1
|
Stoore C, Baquedano MS, Hidalgo C, Cabello-Verrugio C, Paredes R. γδ T cell distribution in the adventitial layer of non-fertile cystic echinococcosis cysts from cattle livers. Sci Rep 2025; 15:10729. [PMID: 40155718 PMCID: PMC11953344 DOI: 10.1038/s41598-025-95690-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Cystic Echinococcosis (CE) is a zoonotic disease caused by Echinococcus granulosus sensu lato, forming cysts in ruminants and humans with major health and economic impacts. The immune response to CE cysts is complex, with fertility linked to the host's inflammatory reaction. This study examines γδ T cell distribution and role within the adventitial layer of non-fertile CE cysts in cattle, including cases co-infected with the trematode Fasciola hepatica (FH), a known immune response modulator. Using immunohistochemistry and double immunofluorescence, we observed γδ T cells dispersed in the adventitial layer, enriched in inflammatory zones. Co-infected cases (CE + FH+) showed a reduced γδ T cell proportion among CD3+ T cells compared to non-coinfected cases, suggesting an immunoregulatory effect of FH. Our findings align with prior studies showing γδ T cell recruitment in granulomatous diseases in ruminants but reveal that co-infection alters this response. This study provides the first detailed characterization of γδ T cells in cattle CE cysts, emphasizing their potential role in granulomatous immune responses. It highlights the need for further research into mechanisms influencing CE cyst fertility and immune modulation in helminth co-infections, advancing our understanding of host-pathogen interactions and informing disease management strategies.
Collapse
Affiliation(s)
- Caroll Stoore
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - María Soledad Baquedano
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Christian Hidalgo
- Núcleo de Investigación en One Health (NIOH), Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Santiago Centro, Chile
| | - Claudio Cabello-Verrugio
- Center for Research on Pandemic Resilience, Faculty of Life Science, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Rodolfo Paredes
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
2
|
Westermann T, Demeter EA, Diel DG, Renshaw RW, Laverack MA, Gerdes RS, Peters-Kennedy J. Granulomatous mural folliculitis in 16 domestic goats: Infection with malignant catarrhal fever viruses and colocalization with ovine herpesvirus-2 using in situ hybridization. Vet Pathol 2023; 60:876-887. [PMID: 37515544 DOI: 10.1177/03009858231189303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
Granulomatous mural folliculitis (GMF) is an uncommon reaction pattern occasionally observed in nonadapted ruminant hosts infected with malignant catarrhal fever viruses. This report characterizes GMF and concurrent cutaneous lesions in 16 goats with crusting dermatitis using histochemistry including hematoxylin and eosin, periodic acid-Schiff, and Grocott's methenamine silver, and immunohistochemistry for CD3, CD20, ionized calcium binding adaptor molecule 1, and cytokeratin AE1/3. Infiltrates in all 16 GMF cases consisted of macrophages and fewer T lymphocytes, and variably included eosinophils, multinucleated histiocytic giant cells, and/or neutrophils. Formalin-fixed paraffin-embedded skin and fresh skin samples from caprine GMF cases were tested using pan-herpesvirus nested conventional polymerase chain reaction (PCR) and partial sequencing, ovine herpesvirus-2 (OvHV-2) real-time PCR, and OvHV-2 colorimetric in situ hybridization (ISH). Five of 16 goats with GMF (31%) were PCR positive for malignant catarrhal fever viruses, including caprine herpesvirus 3 in 1 goat and OvHV-2 in 4 goats. Three goats also had positive intranuclear OvHV-2 hybridization signal in follicular keratinocytes, among other cell types, localized to areas of GMF. Herpesviruses were not detected in the formalin-fixed paraffin-embedded skin of 9 goats without GMF. This case series describes relatively frequent detections of malignant catarrhal fever viruses in the skin of goats with GMF, including the first report of caprine herpesvirus 3, and localizes OvHV-2 infected follicular keratinocytes within areas of GMF.
Collapse
Affiliation(s)
| | | | - Diego G Diel
- Cornell University College of Veterinary Medicine, Ithaca, NY
| | | | | | - Rhea S Gerdes
- Cornell University College of Veterinary Medicine, Ithaca, NY
| | | |
Collapse
|
3
|
Lee JH, Park HT, Shim S, Kim S, Woo SH, Kim DY, Yoo HS. Immunopathological mechanisms in the early stage of Mycobacterium avium subsp. paratuberculosis infection via different administration routes in a murine model. PLoS One 2023; 18:e0281880. [PMID: 36795721 PMCID: PMC9934400 DOI: 10.1371/journal.pone.0281880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) is the causative agent of Johne's disease, a chronic emaciating disease of ruminants that causes enormous economic losses to the bovine industry, globally. However, there are still remaining clues to be solved in the pathogenesis and diagnosis of the disease. Therefore, an in vivo murine experimental model was tried to understand responses in early stage of MAP infection by oral and intraperitoneal (IP) routes. In the MAP infection size, and weight of spleen and liver were increased in the IP group compared with oral groups. Severe histopathological changes were also observed in the spleen and liver of IP infected mice at 12 weeks post-infection (PI). Acid-fast bacterial burden in the organs was closely related to histopathological lesions. In the cytokine production from splenocytes of MAP-infected mice, higher amounts of in TNF-α, IL-10, and IFN-γ were produced at early stage of IP-infected mice while IL-17 production was different at time and infected groups. This phenomenon may indicate the immune shift from Th1 to Th17 through the time course of MAP infection. Systemic and local responses in the MAP-infection were analyzed by using transcriptomic analysis in the spleens and mesenteric lymph nodes (MLN). Based on the analysis of biological processes at 6 weeks PI in spleen and MLN in each infection group, canonical pathways were analyzed with ingenuity pathway analysis in the immune responses and metabolism especially lipid metabolism. Infected host cells with MAP increased in the production of proinflammatory cytokines and reduced the availability of glucose at early stage of infection (p < 0.05). Also, host cells secreted cholesterol through cholesterol efflux to disturb energy source of MAP. These results reveal immunopathological and metabolic responses in the early stage of MAP infection through the development of a murine model.
Collapse
Affiliation(s)
- Jun Ho Lee
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hong-Tae Park
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Soojin Shim
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Suji Kim
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sang-Ho Woo
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Dae-Yong Kim
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Han Sang Yoo
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
4
|
Wherry TLT, Heggen M, Shircliff AL, Mooyottu S, Stabel JR. Stage of infection with Mycobacterium avium subsp. paratuberculosis impacts expression of Rab5, Rab7, and CYP27B1 in macrophages within the ileum of naturally infected cows. Front Vet Sci 2023; 10:1117591. [PMID: 36816182 PMCID: PMC9937430 DOI: 10.3389/fvets.2023.1117591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Macrophages are the preferential target of Mycobacterium avium subsp. paratuberculosis (MAP), the etiologic agent of ruminant paratuberculosis. Uptake of pathogens by intestinal macrophages results in their trafficking through endosomal compartments, ultimately leading to fusion with an acidic lysosome to destroy the pathogen. MAP possesses virulence factors which disrupt these endosomal pathways. Additionally, levels of serum vitamin D3 have proven relevant to host immunity. Dynamics of endosomal trafficking and vitamin D3 metabolism have been largely unexplored in bovine paratuberculosis. Methods This study aimed to characterize expression of early and late endosomal markers Rab5 and Rab7, respectively, within CD68+ macrophages in frozen mid-ileum sections harvested from cows at different stages of natural paratuberculosis infection. Additionally, factors of vitamin D3 signaling and metabolism were characterized through expression of vitamin D3 activating enzyme 1α-hydroxylase (CYP27B1), vitamin D3 inactivating enzyme 24-hydroxylase (CYP24A1), and vitamin D3 receptor (VDR) within CD68+ ileal macrophages. Results and discussion Cows with clinical paratuberculosis had significantly greater macrophage and MAP burden overall, as well as intracellular MAP. Total expression of Rab5 within macrophages was reduced in clinical cows; however, Rab5 and MAP colocalization was significantly greater in this group. Intracellular Rab7 colocalization with MAP was not detected in subclinical or Johne's Disease negative (JD-) control cows but was present in clinical cows. Additionally, macrophage CYP27B1 expression was significantly reduced in clinical cows. Taken together, the results from this study show disparate patterns of expression for key mediators in intracellular MAP trafficking and vitamin D metabolism for cows at different stages of paratuberculosis.
Collapse
Affiliation(s)
- Taylor L. T. Wherry
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, United States,United States Department of Agriculture-Agricultural Research Service (USDA-ARS), National Animal Disease Center, Ames, IA, United States
| | - Mark Heggen
- Department of Nutritional Sciences, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Adrienne L. Shircliff
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), National Animal Disease Center, Ames, IA, United States
| | - Shankumar Mooyottu
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Judith R. Stabel
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), National Animal Disease Center, Ames, IA, United States,*Correspondence: Judith R. Stabel ✉
| |
Collapse
|
5
|
Wherry TLT, Stabel JR. Bovine Immunity and Vitamin D 3: An Emerging Association in Johne's Disease. Microorganisms 2022; 10:1865. [PMID: 36144467 PMCID: PMC9500906 DOI: 10.3390/microorganisms10091865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) is an environmentally hardy pathogen of ruminants that plagues the dairy industry. Hallmark clinical symptoms include granulomatous enteritis, watery diarrhea, and significant loss of body condition. Transition from subclinical to clinical infection is a dynamic process led by MAP which resides in host macrophages. Clinical stage disease is accompanied by dysfunctional immune responses and a reduction in circulating vitamin D3. The immunomodulatory role of vitamin D3 in infectious disease has been well established in humans, particularly in Mycobacterium tuberculosis infection. However, significant species differences exist between the immune system of humans and bovines, including effects induced by vitamin D3. This fact highlights the need for continued study of the relationship between vitamin D3 and bovine immunity, especially during different stages of paratuberculosis.
Collapse
Affiliation(s)
- Taylor L. T. Wherry
- Department of Veterinary Pathology, Iowa State University, Ames, IA 50011, USA
- Infectious Bacterial Diseases Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), National Animal Disease Center, Ames, IA 50010, USA
| | - Judith R. Stabel
- Infectious Bacterial Diseases Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), National Animal Disease Center, Ames, IA 50010, USA
| |
Collapse
|
6
|
Zapico D, Espinosa J, Fernández M, Criado M, Arteche-Villasol N, Pérez V. Local assessment of the immunohistochemical expression of Foxp3 + regulatory T lymphocytes in the different pathological forms associated with bovine paratuberculosis. BMC Vet Res 2022; 18:299. [PMID: 35927759 PMCID: PMC9351272 DOI: 10.1186/s12917-022-03399-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Mycobacterium avium subsp. paratuberculosis infected animals show a variety of granulomatous lesions, from focal forms with well-demarcated granulomas restricted to the gut-associated lymphoid tissue (GALT), that are seen in the initial phases or latency stages, to a diffuse granulomatous enteritis, with abundant (multibacillary) or scant (paucibacillary) bacteria, seen in clinical stages. Factors that determine the response to the infection, responsible for the occurrence of the different types of lesion, are still not fully determined. It has been seen that regulatory T cells (Treg) play an important role in various diseases where they act on the limitation of the immunopathology associated with the immune response. In the case of paratuberculosis (PTB) the role of Treg lymphocytes in the immunity against Map is far away to be completely understood; therefore, several studies addressing this subject have appeared recently. The aim of this work was to assess, by immunohistochemical methods, the presence of Foxp3+ T lymphocytes in intestinal samples with different types of lesions seen in cows with PTB. METHODS Intestinal samples of twenty cows showing the different pathological forms of PTB were evaluated: uninfected controls (n = 5), focal lesions (n = 5), diffuse paucibacillary (n = 5) and diffuse multibacillary (n = 5) forms. Foxp3+ lymphocyte distribution was assessed by differential cell count in intestinal lamina propria (LP), gut-associated lymphoid tissue (GALT) and mesenteric lymph node (MLN). RESULTS A significant increase in the number of Foxp3+ T cells was observed in infected animals with respect to control group, regardless of the type of lesion. However, when the different categories of lesion were analyzed independently, all individuals with PTB lesions showed an increase in the amount of Foxp3+ T lymphocytes compared to the control group but this increase was only significant in cows with focal lesions and, to a lesser extent, in animals with diffuse paucibacillary forms. The former showed the highest numbers, significantly different from those found in cows with diffuse lesions, where no differences were noted between the two forms. No specific distribution pattern was observed within the granulomatous lesions in any of the groups. CONCLUSIONS The increase of Foxp3+ T cells in focal forms, that have been associated with latency or resistance to infection, suggest an anti-inflammatory action of these cells at these stages, helping to prevent exacerbation of the inflammatory response, as occurs in diffuse forms, responsible for the appearance of clinical signs.
Collapse
Affiliation(s)
- David Zapico
- Departamento de Sanidad Animal, Facultad de Veterinaria, Instituto de Ganadería de Montaña (CSIC-ULE), Universidad de León, C/ Profesor Pedro Cármenes s/n, E-24071, León, Spain
| | - José Espinosa
- Departamento de Sanidad Animal, Facultad de Veterinaria, Instituto de Ganadería de Montaña (CSIC-ULE), Universidad de León, C/ Profesor Pedro Cármenes s/n, E-24071, León, Spain.
| | - Miguel Fernández
- Departamento de Sanidad Animal, Facultad de Veterinaria, Instituto de Ganadería de Montaña (CSIC-ULE), Universidad de León, C/ Profesor Pedro Cármenes s/n, E-24071, León, Spain
| | - Miguel Criado
- Departamento de Sanidad Animal, Facultad de Veterinaria, Instituto de Ganadería de Montaña (CSIC-ULE), Universidad de León, C/ Profesor Pedro Cármenes s/n, E-24071, León, Spain
| | - Noive Arteche-Villasol
- Departamento de Sanidad Animal, Facultad de Veterinaria, Instituto de Ganadería de Montaña (CSIC-ULE), Universidad de León, C/ Profesor Pedro Cármenes s/n, E-24071, León, Spain
| | - Valentín Pérez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Instituto de Ganadería de Montaña (CSIC-ULE), Universidad de León, C/ Profesor Pedro Cármenes s/n, E-24071, León, Spain
| |
Collapse
|
7
|
Mallikarjunappa S, Brito LF, Pant SD, Schenkel FS, Meade KG, Karrow NA. Johne's Disease in Dairy Cattle: An Immunogenetic Perspective. Front Vet Sci 2021; 8:718987. [PMID: 34513975 PMCID: PMC8426623 DOI: 10.3389/fvets.2021.718987] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
Johne's disease (JD), also known as paratuberculosis, is a severe production-limiting disease with significant economic and welfare implications for the global cattle industry. Caused by infection with Mycobacterium avium subspecies paratuberculosis (MAP), JD manifests as chronic enteritis in infected cattle. In addition to the economic losses and animal welfare issues associated with JD, MAP has attracted public health concerns with potential association with Crohn's disease, a human inflammatory bowel disease. The lack of effective treatment options, such as a vaccine, has hampered JD control resulting in its increasing global prevalence. The disease was first reported in 1895, but in recognition of its growing economic impact, extensive recent research facilitated by a revolution in technological approaches has led to significantly enhanced understanding of the immunological, genetic, and pathogen factors influencing disease pathogenesis. This knowledge has been derived from a variety of diverse models to elucidate host-pathogen interactions including in vivo and in vitro experimental infection models, studies measuring immune parameters in naturally-infected animals, and by studies conducted at the population level to enable the estimation of genetic parameters, and the identification of genetic markers and quantitative trait loci (QTL) putatively associated with susceptibility or resistance to JD. The main objectives of this review are to summarize these recent developments from an immunogenetics perspective and attempt to extract the principal and common findings emerging from this wealth of recent information. Based on these analyses, and in light of emerging technologies such as gene-editing, we conclude by discussing potential future avenues for effectively mitigating JD in cattle.
Collapse
Affiliation(s)
- Sanjay Mallikarjunappa
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Sameer D Pant
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Flavio S Schenkel
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Kieran G Meade
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Niel A Karrow
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
8
|
Yirsaw AW, Gillespie A, Britton E, Doerle A, Johnson L, Marston S, Telfer J, Baldwin CL. Goat γδ T cell subpopulations defined by WC1 expression, responses to pathogens and cytokine production. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 118:103984. [PMID: 33352199 DOI: 10.1016/j.dci.2020.103984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
The major functions of γδ T cells in mammals overlap with those of αβ T cells but differ in that γδ T cells are rapid responders and see different types of antigens. While γδ T cells have been shown to be a major population of circulating lymphocytes in artiodactyl species such as cattle, sheep, and pigs, less is known about these cells in goats, an important agricultural species. We have recently shown that WC1, a γδ T cell-specific family of hybrid pattern recognition receptors/co-receptors, is a multigenic family in goats expanded beyond what occurs in cattle. This study was conducted to address some of the limitations of previous studies in determining the proportions of γδ T cells, WC1+ γδ T cells as well as the WC1.1+ and WC1.2+ subpopulations in blood and to evaluate their responses to various pathogens. Previously, the proportion of caprine γδ T cells was determined using a monoclonal antibody (mAb) 86D that we show here does not react with all γδ T cells thereby underestimating their contribution to the lymphocyte population. Using a mAb reactive with the TCRδ constant region we found the proportion of γδ T cells in blood was not significantly less than that of either CD4 or CD8 T cells and did not decrease with age after 6 months. γδ T cells that expressed WC1 ranged from ~20 to 85% of the total γδ T cells. Less than half of those were classified as WC1.1+ or WC1.2+ by mAb staining thus indicating a third major WC1+ population. We found that naïve γδ T cells proliferated in cultures of PBMC stimulated with antigens of Leptospira or Mycobacterium avium paratuberculosis (MAP) more than they did in control medium cultures or in those stimulated with M. bovis BCG antigens and that the responding γδ T cells included both WC1+ and WC1- cells. In ex vivo PMA/ionomycin-stimulated cultures of WC1- γδ T cells but not WC1+ cells produced both IL-17 and IFNγ. In longterm cultures with Leptospira or MAP both WC1- and WC1+ cells proliferated but only WC1- γδ T cells produced IL-17. In conclusion, goats have a substantial number of WC1- and WC1+ γδ T cells in PBMC that do not decrease with animal age after 6 months; both populations respond to bacterial antigens as naïve cells but in these cultures only the WC1- γδ cells produc IL-17 and IFNγ .
Collapse
Affiliation(s)
- Alehegne W Yirsaw
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Alexandria Gillespie
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Emily Britton
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Alyssa Doerle
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Lisa Johnson
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Susan Marston
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Janice Telfer
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA; Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Cynthia L Baldwin
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA; Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
9
|
Special features of γδ T cells in ruminants. Mol Immunol 2021; 134:161-169. [PMID: 33774521 DOI: 10.1016/j.molimm.2021.02.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/12/2021] [Accepted: 02/28/2021] [Indexed: 02/07/2023]
Abstract
Ruminant γδ T cells were discovered in the mid-1980's shortly after a novel T cell receptor (TCR) gene from murine cells was described in 1984 and the murine TCRγ gene locus in 1985. It was possible to identify γδ T cell populations early in ruminants because they represent a large proportion of the peripheral blood mononuclear cells (PBMC). This null cell population, γδ T cells, was designated as such by its non-reactivity with monoclonal antibodies (mAb) against ovine and bovine CD4, CD8 and surface immunoglobulin (Ig). γδ T cells are non-conventional T cells known as innate-like cells capable of using both TCR as well as other types of receptor systems including pattern recognition receptors (PRR) and natural killer receptors (NKR). Bovine γδ T cells have been shown to respond to stimulation through toll-like receptors, NOD, and NKG2D as well as to cytokines alone, protein and non-protein antigens through their TCR, and to pathogen-infected host cells. The two main populations of γδ T cells are distinguished by the presence or absence of the hybrid co-receptor/PRR known as WC1 or T19. These two populations not only differ by their proportional representation in various tissues and organs but also by their migration into inflamed tissues. The WC1+ cells are found in the blood, skin and spleen while the WC1- γδ T cells predominate in the gut, mammary gland and uterus. In ruminants, γδ T cells may produce IFNγ, IL-17, IL-10 and TGFβ, have cytotoxic activity and memory responses. The expression of particular WC1 family members controls the response to particular pathogens and correlates with differences in cytokine responses. The comparison of the WC1 gene families in cattle, sheep and goats is discussed relative to other multigenic arrays that differentiate γδ T cells by function in humans and mice.
Collapse
|
10
|
Yirsaw A, Baldwin CL. Goat γδ T cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103809. [PMID: 32795585 DOI: 10.1016/j.dci.2020.103809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/06/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
Goats are important food animals and are disseminated globally because of their high adaptability to varying environmental conditions and feeding regimes that provide them with a comparative advantage. Productivity is impacted by infectious diseases; this then contributes to societal poverty, food insecurity, and international trade restrictions. Since γδ T cells have been shown to have vital roles in immune responses in other mammals we reviewed the literature regarding what is known about their functions, distribution in tissues and organs and their responses to a variety of infections in goats. It has been shown that caprine γδ T cells produce interferon-γ and IL-17, are found in a variety of lymphoid and nonlymphoid tissues and constitute a significant population of blood mononuclear cells. Their representation in tissues and their functional responses may be altered concomitant with infection. This review summarizes caprine γδ T cell responses to Brucella melitensis, Fasciola hepatica, Mycobacterium avium paratuberculosis, caprine arthritis encephalitis virus (CAEV), and Schistosoma bovis in infected or vaccinated goats. Caprine γδ T cells have also been evaluated in goats infected with M. caprae, Ehrilichia ruminantium, Haemonchus contortus and peste des petits ruminants (PPR) virus but found to have an unknown or limited response or role in either protective immunity or immunopathogenesis in those cases.
Collapse
Affiliation(s)
- Alehegne Yirsaw
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, 661 N. Pleasant St, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Cynthia L Baldwin
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, 661 N. Pleasant St, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
11
|
Criado M, Benavides J, Vallejo R, Arteche N, Gutiérrez D, Ferreras MC, Pérez V, Espinosa J. Local assessment of WC1 + γδ T lymphocyte subset in the different types of lesions associated with bovine paratuberculosis. Comp Immunol Microbiol Infect Dis 2020; 69:101422. [PMID: 31982851 DOI: 10.1016/j.cimid.2020.101422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/17/2022]
Abstract
The local expression of WC1+ γδ T lymphocytes subset has been evaluated by immunohistochemical methods at the different types of lesions present in cows naturally infected with Mycobacterium avium subsp. paratuberculosis (Map) and in non-infected control animals. Infected cattle were either in the latent/subclinical (focal lesions) or clinical (diffuse paucibacillary and multibacillary forms) stage of paratuberculosis. To assess the cell distribution, a differential cell count was carried out at the lamina propria, gut-associated lymphoid tissue and submucosa. A significant increase in the number of WC1+ γδ T cells was observed in all the infected animals, regardless of the type of lesion. Cows with focal lesions showed higher number of labeled cells than those with diffuse forms, where no differences were found between the two types. This increase in the number of positively immunolabelled lymphocytes in infected animals was seen in the lamina propria, with higher values in those with focal lesions. While in the lymphoid tissue no differences in the numbers were observed, in animals with focal lesions, WC1+ γδ T cells tended to be located at the periphery of the granulomas. These findings suggest a proinflammatory action of WC1+ γδ T lymphocytes in bovine paratuberculosis, which might play an important role in the containment of the Map-infection in the focal granulomas located in the lymphoid tissue, helping to prevent the progression toward diffuse forms responsible for the clinical signs.
Collapse
Affiliation(s)
- Miguel Criado
- Dpto. Sanidad Animal, Instituto De Ganadería De Montaña (CSIC-Universidad De León), Facultad De Veterinaria, Campus De Vegazana s/n, 24071, León, Spain
| | - Julio Benavides
- Dpto. Sanidad Animal, Instituto De Ganadería De Montaña (CSIC-Universidad De León), Facultad De Veterinaria, Campus De Vegazana s/n, 24071, León, Spain
| | - Raquel Vallejo
- Dpto. Sanidad Animal, Instituto De Ganadería De Montaña (CSIC-Universidad De León), Facultad De Veterinaria, Campus De Vegazana s/n, 24071, León, Spain
| | - Noive Arteche
- Dpto. Sanidad Animal, Instituto De Ganadería De Montaña (CSIC-Universidad De León), Facultad De Veterinaria, Campus De Vegazana s/n, 24071, León, Spain
| | - Daniel Gutiérrez
- Dpto. Sanidad Animal, Instituto De Ganadería De Montaña (CSIC-Universidad De León), Facultad De Veterinaria, Campus De Vegazana s/n, 24071, León, Spain
| | - M Carmen Ferreras
- Dpto. Sanidad Animal, Instituto De Ganadería De Montaña (CSIC-Universidad De León), Facultad De Veterinaria, Campus De Vegazana s/n, 24071, León, Spain
| | - Valentín Pérez
- Dpto. Sanidad Animal, Instituto De Ganadería De Montaña (CSIC-Universidad De León), Facultad De Veterinaria, Campus De Vegazana s/n, 24071, León, Spain
| | - José Espinosa
- Dpto. Sanidad Animal, Instituto De Ganadería De Montaña (CSIC-Universidad De León), Facultad De Veterinaria, Campus De Vegazana s/n, 24071, León, Spain.
| |
Collapse
|
12
|
Abstract
Gamma delta (γδ) T cells constitute a major lymphocyte population in peripheral blood and epithelial surfaces. They play nonredundant roles in host defense against diverse pathogens. Although γδ T cells share functional features with other cells of the immune system, their distinct methods of antigen recognition, rapid response, and tissue tropism make them a unique effector population. This review considers the current state of our knowledge on γδ T cell biology in ruminants and the important roles played by this nonconventional T cell population in protection against several infectious diseases of veterinary and zoonotic importance.
Collapse
|
13
|
Modelling Bovine Granuloma Formation In Vitro upon Infection with Mycobacterium Avium Subspecies Paratuberculosis. Vet Sci 2019; 6:vetsci6040080. [PMID: 31614819 PMCID: PMC6958389 DOI: 10.3390/vetsci6040080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (Map) causes chronic granulomatous disease in cattle and ruminant livestock, causing substantial economic losses. Current vaccines delay clinical signs but cannot train the immune system to fully eradicate latent Map. During latency, Map uses host defenses, cage-like macrophage clusters called granuloma, as incubators for months or years. We used an in vitro model to investigate the early coordination of macrophages into granuloma upon Map infection over ten days. We found that at multiplicities of infection (MOI; Map:macrophages) of 1:2 and below, the macrophages readily form clusters and evolve pro-inflammatory cytokines in keeping with a cell-mediated immune response. At higher MOIs, viability of host macrophages is negatively impacted. At 1:4 MOI, we quantified viable Map in our model and confirmed that intracellular Map reproduced over the first five days of infection. Host cells expressed Type 1-specific cytokines, and Map-infected macrophages displayed reduced motility compared to Map-exposed, uninfected macrophages, suggesting an important role for uninfected macrophages in the early aggregative response. Reported is the first in vitro JD granuloma model capturing Map and macrophage viability, size distribution of resulting clusters, motility of monocyte-derived macrophages, and cytokine response during clustering, allowing quantitative analysis of multiple parameters of the Map-specific granulomatous response.
Collapse
|
14
|
Baldwin CL, Yirsaw A, Gillespie A, Le Page L, Zhang F, Damani-Yokota P, Telfer JC. γδ T cells in livestock: Responses to pathogens and vaccine potential. Transbound Emerg Dis 2019; 67 Suppl 2:119-128. [PMID: 31515956 DOI: 10.1111/tbed.13328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/30/2019] [Accepted: 07/26/2019] [Indexed: 01/01/2023]
Abstract
The immediate objective of our research is to understand the molecular mechanisms underlying activation and potentiation of the protective functional response of WC1+ γδ T cells to pathogens afflicting livestock species. The long-term goal is to incorporate stimulation of these cells into the next generation of vaccine constructs. γδ T cells have roles in the immune response to many infectious diseases including viral, bacterial, protozoan and worm infections, and their functional responses overlap with those of canonical αβ T cells, for example they produce cytokines including interferon-γ and IL-17. Stimulation of non-conventional lymphocytes including γδ T cells and αβ natural killer T (NKT) cells has been shown to contribute to protective immunity in mammals, bridging the gap between the innate and adaptive immune responses. Because of their innate-like early response, understanding how to engage γδ T-cell responses has the potential to optimize strategies of those that aim to induce pro-inflammatory responses as discussed here.
Collapse
Affiliation(s)
- Cynthia L Baldwin
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Alehegne Yirsaw
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Alexandria Gillespie
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Lauren Le Page
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Fengqiu Zhang
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Payal Damani-Yokota
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Janice C Telfer
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
15
|
Dantzler KW, de la Parte L, Jagannathan P. Emerging role of γδ T cells in vaccine-mediated protection from infectious diseases. Clin Transl Immunology 2019; 8:e1072. [PMID: 31485329 PMCID: PMC6712516 DOI: 10.1002/cti2.1072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/04/2019] [Accepted: 07/14/2019] [Indexed: 01/18/2023] Open
Abstract
γδ T cells are fascinating cells that bridge the innate and adaptive immune systems. They have long been known to proliferate rapidly following infection; however, the identity of the specific γδ T cell subsets proliferating and the role of this expansion in protection from disease have only been explored more recently. Several recent studies have investigated γδ T‐cell responses to vaccines targeting infections such as Mycobacterium, Plasmodium and influenza, and studies in animal models have provided further insight into the association of these responses with improved clinical outcomes. In this review, we examine the evidence for a role for γδ T cells in vaccine‐induced protection against various bacterial, protozoan and viral infections. We further discuss results suggesting potential mechanisms for protection, including cytokine‐mediated direct and indirect killing of infected cells, and highlight remaining open questions in the field. Finally, building on current efforts to integrate strategies targeting γδ T cells into immunotherapies for cancer, we discuss potential approaches to improve vaccines for infectious diseases by inducing γδ T‐cell activation and cytotoxicity.
Collapse
|
16
|
Rusk RA, Palmer MV, Waters WR, McGill JL. Measuring bovine γδ T cell function at the site of Mycobacterium bovis infection. Vet Immunol Immunopathol 2017; 193-194:38-49. [PMID: 29129226 DOI: 10.1016/j.vetimm.2017.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/06/2017] [Accepted: 10/25/2017] [Indexed: 12/28/2022]
Abstract
Bovine γδ T cells are amongst the first cells to accumulate at the site of Mycobacterium bovis infection; however, their role in the developing lesion remains unclear. We utilized transcriptomics analysis, in situ hybridization, and a macrophage/γδ T cell co-culture system to elucidate the role of γδ T cells in local immunity to M. bovis infection. Transcriptomics analysis revealed that γδ T cells upregulated expression of several novel, immune-associated genes in response to stimulation with M. bovis antigen. BCG-infected macrophage/γδ T cell co-cultures confirmed the results of our RNAseq analysis, and revealed that γδ T cells from M. bovis-infected animals had a significant impact on bacterial viability. Analysis of γδ T cells within late-stage M. bovis granulomas revealed significant expression of IFN-γ and CCL2, but not IL-10, IL-22, or IL-17. Our results suggest γδ T cells influence local immunity to M. bovis through cytokine secretion and direct effects on bacterial burden.
Collapse
Affiliation(s)
- Rachel A Rusk
- Pathobiology Graduate Program, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Mitchell V Palmer
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, USDA, Ames, IA, USA
| | - W Ray Waters
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, USDA, Ames, IA, USA
| | - Jodi L McGill
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
17
|
Albarrak S, Waters W, Stabel J, Hostetter J. WC1+ γδ T cells from cattle naturally infected with Mycobacterium avium subsp. paratuberculosis respond differentially to stimulation with PPD-J. Vet Immunol Immunopathol 2017; 190:57-64. [DOI: 10.1016/j.vetimm.2017.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/05/2017] [Accepted: 07/13/2017] [Indexed: 01/22/2023]
|
18
|
Baquero MM, Plattner BL. Bovine WC1 + and WC1 neg γδ T Lymphocytes Influence Monocyte Differentiation and Monocyte-Derived Dendritic Cell Maturation during In Vitro Mycobacterium avium Subspecies paratuberculosis Infection. Front Immunol 2017; 8:534. [PMID: 28588573 PMCID: PMC5439176 DOI: 10.3389/fimmu.2017.00534] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/21/2017] [Indexed: 12/23/2022] Open
Abstract
During early Mycobacterium avium subspecies paratuberculosis (Map) infection, complex interactions occur between the bacteria, cells from the mononuclear phagocyte system (MPS) including both resident (macrophages and dendritic cells) and recruited (monocytes) cells, and other mucosal sentinel cells such as γδ T lymphocytes. Though the details of early host–pathogen interactions in cattle remain largely underexplored, our hypothesis is that these significantly influence development of host immunity and ultimate success or failure of the host to respond to Map infection. The aims of the present study were to first characterize monocyte-derived MPS cells from young calves with respect to their immunophenotype and function. Then, we set out to investigate the effects of WC1+ and WC1neg γδ T lymphocytes on (1) the differentiation of autologous monocytes and (2) the maturation of autologous monocyte-derived dendritic cells (MDDCs). To achieve this, peripheral blood WC1+ or WC1neg γδ T lymphocytes were cocultured with either autologous freshly isolated peripheral blood-derived monocytes or autologous immature MDDCs (iMDDCs). We began by measuring several markers of interest on MPS cells. Useful markers to distinguish monocyte-derived macrophages (MDMs) from MDDCs include CD11b, CD163, and CD172a, which are expressed significantly higher on MDMs compared with MDDCs. Function, but not phenotype, was influenced by WC1neg γδ T lymphocytes: viability of Map harvested from monocytes differentiated in the presence of WC1neg γδ T lymphocytes (dMonWC1neg) was significantly lower compared to MDMs and MDDCs. With respect to DC maturation, we first showed that mature MDDCs (mMDDCs) have significantly higher expression of CD11c, CD80, and CD86 compared with iMDDCs, and the phagocytic capacity of mMDDCs is significantly reduced compared to iMDDCs. We then showed that γδ T lymphocyte subsets induce functional (reduced phagocytosis) but not phenotypic (surface marker expression) iMDDC maturation. These data collectively show that γδ T lymphocytes influence differentiation, maturation, and ultimately the function of monocytes during Map infection, which has significant implications on survival of Map and success of host defense during early Map infection.
Collapse
Affiliation(s)
- Monica M Baquero
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Brandon L Plattner
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
19
|
Zhan L, Tang J, Sun M, Qin C. Animal Models for Tuberculosis in Translational and Precision Medicine. Front Microbiol 2017; 8:717. [PMID: 28522990 PMCID: PMC5415616 DOI: 10.3389/fmicb.2017.00717] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/06/2017] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is a health threat to the global population. Anti-TB drugs and vaccines are key approaches for TB prevention and control. TB animal models are basic tools for developing biomarkers of diagnosis, drugs for therapy, vaccines for prevention and researching pathogenic mechanisms for identification of targets; thus, they serve as the cornerstone of comparative medicine, translational medicine, and precision medicine. In this review, we discuss the current use of TB animal models and their problems, as well as offering perspectives on the future of these models.
Collapse
Affiliation(s)
- Lingjun Zhan
- Key Laboratory of Human Disease Comparative Medicine, Ministry of HealthBeijing, China.,Institution of Laboratory Animal Sciences, Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectiousBeijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijing, China.,Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese MedicineBeijing, China
| | - Jun Tang
- Key Laboratory of Human Disease Comparative Medicine, Ministry of HealthBeijing, China.,Institution of Laboratory Animal Sciences, Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectiousBeijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijing, China.,Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese MedicineBeijing, China
| | - Mengmeng Sun
- Key Laboratory of Human Disease Comparative Medicine, Ministry of HealthBeijing, China.,Institution of Laboratory Animal Sciences, Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectiousBeijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijing, China.,Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese MedicineBeijing, China
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Ministry of HealthBeijing, China.,Institution of Laboratory Animal Sciences, Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectiousBeijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijing, China.,Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese MedicineBeijing, China
| |
Collapse
|
20
|
Baquero MM, Plattner BL. Bovine WC1(+) γδ T lymphocytes modify monocyte-derived macrophage responses during early Mycobacterium avium subspecies paratuberculosis infection. Vet Immunol Immunopathol 2015; 170:65-72. [PMID: 26848050 DOI: 10.1016/j.vetimm.2015.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/21/2015] [Accepted: 12/05/2015] [Indexed: 10/22/2022]
Abstract
Following Mycobacterium avium subspecies paratuberculosis (Map) infection, some calves are apparently able to successfully clear the pathogen whereas others become persistently infected; however the reasons for this remain unknown. The importance of innate immunity, and in particular the role of γδ T lymphocytes, during early anti-mycobacterial immune response is recognized but specific mechanisms remain incompletely characterized. The objective of this study was to investigate how bovine WC1(+) γδ T lymphocytes mediate macrophage function during early Map infection. To achieve this objective, Map-infected monocyte-derived macrophages (MDMs) were co-cultured either in direct contact with, or separated by a semi-permeable membrane from, autologous WC1(+) γδ T lymphocytes. Nitrites, IL-17A, IFN-γ, IL-4 and IL-10 from cell culture supernatants were measured. Expression of CD25 on WC1(+) γδ T lymphocytes, expression of MHC-I and MHC-II on MDMs and the viability of Map recovered from MDM cultures 72h after Map infection were also assessed. Map viability was significantly reduced when WC1(+) γδ T lymphocytes were co-cultured in direct contact with Map-infected MDMs. Both MDMs and WC1(+) γδ T lymphocytes generated increased concentrations of IFN-γ and IL-4 in our system, and MDM/WC1(+) γδ T lymphocyte synergism was identified for IFN-γ production. MDMs but not WC1(+) γδ T lymphocytes were a significant source of IL-17A. The presence of WC1(+) γδ T lymphocytes was associated with higher expression of MHC-I on MDMs and increased concentration of nitrites in supernatants 72h after Map infection. In conclusion, this study showed that WC1(+) γδ lymphocytes had differential effects on Map-infected macrophages in vitro.
Collapse
Affiliation(s)
- Monica M Baquero
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Pathobiology/AHL Building 89, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada.
| | - Brandon L Plattner
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Pathobiology/AHL Building 89, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
21
|
Host Transcriptional Profiles and Immunopathologic Response following Mycobacterium avium subsp. paratuberculosis Infection in Mice. PLoS One 2015; 10:e0138770. [PMID: 26439498 PMCID: PMC4595071 DOI: 10.1371/journal.pone.0138770] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 09/03/2015] [Indexed: 01/11/2023] Open
Abstract
Paratuberculosis or Johne’s disease is a chronic granulomatous enteropathy in ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP) infection. In the present study, we examined the host response to MAP infection in spleens of mice in order to investigate the host immunopathology accompanying host-pathogen interaction. Transcriptional profiles of the MAP-infected mice at 3 and 6 weeks p.i. showed severe histopathological changes, whereas those at 12 weeks p.i. displayed reduced lesion severity in the spleen and liver. MAP-infected mice at 3 and 6 weeks p.i. showed up-regulation of interferon-related genes, scavenger receptor, and complement components, suggesting an initial innate immune reaction, such as macrophage activation, bactericidal activity, and macrophage invasion of MAP. Concurrently, MAP-infected mice at 3 and 6 weeks p.i. were also suggested to express M2 macrophage phenotype with up-regulation of Mrc1, and Marco and down-regulation of MHC class II, Ccr7, and Irf5, and canonical pathways related to the T cell response including ICOS-ICOSL signaling in T helper cells, calcium-induced T lymphocyte apoptosis, and CD28 signaling in T helper cell. These results provide information which furthers the understanding of the immunopathologic response to MAP infection in mice, thereby providing insights valuable for research into the pathogenesis for MAP infection.
Collapse
|
22
|
Bovine gamma delta T cells and the function of gamma delta T cell specific WC1 co-receptors. Cell Immunol 2015; 296:76-86. [PMID: 26008759 DOI: 10.1016/j.cellimm.2015.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 05/11/2015] [Accepted: 05/11/2015] [Indexed: 12/28/2022]
Abstract
The study of γδ T cells in ruminants dates to the discovery of the γδ TCR in humans and mice. It is important since cattle offer an alternative model to the mouse for evaluating the role of γδ T cells in zoonotic disease research and for control of disease reservoirs in non-human animals. In addition, maintaining the health of cattle and other members of the order Artiodactyla is critical to meet the global human need for animal-source protein. In this review, we examine the bovine γδ T cell responses to Mycobacteria, which infects a third of the human population, and bovine γ and δ TCR diversity and the relationship to the TCR of human mycobacteria-responsive γδ T cells. We review the utilization of the γδ T cell specific scavenger receptor cysteine-rich (SRCR) glycoproteins known as WC1, and that are part of the CD163 family, which function as both γδ T cell activating co-receptors and pattern recognition receptors (PRR) for bovine γδ T cells and highlight the presence and evolution of this multigenic array, with potential for the same function, in birds, reptiles, jawless and bony fishes, and prototherian and eutherian mammals.
Collapse
|
23
|
Divan A, Budd RC, Tobin RP, Newell-Rogers MK. γδ T Cells and dendritic cells in refractory Lyme arthritis. J Leukoc Biol 2015; 97:653-63. [PMID: 25605869 DOI: 10.1189/jlb.2ru0714-343rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Lyme disease is a multisystem infection transmitted by tick vectors with an incidence of up to 300,000 individuals/yr in the United States. The primary treatments are oral or i.v. antibiotics. Despite treatment, some individuals do not recover and have prolonged symptoms affecting multiple organs, including the nervous system and connective tissues. Inflammatory arthritis is a common symptom associated with Lyme pathology. In the past decades, γδ T cells have emerged as candidates that contribute to the transition from innate to adaptive responses. These cells are also differentially regulated within the synovia of patients affected by RLA. Here, we review and discuss potential cellular mechanisms involving γδ T cells and DCs in RLA. TLR signaling and antigen processing and presentation will be the key concepts that we review in aid of understanding the impact of γδ T cells in RLA.
Collapse
Affiliation(s)
- Ali Divan
- *Texas A&M Health Science, Temple, Texas, USA; and University of Vermont, Burlington, Vermont, USA
| | - Ralph C Budd
- *Texas A&M Health Science, Temple, Texas, USA; and University of Vermont, Burlington, Vermont, USA
| | - Richard P Tobin
- *Texas A&M Health Science, Temple, Texas, USA; and University of Vermont, Burlington, Vermont, USA
| | - M Karen Newell-Rogers
- *Texas A&M Health Science, Temple, Texas, USA; and University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
24
|
Baldwin CL, Telfer JC. The bovine model for elucidating the role of γδ T cells in controlling infectious diseases of importance to cattle and humans. Mol Immunol 2014; 66:35-47. [PMID: 25547715 DOI: 10.1016/j.molimm.2014.10.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/22/2014] [Accepted: 10/24/2014] [Indexed: 01/29/2023]
Abstract
There are several instances of co-investigation and related discoveries and achievements in bovine and human immunology; perhaps most interesting is the development of the BCG vaccine, the tuberculin skin test and the more recent interferon-gamma test that were developed first in cattle to prevent and diagnosis bovine tuberculosis and then applied to humans. There are also a number of immune-physiological traits that ruminant share with humans including the development of their immune systems in utero which increases the utility of cattle as a model for human immunology. These are reviewed here with a particular focus on the use of cattle to unravel γδ T cell biology. Based on the sheer number of γδ T cells in this γδ T cell high species, it is reasonable to expect γδ T cells to play an important role in protective immune responses. For that reason alone cattle may provide good models for elucidating at least some of the roles γδ T cells play in protective immunity in all species. This includes fundamental research on γδ T cells as well as the responses of ruminant γδ T cells to a variety of infectious disease situations including to protozoan and bacterial pathogens. The role that pattern recognition receptors (PRR) play in the activation of γδ T cells may be unique relative to αβ T cells. Here we focus on that of the γδ T cell specific family of molecules known as WC1 or T19 in ruminants, which are part of the CD163 scavenger receptor cysteine rich (SRCR) family that includes SCART1 and SCART2 expressed on murine γδ T cells. We review the evidence for WC1 being a PRR as well as an activating co-receptor and the role that γδ T cells bearing these receptors play in immunity to leptospirosis and tuberculosis. This includes the generation of memory responses to vaccines, thereby continuing the tradition of co-discovery between cattle and humans.
Collapse
Affiliation(s)
- Cynthia L Baldwin
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst 01003, United States.
| | - Janice C Telfer
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst 01003, United States.
| |
Collapse
|
25
|
Krüger C, Köhler H, Liebler-Tenorio EM. Cellular composition of granulomatous lesions in gut-associated lymphoid tissues of goats during the first year after experimental infection with Mycobacterium avium subsp. paratuberculosis. Vet Immunol Immunopathol 2014; 163:33-45. [PMID: 25466387 DOI: 10.1016/j.vetimm.2014.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 10/28/2014] [Accepted: 11/05/2014] [Indexed: 10/24/2022]
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) causes lesions in naturally and experimentally infected ruminants which greatly differ in severity, cellular composition and number of mycobacteria. Morphologically distinct lesions are already found during the clinically inapparent phase of infection. The complex local host response and number of MAP were characterized at the initial sites of lesions, organized gut-associated lymphoid tissue, in experimentally infected goats. Tissues were collected at 3, 6, 9 and 12 month post-inoculation (mpi) from goat kids that had orally received 10 times 10mg of bacterial wet mass of MAP (JII-1961). The cellular composition of lesions in Peyer's patches in the jejunum and next to the ileocecal valve was evaluated in 21 MAP-inoculated goats, where lesions were compared with unaltered tissue of six control goats. CD68+, CD4+, CD8+, γδ T lymphocytes, B lymphocytes and plasma cells, MHC class II+ and CD25+ cells were demonstrated by immunohistochemistry in serial cryostat sections. At 3 mpi, extensive granulomatous infiltrates predominated, consisting of numerous epitheloid cells admixed with many CD4 and γδ T lymphocytes. Only single MAP were detected. This indicates a strong cellular immune reaction able to control MAP infection. γδ T lymphocytes were markedly increased in this type of lesion which may reflect their important role early in the pathogenesis of paratuberculosis. At 9 and 12 mpi, divergent lesions were observed which may reflect different outcomes of host-pathogen interactions. In five goats, minimal granulomatous lesions were surrounded by extensive lymphoplasmacytic infiltrates and no MAP were detected by immunohistochemistry. This was interpreted as effective host response that was able to eliminate MAP locally. In three goats, decreased numbers of lymphocytes, but extensive granulomatous infiltrates with numerous epitheloid cells containing increased numbers of mycobacteria were seen. This shift of the immune response resulted in uncontrolled mycobacterial multiplication. Focal and multifocal circumscribed granulomatous infiltrates of mainly epitheloid cells may represent sites of new infection, since they were observed in goats at all times after inoculation. Their presence in goats with minimal granulomatous lesions surrounded by extensive lymphoplasmacytic infiltrates may indicate that despite the local clearance, the infection may be perpetuated. The complex cellular immune reactions postulated for the pathogenesis of paratuberculosis were demonstrated at the local sites of infection. These early host-pathogen interactions are most likely essential for the eventual outcome of the MAP infection.
Collapse
Affiliation(s)
- C Krüger
- Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Naumburger Str. 96a, 07743 Jena, Germany
| | - H Köhler
- Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Naumburger Str. 96a, 07743 Jena, Germany
| | - E M Liebler-Tenorio
- Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Naumburger Str. 96a, 07743 Jena, Germany.
| |
Collapse
|
26
|
Baldwin CL, Hsu H, Chen C, Palmer M, McGill J, Waters WR, Telfer JC. The role of bovine γδ T cells and their WC1 co-receptor in response to bacterial pathogens and promoting vaccine efficacy: A model for cattle and humans. Vet Immunol Immunopathol 2014; 159:144-55. [DOI: 10.1016/j.vetimm.2014.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
27
|
McGill JL, Sacco RE, Baldwin CL, Telfer JC, Palmer MV, Ray Waters W. The role of gamma delta T cells in immunity to Mycobacterium bovis infection in cattle. Vet Immunol Immunopathol 2014; 159:133-43. [DOI: 10.1016/j.vetimm.2014.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
Plattner BL, Huffman E, Jones DE, Hostetter JM. T lymphocyte responses during early enteric Mycobacterium avium subspecies paratuberculosis infection in cattle. Vet Immunol Immunopathol 2014; 157:12-9. [DOI: 10.1016/j.vetimm.2013.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 10/25/2013] [Accepted: 11/01/2013] [Indexed: 10/26/2022]
|
29
|
McGill JL, Nonnecke BJ, Lippolis JD, Reinhardt TA, Sacco RE. Differential chemokine and cytokine production by neonatal bovine γδ T-cell subsets in response to viral toll-like receptor agonists and in vivo respiratory syncytial virus infection. Immunology 2013; 139:227-44. [PMID: 23368631 DOI: 10.1111/imm.12075] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/14/2013] [Accepted: 01/16/2013] [Indexed: 12/21/2022] Open
Abstract
γδ T cells respond to stimulation via toll-like receptors (TLR). Bovine γδ T cells express TLR3 and TLR7, receptors that are key for the recognition of viruses such as bovine respiratory syncytial virus (BRSV); however, responses of γδ T cells to stimulation via these receptors, and their role during viral infections, remains unclear. Here, we demonstrate that neonatal bovine γδ T cells exhibit robust chemokine and cytokine production in response to the TLR3 agonist, Poly(I:C), and the TLR7 agonist, Imiquimod. Importantly, we observe a similar phenotype in γδ T-cell subsets purified from calves infected with BRSV. Bovine γδ T cells are divided into subsets based upon their expression of WC1, and the response to TLR stimulation and viral infection differs between these subsets, with WC1.1(+) and WC1(neg) γδ T cells producing macrophage inflammatory protein-1α and granulocyte-macrophage colony-stimulating factor, and WC1.2(+) γδ T cells preferentially producing the regulatory cytokines interleukin-10 and transforming growth factor-β. We further report that the active vitamin D metabolite 1,25-dihydroxyvitamin D3 does not alter γδ T-cell responses to TLR agonists or BRSV. To our knowledge, this is the first characterization of the γδ T-cell response during in vivo BRSV infection and the first suggestion that WC1.1(+) and WC1(neg) γδ T cells contribute to the recruitment of inflammatory populations during viral infection. Based on our results, we propose that circulating γδ T cells are poised to rapidly respond to viral infection and suggest an important role for γδ T cells in the innate immune response of the bovine neonate.
Collapse
Affiliation(s)
- Jodi L McGill
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, Ames, IA 50010, USA.
| | | | | | | | | |
Collapse
|
30
|
Lybeck K, Løvoll M, Johansen T, Olsen I, Storset A, Valheim M. Intestinal Strictures, Fibrous Adhesions and High Local Interleukin-10 Levels in Goats Infected Naturally with Mycobacterium avium subsp. paratuberculosis. J Comp Pathol 2013; 148:157-72. [DOI: 10.1016/j.jcpa.2012.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 04/16/2012] [Accepted: 05/10/2012] [Indexed: 01/10/2023]
|
31
|
Plattner BL, Huffman EL, Hostetter JM. Gamma-delta T-cell responses during subcutaneous Mycobacterium avium subspecies paratuberculosis challenge in sensitized or naive calves using matrix biopolymers. Vet Pathol 2012; 50:630-7. [PMID: 23051915 DOI: 10.1177/0300985812463404] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have developed a model to explore the early immune response against Mycobacterium avium subspecies paratuberculosis (Map) infection in the bovine calf using subcutaneously placed liquid gel matrix biopolymer (matrigel) containing live Map. Matrigel rapidly polymerizes in vivo, retains recruited cellular infiltrates and soluble immune mediators, and can be rapidly removed 48 hours later and depolymerized for analysis. In this study, we examined early host immune events at matrigel/Map sites; recruited cells were evaluated by histopathology and flow cytometry, and cytokines were measured by flow cytometry, enzyme-linked immunosorbent assay, and Luminex bead immunoassay. Our results demonstrate earlier recruitment of gamma-delta (γδ) T cells to matrigel/Map challenge sites compared to CD4+ T cells. We also show that significantly more γδ T cells were recruited to matrigel/Map sites postinfection day 7 compared to postinfection day 30 and that these cells produced significant amounts of the cytokine interferon gamma. We also provide evidence that peripheral blood-derived γδ T-cell subsets in cattle differentially generate interferon gamma, suggesting distinct roles for these cells. These data provide unique insight into initial antimycobacterial host cellular immune responses following Map infection in calves.
Collapse
Affiliation(s)
- B L Plattner
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.
| | | | | |
Collapse
|
32
|
Chiam LYT, Verhagen MMM, Haraldsson A, Wulffraat N, Driessen GJ, Netea MG, Weemaes CMR, Seyger MMB, van Deuren M. Cutaneous granulomas in ataxia telangiectasia and other primary immunodeficiencies: reflection of inappropriate immune regulation? Dermatology 2011; 223:13-9. [PMID: 21876338 DOI: 10.1159/000330335] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 06/06/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Non-infective cutaneous granulomas with unknown pathogenesis occur in various primary immunodeficiencies (PIDs) including ataxia telangiectasia (A-T). OBJECTIVE To find a common immunological denominator in these cutaneous granulomas. METHODS The dermatological and immunological features of 4 patients with A-T and cutaneous granulomas were described. The literature on skin granulomas in A-T and in other PIDs is reviewed. RESULTS All 4 A-T patients had progressive granulomas on their limbs and showed decreased IgG and IgA concentrations with normal IgM levels. They had a marked decrease in B cells and naïve T cells coinciding with the appearance of the cutaneous granulomas. Similar B- and T-cell abnormalities were described in patients with other PIDs with skin granulomas. CONCLUSIONS We hypothesize that the pathogenesis of these skin granulomas is related to immune dysregulation of macrophages due to the absence of naïve T cells with an appropriate T-cell receptor repertoire and the unopposed activity of γδ T cells and/or natural killer cells.
Collapse
Affiliation(s)
- L Y T Chiam
- Department of Dermatology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Plattner BL, Hostetter JM. Comparative gamma delta T cell immunology: a focus on mycobacterial disease in cattle. Vet Med Int 2011; 2011:214384. [PMID: 21647391 PMCID: PMC3103839 DOI: 10.4061/2011/214384] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 02/22/2011] [Accepted: 03/15/2011] [Indexed: 01/05/2023] Open
Abstract
A theme among many pathogenic mycobacterial species affecting both humans and animals is a prolonged asymptomatic or latent period that can last years to decades. The mechanisms that favor progression to active disease are not well understood. Pathogen containment is often associated with an effective cell-mediated or T-helper 1 immune profile. With certain pathogenic mycobacteria, such as Mycobacterium avium subspecies paratuberculosis, a shift to active clinical disease is associated with loss of T-helper 1 immunity and development of an ineffective humoral or T-helper 2 immune response. Recently γδ T cells have been shown to play a role early in mycobacterial infections and have been hypothesized to influence disease outcome. The purpose of this paper is to compare recent advancements in our understanding of γδ T cells in humans, cattle, and mice and to discuss roles of γδ T cells in host response to mycobacterial infection.
Collapse
Affiliation(s)
- Brandon L Plattner
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada N1G 2W1
| | | |
Collapse
|
34
|
Guzman E, Price S, Poulsom H, Hope J. Bovine γδ T cells: cells with multiple functions and important roles in immunity. Vet Immunol Immunopathol 2011; 148:161-7. [PMID: 21501878 DOI: 10.1016/j.vetimm.2011.03.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 03/01/2011] [Accepted: 03/05/2011] [Indexed: 12/01/2022]
Abstract
The γδ T-cell receptor (TCR)-positive lymphocytes are a major circulating lymphocyte population in cattle, especially in young calves. In contrast, human and mice have low levels of circulating γδ TCR(+) T cells (γδ T cells). The majority of the circulating γδ T cells in ruminants express the workshop cluster 1 (WC1) molecule and are of the phenotype WC1(+) CD2(-) CD4(-) CD8(-). WC1 is a 220000 molecular weight glycoprotein with homology to the scavenger receptor cysteine-rich (SRCR) family, closely related to CD163. The existence of 13 members in the bovine WC1 gene family has recently been demonstrated and although murine and human orthologues to WC1 genes exist, functional gene products have not been identified in species other than ruminants and pigs. Highly diverse TCRδ usage has been reported, with expanded variable genes in cattle compared to humans and mice. Differential γ chain usage is evident between populations of bovine γδ T cells, this may have implications for functionality. There is a growing body of evidence that WC1(+) γδ T cells are important in immune responses to mycobacteria and may have important roles in T cell regulation and antigen presentation. In this review, we will summarize recent observations in γδ T cell biology and the importance of γδ T cells in immune responses to mycobacterial infections in cattle.
Collapse
Affiliation(s)
- Efrain Guzman
- Institute for Animal Health, Division of Immunology, Compton, Newbury RG20 7NN, United Kingdom
| | | | | | | |
Collapse
|