1
|
Pan L, Zhang Y, Zhang F, Wang Z, Zheng J. α-L-rhamnosidase: production, properties, and applications. World J Microbiol Biotechnol 2023; 39:191. [PMID: 37160824 DOI: 10.1007/s11274-023-03638-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/30/2023] [Indexed: 05/11/2023]
Abstract
α-L-rhamnosidase [EC 3.2.1.40] belongs to glycoside hydrolase (GH) families (GH13, GH78, and GH106 families) in the carbohydrate-active enzymes (CAZy) database, which specifically hydrolyzes the non-reducing end of α-L-rhamnose. Αccording to the sites of catalytic hydrolysis, α-L-rhamnosidase can be divided into α-1, 2-rhamnosidase, α-1, 3-rhamnosidase, α-1, 4-rhamnosidase and α-1, 6-rhamnosidase. α-L-rhamnosidase is an important enzyme for various biotechnological applications, especially in food, beverage, and pharmaceutical industries. α-L-rhamnosidase has a wide range of sources and is commonly found in animals, plants, and microorganisms, and its microbial source includes a variety of bacteria, molds and yeasts (such as Lactobacillus sp., Aspergillus sp., Pichia angusta and Saccharomyces cerevisiae). In recent years, a series of advances have been achieved in various aspects of α-validates the above-described-rhamnosidase research. A number of α-L-rhamnosidases have been successfully recombinant expressed in prokaryotic systems as well as eukaryotic systems which involve Pichia pastoris, Saccharomyces cerevisiae and Aspergillus niger, and the catalytic properties of the recombinant enzymes have been improved by enzyme modification techniques. In this review, the sources and production methods, general and catalytic properties and biotechnological applications of α-L-rhamnosidase in different fields are summarized and discussed, concluding with the directions for further in-depth research on α-L-rhamnosidase.
Collapse
Affiliation(s)
- Lixia Pan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Yueting Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Fei Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Zhao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Jianyong Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China.
| |
Collapse
|
2
|
Homologous Expression and Characterization of α-L-rhamnosidase from Aspergillus niger for the Transformation of Flavonoids. Appl Biochem Biotechnol 2022; 194:3453-3467. [PMID: 35366188 DOI: 10.1007/s12010-022-03894-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/14/2022] [Indexed: 11/02/2022]
Abstract
Aspergillus niger has been used for homologous and heterologous expressions of many protein products. In this study, the α-L-rhamnosidase from A. niger (Rha-N1, GenBank XP_001389086.1) was homologously expressed in A. niger 3.350 by Agrobacterium tumefaciens-mediated transformation. The enzyme activity of Rha-N1 was 0.658 U/mL, which was obtained by cultivation of engineered A. niger in a 5-L bioreactor. Rha-N1 was purified by affinity chromatography and characterized. The optimum temperature and optimum pH for Rha-N1 were 60 °C and 4.5, respectively. Enzyme activity was promoted by Al3+, Li+, Mg2+, and Ba2+ and was inhibited by Mn2+, Fe3+, Ca2+, Cu2+, and organic solvents. The result indicated that rutin was the most suitable substrate for Rha-N1 by comparison with the other two flavonoid substrates hesperidin and naringin. The transformed products of isoquercitrin, hesperetin-7-O-glucoside, and prunin were identified by LC-MS and 1H-NMR.
Collapse
|
3
|
Wan W, Xia N, Zhu S, Liu Q, Gao Y. A Novel and High-Effective Biosynthesis Pathway of Hesperetin-7-O-Glucoside Based on the Construction of Immobilized Rhamnosidase Reaction Platform. Front Bioeng Biotechnol 2020; 8:608. [PMID: 32656196 PMCID: PMC7325963 DOI: 10.3389/fbioe.2020.00608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/18/2020] [Indexed: 12/04/2022] Open
Abstract
Hesperetin-7-O-glucoside (HMG) is a precursor for synthesizing a sweetener named neohesperidin dihydrochalcone, and the coordination toward flavonoids of metal ions tends to increase the water solubility of flavonoids. In order to achieve effective synthesis of HMG, an immobilized enzyme catalysis platform was constructed using an immobilized rhamnosidase on Fe3O4@graphene oxide (Fe3O4@GO), a novel reaction pathway based on the platform was designed for preparing a hesperidin complex as a soluble substrate, and ammonium hydroxide as a ligand dissociation agent to obtain HMG. The Fe3O4@GO was characterized by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM), and thermal methods (TG/DSC) analysis to evaluate the immobilization matrix properties. The enzyme activity in free and immobilized form at different pH and temperature was optimized. The reusability of immobilized enzyme was also determined. In addition, the kinetic parameters (Km and Vmax) were computed after experiment. Results indicated that rhamnosidase immobilized on Fe3O4@GO using a green cross-linker of genipin hydrolyzed successfully and selectively the soluble hesperidin-Cu (II) complex into HMG-Cu (II), a permanent magnet helped the separation of immobilized enzyme and hydrolytes, and ammonium hydroxide was an effective ligand dissociation agent of translating HMG-Cu (II) into HMG with high purity determined by ultraviolet-visible (UV-Vis) spectra analysis and time-of-flight mass spectrometry (TOF-MS). As a result, a novel and high-effective biosynthesis pathway of HMG based on a selectively catalytic reaction platform were constructed successfully. The pathway based on the platform has great potential to produce valuable citrus monoglycoside flavonoid HMG, and the designed reaction route are feasible using the hesperidin-Cu (II) complex with good solubility as a reaction substrate and using ammonium water as a dissociation agent.
Collapse
Affiliation(s)
- Wenjing Wan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Na Xia
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,College of Life and Geographic Sciences, Kashi University, Kashi, China
| | - Siming Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Qiang Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Youcheng Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
4
|
Kumar D, Yadav S, Yadava S, Yadav KDS. An alkali tolerant α-l-rhamnosidase from Fusarium moniliforme MTCC-2088 used in de-rhamnosylation of natural glycosides. Bioorg Chem 2018; 84:24-31. [PMID: 30476650 DOI: 10.1016/j.bioorg.2018.11.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 11/08/2018] [Accepted: 11/17/2018] [Indexed: 10/27/2022]
Abstract
Analkali tolerant α-l-rhamnosidase has been purified to homogeneity from the culture filtrate of a new fungal strain, Fusarium moniliforme MTCC-2088, using concentration by ultrafiltration and cation exchange chromatography on CM cellulose column. The molecular mass of the purified enzyme has been found to be 36.0 kDa using SDS-PAGE analysis. The Km value using p-nitrophenyl-α-l-rhamnopyranoside as the variable substrate in 0.2 M sodium phosphate buffer pH10.5 at50 °C was 0.50 mM. The catalytic rate constant was15.6 s-1giving the values of kcat/Km is 3.12 × 104M-1 s-1. The pH and temperature optima of the enzyme were 10.5 and 50 °C, respectively. The purified enzyme had better stability at 10 °C in basic pH medium. The enzyme derhamnosylated natural glycosides like naringin to prunin, rutin to isoquercitrin and hesperidin to hesperetin glucoside. The purified α-l-rhamnosidase has potential for enhancement of wine aroma.
Collapse
Affiliation(s)
- Dhirendra Kumar
- Department of Chemistry, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur 273009, UP, India
| | - Sarita Yadav
- Department of Chemistry, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur 273009, UP, India.
| | - Sudha Yadava
- Department of Chemistry, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur 273009, UP, India
| | - K D S Yadav
- Department of Chemistry, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur 273009, UP, India
| |
Collapse
|
5
|
Zhang T, Yuan W, Li M, Miao M, Mu W. Purification and characterization of an intracellular α-l-rhamnosidase from a newly isolated strain, Alternaria alternata SK37.001. Food Chem 2018; 269:63-69. [PMID: 30100482 DOI: 10.1016/j.foodchem.2018.06.134] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/07/2018] [Accepted: 06/27/2018] [Indexed: 11/26/2022]
Abstract
A strain, Alternaria alternata SK37.001, which produces an intracellular α-l-rhamnosidase, was newly isolated from citrus orchard soil. The molecular mass of the enzyme was 66 kDa, as evaluated by SDS-PAGE and 135 kDa, as determined by gel filtration, which indicated that the enzyme is a dimer. The enzyme had a specific activity of 21.7 U mg-1 after step-by-step purification. The optimal pH and temperature were 5.5 and 60 °C, respectively. The enzyme was relatively stable at a pH of 4.0-8.0 and a temperature between 30 and 50 °C compared with other pH levels and temperatures investigated. The enzyme activity was accelerated by Ba2+ and Al3+ but inhibited by Ni2+, Cu2+ and Co2+, especially Ni2+. The kinetic parameters of Km and Vmax were 4.84 mM and 53.1 μmol mg-1 min-1, respectively. The α-l-rhamnosidase could hydrolyze quercitrin, naringin and neohesperidin, hesperidin and rutin rhamnose-containing glycosides but could not hydrolyze ginsenoside Rg2 or saiko-saponin C.
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wenbo Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Mengli Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
6
|
Li LJ, Wu ZY, Yu Y, Zhang LJ, Zhu YB, Ni H, Chen F. Development and characterization of an α-l-rhamnosidase mutant with improved thermostability and a higher efficiency for debittering orange juice. Food Chem 2017; 245:1070-1078. [PMID: 29287324 DOI: 10.1016/j.foodchem.2017.11.064] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 11/11/2017] [Accepted: 11/16/2017] [Indexed: 10/18/2022]
Abstract
The glycoside hydrolase, α-l-rhamnosidase, could remove the bitter taste of naringin from citrus juices. However, most α-l-rhamnosidases are easily deactivated at high temperatures, limiting the practice in debittering citrus juices. The V529A mutant of the α-l-rhamnosidase r-Rha1 from Aspergillus niger JMU-TS528 was developed with improved thermostability using directed evolution technology and site-directed mutagenesis. The enzyme mutant had a half-live of thermal inactivation T(1/2) of 1.92 h, 25.00 min, and 2 min at 60, 65, and 70 °C, respectively. In addition, it had improved substrate affinity and better resistance to the inhibition of glucose. The improved substrate affinity was related to its lowered binding energy. Most significantly, the naringin content was reduced to below the bitter taste threshold by treatment with 75 U/mL of the mutant during the preheating process of orange juice production. The comprehensive results indicate that thermostability improvement could promote the practical value of α-l-rhamnosidase in citrus juice processing.
Collapse
Affiliation(s)
- Li Jun Li
- College of Food and Biology Engineering, Jimei University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian Province 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province 361021, China
| | - Zhe Yu Wu
- College of Food and Biology Engineering, Jimei University, Xiamen, Fujian Province 361021, China
| | - Yue Yu
- College of Food and Biology Engineering, Jimei University, Xiamen, Fujian Province 361021, China
| | - Lu Jia Zhang
- College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 201100, China
| | - Yan Bing Zhu
- College of Food and Biology Engineering, Jimei University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian Province 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province 361021, China
| | - Hui Ni
- College of Food and Biology Engineering, Jimei University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian Province 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province 361021, China.
| | - Feng Chen
- College of Food and Biology Engineering, Jimei University, Xiamen, Fujian Province 361021, China; Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
7
|
Ge L, Xie J, Wu T, Zhang S, Zhao L, Ding G, Wang Z, Xiao W. Purification and characterisation of a novel α-L-rhamnosidase exhibiting transglycosylating activity from Aspergillus oryzae. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Lin Ge
- Co-Innovation Center for Sustainable Forestry in Southern China; Nanjing Forestry University; 159 Long Pan Road Nanjing 210037 China
- College of Chemical Engineering; Nanjing Forestry University; 159 Long Pan Road Nanjing 210037 China
| | - Jingcong Xie
- Co-Innovation Center for Sustainable Forestry in Southern China; Nanjing Forestry University; 159 Long Pan Road Nanjing 210037 China
- College of Chemical Engineering; Nanjing Forestry University; 159 Long Pan Road Nanjing 210037 China
| | - Tao Wu
- Co-Innovation Center for Sustainable Forestry in Southern China; Nanjing Forestry University; 159 Long Pan Road Nanjing 210037 China
- College of Chemical Engineering; Nanjing Forestry University; 159 Long Pan Road Nanjing 210037 China
| | - Shanshan Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China; Nanjing Forestry University; 159 Long Pan Road Nanjing 210037 China
- College of Chemical Engineering; Nanjing Forestry University; 159 Long Pan Road Nanjing 210037 China
| | - Linguo Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China; Nanjing Forestry University; 159 Long Pan Road Nanjing 210037 China
- College of Chemical Engineering; Nanjing Forestry University; 159 Long Pan Road Nanjing 210037 China
| | - Gang Ding
- Jiangsu Kanion Pharmaceutical Co., Ltd.; 58 Haichang South Road Lianyungang Jiangsu 222001 China
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Co., Ltd.; 58 Haichang South Road Lianyungang Jiangsu 222001 China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co., Ltd.; 58 Haichang South Road Lianyungang Jiangsu 222001 China
| |
Collapse
|
8
|
Yadav S, Yadava S, Yadav KD. α- l -rhamnosidase selective for rutin to isoquercitrin transformation from Penicillium griseoroseum MTCC-9224. Bioorg Chem 2017; 70:222-228. [DOI: 10.1016/j.bioorg.2017.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/24/2016] [Accepted: 01/03/2017] [Indexed: 11/28/2022]
|
9
|
Yadav S, Yadava S, Yadav K. Purification and characterization of α-l-rhamnosidase from Penicillium corylopholum MTCC-2011. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Yadav S, Yadav RSS, Yadav KDS. An α-l-rhamnosidase fromAspergillus awamoriMTCC-2879 and its role in debittering of orange juice. Int J Food Sci Technol 2012. [DOI: 10.1111/ijfs.12043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sarita Yadav
- Department of Chemistry; DDU Gorakhpur University; Gorakhpur; 273009; India
| | - Rama S. S. Yadav
- Department of Chemistry; DDU Gorakhpur University; Gorakhpur; 273009; India
| | - Kapil D. S. Yadav
- Department of Chemistry; DDU Gorakhpur University; Gorakhpur; 273009; India
| |
Collapse
|