, without altering MyoD and myogenin expression. These results have important clinical implications for patients with heart failure, because this population has reduced muscle oxidative capacity. The purpose of this study was to investigate the effects of physical training (PT) on phenotypic features (fibre-type content) and myogenic regulatory factors (MyoD and myogenin) in rat skeletal muscle during the transition from cardiac hypertrophy to heart failure. We used the model of ascending aortic stenosis (AS) to induce heart failure in male Wistar rats. Sham-operated animals were used as age-matched controls. At 18 weeks after surgery, rats with ventricular dysfunction were randomized into the following four groups: sham-operated, untrained (Sham-U; n = 8); sham-operated, trained (Sham-T; n = 6); aortic stenosis, untrained (AS-U; n = 6); and aortic stenosis, trained (AS-T; n = 8). The AS-T and Sham-T groups were submitted to a 10 week aerobic PT programme, while the AS-U and Sham-U groups remained untrained for the same period of time. After the PT programme, the animals were killed and the soleus muscles collected for phenotypic and molecular analyses. Physical training promoted type IIa-to-I fibre conversion in the trained groups (Sham-T and AS-T) compared with the untrained groups (Sham-U and AS-U). No significant (P > 0.05) differences were found in type I or IIa fibre content in the AS-U group compared with the Sham-U group. Additionally, there were no significant (P > 0.05) differences in the myogenic regulatory factors MyoD and myogenin (gene and protein) expression between the groups. Therefore, our results indicate that PT may be a suitable strategy to improve the oxidative phenotype in skeletal muscle during the transition from cardiac hypertrophy to heart failure, without altering MyoD and myogenin.
Collapse
|
7
|
Pacagnelli FL, de Almeida Sabela AKD, Okoshi K, Mariano TB, Campos DHS, Carvalho RF, Cicogna AC, Vanderlei LCM. Preventive aerobic training exerts a cardioprotective effect on rats treated with monocrotaline. Int J Exp Pathol 2016; 97:238-47. [PMID: 27365256 DOI: 10.1111/iep.12166] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/06/2015] [Indexed: 01/18/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a chronic disease which causes overload to the right ventricle. The effect of preventive training on cardiac remodelling in this condition is still unknown. This study aimed to evaluate the influence of preventive training on hypertrophy, heart function and gene expression of calcium transport proteins in rats with monocrotaline-induced PAH. Thirty-two male Wistar rats were randomly divided into four groups: S, sedentary control; T, trained control; SM, sedentary monocrotaline; and TM, trained monocrotaline. The preventive training protocol was performed on a treadmill for 13 weeks, five times/week. The first two weeks were adopted for adaptation to training with gradual increases in speed/time. The speed of the physical training from the third to tenth weeks was gradually increased from 0.9 to 1.1 km/h for 60 min. Next, monocrotaline was applied (60 mg/kg) to induce PAH and lactate threshold analysis performed to determine the training speeds. The training speed of the TM group in the following two weeks was 0.8 km/h for 60 min and the T = 0.9 km/h for 60 min; in the final two weeks, both groups trained at the same speed and duration 0.9 km/h, 60 min. Cardiac function was assessed through echocardiography, ventricular hypertrophy through histomorphometric analysis and gene expression through RT-qPCR. Right cardiac function assessed through the peak flow velocity was SM = 75.5 cm/s vs. TM = 92.0 cm/s (P = 0.001), and ventricular hypertrophy was SM = 106.4 μm² vs. TM = 77.7 μm² (P = 0.004). There was a decrease in the gene expression of ryanodine S = 1.12 au vs. SM = 0.60 au (P = 0.02) without alterations due to training. Thus, we conclude that prior physical training exerts a cardioprotective effect on the right ventricle in the monocrotaline rat model.
Collapse
Affiliation(s)
- Francis Lopes Pacagnelli
- Department of Physiotherapy, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | | | - Katashi Okoshi
- Department of Internal Medicine, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Thaoan Bruno Mariano
- Postgraduate Program in Animal Science, UNOESTE, Presidente Prudente, São Paulo, Brazil
| | | | | | - Antônio Carlos Cicogna
- Department of Internal Medicine, São Paulo State University, Botucatu, São Paulo, Brazil
| | | |
Collapse
|
8
|
Pacagnelli FL, Sabela AKDDA, Mariano TB, Ozaki GAT, Castoldi RC, Carmo EMD, Carvalho RF, Tomasi LC, Okoshi K, Vanderlei LCM. Fractal Dimension in Quantifying Experimental-Pulmonary-Hypertension-Induced Cardiac Dysfunction in Rats. Arq Bras Cardiol 2016; 107:33-9. [PMID: 27223643 PMCID: PMC4976954 DOI: 10.5935/abc.20160083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/23/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Right-sided heart failure has high morbidity and mortality, and may be caused by pulmonary arterial hypertension. Fractal dimension is a differentiated and innovative method used in histological evaluations that allows the characterization of irregular and complex structures and the quantification of structural tissue changes. OBJECTIVE To assess the use of fractal dimension in cardiomyocytes of rats with monocrotaline-induced pulmonary arterial hypertension, in addition to providing histological and functional analysis. METHODS Male Wistar rats were divided into 2 groups: control (C; n = 8) and monocrotaline-induced pulmonary arterial hypertension (M; n = 8). Five weeks after pulmonary arterial hypertension induction with monocrotaline, echocardiography was performed and the animals were euthanized. The heart was dissected, the ventricles weighed to assess anatomical parameters, and histological slides were prepared and stained with hematoxylin/eosin for fractal dimension analysis, performed using box-counting method. Data normality was tested (Shapiro-Wilk test), and the groups were compared with non-paired Student t test or Mann Whitney test (p < 0.05). RESULTS Higher fractal dimension values were observed in group M as compared to group C (1.39 ± 0.05 vs. 1.37 ± 0.04; p < 0.05). Echocardiography showed lower pulmonary artery flow velocity, pulmonary acceleration time and ejection time values in group M, suggesting function worsening in those animals. CONCLUSION The changes observed confirm pulmonary-arterial-hypertension-induced cardiac dysfunction, and point to fractal dimension as an effective method to evaluate cardiac morphological changes induced by ventricular dysfunction.
Collapse
Affiliation(s)
| | | | | | | | | | - Edna Maria do Carmo
- Departamento de Fisioterapia, FCT, UNESP, Presidente Prudente, São Paulo, Brazil
| | | | | | - Katashi Okoshi
- Faculdade de Medicina, UNESP, Botucatu, São Paulo, Brazil
| | | |
Collapse
|
9
|
Kennel PJ, Mancini DM, Schulze PC. Skeletal Muscle Changes in Chronic Cardiac Disease and Failure. Compr Physiol 2015; 5:1947-69. [PMID: 26426472 DOI: 10.1002/cphy.c110003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Peak exercise performance in healthy man is limited not only by pulmonary or skeletal muscle function but also by cardiac function. Thus, abnormalities in cardiac function will have a major impact on exercise performance. Many cardiac diseases affect exercise performance and indeed for some cardiac conditions such as atherosclerotic heart disease, exercise testing is frequently used not only to measure functional capacity but also to make a diagnosis of heart disease, evaluate the efficacy of treatment, and predict prognosis. Early in the course of cardiac diseases, exercise performance will be minimally affected but with disease progression impairment in exercise capacity will become apparent. Ejection fraction, that is, the percent of blood volume ejected with each cardiac cycle is often used as a measure of cardiac performance but frequently there is a dissociation between the ejection fraction and exercise capacity in patients with heart disease. How abnormalities in cardiac function impacts the muscles, vasculature, and lungs to impact exercise performance will here be reviewed. The focus of this work will be on patients with systolic heart failure as the incidence and prevalence of heart failure is reaching epidemic proportions and heart failure is the end result of many other chronic cardiac diseases. The prognostic role of exercise and benefits of exercise training will also be discussed.
Collapse
Affiliation(s)
- Peter J Kennel
- Center for Advanced Cardiac Care, Division of Cardiology, New York-Presbyterian Hospital and Columbia University Medical Center, New York, USA
| | - Donna M Mancini
- Center for Advanced Cardiac Care, Division of Cardiology, New York-Presbyterian Hospital and Columbia University Medical Center, New York, USA
| | - P Christian Schulze
- Center for Advanced Cardiac Care, Division of Cardiology, New York-Presbyterian Hospital and Columbia University Medical Center, New York, USA
| |
Collapse
|
10
|
Takahashi T, Friedmacher F, Takahashi H, Hofmann AD, Puri P. Myogenin gene expression is not altered in the developing diaphragm of nitrofen-induced congenital diaphragmatic hernia. Pediatr Surg Int 2014; 30:901-6. [PMID: 25056796 DOI: 10.1007/s00383-014-3557-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/15/2014] [Indexed: 11/30/2022]
Abstract
PURPOSE Pleuroperitoneal folds (PPFs) represent the only source of muscle precursors cells (MPCs) in the primordial diaphragm. However, the exact pathogenesis of malformed PPFs and congenital diaphragmatic hernia (CDH) remains unclear. The muscle-specific transcription factor myogenin plays a key role during development and muscularization of the fetal diaphragm. Although myogenin knockout mice lack skeletal muscle fibers, the diaphragmatic musculature is intact without any defects. It has further been demonstrated that proliferation and differentiation of MPCs in PPFs and developing diaphragms are normal in rodent CDH models. We hypothesized that myogenin gene expression is not altered in malformed PPFs, developing diaphragms and diaphragmatic musculature in the nitrofen-induced CDH model. METHODS Pregnant rats were exposed to nitrofen or vehicle on gestational day 9 (D9). Fetuses were harvested during PPF formation (D13), diaphragmatic development (D14-15) and muscularization (D18-21). Fetal PPFs, developing diaphragms and diaphragmatic musculature were dissected and divided into nitrofen and control groups. Myogenin mRNA levels were analyzed by quantitative real-time polymerase chain reaction, while immunohistochemistry was performed to investigate myogenin protein expression and distribution. RESULTS Relative mRNA expression of myogenin was not significant different in PPFs (0.30 ± 0.09 vs. 0.48 ± 0.09; P = 0.37), developing diaphragms (1.25 ± 0.29 vs. 1.60 ± 0.32; P=0.53) and diaphragmatic musculature (1.08 ± 0.24 vs. 1.59 ± 0.20; P = 0.15) of nitrofen-exposed fetuses compared to controls. Myogenin immunoreactivity was not altered in the muscular components of malformed PPFs, developing diaphragms and diaphragmatic musculature of nitrofen-exposed fetuses compared to controls. CONCLUSION Myogenin gene expression is not altered in PPFs, developing diaphragms and diaphragmatic musculature in the nitrofen-induced CDH model, thus suggesting that diaphragmatic defects in this model develop independent of myogenic processes.
Collapse
Affiliation(s)
- Toshiaki Takahashi
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | | | | | | | | |
Collapse
|
11
|
de Souza PAT, Matheus SMM, Castan EP, Campos DHS, Cicogna AC, Carvalho RF, Dal-Pai-Silva M. Morphological aspects of neuromuscular junctions and gene expression of nicotinic acetylcholine receptors (nAChRs) in skeletal muscle of rats with heart failure. J Mol Histol 2011; 42:557-65. [PMID: 21928074 DOI: 10.1007/s10735-011-9354-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 08/27/2011] [Indexed: 12/19/2022]
Abstract
HF is syndrome initiated by a reduction in cardiac function and it is characterized by the activation of compensatory mechanisms. Muscular fatigue and dyspnoea are the more common symptoms in HF; these may be due in part to specific skeletal muscle myopathy characterized by reduced oxidative capacity, a shift from slow fatigue resistant type I to fast less fatigue resistant type II fibers and downregulation of myogenic regulatory factors (MRFs) gene expression that can regulate gene expression of nicotinic acetylcholine receptors (nAChRs). In chronic heart failure, skeletal muscle phenotypic changes could influence the maintenance of the neuromuscular junction morphology and nAChRs gene expression during this syndrome. Two groups of rats were studied: control (CT) and Heart Failure (HF), induced by a single intraperitoneal injection of monocrotaline (MCT). At the end of the experiment, HF was evaluated by clinical signs and animals were sacrificed. Soleus (SOL) muscles were removed and processed for morphological, morphometric and molecular NMJ analyses. Our major finding was an up-regulation in the gene expression of the alpha1 and epsilon subunits of nAChR and a spot pattern of nAChR in SOL skeletal muscle in this acute monocrotaline induced HF. Our results suggest a remodeling of nAChR alpha1 and epsilon subunit during heart failure and may provide valuable information for understanding the skeletal muscle myopathy that occurs during this syndrome.
Collapse
|
12
|
Bertaglia RS, Reissler J, Lopes FS, Cavalcante WLG, Carani FR, Padovani CR, Rodrigues SA, Cigogna AC, Carvalho RF, Fernandes AAH, Gallacci M, Silva MDP. Differential morphofunctional characteristics and gene expression in fast and slow muscle of rats with monocrotaline-induced heart failure. J Mol Histol 2011; 42:205-15. [DOI: 10.1007/s10735-011-9325-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 03/28/2011] [Indexed: 12/01/2022]
|
13
|
Santos DPD, Okoshi K, Moreira VO, Seiva FRF, Almeida FLAD, Padovani CR, Carvalho RF, Okoshi MP, Cicogna AC, Castro AVB, Pai-Silva MD. Growth hormone attenuates skeletal muscle changes in experimental chronic heart failure. Growth Horm IGF Res 2010; 20:149-155. [PMID: 20060348 DOI: 10.1016/j.ghir.2009.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 11/20/2009] [Accepted: 11/30/2009] [Indexed: 12/30/2022]
Abstract
OBJECTIVE This study evaluated the effects of growth hormone (GH) on morphology and myogenic regulatory factors (MRF) gene expression in skeletal muscle of rats with ascending aortic stenosis (AAS) induced chronic heart failure. DESIGN Male 90-100g Wistar rats were subjected to thoracotomy. AAS was created by placing a stainless-steel clip on the ascending aorta. Twenty five weeks after surgery, rats were treated with daily subcutaneous injections of recombinant human GH (2mg/kg/day; AAS-GH group) or saline (AAS group) for 14 days. Sham-operated animals served as controls. Left ventricular (LV) function was assessed before and after treatment. IGF-1 serum levels were measured by ELISA. After anesthesia, soleus muscle was frozen in liquid nitrogen. Histological sections were stained with HE and picrosirius red to calculate muscle fiber cross-sectional area and collagen fractional area, respectively. MRF myogenin and MyoD expression was analyzed by reverse transcription PCR. RESULTS Body weight was similar between groups. AAS and AAS-GH groups presented dilated left atrium, left ventricular (LV) hypertrophy (LV mass index: Control 1.90+/-0.15; AAS 3.11+/-0.44; AAS-GH 2.94+/-0.47 g/kg; p<0.05 AAS and AAS-GH vs. Control), and reduced LV posterior wall shortening velocity. Soleus muscle fiber area was significantly lower in AAS than in Control and AAS-GH groups; there was no difference between AAS-GH and Control groups. Collagen fractional area was significantly higher in AAS than Control; AAS-GH did not differ from both Control and AAS groups. Serum IGF-1 levels decreased in AAS compared to Control. MyoD mRNA was significantly higher in AAS-GH than AAS; there was no difference between AAS-GH and Control groups. Myogenin mRNA levels were similar between groups. CONCLUSION In rats with aortic stenosis-induced heart failure, growth hormone administration increases MyoD gene expression above non-treated animal levels, preserves muscular trophism and attenuates interstitial fibrosis. These results suggest that growth hormone may have a potential role as an adjuvant therapy for chronic heart failure.
Collapse
Affiliation(s)
- Denis Pioli dos Santos
- Department of Morphology, Bioscience Institute, São Paulo State University, Botucatu, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lima ARR, Martinez PF, Okoshi K, Guizoni DM, Zornoff LAM, Campos DHS, Oliveira SA, Bonomo C, Pai-Silva MD, Okoshi MP. Myostatin and follistatin expression in skeletal muscles of rats with chronic heart failure. Int J Exp Pathol 2009; 91:54-62. [PMID: 20002838 DOI: 10.1111/j.1365-2613.2009.00683.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Skeletal muscle abnormalities can contribute to decreased exercise capacity in heart failure. Although muscle atrophy is a common alteration in heart failure, the mechanisms responsible for muscle mass reduction are not clear. Myostatin, a member of TGF-beta family (transforming growth factor), regulates muscle growth and mass. Several studies have shown a negative correlation between myostatin expression and muscle mass. The aim of this study was to evaluate myostatin expression in skeletal muscles of rats with heart failure. As myostatin gene expression can be modulated by follistatin, we also evaluated its expression. Heart failure was induced by myocardial infarction (MI, n = 10); results were compared to Sham-operated group (n = 10). Ventricular function was assessed by echocardiogram. Gene expression was analyzed by real-time PCR and protein levels by Western blotting in the soleus and gastrocnemius muscles; fibre trophism was evaluated by morphometric analysis. MI group presented heart failure evidence such as pleural effusion and right ventricular hypertrophy. Left ventricular dilation and dysfunction were observed in MI group. In the soleus muscle, cross-sectional area (P = 0.006) and follistatin protein levels (Sham 1.00 +/- 0.36; MI 0.18 +/- 0.06 arbitrary units; P = 0.03) were lower in MI and there was a trend for follistatin gene expression to be lower in MI group (P = 0.085). There was no change in myostatin expression between groups. In gastrocnemius, all MI group parameters were statistically similar to the Sham. In conclusion, our data show that during chronic heart failure, decreased skeletal muscle trophism is combined with unchanged myostatin and reduced follistatin expression.
Collapse
Affiliation(s)
- Aline Regina Ruiz Lima
- Department of Internal Medicine, Botucatu Medical School, State University of Sao Paulo-UNESP, Botucatu, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ribeiro JP, Chiappa GR, Neder JA, Frankenstein L. Respiratory muscle function and exercise intolerance in heart failure. Curr Heart Fail Rep 2009; 6:95-101. [PMID: 19486593 DOI: 10.1007/s11897-009-0015-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inspiratory muscle weakness (IMW) is prevalent in patients with chronic heart failure (CHF) caused by left ventricular systolic dysfunction, which contributes to reduced exercise capacity and the presence of dyspnea during daily activities. Inspiratory muscle strength (estimated by maximal inspiratory pressure) has independent prognostic value in CHF. Overall, the results of trials with inspiratory muscle training (IMT) indicate that this intervention improves exercise capacity and quality of life, particularly in patients with CHF and IMW. Some benefit from IMT may be accounted for by the attenuation of the inspiratory muscle metaboreflex. Moreover, IMT results in improved cardiovascular responses to exercise and to those obtained with standard aerobic training. These findings suggest that routine screening for IMW is advisable in patients with CHF, and specific IMT and/or aerobic training are of practical value in the management of these patients.
Collapse
Affiliation(s)
- Jorge P Ribeiro
- Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre 90035-007, Rio Grande do Sul, Brazil.
| | | | | | | |
Collapse
|