1
|
Lucas N, Tambe SS, Parate R, Hengne A, Rode CV, Athawale AA. Sustainable UV absorbing bio-plastic films by valorisation of humins and chitosan. Int J Biol Macromol 2025:143710. [PMID: 40316074 DOI: 10.1016/j.ijbiomac.2025.143710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/22/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
Humins, an inevitable bio-refinery waste by-product of sugar dehydration have been efficiently utilized for the first time for developing biodegradable thin films for UV shielding. The films were prepared from chitosan, and humins, a novel combination, aiming towards simultaneous utilization of marine and bio-refinery waste, rendering simple, effective, robust UV absorbing films. The structure-activity relationship of these films were elucidated with the help of different analytical techniques like X-ray diffraction, Fourier transform infrared spectroscopy, Thermogravimetric analysis, UV-vis spectroscopy, Atomic force microscopy, Scanning electron microscopy, Tensile testing, Contact angle measurements and water absorption studies. Intrinsic biodegradability was studied using fungi i.e. Aspergillus niger. Different feedstocks (corncob, rice husk, glucose and xylose) were explored for generating humins. Amongst them, humins derived from xylose were utilized for the preparation of the bio-plastic films of chitosan. The results revealed that, addition of 5.0 % humins was observed to be an optimum concentration yielding films with excellent UV absorption, mechanical properties, and biodegradability. The current work is in perfect alignment with sustainability and green chemistry as it ameliorates waste valorization (lignocellulosic and marine altogether). Further, its innovation stems from the first-hand use of humins for UV absorption, novel combination of biopolymers, use of green raw materials.
Collapse
Affiliation(s)
- Nishita Lucas
- Department of Chemistry, S.P. Pune University, Pune 411007, India; Chemical Engineering and Process Development Division, National Chemical Laboratory, Pune 411008, India
| | - Snehal S Tambe
- Department of Chemistry, S.P. Pune University, Pune 411007, India
| | - Roopa Parate
- Chemical Engineering and Process Development Division, National Chemical Laboratory, Pune 411008, India
| | - Amol Hengne
- Chemical Engineering and Process Development Division, National Chemical Laboratory, Pune 411008, India; Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research, 138634, Singapore
| | - C V Rode
- Chemical Engineering and Process Development Division, National Chemical Laboratory, Pune 411008, India.
| | | |
Collapse
|
2
|
Singh A, Ahuja A, Madan M, Singh D, Rastogi VK. Active packaging film of poly(lactic acid) incorporated with plant-based essential oils of Trachyspermum ammi as an antimicrobial agent and vanilla as an aroma corrector for waffles. Int J Biol Macromol 2024; 278:135086. [PMID: 39191339 DOI: 10.1016/j.ijbiomac.2024.135086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/08/2024] [Accepted: 08/24/2024] [Indexed: 08/29/2024]
Abstract
This study developed active packaging films of Polylactic acid incorporated with the plant-based essential oils of Trachyspermum ammi, T. ammi and Vanilla to package waffles, where the antimicrobial property was provided by T. ammi and its odor was masked by vanilla essential oil. Compared to conventional solvent-cast films of smaller sizes requiring a huge amount of solvents, bigger-size PLA-oil films with lower solvent demand were prepared by tape casting technique with 10, 30, and 50 wt% essential oil blends. Films were studied for their morphological, chemical, mechanical, barrier, and antimicrobial properties. The presence and time-bound release of volatile oils from the films was confirmed by infrared spectroscopy, with a continuous decrease of oils from the films till day 30. The plasticizing effect of oils in films was evidenced by decreased tensile strength and crystallinity. In contrast, an increase in elongation at break and water vapor permeability of oil films were also measured. Finally, when packed in PLA films containing 50 wt% blend of both oils, waffles shelf-life extended up to 30 days compared to 2 days for the neat PLA film, where Vanilla was found effective in masking the unpleasant odor of T.ammi as confirmed by sensory analysis.
Collapse
Affiliation(s)
- Anamika Singh
- Department of Pulp and Paper Technology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Arihant Ahuja
- Department of Pulp and Paper Technology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Manisha Madan
- Department of Pulp and Paper Technology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Dimple Singh
- Department of Pulp and Paper Technology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Vibhore Kumar Rastogi
- Department of Pulp and Paper Technology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
3
|
Tanwar M, Rani A, Gautam N, Talegaonkar S, Gupta RK. Essential oils loaded carboxymethylated Cassia fistula gum-based novel hydrogel films for wound healing. Int J Biol Macromol 2024; 278:134682. [PMID: 39153677 DOI: 10.1016/j.ijbiomac.2024.134682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
Carboxymethylated Cassia fistula gum (CCFG) and citric acid (CA) based wound healing film, (CCFG-CA) was developed using the solvent casting method. Glycerol was added as a plasticizing agent. The synthesized Carboxymethylated Cassia fistula gum cross-linked citric acid based hydrogel film (CCFG-CA) was evaluated morphologically, thermally, and structurally using FESEM, TGA, XRD and FTIR. Three essential oils (EO), rosemary (Rosmarinus officinalis), turmeric (Curcuma longa) and thuja (Thuja occidentalis L), known for antimicrobial and antioxidant activities, were loaded into the CCFG-CA film to develop essential oils loaded carboxymethylated Cassia fistula gum cross-linked citric acid based hydrogel film (CCFG-CA-EO). In vitro studies (MTT assay, disk diffusion assay, permeability tests and DPPH assay) confirm the biocompatibility, anti-oxidant and anti-microbial properties of the CCFG-CA-EO film. In vivo (wound healing studies on wistar rats and their histology) shows 99 % of wound healing and re-epithelialization in 14 days. Degradability (within 15 days), protein adsorption (12.05 μg/mL) and contact angle determination (69.43°ׄׄ ± 0.48) tests confirmed the potential of CCFG-CA-EO as an effective wound-healing material.
Collapse
Affiliation(s)
- Meenakshi Tanwar
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Archna Rani
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Namrata Gautam
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Sushama Talegaonkar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India.
| | - Rajinder K Gupta
- Department of Applied Chemistry, Delhi Technological University, Delhi, India.
| |
Collapse
|
4
|
Kumar H, Deshmukh RK, Gaikwad KK, Negi YS. Physicochemical characterization of antioxidant film based on ternary blend of chitosan and Tulsi-Ajwain essential oil for preserving walnut. Int J Biol Macromol 2024; 278:134880. [PMID: 39163953 DOI: 10.1016/j.ijbiomac.2024.134880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/28/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
This study focuses on changes in the physiochemical properties of chitosan film when incorporated with a blend of essential oils of Tulsi and Ajwain. The essential oil blend-loaded films showed a decrement in transparency. Tulsi essential oil decreased the moisture content, swelling capacity, and water solubility. However, adding Ajwain along with Tulsi essential oil led to a significant increase in these properties. Meanwhile, the water vapor transmission rate didn't change significantly due to non-polar constituents in Tulsi essential oil, except when only Ajwain essential oil was present. The mechanical properties showed that the tensile strength of films increased with the addition of Tulsi essential oil (14.95 MPa to 31.27 MPa) but decreased further with increasing Ajwain oil concentration in films (32.13 MPa to 15.89 MPa). On the other hand, an increment in percent elongation at break (8.26 % to 24.02 %) was observed due to the excellent plasticization effect of Ajwain essential oil. Antioxidant activity was observed for the Tulsi essential oil-containing films and increased significantly with adding Ajwain essential oil. Finally, walnuts were packed in the active film. The active film showed better antioxidant activity against the oxidation of oil in walnuts, which the FTIR of the packed product confirmed.
Collapse
Affiliation(s)
- Himanshu Kumar
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Ram Kumar Deshmukh
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Kirtiraj K Gaikwad
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| | - Yuvraj Singh Negi
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
5
|
Revutskaya N, Polishchuk E, Kozyrev I, Fedulova L, Krylova V, Pchelkina V, Gustova T, Vasilevskaya E, Karabanov S, Kibitkina A, Kupaeva N, Kotenkova E. Application of Natural Functional Additives for Improving Bioactivity and Structure of Biopolymer-Based Films for Food Packaging: A Review. Polymers (Basel) 2024; 16:1976. [PMID: 39065293 PMCID: PMC11280963 DOI: 10.3390/polym16141976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The global trend towards conscious consumption plays an important role in consumer preferences regarding both the composition and quality of food and packaging materials, including sustainable ones. The development of biodegradable active packaging materials could reduce both the negative impact on the environment due to a decrease in the use of oil-based plastics and the amount of synthetic preservatives. This review discusses relevant functional additives for improving the bioactivity of biopolymer-based films. Addition of plant, microbial, animal and organic nanoparticles into bio-based films is discussed. Changes in mechanical, transparency, water and oxygen barrier properties are reviewed. Since microbial and oxidative deterioration are the main causes of food spoilage, antimicrobial and antioxidant properties of natural additives are discussed, including perspective ones for the development of biodegradable active packaging.
Collapse
Affiliation(s)
- Natalia Revutskaya
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Ekaterina Polishchuk
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Ivan Kozyrev
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Liliya Fedulova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Valentina Krylova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Viktoriya Pchelkina
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Tatyana Gustova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Ekaterina Vasilevskaya
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Sergey Karabanov
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Anastasiya Kibitkina
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Nadezhda Kupaeva
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Elena Kotenkova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| |
Collapse
|
6
|
Lindi AM, Gorgani L, Mohammadi M, Hamedi S, Darzi GN, Cerruti P, Fattahi E, Moeini A. Fenugreek seed mucilage-based active edible films for extending fresh fruit shelf life: Antimicrobial and physicochemical properties. Int J Biol Macromol 2024; 269:132186. [PMID: 38723815 DOI: 10.1016/j.ijbiomac.2024.132186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024]
Abstract
Trigonella foenum-graecum, known as fenugreek, belongs to the leguminous family of wild growth in Western Asia, Europe, the Mediterranean, and Asia; its ripe seeds contain a pool of bioactive substances with great potential in the food industry and medicine. In this study, fenugreek seed mucilage (FSM) was extracted and characterized in its structural properties by X-ray diffraction, nuclear magnetic resonance, and high-performance liquid chromatography. Then, the applicability of FSM as an antimicrobial agent was demonstrated via the development of novel, active, edible FSM-based biofilms containing carboxymethyl cellulose and rosemary essential oil (REO). Incorporating REO in the biofilms brought about specific changes in Fourier-transform infrared spectra, affecting thermal degradation behavior. Scanning electron microscopy and atomic force microscopy morphography showed an even distribution of REO and smoother surfaces in the loaded films. Besides, the solubility tests evidenced a reduction in water solubility with increasing REO concentration from 1 to 3 wt%. The biological assay evidenced the antimicrobial activity of REO-loaded biofilms against Staphylococcus aureus and Escherichia coli. Finally, whole apples were dip-coated with FSM-based solutions to showcase future edible systems. The REO-loaded biofilms extended the shelf life of apples to 30 days, demonstrating their potential for sustainable and active coatings.
Collapse
Affiliation(s)
- Ali Mohammadi Lindi
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, 47148 Babol, Iran
| | - Leila Gorgani
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, 47148 Babol, Iran
| | - Maedeh Mohammadi
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, 47148 Babol, Iran
| | - Sepideh Hamedi
- Department of Bio-refinery, Faculty of New Technologies Engineering, Shahid Beheshti University, Tehran, Iran
| | - Ghasem Najafpour Darzi
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, 47148 Babol, Iran
| | - Pierfrancesco Cerruti
- Institute for Polymers, Composites and Biomaterials (IPCB) - CNR, Via Gaetano Previati, 1/E, 23900 Lecco, Italy
| | - Ehsan Fattahi
- Research Group of Fluid Dynamics, Chair of Brewing and Beverage Technology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Arash Moeini
- Research Group of Fluid Dynamics, Chair of Brewing and Beverage Technology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany.
| |
Collapse
|
7
|
Jastrzębska A, Kmieciak A, Gralak Z, Brzuzy K, Nowaczyk J, Cichosz M, Krzemiński MP, Szłyk E. Determination of Biogenic Amine Level Variations upon Storage, in Chicken Breast Coated with Edible Protective Film. Foods 2024; 13:985. [PMID: 38611289 PMCID: PMC11011730 DOI: 10.3390/foods13070985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
A new chitosan-based protective film containing rosemarinic acid (0.282% w/w) has been elaborated. The film was formed from a water-oil emulsion system and applied to poultry meat samples using a dip-coating technique. Various physicochemical parameters of the coatings, such as thickness, Young's modulus, elongation at break, water vapor transmission rates, and antioxidant activity, were tested with free-standing film samples peeled from a Petri dish. Compared to neat chitosan films obtained similarly, new films cast from the emulsion showed significantly better elasticity (Young's modulus was diminished from 1458 MPa to about 29 MPa). Additionally, barrier properties for moisture transition decreased from 7.3 to 5.8 g mm m-2 day-1 kPa-1. The coated poultry samples were subsequently evaluated in juxtaposition with uncoated ones in a storage test. Levels of selected biogenic amines (histamine, tyramine, tryptamine, phenylethylamine, putrescine, cadaverine, spermine, and spermidine), total bacterial count, and lipid oxidation levels in the meat samples were analyzed during storage at 4 °C (up to 96 h). The results obtained for the biogenic amines, total bacterial content, calculated biogenic amine index, and the ratio of spermidine to spermine in meat samples suggest the advantage of the proposed coatings with rosmarinic acid in protecting poultry meat against environmental factors and rapid spoilage.
Collapse
Affiliation(s)
- Aneta Jastrzębska
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, NCU in Toruń, 87-100 Toruń, Poland; (Z.G.); (K.B.); (E.S.)
| | - Anna Kmieciak
- Department of Organic Chemistry, Faculty of Chemistry, NCU in Toruń, 87-100 Toruń, Poland; (A.K.); (M.P.K.)
| | - Zuzanna Gralak
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, NCU in Toruń, 87-100 Toruń, Poland; (Z.G.); (K.B.); (E.S.)
| | - Kamil Brzuzy
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, NCU in Toruń, 87-100 Toruń, Poland; (Z.G.); (K.B.); (E.S.)
| | - Jacek Nowaczyk
- Department of Physical Chemistry and Polymer Physical Chemistry, Faculty of Chemistry, NCU in Toruń, 87-100 Toruń, Poland;
| | - Marcin Cichosz
- Department of Chemical Technology, Faculty of Chemistry, NCU in Toruń, 87-100 Toruń, Poland;
| | - Marek P. Krzemiński
- Department of Organic Chemistry, Faculty of Chemistry, NCU in Toruń, 87-100 Toruń, Poland; (A.K.); (M.P.K.)
| | - Edward Szłyk
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, NCU in Toruń, 87-100 Toruń, Poland; (Z.G.); (K.B.); (E.S.)
| |
Collapse
|
8
|
Khan S, Hashim SBH, Arslan M, Zhang K, Bilal M, Zhiyang C, Zhihua L, Tahir HE, Zhai X, Shishir MRI, Zou X. Berry wax improves the physico-mechanical, thermal, water barrier properties and biodegradable potential of chitosan food packaging film. Int J Biol Macromol 2024; 261:129821. [PMID: 38286371 DOI: 10.1016/j.ijbiomac.2024.129821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
Chitosan (CT) is extensively applied in developing food packaging films due to its non-toxic, biodegradable, and good film-forming properties. But CT-based single polymer film has issues with poor physico-mechanical, thermal, and light barrier properties. Therefore, this study aimed to incorporate natural berry wax (BYW) at various concentrations (5 %, 10 %, 15 %, 20 %, and 25 %, wt%) into CT to improve the quality characteristics of CT film. The microstructure of the film matrix was effectively proven to be compatible with BYW through the utilization of SEM, XRD, and FTIR spectroscopy. The results demonstrated that the quality parameters of CT/BYW composite film were significantly affected by the increasing concentration of BYW. The integration of BYW with a concentration of 5 % to 20 % to CT substantially improved the film characteristics by reducing moisture content, swelling power, solubility, and water vapor permeability, increasing the film's opacity, thermal stability, and tensile strength as well as enhancing the biodegradable potential. Furthermore, CT/BYW films showed higher thermal stability and UV and visible light resistance compared to pure CT film. Taken together, the CT film with 20 % berry wax showed the best film characteristics and biodegradable potential, which could be promising for enhancing the shelf-life of various food products.
Collapse
Affiliation(s)
- Suliman Khan
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Sulafa B H Hashim
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Muhammad Arslan
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Ke Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Muhammad Bilal
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Chen Zhiyang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Li Zhihua
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Haroon Elrasheid Tahir
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xiaodong Zhai
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | | | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, China.
| |
Collapse
|
9
|
Liu Z, Zhao M, Zhang Z, Li C, Xia G, Shi H, Liu Z. Chitosan-based edible film incorporated with wampee (Clausena lansium) seed essential oil: Preparation, characterization and biological activities. Int J Biol Macromol 2023; 253:127683. [PMID: 37890311 DOI: 10.1016/j.ijbiomac.2023.127683] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/28/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Chitosan (Ch)-based edible composite films were prepared by incorporating blending wampee seed essential oil (WSEO) into a Ch matrix, using the incorporation ratio as a variable. The physical, mechanical properties, structure morphology and rheological properties were determined using tensile strength (TS), elongation at break (EB), water vapor permeability (WVP) tests together with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) observations and apparent viscosity and shear rate. In addition, the antimicrobial, antioxidant activities were investigated by the DPPH & ABTS radicals scavenging and inhibition zone assays, respectively. Compared with Ch, the incorporation of WSEO significantly decreased (P < 0.05) the TS, EB, and WVP values, especially when the WSEO ratio reached 1.0 % or higher. Meanwhile, the films exhibited greatly improved visible light barrier performance after WSEO incorporation. Both FTIR spectroscopy and SEM observations reflected the crosslinking between WSEO and Ch. Meanwhile, the composite films demonstrated smaller particle size and weaker rheological viscosities, which enhanced the antimicrobial and antioxidant capabilities when compared with those of Ch. Therefore, this study suggested that WSEO incorporated with Ch is an effective ingredient for the preparation of edible films with enhanced physicochemical and biological properties.
Collapse
Affiliation(s)
- Zhiqing Liu
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Biological Resource of Ministry of Education, Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou 570228, China
| | - Mantong Zhao
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China; Key Laboratory of Tropical Biological Resource of Ministry of Education, Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou 570228, China
| | - Zhiman Zhang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Chuan Li
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China; Key Laboratory of Tropical Biological Resource of Ministry of Education, Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou 570228, China
| | - Guanghua Xia
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China; Key Laboratory of Tropical Biological Resource of Ministry of Education, Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou 570228, China
| | - Haohao Shi
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China; Key Laboratory of Tropical Biological Resource of Ministry of Education, Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou 570228, China
| | - Zhongyuan Liu
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China; Key Laboratory of Tropical Biological Resource of Ministry of Education, Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou 570228, China.
| |
Collapse
|
10
|
Usha ZR, Iqbal O, Aslam MA, Ali S, Liu C, Li N, Zhang S, Wang Z. Pulp waste extracted reinforced powder incorporated biodegradable chitosan composite film for enhancing red grape shelf-life. Int J Biol Macromol 2023; 252:126375. [PMID: 37598829 DOI: 10.1016/j.ijbiomac.2023.126375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/06/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Chitosan (CS) is widely used as a natural biopolymer due to its semi-crystalline structure, good film-forming properties, and easy availability. CS-based composite films are widely used in industry, particularly in the food sector as active food packaging. Despite all of these advantages, their wide range of applications are constrained by poor mechanical properties. Therefore, this work introduced refined bamboo cellulose powder (RBCP), a reinforcing material that is extracted from waste bamboo pulp and applied to CS composite films to enhance their mechanical and physicochemical properties. The chemical composition and crystallinity properties of CS composite films with RBCP addition were observed by ATR-FTIR and XRD. The homogeneous and heterogeneous surfaces of the RBCP incorporated films before biodegradation and after biodegradation (20 days) were observed by scanning electron microscopy (SEM). The increase in reinforcing RBCP materials from 0.00 to 5.00 % resulted in an increase in tensile strength for CS/RBCP films from 2.9 to 8.3 MPa. The application of the CS/RBCP/5 composite film as red grapefruit storage was also investigated, which performed much better than commercial plastic and control CS films with 92.8 and 88.6 % viability of S. aureus and E. coli bacteria. Overall achieved properties demonstrated strong potential for usage as active packaging materials to preserve and lengthen the shelf life of red grapefruits.
Collapse
Affiliation(s)
- Zubaida Rukhsana Usha
- Institute of Solid-State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 361005, China.
| | - Obaid Iqbal
- Institute of Solid-State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Muhammad Adnan Aslam
- Institute of Solid-State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Sarmad Ali
- Institute of Solid-State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Cui Liu
- Institute of Solid-State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Nian Li
- Institute of Solid-State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Shudong Zhang
- Institute of Solid-State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | - Zhenyang Wang
- Institute of Solid-State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
11
|
Gulzar S, Tagrida M, Prodpran T, Li L, Benjakul S. Packaging films based on biopolymers from seafood processing wastes: Preparation, properties, and their applications for shelf-life extension of seafoods-A comprehensive review. Compr Rev Food Sci Food Saf 2023; 22:4451-4483. [PMID: 37680068 DOI: 10.1111/1541-4337.13230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023]
Abstract
Biopolymers derived from seafood processing byproducts are used to prepare active and biodegradable films as the packaging of food products. These films possess bioactivities to enhance the shelf life of packed foods by proactively releasing antimicrobial/antioxidative agents into the foods and providing sufficient barrier properties. Seafood processing byproducts are an eminent source of valuable compounds, including biopolymers and bioactive compounds. These biopolymers, including collagen, gelatin, chitosan, and muscle proteins, could be used to prepare robust and sustainable food packaging with some antimicrobial agents or antioxidants, for example, plant extracts rich in polyphenols or essential oils. These active packaging are not only biodegradable but also prevent the deterioration of packed foods caused by spoilage microorganisms as well as chemical deterioration. Seafood discards have a promising benefit for the development of environmentally friendly food packaging systems via the appropriate preparation methods or techniques. Therefore, the green packaging from seafood leftover can be better exploited and replace the synthetic counterpart.
Collapse
Affiliation(s)
- Saqib Gulzar
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Food Technology, Engineering and Science, University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Mohamed Tagrida
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Thummanoon Prodpran
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Center of Excellence in Bio-based Materials and Packaging Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Li Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Food and Nutrition, Kyung Hee Unibersity, Seoul, Republic of Korea
| |
Collapse
|
12
|
Tilwani YM, Lakra AK, Domdi L, Arul V. Preparation and functional characterization of the bio-composite film based on chitosan/polyvinyl alcohol blended with bacterial exopolysaccharide EPS MC-5 having antioxidant activities. Int J Biol Macromol 2023; 245:125496. [PMID: 37355066 DOI: 10.1016/j.ijbiomac.2023.125496] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
In this study, the plate casting method was successfully used to prepare biocomposite films containing EPS from probiotic Enterococcus faecium MC-5 in combination with PVA and chitosan. The findings demonstrated that EPS was uniformly distributed in the film matrices and significantly improved the physicochemical properties of the resulting composite films. The development of intermolecular connections between the polymers was detected by high tensile strength and low water vapour transmission rate. EPS plays an important role in limiting the passage of UV- and visible light radiations through the films. FT-IR analysis was used to determine the molecular compatibility between the functional groups of the blended films made up of chitosan-EPS and PVA-EPS. The TGA results showed that composite films have a significant degree of thermal stability. The presence of amorphous peaks in the composite film was confirmed by XRD analysis. The EPS blended films displayed a greater antioxidant property than the PVA and chitosan films, as determined by DPPH and hydroxyl radical scavenging activities. Interestingly, the EPS-derived films showed enhanced metal chelation activity and strong antibacterial properties against Listeria monocytogenes and Staphylococcus aureus. EPS-based composite films performed better than chitosan and PVA films in terms of degradation rate. The overall functional characteristics of the EPS blended films suggested that they could be used as a packaging material to replace or reduce the use of conventional petroleum-based packaging materials.
Collapse
Affiliation(s)
- Younus Mohd Tilwani
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry Pin code: 605014, India
| | - Avinash Kant Lakra
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry Pin code: 605014, India
| | - Latha Domdi
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry Pin code: 605014, India
| | - Venkatesan Arul
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry Pin code: 605014, India.
| |
Collapse
|
13
|
Shektaei ZA, Pourehsan MM, Bagheri V, Ghasempour Z, Mahmoudzadeh M, Ehsani A. Physico-chemical and antimicrobial characteristics of novel biodegradable films based on gellan and carboxymethyl cellulose containing rosemary essential oil. Int J Biol Macromol 2023; 234:122944. [PMID: 36549625 DOI: 10.1016/j.ijbiomac.2022.12.163] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/29/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
The purpose of the current investigation was to produce a novel functional composite biodegradable film by Gellan (Gla) and Carboxymethyl cellulose (CMC) biopolymers containing rosemary essential oils (REO) and evaluate their physicochemical and antimicrobial features. The film containing 5 % REO, due to its better mechanical properties (UTS = 13.44 ± 0.30 Mpa and SB = 21.14 ± 1.15 %) compared to other emulsified samples containing REO, was selected as the optimal film. Furthermore, it had less water vapor permeability (WVP = 6.60 ± 0.31 (g/mhPa) × 10-8) in comparison to control sample (8.21 ± 0.10 (g/mhPa) × 10-8) and the best color properties among the samples. The Scanning Electron Microscopy (SEM) images didn't show the phenomenon of agglomeration and point accumulation of REO. Also, 5 % of REO contributed to the increased compactness of the film in comparison to the film without the REO. Based on the results of Fourier-transform infrared spectroscopy (FTIR) spectra, no new chemical bonds were created by adding REO to the biopolymer substrate, and the REO was well dispersed and distributed among the Gla-CMC chains throughout the film substrate. Adding 5 % REO showed antioxidant effects. Considering the antimicrobial tests, all films containing REO had antimicrobial effects against the Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, and Pseudomonas fluorescens bacterial strains.
Collapse
Affiliation(s)
- Zahra Akbari Shektaei
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Mahdi Pourehsan
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Bagheri
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. BOX 51666-16471, Tabriz, Iran
| | - Zahra Ghasempour
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Mahmoudzadeh
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ehsani
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Chitosan nanocarriers containing essential oils as a green strategy to improve the functional properties of chitosan: A review. Int J Biol Macromol 2023; 236:123954. [PMID: 36898453 DOI: 10.1016/j.ijbiomac.2023.123954] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/02/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023]
Abstract
Large amounts of agricultural waste, especially marine product waste, are produced annually. These wastes can be used to produce compounds with high-added value. Chitosan is one such valuable product that can be obtained from crustacean wastes. Various biological activities of chitosan and its derivatives, especially antimicrobial, antioxidant, and anticancer properties, have been confirmed by many studies. The unique characteristics of chitosan, especially chitosan nanocarriers, have led to the expansion of using chitosan in various sectors, especially in biomedical sciences and food industries. On the other hand, essential oils, known as volatile and aromatic compounds of plants, have attracted the attention of researchers in recent years. Like chitosan, essential oils have various biological activities, including antimicrobial, antioxidant, and anticancer. In recent years, one of the ways to improve the biological properties of chitosan is to use essential oils encapsulated in chitosan nanocarriers. Among the various biological activities of chitosan nanocarriers containing essential oils, most studies conducted in recent years have been in the field of antimicrobial activity. It was documented that the antimicrobial activity was increased by reducing the size of chitosan particles in the nanoscale. In addition, the antimicrobial activity was intensified when essential oils were in the structure of chitosan nanoparticles. Essential oils can increase the antimicrobial activity of chitosan nanoparticles with synergistic effects. Using essential oils in the structure of chitosan nanocarriers can also improve the other biological properties (antioxidant and anticancer activities) of chitosan and increase the application fields of chitosan. Of course, using essential oils in chitosan nanocarriers for commercial use requires more studies, including stability during storage and effectiveness in real environments. This review aims to overview recent studies on the biological effects of essential oils encapsulated in chitosan nanocarriers, with notes on their biological mechanisms.
Collapse
|
15
|
Khanzada B, Mirza B, Ullah A. Chitosan based bio-nanocomposites packaging films with unique mechanical and barrier properties. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2022.101016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
A Review on Antimicrobial Packaging for Extending the Shelf Life of Food. Processes (Basel) 2023. [DOI: 10.3390/pr11020590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Food packaging systems are continually impacted by the growing demand for minimally processed foods, changing eating habits, and food safety risks. Minimally processed foods are prone to the growth of harmful microbes, compromising quality and safety. As a result, the need for improved food shelf life and protection against foodborne diseases alongside consumer preference for minimally processed foods with no or lesser synthetic additives foster the development of innovative technologies such as antimicrobial packaging. It is a form of active packaging that can release antimicrobial substances to suppress the activities of specific microorganisms, thereby improving food quality and safety during long-term storage. However, antimicrobial packaging continues to be a very challenging technology. This study highlights antimicrobial packaging concepts, providing different antimicrobial substances used in food packaging. We review various types of antimicrobial systems. Emphasis is given to the effectiveness of antimicrobial packaging in various food applications, including fresh and minimally processed fruit and vegetables and meat and dairy products. For the development of antimicrobial packaging, several approaches have been used, including the use of antimicrobial sachets inside packaging, packaging films, and coatings incorporating active antimicrobial agents. Due to their antimicrobial activity and capacity to extend food shelf life, regulate or inhibit the growth of microorganisms and ultimately reduce the potential risk of health hazards, natural antimicrobial agents are gaining significant importance and attention in developing antimicrobial packaging systems. Selecting the best antimicrobial packaging system for a particular product depends on its nature, desired shelf life, storage requirements, and legal considerations. The current review is expected to contribute to research on the potential of antimicrobial packaging to extend the shelf life of food and also serves as a good reference for food innovation information.
Collapse
|
17
|
Stefanowska K, Woźniak M, Dobrucka R, Ratajczak I. Chitosan with Natural Additives as a Potential Food Packaging. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1579. [PMID: 36837209 PMCID: PMC9962944 DOI: 10.3390/ma16041579] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Recently, the development of materials based on natural polymers have been observed. This is the result of increasing environmental degradation, as well as increased awareness and consumer expectations. Many industries, especially the packaging industry, face challenges resulting from legal regulations. Chitin is the most common biopolymer right after cellulose and is used to produce chitosan. Due to the properties of chitosan, such as non-toxicity, biocompatibility, as well as antimicrobial properties, chitosan-based materials are used in many industries. Many studies have been conducted to determine the suitability of chitosan materials as food packaging, and their advantages and limitations have been identified. Thanks to the possibility of modifying the chitosan matrix by using natural additives, it is possible to strengthen the antioxidant and antimicrobial activity of chitosan films, which means that, in the near future, chitosan-based materials will be a more environmentally friendly alternative to the plastic packaging used so far. The article presents literature data on the most commonly used natural additives, such as essential oils, plant extracts, or polysaccharides, and their effects on antimicrobial, antioxidant, mechanical, barrier, and optical properties. The application of chitosan as a natural biopolymer in food packaging extends the shelf-life of various food products while simultaneously reducing the use of synthetic plastics, which in turn will have a positive impact on the natural environment. However, further research on chitosan and its combinations with various materials is still needed to extent the application of chitosan in food packaging and bring its application to industrial levels.
Collapse
Affiliation(s)
- Karolina Stefanowska
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland
| | - Magdalena Woźniak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland
| | - Renata Dobrucka
- Department of Industrial Products and Packaging Quality, Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61875 Poznań, Poland
| | - Izabela Ratajczak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland
| |
Collapse
|
18
|
Mirsharifi SM, Sami M, Jazaeri M, Rezaei A. Production, characterization, and antimicrobial activity of almond gum/polyvinyl alcohol/chitosan composite films containing thyme essential oil nanoemulsion for extending the shelf-life of chicken breast fillets. Int J Biol Macromol 2023; 227:405-415. [PMID: 36563800 DOI: 10.1016/j.ijbiomac.2022.12.183] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
In this study, thyme essential oil (TEO) nanoemulsion was immobilized within composite films based on almond gum (AG), polyvinyl alcohol (PVA), and chitosan (CS). The physical, mechanical, water barrier, microstructural and antimicrobial properties of composite films were assessed. Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis confirmed the intermolecular interactions in the composite film matrix. The results indicated that the incorporation of TEO into the composite films increased thickness, moisture content, and water vapor permeability, while it reduced light transmittance and transparency value. The antimicrobial activity of films against gram-negative and gram-positive bacteria was tested using a disc diffusion method. The effect of composite on the microbiological properties of chicken breast fillets was investigated during refrigerated storage for 21 days. The microbial populations of total mesophilic, psychrotrophic, and lactic acid bacteria of the samples that were coated with the composite containing TEO were lower than the permitted limit after 21 days while for blank samples they were higher than 7 log CFU/g after 7 days which is considered as the maximum acceptable total count limit. Results disclosed that AG/PVA/CS composite films containing TEO nanoemulsion can be applied as eco-friendly active food packaging to enhance the shelf-life of food products.
Collapse
Affiliation(s)
- Seyedeh Maryam Mirsharifi
- Department of Food Science and Technology, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Sami
- Department of Food Science and Technology, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mojtaba Jazaeri
- Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
19
|
Casalini S, Giacinti Baschetti M. The use of essential oils in chitosan or cellulose-based materials for the production of active food packaging solutions: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1021-1041. [PMID: 35396735 PMCID: PMC10084250 DOI: 10.1002/jsfa.11918] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/21/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
In recent decades, interest in sustainable food packaging systems with additional functionality, able to increase the shelf life of products, has grown steadily. Following this trend, the present review analyzes the state of the art of this active renewable packaging. The focus is on antimicrobial systems containing nanocellulose and chitosan, as support for the incorporation of essential oils. These are the most sustainable and readily available options to produce completely natural active packaging materials. After a brief overview of the different active packaging technologies, the main features of nanocellulose, chitosan, and of the different essential oils used in the field of active packaging are introduced and described. The latest findings about the nanocellulose- and chitosan-based active packaging are then presented. The antimicrobial effectiveness of the different solutions is discussed, focusing on their effect on other material properties. The effect of the different inclusion strategies is also reviewed considering both in vivo and in vitro studies, in an attempt to understand more promising solutions and possible pathways for further development. In general, essential oils are very successful in exerting antimicrobial effects against the most diffused gram-positive and gram-negative bacteria, and affecting other material properties (tensile strength, water vapor transmission rate) positively. Due to the wide variety of biopolymer matrices and essential oils available, it is difficult to create general guidelines for the development of active packaging systems. However, more attention should be dedicated to sensory analysis, release kinetics, and synergetic action of different essential oils to optimize the active packaging on different food products. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Sara Casalini
- Department of Civil, Chemical, Environmental and Materials Engineering‐DICAMUniversity of BolognaBolognaItaly
| | - Marco Giacinti Baschetti
- Department of Civil, Chemical, Environmental and Materials Engineering‐DICAMUniversity of BolognaBolognaItaly
| |
Collapse
|
20
|
Venkatachalam K, Rakkapao N, Lekjing S. Physicochemical and Antimicrobial Characterization of Chitosan and Native Glutinous Rice Starch-Based Composite Edible Films: Influence of Different Essential Oils Incorporation. MEMBRANES 2023; 13:membranes13020161. [PMID: 36837664 PMCID: PMC9967404 DOI: 10.3390/membranes13020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 05/12/2023]
Abstract
Biopolymer-based edible packaging is an effective way of preserving food while protecting the environment. This study developed an edible composite film using chitosan and native glutinous rice starch (NGRS) and incorporated essential oils (EOs) such as garlic, galangal, turmeric, and kaffir lime at fixed concentrations (0.312 mg/mL) to test its physicochemical and antimicrobial properties. The EO-added films were found to significantly improve the overall color characteristics (lightness, redness, and yellowness) as compared to the control film. The control films had higher opacity, while the EO-added films had slightly reduced levels of opacity and produced clearer films. The tensile strength and elongation at break values of the films varied among the samples. The control samples had the highest tensile strength, followed by the turmeric EO-added samples. However, the highest elongation at break value was found in the galangal and garlic EO-added films. The Young's modulus results showed that garlic EO and kaffir lime EO had the lowest stiffness values. The total moisture content and water vapor permeability were very low in the garlic EO-added films. Despite the differences in EOs, the Fourier-transform infrared spectroscopy (FTIR) patterns of the tested films were similar among each other. Microstructural observation of the surface and cross-section of the tested edible film exhibited smooth and fissureless patterns, especially in the EO-added films, particularly in the galangal and kaffir lime EO-added films. The antimicrobial activity of the EO-added films was highly efficient against various gram-positive and gram-negative pathogens. Among the EO-added films, the garlic and galangal EO-added films exhibited superior inhibitory activity against Escherichia coli, Salmonella Typhimurium, Listeria monocytogenes, Staphylococcus aureus, and Pseudomonas fluorescence, and turmeric and kaffir lime EO-added films showed potential antimicrobial activity against Lactobacillus plantarum and L. monocytogenes. Overall, this study concludes that the addition of EOs significantly improved the physicochemical and antimicrobial properties of the CH-NGRS-based edible films, making them highly suitable for food applications.
Collapse
Affiliation(s)
- Karthikeyan Venkatachalam
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Makham Tia, Mueang, Surat Thani 84000, Thailand
| | - Natthida Rakkapao
- Department of Applied Chemistry, Faculty of Science and Industrial Technology, Prince of Songkla University, Surat Thani Campus, Makham Tia, Mueang, Surat Thani 84000, Thailand
- Center of Excellence in Membrane Science and Technology, Faculty of Science, Prince of Songkla University, Hat Yai Campus, Hat Yai, Songkhla 90110, Thailand
| | - Somwang Lekjing
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Makham Tia, Mueang, Surat Thani 84000, Thailand
- Correspondence:
| |
Collapse
|
21
|
Chitosan-Based Green Pea ( Pisum sativum L.) Pod Extract Gel Film: Characterization and Application in Food Packaging. Gels 2023; 9:gels9020077. [PMID: 36826247 PMCID: PMC9957094 DOI: 10.3390/gels9020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
This work focuses on studying the preparation, characterization (physical, mechanical, optical, and morphological properties as well as antioxidant and antimicrobial activities) and packaging application of chitosan (CH)-based gel films containing varying empty green pea pod extract (EPPE) concentrations (0, 1, 3, and 5% w/w). The experiments revealed that adding EPPE to CH increased the thickness (from 0.132 ± 0.08 to 0.216 ± 0.08 mm), density (from 1.13 ± 0.02 to 1.94 ± 0.02 g/cm3), and opacity (from 0.71 ± 0.02 to 1.23 ± 0.04), while decreasing the water vapour permeability, water solubility, oil absorption ratio, and whiteness index from 2.34 to 1.08 × 10-10 g-1 s-1 pa-1, from 29.40 ± 1.23 to 18.75 ± 1.94%, from 0.31 ± 0.006 to 0.08 ± 0.001%, and from 88.10 ± 0.43 to 77.53 ± 0.48, respectively. The EPPE films had better tensile strength (maximum of 26.87 ± 1.38 MPa), elongation percentage (maximum of 58.64 ± 3.00%), biodegradability (maximum of 48.61% after 3 weeks), and migration percentages than the pure CH-gel film. With the addition of EPPE, the antioxidant and antibacterial activity of the film improved. SEM revealed that as EPPE concentration increased, agglomerates formed within the films. Moreover, compared to control samples, packing corn oil in CH-based EPPE gel films slowed the rise of thiobarbituric acid and peroxide values. As an industrial application, CH-based EPPE films have the potential to be beneficial in food packaging.
Collapse
|
22
|
Fabrication and Evaluation of Basil Essential Oil-Loaded Halloysite Nanotubes in Chitosan Nanocomposite Film and Its Application in Food Packaging. Antibiotics (Basel) 2022; 11:antibiotics11121820. [PMID: 36551477 PMCID: PMC9774598 DOI: 10.3390/antibiotics11121820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Increasing health concerns regarding the use of plasticware have led to the development of ecofriendly biodegradable packaging film from natural polymer and food additives. In the present study, basil essential oil (BEO) loaded halloysite nanotubes (HNTs) composite films were synthesized using a solution casting method. The effects of BEO and nanotube concentration on the mechanical, physical, structural, barrier, and antioxidant properties of films were evaluated. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) demonstrated well-dispersed HNTs and BEO in tailored composite films. The addition of BEO in Chitosan (Ch) film caused darkening of the film color; furthermore, the incorporation of HNTs in varied concentrations increased opaqueness in Ch/BEO film. The Ch/BEO film, upon adding HNTs 5-30 wt%, exhibited a corresponding increase in the film thickness (0.108-0.135 mm) when compared with the Ch/BEO film alone (0.081 mm). The BEO-loaded HNTs composite films displayed reduced moisture content and characteristic barrier and UV properties. The Ch/BEO film with 15 wt% HNTs was found to have enhanced antioxidant activity. The Ch/BEO/HNTs composite also managed to prevent broccoli florets from losing weight and firmness during storage. The enhanced barrier and antioxidant qualities of the nanocomposite film suggest its potential application in the food processing and packaging sector. This is the first ever report on the fabrication of nanocomposite film using BEO and HNTs for food packaging. The low production cost and ecofriendly approach make the film acceptable for further research and commercialization thereafter.
Collapse
|
23
|
Elian C, Andaloussi SA, Moilleron R, Decousser JW, Boyer C, Versace DL. Biobased polymer resources and essential oils: a green combination for antibacterial applications. J Mater Chem B 2022; 10:9081-9124. [PMID: 36326108 DOI: 10.1039/d2tb01544g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To fight nosocomial infections, the excessive use of antibiotics has led to the emergence of multidrug-resistant microorganisms, which are now considered a relevant public health threat by the World Health Organization. To date, most antibacterial systems are based on the use of petro-sourced polymers, but the global supplies of these resources are depleting. Besides, silver NPs are widely accepted as the most active biocide against a wide range of bacterial strains but their toxicity is an issue. The growing interest in natural products has gained increasing interest in the last decade. Therefore, the design of functional antibacterial materials derived from biomass remains a significant challenge for the scientific community. Consequently, attention has shifted to naturally occurring substances such as essential oils (EOs), which are classified as Generally Recognized as Safe (GRAS). EOs can offer an alternative to the common antimicrobial agents as an inner solution or biocide agent to inhibit the resistance mechanism. Herein, this review not only aims at providing developments in the antibacterial modes of action of EOs against various bacterial strains and the recent advances in genomic and proteomic techniques for the elucidation of these mechanisms but also presents examples of biobased polymer resource-based EO materials and their antibacterial activities. Especially, we describe the antibacterial properties of biobased polymers, e.g. cellulose, starch, chitosan, PLA PHAs and proteins, associated with EOs (cinnamon (CEO), clove (CLEO), bergamot (BEO), ginger (GEO), lemongrass (LEO), caraway (CAEO), rosemary (REO), Eucalyptus globulus (EGEO), tea tree (TTEO), orange peel (OPEO) and apricot (Prunus armeniaca) kernel (AKEO) essential oils). Finally, we discuss the influence of EOs on the mechanical strength of bio-based materials.
Collapse
Affiliation(s)
- Christine Elian
- Institut de Chimie et des Matériaux Paris-Est (ICMPE) - UMR7182-CNRS-UPEC, Department C3M, Team BioM&M's, 2-8 rue Henri Dunant, 94320 Thiais, France. .,Université Paris-Est Créteil (UPEC), Laboratoire Eau, Environnement, Systèmes Urbains (LEESU), UMR-MA 102, 61 avenue Général de Gaulle, 94010 Créteil Cedex, France
| | - Samir Abbad Andaloussi
- Université Paris-Est Créteil (UPEC), Laboratoire Eau, Environnement, Systèmes Urbains (LEESU), UMR-MA 102, 61 avenue Général de Gaulle, 94010 Créteil Cedex, France
| | - Régis Moilleron
- Université Paris-Est Créteil (UPEC), Laboratoire Eau, Environnement, Systèmes Urbains (LEESU), UMR-MA 102, 61 avenue Général de Gaulle, 94010 Créteil Cedex, France
| | - Jean-Winoc Decousser
- Department of Bacteriology and Infection Control, University Hospital Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France.,EA 7380 Dynamyc Université Paris - Est Créteil (UPEC), Ecole nationale vétérinaire d'Alfort (EnvA), Faculté de Médecine de Créteil, Créteil, 1 rue Gustave Eiffel, 94000 Créteil, France
| | - Cyrille Boyer
- Australian Center for Nanomedicine (ACN), Cluster for Advanced Macromolecular Design, School of Chemical Engineering, UNSW Sydney, Australia
| | - Davy-Louis Versace
- Institut de Chimie et des Matériaux Paris-Est (ICMPE) - UMR7182-CNRS-UPEC, Department C3M, Team BioM&M's, 2-8 rue Henri Dunant, 94320 Thiais, France.
| |
Collapse
|
24
|
Kumar H, Ahuja A, Kadam AA, Rastogi VK, Negi YS. Antioxidant Film Based on Chitosan and Tulsi Essential Oil for Food Packaging. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Wu H, Ao X, Liu J, Zhu J, Bi J, Hou H, Hao H, Zhang G. Functional Chitosan-Based Composite Film Incorporated with 3-(Methylthio) Propyl Isothiocyanate/α-Cyclodextrin Inclusion Complex for Chicken Meat Preservation. Polymers (Basel) 2022; 14:4655. [PMID: 36365646 PMCID: PMC9658049 DOI: 10.3390/polym14214655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
The 3-(Methylthio) propyl isothiocyanate (MTPITC)-loaded inclusion complex prepared by α-cyclodextrin (α-CD) was incorporated into chitosan (CS) film to fabricate a packaging material for fresh chicken meat preservation. Scanning electron microscope images indicated homogenous dispersion of the MTPITC-α-CD in CS polymer. Fourier-transform infrared and X-ray diffraction techniques revealed that MTPITC-α-CD was incorporated into the CS film matrix by the physical interactions. The introduction of MTPITC-α-CD improved the UV-vis light-blocking ability, with a slight loss of transparency. Although the water solubility and water vapor barrier capacity were not significantly influenced by the addition of MTPITC-α-CD, the antioxidant attribute was significantly enhanced. The CS-MTPITC-α-CD film displayed obvious and sustained suppressive effects against Salmonella typhimurium, with the inhibition zone diameters of 14.7 mm at 12 h and 7.3 mm at 24 h, respectively. Moreover, the quality index analysis indicated that the CS-MTPITC-α-CD film-wrapped fresh chicken, during refrigerated storage, exhibited better preservative efficacy than the control groups, with the total viable counts of 6.5 Log CFU/g, total volatile base nitrogen of 8.4 mg/100 g, pH of 6.6, thiobarbituric acid-reactive substances of 0.2 mg/kg, and the sensory score of 5 at day 16. Collectively, these results suggest that CS-MTPITC-α-CD film is a prospective packaging candidate for delaying the quality deterioration of chicken meat.
Collapse
Affiliation(s)
- Hongyan Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Liaoning Key Laboratory for Aquatic Processing Quality and Safety, Dalian 116034, China
| | - Xinying Ao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jianan Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Junya Zhu
- Jinkui Food Science and Technology Corporation, Dalian 116033, China
| | - Jingran Bi
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Liaoning Key Laboratory for Aquatic Processing Quality and Safety, Dalian 116034, China
| | - Hongman Hou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Liaoning Key Laboratory for Aquatic Processing Quality and Safety, Dalian 116034, China
| | - Hongshun Hao
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Gongliang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Liaoning Key Laboratory for Aquatic Processing Quality and Safety, Dalian 116034, China
| |
Collapse
|
26
|
Maurizzi E, Bigi F, Quartieri A, De Leo R, Volpelli LA, Pulvirenti A. The Green Era of Food Packaging: General Considerations and New Trends. Polymers (Basel) 2022; 14:polym14204257. [PMID: 36297835 PMCID: PMC9610407 DOI: 10.3390/polym14204257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, academic research and industries have gained awareness about the economic, environmental, and social impacts of conventional plastic packaging and its disposal. This consciousness has oriented efforts towards more sustainable materials such as biopolymers, paving the way for the “green era” of food packaging. This review provides a schematic overview about polymers and blends of them, which are emerging as promising alternatives to conventional plastics. Focus was dedicated to biopolymers from renewable sources and their applications to produce sustainable, active packaging with antimicrobial and antioxidant properties. In particular, the incorporation of plant extracts, food-waste derivatives, and nano-sized materials to produce bio-based active packaging with enhanced technical performances was investigated. According to recent studies, bio-based active packaging enriched with natural-based compounds has the potential to replace petroleum-derived materials. Based on molecular composition, the natural compounds can diversely interact with the native structure of the packaging materials, modulating their barriers, optical and mechanical performances, and conferring them antioxidant and antimicrobial properties. Overall, the recent academic findings could lead to a breakthrough in the field of food packaging, opening the gates to a new generation of packaging solutions which will be sustainable, customised, and green.
Collapse
Affiliation(s)
- Enrico Maurizzi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence:
| | - Francesco Bigi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Andrea Quartieri
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Riccardo De Leo
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Luisa Antonella Volpelli
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Interdepartmental Research Centre for the Improvement of Agro-Food Biological Resources (BIOGEST-SITEIA), University of Modena and Reggio Emilia, 42124 Reggio Emilia, Italy
| | - Andrea Pulvirenti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Interdepartmental Research Centre for the Improvement of Agro-Food Biological Resources (BIOGEST-SITEIA), University of Modena and Reggio Emilia, 42124 Reggio Emilia, Italy
| |
Collapse
|
27
|
Bangar SP, Whiteside WS, Dunno KD, Cavender GA, Dawson P. Fabrication and characterization of active nanocomposite films loaded with cellulose nanocrystals stabilized Pickering emulsion of clove bud oil. Int J Biol Macromol 2022; 224:1576-1587. [DOI: 10.1016/j.ijbiomac.2022.10.243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
|
28
|
A Bioactive Chitosan-Based Film Enriched with Benzyl Isothiocyanate/α-Cyclodextrin Inclusion Complex and Its Application for Beef Preservation. Foods 2022; 11:foods11172687. [PMID: 36076872 PMCID: PMC9455720 DOI: 10.3390/foods11172687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022] Open
Abstract
A bioactive packaging material based on chitosan (CS) incorporated with benzyl isothiocyanate (BITC) and α−cyclodextrin (α−CD) was fabricated to evaluate its preservative effects on fresh beef stored at 4 °C for 12 d according to the quality analysis. The Fourier-transform infrared (FTIR) spectrum revealed that the major structural moiety of BITC was embedded in the cavity of α−CD, except for the thiocyanate group. FTIR and X-ray diffraction analysis further verified that intermolecular interactions were formed between the BITC−α−CD and CS film matrix. The addition of BITC−α−CD decreased the UV light transmittance of pure CS film to lower than 63% but still had enough transparency for observing packaged items. The CS−based composite film displayed a sustainable antibacterial capacity and an enhanced antioxidant activity. Moreover, the total viable counts, total volatile base nitrogen, pH, thiobarbituric acid–reactive substances, and sensory evaluation of the raw beef treated with the CS−based composite film were 6.31 log colony-forming unit (CFU)/g, 19.60 mg/100 g, 6.84, 0.26 mg/kg, and 6.5 at 12 days, respectively, indicating the favorable protective efficacy on beef. These results suggested that the fabricated CS−based composite film has the application potential to be developed as a bioactive food packaging material, especially for beef preservation.
Collapse
|
29
|
Biodegradable active, intelligent, and smart packaging materials for food applications. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Vieira TM, Alves VD, Moldão Martins M. Application of an Eco-Friendly Antifungal Active Package to Extend the Shelf Life of Fresh Red Raspberry ( Rubus idaeus L. cv. 'Kweli'). Foods 2022; 11:1805. [PMID: 35742002 PMCID: PMC9222906 DOI: 10.3390/foods11121805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 12/07/2022] Open
Abstract
The main objective of this study was to extend the shelf life of fresh red raspberry (Rubus idaeus. L. cv. 'Kweli') by using active film-pads inside commercial compostable packages. The pads were produced with chitosan (Ch) with the incorporation of green tea (GTE) and rosemary (RSME) ethanolic extracts as natural antifungal agents. Pads were placed on the bottom of commercial fruit trays underneath the fruits, and the trays were heat-sealed with a polyacid lactic (PLA) film. Preservation studies were carried out over 14 days of storage at refrigeration temperature (4 °C). Raspberry samples were periodically analyzed throughout storage, in terms of quality attributes (fungal decay, weight loss, firmness, surface color, pH, total soluble solids), total phenolic content and antioxidant activity. Gas composition inside the packages was also analyzed over time. From the packaging systems tested, the ones with active film-pads Ch + GTE and Ch + RSME were highly effective in reducing fungal growth and decay of raspberry during storage, showing only around 13% and 5% of spoiled fruits after 14 days, respectively, in contrast with the packages without pads (around 80% of spoiled fruits detected). In addition, fruits preserved using packages with Ch + RSME active film-pads showed lower mass loss (5.6%), decreased firmness (3.7%) and reduced antioxidant activity (around 9% and 15% for DPPH and FRAP methods, respectively). This sustainable packaging presents a potential strategy for the preservation of raspberries and other highly perishable small fruits.
Collapse
Affiliation(s)
| | - Vítor D. Alves
- LEAF—Linking Landscape, Environment, Agriculture and Food, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (T.M.V.); (M.M.M.)
| | | |
Collapse
|
31
|
Antimicrobial and Mechanical Properties of β-Cyclodextrin Inclusion with Octyl Gallate in Chitosan Films and their Application in Fresh Vegetables. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09746-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
32
|
Baghi F, Gharsallaoui A, Dumas E, Ghnimi S. Advancements in Biodegradable Active Films for Food Packaging: Effects of Nano/Microcapsule Incorporation. Foods 2022; 11:760. [PMID: 35267394 PMCID: PMC8909076 DOI: 10.3390/foods11050760] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Food packaging plays a fundamental role in the modern food industry as a main process to preserve the quality of food products from manufacture to consumption. New food packaging technologies are being developed that are formulated with natural compounds by substituting synthetic/chemical antimicrobial and antioxidant agents to fulfill consumers' expectations for healthy food. The strategy of incorporating natural antimicrobial compounds into food packaging structures is a recent and promising technology to reach this goal. Concepts such as "biodegradable packaging", "active packaging", and "bioactive packaging" currently guide the research and development of food packaging. However, the use of natural compounds faces some challenges, including weak stability and sensitivity to processing and storage conditions. The nano/microencapsulation of these bioactive compounds enhances their stability and controls their release. In addition, biodegradable packaging materials are gaining great attention in the face of ever-growing environmental concerns about plastic pollution. They are a sustainable, environmentally friendly, and cost-effective alternative to conventional plastic packaging materials. Ultimately, a combined formulation of nano/microencapsulated antimicrobial and antioxidant natural molecules, incorporated into a biodegradable food packaging system, offers many benefits by preventing food spoilage, extending the shelf life of food, reducing plastic and food waste, and preserving the freshness and quality of food. The main objective of this review is to illustrate the latest advances in the principal biodegradable materials used in the development of active antimicrobial and antioxidant packaging systems, as well as the most common nano/microencapsulated active natural agents incorporated into these food-packaging materials.
Collapse
Affiliation(s)
- Fatemeh Baghi
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, CNRS, University Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France; (F.B.); (A.G.); (E.D.)
- Institut Supérieur d’Agriculture et Agroalimentaire Rhône-Alpes (ISARA), 23 Rue Jean Baldassini, CEDEX 07, 69364 Lyon, France
| | - Adem Gharsallaoui
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, CNRS, University Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France; (F.B.); (A.G.); (E.D.)
| | - Emilie Dumas
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, CNRS, University Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France; (F.B.); (A.G.); (E.D.)
| | - Sami Ghnimi
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, CNRS, University Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France; (F.B.); (A.G.); (E.D.)
- Institut Supérieur d’Agriculture et Agroalimentaire Rhône-Alpes (ISARA), 23 Rue Jean Baldassini, CEDEX 07, 69364 Lyon, France
| |
Collapse
|
33
|
Flórez M, Guerra-Rodríguez E, Cazón P, Vázquez M. Chitosan for food packaging: Recent advances in active and intelligent films. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107328] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Effects of Cashew leaf extract on physicochemical, antioxidant, and antimicrobial properties of N, O–Carboxymethyl Chitosan films. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
35
|
Saeed K, Pasha I, Jahangir Chughtai MF, Ali Z, Bukhari H, Zuhair M. Application of essential oils in food industry: challenges and innovation. JOURNAL OF ESSENTIAL OIL RESEARCH 2022. [DOI: 10.1080/10412905.2022.2029776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kanza Saeed
- Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Imran Pasha
- University of Agriculture Faisalabad, Faisalabad Pakistan
| | | | | | - Hina Bukhari
- University of Agriculture Faisalabad, Faisalabad Pakistan
| | | |
Collapse
|
36
|
Punia Bangar S, Whiteside WS, Dunno KD, Cavender GA, Dawson P, Love R. Starch-based bio-nanocomposites films reinforced with cellulosic nanocrystals extracted from Kudzu (Pueraria montana) vine. Int J Biol Macromol 2022; 203:350-360. [PMID: 35104472 DOI: 10.1016/j.ijbiomac.2022.01.133] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 12/11/2022]
Abstract
In the current study, starch-based active nanocomposite films reinforced with cellulosic nanocrystals (CNCs) of Kudzu were developed as an alternative option to existing biodegradable plastic packaging. Firstly, Kudzu CNCs were prepared by subjecting Kudzu fibers to the processes such as depolymerization followed by bleaching, acid hydrolysis, and mechanical dispersion. Further, nanocomposite films were formulated by blending pearl millet starch (PMS) and glycerol (30%) with different Kudzu CNCs compositions (0-7 wt%) using the solution casting process. The prepared PMS/Kudzu CNCs nanocomposite films were analyzed for their morphological (SEM and TEM), thermal (TGA and DSC), structural (FTIR), mechanical (tensile strength (TS), elongation at break and young modulus), and water barrier properties. The PMS/Kudzu CNCs films possessed improved crystallinity, heat and moisture-barrier properties, TS, and young-modulus after reinforcement. The optimum reinforcer concentration of CNCs was 5%. The Kudzu CNCs reinforced starch film offers a promising candidate for developing biodegradable films.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, USA
| | | | - Kyle D Dunno
- Department of Packaging Science, Rochester Institute of Technology, Rochester, New York, USA
| | | | - Paul Dawson
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, USA
| | - Reid Love
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, USA
| |
Collapse
|
37
|
Polysaccharide-Based Active Coatings Incorporated with Bioactive Compounds for Reducing Postharvest Losses of Fresh Fruits. COATINGS 2021. [DOI: 10.3390/coatings12010008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review reports recently published research related to the application of polysaccharide-based biodegradable and edible coatings (BECs) fortified with bioactive compounds obtained from plant essential oils (EOs) and phenolic compounds of plant extracts. Combinations of polysaccharides such as starches, pectin, alginate, cellulose derivatives, and chitosan with active compounds obtained from clove, lemon, cinnamon, lavender, oregano, and peppermint have been documented as potential candidates for biologically active coating materials for retardation of quality changes in fresh fruits. Additionally, polysaccharide-based active coatings supplemented with plant extracts such as cashew leaves, pomegranate peel, red roselle, apple fiber, and green tea extracts rich in phenolic compounds and their derivatives have been reported to be excellent substituents to replace chemically formulated wax coatings. Moreover, EOs and plant polyphenolics including alcohols, aldehydes, ketones phenols, organic acids, terpenes, and esters contain hydroxyl functional groups that contribute bioactivity to BECs against oxidation and reduction of microbial load in fresh fruits. Therefore, BECs enriched with active compounds from EOs and plant extracts minimize physiological and microbial deterioration by reducing moisture loss, softening of flesh, ripening, and decay caused by pathogenic bacterial strains, mold, or yeast rots, respectively. As a result, shelf life of fresh fruits can be extended by employing active polysaccharide coatings supplemented with EOs and plant extracts prior to postharvest storage.
Collapse
|
38
|
Zhang X, Ismail BB, Cheng H, Jin TZ, Qian M, Arabi SA, Liu D, Guo M. Emerging chitosan-essential oil films and coatings for food preservation - A review of advances and applications. Carbohydr Polym 2021; 273:118616. [PMID: 34561014 DOI: 10.1016/j.carbpol.2021.118616] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/28/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022]
Abstract
With the rising demand for fresh and ready-to-eat foods, antimicrobial packaging has been developed to control or prevent microbial growth as well as maintain food quality and safety. Chitosan is an advanced biomaterial for antimicrobial packaging to meet the growing needs of safe and biodegradable packaging. The application of natural essential oils as antimicrobial agents effectively controls the growth of spoilage and pathogenic microbes. Thus, chitosan edible coatings and films incorporated with essential oils have expanded the general applications of antimicrobial packaging in food products. This review summarized the effect of essential oils on modifying the physicochemical characteristics of chitosan-based films. Notably, the antimicrobial efficacy of the developed composite films or coatings was highlighted. The advances in the preparation methods and application of chitosan films were also discussed. Broadly, this review will promote the potential applications of chitosan-essential oils composite films or coatings in antimicrobial packaging for food preservation.
Collapse
Affiliation(s)
- Xinhui Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Balarabe B Ismail
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Tony Z Jin
- U. S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Mengyan Qian
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
| | | | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
39
|
|
40
|
Chrysargyris A, Rousos C, Xylia P, Tzortzakis N. Vapour Application of Sage Essential Oil Maintain Tomato Fruit Quality in Breaker and Red Ripening Stages. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122645. [PMID: 34961116 PMCID: PMC8703985 DOI: 10.3390/plants10122645] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 05/20/2023]
Abstract
Consumers seek safe, high-nutritional-value products, and therefore maintaining fresh produce quality is a fundamental goal in the food industry. In an effort to eliminate chemical-based sanitizing agents, there has been a shift in recent decades toward the usage of eco-friendly, natural solutions (e.g., essential oils-EOs). In the present study, tomato fruits (Solanum lycopersicum L. cv. Dafni) at breaker and red ripening stage were exposed to sage essential oils (EO: 50 μL L-1 or 500 μL L-1) for 2, 7 and 14 days, at 11 °C and 90% relative humidity (RH). Quality-related attributes were examined during (sustain effect-SE) and following (vapour-induced memory effect-ME; seven days vapours + seven days storage) vapour treatment. In breaker tomatoes, EO-enrichment (sustained effect) retained fruit firmness, respiration rates, and ethylene emission in low EO levels (50 μL L-1). In contrast, breaker fruit metabolism sped up in high EO levels of 500 μL L-1, with decreased firmness, increased rates of respiration and ethylene, and effects on antioxidant metabolism. The effects were more pronounced during the storage period of 14 days, comparing to the fruit exposed to common storage-transit practice. In red fruits, the EOs impacts were evidenced earlier (at two and seven days of storage) with increased rates of respiration and ethylene, increased β-carotene, and decreased lycopene content. In both breaker and red ripening fruit, EO application decreased weight losses. Considering the fruits pre-exposed to EOs, quality attributes were more affected in green fruits and affected to a lesser level in the red ones. Furthermore, based on appearance, color, and texture evaluations, organoleptic trials demonstrated an overwhelming preference for EO-treated red fruit during choice tests. EOs had lower effects on total phenolics, acidity, total soluble solids, and fruit chroma, with no specific trend for both breaker and red tomatoes. Natural volatiles may aid to retain fruit quality in parallel with their antimicrobial protection offered during storage and transportation of fresh produce. These effects may persist after the EO is removed from the storage conditions.
Collapse
Affiliation(s)
- Antonios Chrysargyris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus; (A.C.); (C.R.); (P.X.)
- Department of Life Sciences, School of Sciences, European University of Cyprus, Nicosia 1516, Cyprus
| | - Charalampos Rousos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus; (A.C.); (C.R.); (P.X.)
| | - Panayiota Xylia
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus; (A.C.); (C.R.); (P.X.)
| | - Nikolaos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus; (A.C.); (C.R.); (P.X.)
- Correspondence: ; Tel.: +357-25-002-280
| |
Collapse
|
41
|
Tian B, Xu D, Cheng J, Liu Y. Chitosan-silica with hops β-acids added films as prospective food packaging materials: Preparation, characterization, and properties. Carbohydr Polym 2021; 272:118457. [PMID: 34420717 DOI: 10.1016/j.carbpol.2021.118457] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/04/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022]
Abstract
In this study, silica (SiO2) and β-acids were added to the chitosan films in order to improve the film's properties. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction analysis (XRD) were used to explore the structure of film. The results of mechanical test indicated that the film containing SiO2 (0.3%) and β-acids (0.3%) could obtain a significant tensile strength (10.04 MPa). The complex films possessed a good inhibitory effect on three types of bacteria, and good antioxidant activity (>56%, DPPH). The release mechanism of β-acids from the films exhibited Fickian diffusion (n < 0.45). During the storage of soybean oil, the films could well control the changes of the peroxide value, acid value and thiobarbituric acid reactant content. Overall, the biofilms not only possess good physical and chemical properties, but also prolongs the time of food storage.
Collapse
Affiliation(s)
- Bingren Tian
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China
| | - Dan Xu
- College of Chemistry, Xinjiang University, Urumqi 830046, China
| | - Jianhua Cheng
- College of Chemistry, Xinjiang University, Urumqi 830046, China
| | - Yumei Liu
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
42
|
Bigi F, Haghighi H, Siesler HW, Licciardello F, Pulvirenti A. Characterization of chitosan-hydroxypropyl methylcellulose blend films enriched with nettle or sage leaf extract for active food packaging applications. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106979] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
43
|
Chitosan/Polyvinyl Alcohol/Tea Tree Essential Oil Composite Films for Biomedical Applications. Polymers (Basel) 2021; 13:polym13213753. [PMID: 34771312 PMCID: PMC8586949 DOI: 10.3390/polym13213753] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022] Open
Abstract
Tissue engineering is crucial, since its early adoption focused on designing biocompatible materials that stimulate cell adhesion and proliferation. In this sense, scaffolds made of biocompatible and resistant materials became the researchers’ focus on biomedical applications. Humans have used essential oils for a long time to take advantage of their antifungal, insecticide, antibacterial, and antioxidant properties. However, the literature demonstrating the use of essential oils for stimulating biocompatibility in new scaffold designs is scarce. For that reason, this work describes the synthesis of four different film composites of chitosan/polyvinyl alcohol/tea tree (Melaleuca alternifolia), essential oil (CS/PVA/TTEO), and the subdermal implantations after 90 days in Wistar rats. According to the Young modulus, DSC, TGA, mechanical studies, and thermal studies, there was a reinforcement effect with the addition of TTEO. Morphology and energy-dispersive (EDX) analysis after the immersion in simulated body fluid (SBF) exhibited a light layer of calcium chloride and sodium chloride generated on the material’s surface, which is generally related to a bioactive material. Finally, the biocompatibility of the films was comparable with porcine collagen, showing better signs of resorption as the amount of TTEO was increased. These results indicate the potential application of the films in long-term biomedical needs.
Collapse
|
44
|
Qin D, Wu J, Zhang Y, Bao M, Du X, Sang H, Wei Z. The Effect of Amylose on Structures and Properties of Chitosan‐Vanillin Films. STARCH-STARKE 2021. [DOI: 10.1002/star.202100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dan Qin
- School of Basic Courses BengBu Medical College Bengbu Anhui 233000 China
| | - Jun Wu
- School of Basic Courses BengBu Medical College Bengbu Anhui 233000 China
| | - Yuxiang Zhang
- School of Basic Courses BengBu Medical College Bengbu Anhui 233000 China
| | - Mian Bao
- School of Basic Courses BengBu Medical College Bengbu Anhui 233000 China
| | - Xiaoyue Du
- School of Basic Courses BengBu Medical College Bengbu Anhui 233000 China
| | - Hongqing Sang
- College of Food Engineering Anhui Science and Technology University Fengyang Anhui 233100 China
| | - Zhengyou Wei
- School of Basic Courses BengBu Medical College Bengbu Anhui 233000 China
| |
Collapse
|
45
|
Fiore A, Park S, Volpe S, Torrieri E, Masi P. Active packaging based on PLA and chitosan-caseinate enriched rosemary essential oil coating for fresh minced chicken breast application. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Matindoust S, Farzi G, Nejad MB, Shahrokhabadi MH. Polymer-based gas sensors to detect meat spoilage: A review. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
47
|
Cazón P, Antoniewska A, Rutkowska J, Vázquez M. Evaluation of easy-removing antioxidant films of chitosan with Melaleuca alternifolia essential oil. Int J Biol Macromol 2021; 186:365-376. [PMID: 34246681 DOI: 10.1016/j.ijbiomac.2021.07.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/18/2021] [Accepted: 07/04/2021] [Indexed: 02/06/2023]
Abstract
Chitosan - tea tree essential oil (TTEO) films were obtained as a new biodegradable material. Malic acid or lactic acid solvents were evaluated to obtain easy-removing films. The microstructure by SEM and FT-IR, the thermal properties by TGA/DSC, the mechanical properties, the water vapor permeability, the antioxidant (DPPH• and ABTS•+) activity and the optical properties of the formulated films were evaluated. A complete dissolution of the film in water was obtained. The elongation to break was higher in the films with malic acid (145.88-317.33%), comparing with those with lactic acid (25.54-44.08%). Chitosan film obtained in malic acid with TTEO showed the highest antioxidant activity. The colour and transparency of the samples did not suffer significant variations by TTEO addition. Films showed good UV-barrier properties, with a slightly improvement by TTEO addition. The films obtained showed a great potential for food packaging applications.
Collapse
Affiliation(s)
- Patricia Cazón
- Laboratory for Environmental and Life Sciences, Nova Gorica University, Slovenia
| | - Agata Antoniewska
- Institute of Human Nutrition Sciences, Faculty of Human Nutrition, Warsaw University of Life Sciences, Nowoursynowska st.159c, 02-776 Warsaw, Poland
| | - Jaroslawa Rutkowska
- Institute of Human Nutrition Sciences, Faculty of Human Nutrition, Warsaw University of Life Sciences, Nowoursynowska st.159c, 02-776 Warsaw, Poland
| | - Manuel Vázquez
- Department of Analytical Chemistry, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|
48
|
Kalateh-Seifari F, Yousefi S, Ahari H, Hosseini SH. Corn Starch-Chitosan Nanocomposite Film Containing Nettle Essential Oil Nanoemulsions and Starch Nanocrystals: Optimization and Characterization. Polymers (Basel) 2021; 13:2113. [PMID: 34203133 PMCID: PMC8272204 DOI: 10.3390/polym13132113] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/18/2022] Open
Abstract
In the current study, nanocomposite films were produced based on corn starch:chitosan (CS:CH) biopolymers and the films were reinforced with nettle essential oil nanoemulsions (NEONEs) and starch nanocrystals (SNCs) to improve their physicochemical and mechanical properties. CS: CH at 70:30, 50:50, and 30:70 (w/w) ratios; SNCs at 2, 4, and 6% (w/w), and NEONEs at 0.5, 1, and 1.5% (w/w) were selected as variables. Then the various physical and mechanical attributes of chitosan-starch blended film containing SNCs and NEONEs were optimized using response surface methodology. The desirability function technique for the second-order polynomial models revealed that the following results could be achieved as the optimized treatment: water solubility of 51.56%; water absorption capacity of 128.75%; surface color of L (89.60), a (0.96), and b (1.90); water vapor permeability of 0.335 g/s Pa m, oxygen permeability of 2.60 cm3 μm/m2 d kPa; thickness of 154.41 µm, elongation at break of 53.54%; and tensile strength of 0.20 MPa at CS:CH of 38:62, SNC of 6.0%, and NEONEs of 0.41%. The nanocomposite film obtained can be employed as a novel biofunctional film with boosted physical mechanical and physical characteristics for food packaging applications.
Collapse
Affiliation(s)
- Fatemeh Kalateh-Seifari
- Department of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran 476714171, Iran; (F.K.-S.); (S.Y.)
| | - Shima Yousefi
- Department of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran 476714171, Iran; (F.K.-S.); (S.Y.)
| | - Hamed Ahari
- Department of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran 476714171, Iran; (F.K.-S.); (S.Y.)
| | - Seyed Hedayat Hosseini
- Department of Food Science and Technology, Shahid Beheshti University of Medical Science, Tehran 1983969411, Iran;
| |
Collapse
|
49
|
Wang H, Guo L, Liu L, Han B, Niu X. Composite chitosan films prepared using nisin and Perilla frutescense essential oil and their use to extend strawberry shelf life. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Akalin GO, Oztuna Taner O, Taner T. The preparation, characterization and antibacterial properties of chitosan/pectin silver nanoparticle films. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03667-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|