1
|
Gabe HB, Queiroga FR, Taruhn KA, Trevisan R. Mitigating oxidative stress in oyster larvae: Curcumin promotes enhanced redox balance, antioxidant capacity, development, and resistance to antifouling compounds. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107231. [PMID: 39756171 DOI: 10.1016/j.aquatox.2024.107231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
Curcumin (CUR) is a natural compound recognized for stimulating the expression of antioxidant genes. This characteristic has been used to promote animal health and production in aquaculture settings. We hypothesized that supplementing embryos of Crassostrea gigas oysters with CUR would improve their antioxidant capacity, development, and resilience to stress. Embryos were exposed to CUR ranging from 0.03 to 30 µM for 24 h. Their development was assessed, along with measurements of glutathione levels, glutathione S-transferase activity, antioxidant capacity, production of reactive oxygen species (ROS), metabolic activity, and resistance to organic hydroperoxide and the antifouling compound dichlorooctylisothiazolinone (DCOIT). Low curcumin concentrations (up to 1 μM) activated the d-larvae antioxidant system, with a significant threefold increase in glutathione levels and a 50 % decrease in ROS production. This enhancement in antioxidant defense improved the ability of larvae to detoxify organic hydroperoxide. It also resulted in larger larval size and increased survival rates, whether under normal conditions or exposure to peroxide or DCOIT. CUR shows great promise in supporting larval development, but high concentrations were toxic (EC50 = 2.90 μM), probably due to excessive antioxidant activation. Our results indicate that the antioxidant system may play a role in controlling bivalve early development. Understanding how antioxidants influence redox balance and gene expression during early life can enhance our knowledge of stress response mechanisms in marine organisms, offering insights into how they cope with pollutants and environmental challenges. Integrating CUR and antioxidant defense pathway approaches into aquaculture practices could boost productivity and sustainability in oyster aquaculture.
Collapse
Affiliation(s)
- Heloísa Bárbara Gabe
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil; Univ Brest, Ifremer, CNRS, IRD, LEMAR, IUEM, F-29280 Plouzané, France
| | | | - Karine Amabile Taruhn
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Rafael Trevisan
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, IUEM, F-29280 Plouzané, France.
| |
Collapse
|
2
|
Weber F, Esmaeili N. Marine biofouling and the role of biocidal coatings in balancing environmental impacts. BIOFOULING 2023; 39:661-681. [PMID: 37587856 DOI: 10.1080/08927014.2023.2246906] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
Marine biofouling is a global problem affecting various industries, particularly the shipping industry due to long-distance voyages across various ecosystems. Therein fouled hulls cause increased fuel consumption, greenhouse gas emissions, and the spread of invasive aquatic species. To counteract these issues, biofouling management plans are employed using manual cleaning protocols and protective coatings. This review provides a comprehensive overview of adhesion strategies of marine organisms, and currently available mitigation methods. Further, recent developments and open challenges of antifouling (AF) and fouling release (FR) coatings are discussed with regards to the future regulatory environment. Finally, an overview of the environmental and economic impact of fouling is provided to point out why and when the use of biocidal solutions is beneficial in the overall perspective.
Collapse
Affiliation(s)
- Florian Weber
- Department of Materials and Nanotechnology, SINTEF, Oslo, Norway
| | | |
Collapse
|
3
|
Weber J, Henssler L, Zeman F, Pfeifer C, Alt V, Nerlich M, Huber M, Herbst T, Koller M, Schneider-Brachert W, Kerschbaum M, Holzmann T. Nanosilver/DCOIT-containing surface coating effectively and constantly reduces microbial load in emergency room surfaces. J Hosp Infect 2023; 135:90-97. [PMID: 36958698 DOI: 10.1016/j.jhin.2023.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND Colonization of near-patient surfaces in hospitals plays an important role as a source of healthcare-associated infections. Routine disinfection methods only result in short-term elimination of pathogens. AIM To investigate the efficiency of a newly developed antimicrobial coating containing nanosilver in long-term reduction of bacterial burden in hospital surfaces to close the gap between routine disinfection cycles. METHODS In this prospective, double-blinded trial, frequently touched surfaces of a routinely used treatment room in an emergency unit of a level-I hospital were treated with a surface coating (nanosilver/DCOIT-coated surface, NCS) containing nanosilver particles and another organic biocidal agent (4,5-dichloro-2-octyl-4-isothiazolin-3-one, DCOIT), whereas surfaces of another room were treated with a coating missing both the nanosilver- and DCOIT-containing ingredient and served as control. Bacterial contamination of the surfaces was examined using contact plates and liquid-based swabs daily for a total trial duration of 90 days. After incubation, total microbial counts and species were assessed. FINDINGS In a total of 2880 antimicrobial samples, a significant reduction of the overall bacterial load was observed in the NCS room (median: 0.31 cfu/cm2; interquartile range: 0.00-1.13) compared with the control coated surfaces (0.69 cfu/cm2; 0.06-2.00; P < 0.001). The nanosilver- and DCOIT-containing surface coating reduced the relative risk of a critical bacterial load (defined as >5 cfu/cm2) by 60% (odds ratio 0.38, P < 0.001). No significant difference in species distribution was detected between NCS and control group. CONCLUSION Nanosilver-/DCOIT-containing surface coating has shown efficiency for sustainable reduction of bacterial load of frequently touched surfaces in a clinical setting.
Collapse
Affiliation(s)
- J Weber
- Department for Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - L Henssler
- Department for Trauma Surgery, University Hospital Regensburg, Regensburg, Germany.
| | - F Zeman
- Center of Clinical Studies, University Hospital Regensburg, Regensburg, Germany
| | - C Pfeifer
- Department for Trauma Surgery, University Hospital Regensburg, Regensburg, Germany; Department of Orthopedic Trauma and Hand Surgery, Innklinikum Altötting-Mühldorf, Altötting, Germany
| | - V Alt
- Department for Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - M Nerlich
- Department for Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - M Huber
- Department for Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - T Herbst
- Department for Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - M Koller
- Center of Clinical Studies, University Hospital Regensburg, Regensburg, Germany
| | - W Schneider-Brachert
- Institute of Medical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - M Kerschbaum
- Department for Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - T Holzmann
- Institute of Medical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
4
|
Martinez A, Hernandez-Quijada K, Ghosh AA, Cabrera G, Scott D, Aikins A, Verma DK, Kwon I, Kim YH. The combination of Violet light and Infra-Red as well as Violet light only effectively suppress the survival of multiple-drug resistant bacteria. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2023. [DOI: 10.1016/j.jpap.2023.100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
5
|
da Silva AR, Guerreiro ADS, Martins SE, Sandrini JZ. DCOIT unbalances the antioxidant defense system in juvenile and adults of the marine bivalve Amarilladesma mactroides (Mollusca: Bivalvia). Comp Biochem Physiol C Toxicol Pharmacol 2021; 250:109169. [PMID: 34418533 DOI: 10.1016/j.cbpc.2021.109169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/27/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
DCOIT is a co-biocide that is part of the formulation of the commercial antifouling Sea-Nine 211® and although it is "safe to use", negative effects have been reported on the antioxidant defense system of non-target organisms. Therefore, the objective of this research was to verify and compare the response of antioxidant enzymes of juveniles and adults of Amarilladesma mactroides exposed to DCOIT. The animals were exposed to solvent control (DMSO 0.01%) and DCOIT (measured concentration 0.01 mg/L and 0.13 mg/L) for 96 h, then gills, digestive gland and mantle were collected for analysis of the enzymatic activity of glutathione S-transferase (GST), superoxide dismutase (SOD) and catalase (CAT). The results revealed that adults, in relation to juveniles, have low basal activity of GST and SOD enzymes in the gills and digestive gland and high basal activity of SOD and CAT in the mantle. DCOIT did not alter GST activity in the gills of any life stage, while both concentrations decreased SOD and CAT in adults. In the digestive gland, it was observed that DCOIT (0.13 mg/L) decreased the GST activity in adults and CAT in juveniles, and both concentrations of the co-biocide decreased the SOD and CAT in adults. In the mantle, DCOIT (0.13 mg/L) increased CAT in juveniles. We conclude that juveniles have greater basal activity of antioxidant enzymes than adults and, in addition, DCOIT negatively affected the adults of A. mactroides, mainly decreasing the activity of GST, SOD and CAT in the gills and digestive gland of these organisms.
Collapse
Affiliation(s)
- Adriano Rayol da Silva
- Programa de Pós-graduação em Ciências Fisiológicas - Instituto de Ciências Biológicas (ICB) - Universidade Federal do Rio Grande - FURG, Avenida Itália, km 8, 96203-900 Rio Grande, RS, Brazil
| | - Amanda da Silveira Guerreiro
- Programa de Pós-graduação em Ciências Fisiológicas - Instituto de Ciências Biológicas (ICB) - Universidade Federal do Rio Grande - FURG, Avenida Itália, km 8, 96203-900 Rio Grande, RS, Brazil
| | | | - Juliana Zomer Sandrini
- Programa de Pós-graduação em Ciências Fisiológicas - Instituto de Ciências Biológicas (ICB) - Universidade Federal do Rio Grande - FURG, Avenida Itália, km 8, 96203-900 Rio Grande, RS, Brazil.
| |
Collapse
|
6
|
Isothiazolinones as Novel Candidate Insecticides for the Control of Hemipteran Insects. Antibiotics (Basel) 2021; 10:antibiotics10040436. [PMID: 33919688 PMCID: PMC8069810 DOI: 10.3390/antibiotics10040436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/05/2021] [Accepted: 04/10/2021] [Indexed: 12/26/2022] Open
Abstract
Hemipteran insects, such as whiteflies, aphids and planthoppers, resemble one of the most important pest groups threating food security. While many insecticides have been used to control these pests, many issues such as insecticide resistance have been found, highlighting the urgent need to develop novel insecticides. Here, we first observed that a commercial tetramycin solution was highly effective in killing whitefly. The major bioactive constituents were identified to be isothiazolinones, a group of biocides. We then tested the toxicity of several isothiazolinones to five hemipteran insects. The results show that Kathon, a widely used biocide against microorganisms, and its two constituents, chloromethylisothiazolinone (CMIT) and methylisothiazolinone (MIT), can cause considerable levels of mortality to whiteflies and aphids when applied at concentrations close to, or lower than, the upper limit of these chemicals permitted in cosmetic products. The results also indicate that two other isothiazolinones, benzisothiazolinone (BIT) and octylisothiazolinone (OIT) can cause considerable levels of mortality to whitefly and aphids but are less toxic than Kathon. Further, we show that Kathon marginally affects whitefly endosymbionts, suggesting its insecticidal activity is independent of its biocidal activity. These results suggest that some isothiazolinones are promising candidates for the development of a new class of insecticides for the control of hemipteran pests.
Collapse
|
7
|
Gabe HB, Guerreiro ADS, Sandrini JZ. Molecular and biochemical effects of the antifouling DCOIT in the mussel Perna perna. Comp Biochem Physiol C Toxicol Pharmacol 2021; 239:108870. [PMID: 32814145 DOI: 10.1016/j.cbpc.2020.108870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 07/28/2020] [Accepted: 08/09/2020] [Indexed: 12/31/2022]
Abstract
Biological fouling is an unwanted phenomenon that results in economic losses to the shipping industry. To prevent fouling, antifouling paints are used. DCOIT (4,5- dichloro-2-n-octyl-4-isothiazolin-3-one) is a biocide present in many antifouling paint formulations, and is toxic to a wide range of organisms. The aim of the present study was to evaluate the effects of DCOIT on oxidative stress indicators of the brown mussel, Perna perna. Molecular (SOD-like, GSTO-like and MGST-like mRNA levels) and biochemical (activities of superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST), and levels of glutathione (GSH), reactive oxygen species (ROS) and protein carbonyls (PCO)) components were evaluated. Further, levels of biomarkers were assessed in the gills and digestive glands of mussels. Bivalves were exposed to DCOIT (control, 0.1 μg/L and 10 μg/L) for up to 96 h. DCOIT exposure decreased GSH content in gills. Moreover, exposure to DCOIT also decreased CAT activity in the gills and digestive glands of mussels. GST activity increased in digestive gland after exposure for 24 h to both concentrations of DCOIT tested. SOD activity, ROS levels and PCO content were not affected by exposure to the contaminant. Regarding the molecular biomarkers evaluated, DCOIT exposure altered mRNA levels of SOD-like in both tissues after 24 and 96 h of exposure, and decreased MGST-like mRNA levels in the digestive gland after 96 h of exposure to the chemical. These findings suggested that exposure to DCOIT may alter the biochemical and molecular functioning of P. perna, which may harm the species.
Collapse
Affiliation(s)
- Heloísa Bárbara Gabe
- Programa de Pós-Graduação em Ciências Fisiológicas. Instituto de Ciências Biológicas, ICB. Universidade Federal do Rio Grande - FURG, 96203-900 Rio Grande, RS, Brazil
| | - Amanda da Silveira Guerreiro
- Programa de Pós-Graduação em Ciências Fisiológicas. Instituto de Ciências Biológicas, ICB. Universidade Federal do Rio Grande - FURG, 96203-900 Rio Grande, RS, Brazil
| | - Juliana Zomer Sandrini
- Programa de Pós-Graduação em Ciências Fisiológicas. Instituto de Ciências Biológicas, ICB. Universidade Federal do Rio Grande - FURG, 96203-900 Rio Grande, RS, Brazil.
| |
Collapse
|
8
|
Fonseca VB, Guerreiro ADS, Vargas MA, Sandrini JZ. Effects of DCOIT (4,5-dichloro-2-octyl-4-isothiazolin-3-one) to the haemocytes of mussels Perna perna. Comp Biochem Physiol C Toxicol Pharmacol 2020; 232:108737. [PMID: 32142921 DOI: 10.1016/j.cbpc.2020.108737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/06/2020] [Accepted: 02/26/2020] [Indexed: 12/22/2022]
Abstract
Bivalve molluscs rely only on an innate immune system to execute cellular and humoral processes. Haemocytes, the haemolymph circulating cells, play a major role in this type of immunity, principally regarding cellular defences. Considering that environmental pollutants can affect the immune system of invertebrates, this work evaluated the effects of the antifouling biocide 4,5-dicloro-2-n-octil-4-isotiazolin-3-ona (DCOIT) on the haemocytes of mussels Perna perna. Individuals were exposed to 0 (control), 0.1 μg L-1 and 10 μg L-1 of DCOIT for up to 96 h. The analysed parameters included: total (THC) and differential (DHC) haemocyte count, cellular viability, adhesion capacity, phagocytic activity, levels of reactive oxygen species and DNA damage. Moreover, the stress on stress (SOS) response of mussels was analysed as a general stress index. The results show that DCOIT increased the haemocyte adhesion capacity and caused a decrease in THC and in the haemocyte viability after 24 h of exposure. After 96 h of exposure, DCOIT only affected the haemocyte adhesion capacity, which was decreased by biocide exposure. Moreover, exposure to DCOIT for 96 h did not affect the capacity for air survival of mussels. These results indicate that DCOIT interferes in important parameters associated with the innate immunity of P. perna, mainly after 24 h of exposure. It is suggested that the animals were able to develop some compensatory response strategy, making them more resistant to the biocide.
Collapse
Affiliation(s)
- Viviane Barneche Fonseca
- Programa de Pós Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Av Itália km 8, 96203-900 Rio Grande, RS, Brazil
| | - Amanda da Silveira Guerreiro
- Programa de Pós Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Av Itália km 8, 96203-900 Rio Grande, RS, Brazil
| | - Marcelo Alves Vargas
- Programa de Pós Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Av Itália km 8, 96203-900 Rio Grande, RS, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av Itália km 8, 96203-900 Rio Grande, RS, Brazil
| | - Juliana Zomer Sandrini
- Programa de Pós Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Av Itália km 8, 96203-900 Rio Grande, RS, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av Itália km 8, 96203-900 Rio Grande, RS, Brazil.
| |
Collapse
|
9
|
Zhou G, Peng H, Wang YS, Li CL, Shen PF, Huang XM, Xie XB, Shi QS. Biological functions of nirS in Pseudomonas aeruginosa ATCC 9027 under aerobic conditions. J Ind Microbiol Biotechnol 2019; 46:1757-1768. [PMID: 31512096 DOI: 10.1007/s10295-019-02232-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 08/23/2019] [Indexed: 01/10/2023]
Abstract
Through our previous study, we found an up-regulation in the expression of nitrite reductase (nirS) in the isothiazolone-resistant strain of Pseudomonas aeruginosa. However, the definitive molecular role of nirS in ascribing the resistance remained elusive. In the present study, the nirS gene was deleted from the chromosome of P. aeruginosa ATCC 9027 and the resulting phenotypic changes of ΔnirS were studied alongside the wild-type (WT) strain under aerobic conditions. The results demonstrated a decline in the formations of biofilms but not planktonic growth by ΔnirS as compared to WT, especially in the presence of benzisothiazolinone (BIT). Meanwhile, the deletion of nirS impaired swimming motility of P. aeruginosa under the stress of BIT. To assess the influence of nirS on the transcriptome of P. aeruginosa, RNA-seq experiments comparing the ΔnirS with WT were also performed. A total of 694 genes were found to be differentially expressed in ΔnirS, of which 192 were up-regulated, while 502 were down-regulated. In addition, these differently expressed genes were noted to significantly enrich the carbon metabolism along with glyoxylate and dicarboxylate metabolisms. Meanwhile, results from RT-PCR suggested the contribution of mexEF-oprN to the development of BIT resistance by ΔnirS. Further, c-di-GMP was less in ΔnirS than in WT, as revealed by HPLC. Taken together, our results confirm that nirS of P. aeruginosa ATCC 9027 plays a role in BIT resistance along with biofilm formation and further affects several metabolic patterns under aerobic conditions.
Collapse
Affiliation(s)
- Gang Zhou
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, Guangdong, People's Republic of China
| | - Hong Peng
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, Guangdong, People's Republic of China
| | - Ying-Si Wang
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, Guangdong, People's Republic of China
| | - Cai-Ling Li
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, Guangdong, People's Republic of China
| | - Peng-Fei Shen
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, Guangdong, People's Republic of China
| | - Xiao-Mo Huang
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, Guangdong, People's Republic of China
| | - Xiao-Bao Xie
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, Guangdong, People's Republic of China.
| | - Qing-Shan Shi
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, Guangdong, People's Republic of China.
| |
Collapse
|
10
|
Wendt I, Backhaus T, Blanck H, Arrhenius Å. The toxicity of the three antifouling biocides DCOIT, TPBP and medetomidine to the marine pelagic copepod Acartia tonsa. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:871-879. [PMID: 26984312 DOI: 10.1007/s10646-016-1644-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/04/2016] [Indexed: 06/05/2023]
Abstract
Copepods, the largest group of pelagic grazers, are at risk from exposure to antifouling biocides. This study investigated the toxicity of the antifouling biocides 4,5-dichloro-2-octyl-1,2-thiazol-3(2H)-one (DCOIT), triphenylborane pyridine (TPBP) and 4-[1-(2,3-dimethylphenyl)ethyl]-1H-imidazole (medetomidine) to the copepod Acartia tonsa, using mortality and egg production as endpoints. The toxicity ranking for mortality was as follows: DCOIT (LC50 57 nmol l(-1)) = TPBP (LC50 56 nmol l(-1)) > medetomidine (LC50 241 nmol l(-1)). Egg production was more sensitive than mortality to TPBP (EC50 3.2 nmol l(-1)), while DCOIT and medetomidine inhibited egg production at roughly the same concentrations (72 and 186 nmol l(-1) respectively). Furthermore, TPBP seems to affect egg hatching directly which was not the case for DCOIT and medetomidine. DCOIT and medetomidine might pose an environmental risk as they have been reported to occur in different exposure scenarios or analytical surveys at concentrations only 2-3 times lower than the respective EC10. Reported environmental concentrations of TPBP are few but clearly lower than the EC10 values reported here, suggesting current risk of TPBP to copepods to be moderate.
Collapse
Affiliation(s)
- Ida Wendt
- Swedish Institute for the Marine Environment, Gothenburg, Sweden
| | - Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Hans Blanck
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Åsa Arrhenius
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
11
|
Huh YS, Lee JK, Kim IJ, Kang BG, Lee KY. Effect of biocide addition on plantlet growth and contamination occurrence during the in vitro culture of blueberry. ACTA ACUST UNITED AC 2015. [DOI: 10.5010/jpb.2015.42.2.111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Tang F, Hu HY, Wu QY, Tang X, Sun YX, Shi XL, Huang JJ. Effects of chemical agent injections on genotoxicity of wastewater in a microfiltration-reverse osmosis membrane process for wastewater reuse. JOURNAL OF HAZARDOUS MATERIALS 2013; 260:231-237. [PMID: 23770616 DOI: 10.1016/j.jhazmat.2013.05.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/04/2013] [Accepted: 05/20/2013] [Indexed: 06/02/2023]
Abstract
With combined microfiltration (MF)/ultrafiltration (UF) and reverse osmosis (RO) process being widely used in municipal wastewater reclamation, RO concentrate with high level genotoxicity is becoming a potential risk to water environment. In this study, wastewater genotoxicity in a MF-RO process for municipal wastewater reclamation and also the effects of chemical agent injections were evaluated by SOS/umu genotoxicity test. The genotoxicity of RO concentrate ranged 500-559 μg 4-NQO (4-nitroquinoline-1-oxide)/L and 12-22 μg 4-NQO/mg DOC, was much higher than that of RO influent. Further research suggested that Kathon biocide was a key chemical agent associated with the genotoxicity increase. Kathon biocide used in RO system was highly genotoxic in vitro and Kathon biocide retained in RO system could contribute to a higher genotoxicity of RO concentrate. Hence, treatments for biocides before discharging are necessary. Chlorination of secondary effluent could significantly decrease the genotoxicity and increasing chlorine dosage could be an efficacious method to decrease the genotoxicity of RO concentrate. According to the result of the experiment, the dosage of chlorine in dual-membrane process could be set to about 2.5 mg Cl₂/L. The effect of antiscalant (2-phosphomobutane-1,2,4-tricarboxylic acid) was also investigated; it turned out to have no effect on genotoxicity.
Collapse
Affiliation(s)
- Fang Tang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR
| | | | | | | | | | | | | |
Collapse
|
13
|
Chapman JS, Ferguson R, Consalo C, Bliss T. Bacteriostatic effect of sequential hydrodynamic and ultrasound-induced stress. J Appl Microbiol 2013; 114:947-55. [PMID: 23360068 DOI: 10.1111/jam.12146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/12/2012] [Accepted: 11/18/2012] [Indexed: 12/01/2022]
Abstract
AIMS To elucidate the mechanism of action of a nonchemical microbial control technology employing coupled hydrodynamic and ultrasound-induced stress. METHODS & RESULTS The effects of a laboratory model system using a commercial nonchemical device on Pseudomonas putida revealed growth and respiration were inhibited without a loss of viability from the treated population. Damage to cell membranes was evident using fluorescent microscopy and a reporter strain containing lux genes fused with a membrane damage stress-response promoter. Other reporter strains also indicated the possible involvement of DNA and protein repair systems. A consequence of treatment was a reduced ability to form biofilms. CONCLUSIONS The nonchemical device caused a biostatic effect on treated cells induced by sublethal damage to several cellular systems, including cell membranes. SIGNIFICANCE AND IMPACT OF THE STUDY The study demonstrates that biostasis can be an effective mechanism for microbial control in some industrial systems and provides insight into understanding and applying this device and other nonchemical microbial control technologies to real-world problems of microbial contamination.
Collapse
Affiliation(s)
- J S Chapman
- Ashland Water Technologies, Inc, Wilmington, DE 19808, USA.
| | | | | | | |
Collapse
|
14
|
Frenzel E, Schmidt S, Niederweis M, Steinhauer K. Importance of porins for biocide efficacy against Mycobacterium smegmatis. Appl Environ Microbiol 2011; 77:3068-3073. [PMID: 21398489 PMCID: PMC3126410 DOI: 10.1128/aem.02492-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 02/26/2011] [Indexed: 11/20/2022] Open
Abstract
Mycobacteria are among the microorganisms least susceptible to biocides but cause devastating diseases, such as tuberculosis, and increasingly opportunistic infections. The exceptional resistance of mycobacteria to toxic solutes is due to an unusual outer membrane, which acts as an efficient permeability barrier, in synergy with other resistance mechanisms. Porins are channel-forming proteins in the outer membrane of mycobacteria. In this study we used the alamarBlue assay to show that the deletion of Msp porins in isogenic mutants increased the resistance of Mycobacterium smegmatis to isothiazolinones (methylchloroisothiazolinone [MCI]/methylisothiazolinone [MI] and octylisothiazolinone [2-n-octyl-4-isothiazolin-3-one; OIT]), formaldehyde-releasing biocides {hexahydrotriazine [1,3,5-tris (2-hydroxyethyl)-hexahydrotriazine; HHT] and methylenbisoxazolidine [N,N'-methylene-bis-5-(methyloxazolidine); MBO]}, and the lipophilic biocides polyhexamethylene biguanide and octenidine dihydrochloride 2- to 16-fold. Furthermore, the susceptibility of the porin triple mutant against a complex disinfectant was decreased 8-fold compared to wild-type (wt) M. smegmatis. Efficacy testing in the quantitative suspension test EN 14348 revealed 100-fold improved survival of the porin mutant in the presence of this biocide. These findings underline the importance of porins for the susceptibility of M. smegmatis to biocides.
Collapse
Affiliation(s)
- Elrike Frenzel
- Schülke & Mayr GmbH, Research & Development, 22851 Norderstedt, Germany
- Biozentrum Klein Flottbek, Abteilung für Mikrobiologie & Biotechnologie, Universität Hamburg, 22609 Hamburg, Germany
- Department of Microbiology, University of Alabama at Birmingham, 613 Bevill Biomedical Research Building, 845 19th Street South, Birmingham, Alabama 35294
| | - Stefan Schmidt
- Biozentrum Klein Flottbek, Abteilung für Mikrobiologie & Biotechnologie, Universität Hamburg, 22609 Hamburg, Germany
- Discipline of Microbiology, School of Biochemistry, Genetics and Microbiology, University of KwaZulu-Natal, Pietermaritzburg 3201, South Africa
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, 613 Bevill Biomedical Research Building, 845 19th Street South, Birmingham, Alabama 35294
| | - Katrin Steinhauer
- Schülke & Mayr GmbH, Research & Development, 22851 Norderstedt, Germany
| |
Collapse
|
15
|
Poon R, Rigden M, Edmonds N, Charman N, Lamy S. Effects of 5-chloro-2-methyl-4-isothiazolin-3-one and other candidate biodiesel biocides on rat alveolar macrophages and NR8383 cells. Arch Toxicol 2011; 85:1419-27. [PMID: 21445588 DOI: 10.1007/s00204-011-0689-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 02/28/2011] [Indexed: 11/25/2022]
Abstract
Biocides are added to biodiesels to inhibit and remove microbial growth. The effects of 5-chloro-2-methyl-4-isothiazolin-3-one (CMIT), a candidate biodiesel biocide, were studied using freshly isolated rat alveolar macrophages (AM) and NR8383 cell line. CMIT markedly inhibited phagocytic oxidative burst as measured by zymosan-induced chemiluminescence, and cellular cytokine secretion as measured by zymosan-induced TNF-α secretion. The 50% inhibition concentration (LC(50)) for CMIT was 0.002-0.004 mM for both cellular functions. AM exposed to CMIT for as little as 2 min showed markedly inhibited functions that persisted for at least 5 h. Sodium metabisulfite was able to partially neutralize the inhibitory activity of CMIT. Cysteine and glutathione, when present at a molar ratio of 2-1 or higher against CMIT, were effective neutralizers, while serine, histidine, alanine, and albumin were without effect. When the AM testing system was used to compare the toxicity of CMIT against three other candidate biodiesel biocides, methylene dithiocyanate (MDC) was found to be of comparable toxicity to CMIT, 2-methyl-4-isothiazolin-3-one (MIT) was much less toxic, and dimethyl acetylenedicarboxylate (DMAD) was non-toxic. Because AM is among the first cell-type exposed to inhaled biodiesel aerosols, the result suggested that CMIT present in biodiesel may produce respiratory effects, and further investigations including animal studies are warranted.
Collapse
Affiliation(s)
- R Poon
- Environmental Heath Science and Research Bureau, Health Canada, 50 Columbine Driveway, Ottawa, Canada.
| | | | | | | | | |
Collapse
|
16
|
Arning J, Matzke M, Stolte S, Nehen F, Bottin-Weber U, Böschen A, Abdulkarim S, Jastorff B, Ranke J. Analyzing Cytotoxic Effects of Selected Isothiazol-3-one Biocides Using the Toxic Ratio Concept and Structure−Activity Relationship Considerations. Chem Res Toxicol 2009; 22:1954-61. [DOI: 10.1021/tx900263m] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jürgen Arning
- Department 3: Sustainability in Chemistry and Department 10: Theoretical Ecology, UFT−Centre for Environmental Research and Sustainable Technology, University of Bremen, Leobener Strasse, D-28359 Bremen, Germany, and Faculty of Biology/Chemistry, Department of Analytical Chemistry, University of Bremen, Leobener Strasse, D-2835 Bremen, Germany
| | - Marianne Matzke
- Department 3: Sustainability in Chemistry and Department 10: Theoretical Ecology, UFT−Centre for Environmental Research and Sustainable Technology, University of Bremen, Leobener Strasse, D-28359 Bremen, Germany, and Faculty of Biology/Chemistry, Department of Analytical Chemistry, University of Bremen, Leobener Strasse, D-2835 Bremen, Germany
| | - Stefan Stolte
- Department 3: Sustainability in Chemistry and Department 10: Theoretical Ecology, UFT−Centre for Environmental Research and Sustainable Technology, University of Bremen, Leobener Strasse, D-28359 Bremen, Germany, and Faculty of Biology/Chemistry, Department of Analytical Chemistry, University of Bremen, Leobener Strasse, D-2835 Bremen, Germany
| | - Frauke Nehen
- Department 3: Sustainability in Chemistry and Department 10: Theoretical Ecology, UFT−Centre for Environmental Research and Sustainable Technology, University of Bremen, Leobener Strasse, D-28359 Bremen, Germany, and Faculty of Biology/Chemistry, Department of Analytical Chemistry, University of Bremen, Leobener Strasse, D-2835 Bremen, Germany
| | - Ulrike Bottin-Weber
- Department 3: Sustainability in Chemistry and Department 10: Theoretical Ecology, UFT−Centre for Environmental Research and Sustainable Technology, University of Bremen, Leobener Strasse, D-28359 Bremen, Germany, and Faculty of Biology/Chemistry, Department of Analytical Chemistry, University of Bremen, Leobener Strasse, D-2835 Bremen, Germany
| | - Andrea Böschen
- Department 3: Sustainability in Chemistry and Department 10: Theoretical Ecology, UFT−Centre for Environmental Research and Sustainable Technology, University of Bremen, Leobener Strasse, D-28359 Bremen, Germany, and Faculty of Biology/Chemistry, Department of Analytical Chemistry, University of Bremen, Leobener Strasse, D-2835 Bremen, Germany
| | - Salha Abdulkarim
- Department 3: Sustainability in Chemistry and Department 10: Theoretical Ecology, UFT−Centre for Environmental Research and Sustainable Technology, University of Bremen, Leobener Strasse, D-28359 Bremen, Germany, and Faculty of Biology/Chemistry, Department of Analytical Chemistry, University of Bremen, Leobener Strasse, D-2835 Bremen, Germany
| | - Bernd Jastorff
- Department 3: Sustainability in Chemistry and Department 10: Theoretical Ecology, UFT−Centre for Environmental Research and Sustainable Technology, University of Bremen, Leobener Strasse, D-28359 Bremen, Germany, and Faculty of Biology/Chemistry, Department of Analytical Chemistry, University of Bremen, Leobener Strasse, D-2835 Bremen, Germany
| | - Johannes Ranke
- Department 3: Sustainability in Chemistry and Department 10: Theoretical Ecology, UFT−Centre for Environmental Research and Sustainable Technology, University of Bremen, Leobener Strasse, D-28359 Bremen, Germany, and Faculty of Biology/Chemistry, Department of Analytical Chemistry, University of Bremen, Leobener Strasse, D-2835 Bremen, Germany
| |
Collapse
|
17
|
Jungnickel C, Stock F, Brandsch T, Ranke J. Risk assessment of biocides in roof paint. Part 1: experimental determination and modelling of biocide leaching from roof paint. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2008; 15:258-265. [PMID: 18504845 DOI: 10.1065/espr2007.12.465] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BACKGROUND, AIM AND SCOPE Many surface coatings, including roof paints, contain biocides. It is generally not known to what extent roof paint biocides leach from the paint, and consequently, what concentration the biocide may attain in a rainwater collection system. To this end the leaching of specific biocides from a variety of German roof paints was investigated and the resulting concentrations in collected rain water were estimated. MATERIALS AND METHODS A laboratory simulation was used to determine the time dependant leaching rate of the biocide from the paint into synthetic rainwater. The concentrations of biocide in the leachate were quantified using HPLC. The course of the leachate concentrations over time was fitted using a simple mathematical model. This was then used to estimate concentrations of biocides in a typical household rainwater collection system over time. RESULTS Surprisingly, the biocides found in the paints did not always concur with the declared biocides. Concerning the modelling of runoff concentrations, it was found that--under the model assumptions--the rain intensity and cumulative raining time after application are the dominant factors influencing the concentration of the biocide. At the highest modelled rain intensity of 40 mm/hour it only takes about 2 hours to reach peak concentrations lower than 0.1 mg/L, at 0.3 mm/hour it takes about 10 hours to reach peak concentrations of 1.3, 0.9, 5.2 and 1.1 mg/L for terbutryn from Emalux paint, terbutryn from Südwest paint, carbendazim from Emalux paint, and carbendazim from MIPA paint, respectively. DISCUSSION The results confirm that biocides leached from roof paint will be present in roof runoff. The highest estimated peak concentrations are close to the water solubility of the respective biocides. This indicates that the model assumption of a concentration independent leaching rate will tendentially lead to an overestimation of the leached concentrations under these circumstances. However, under most circumstances such as higher rain intensities, and longer time after peak concentrations have been reached, the runoff concentrations are far from the solubility limit, and therefore it is proposed that the model assumptions are tenable. CONCLUSIONS The leaching of biocides from roof paints can be roughly assessed using a relatively simple approach. The declaration of biocidal ingredients in roof paints should be improved and information on their biocide leaching behaviour should be made available. Furthermore, the estimations should be evaluated by a field study. RECOMMENDATIONS AND PERSPECTIVES The leaching study indicated that the concentrations of selected biocides can reach significant levels, especially after low intensity rainfall. Taking into account the inherent biological activity of the substances under scrutiny, it can already be concluded that it is not advisable to use runoff water from roofs freshly painted with biocide containing roof paints. These results have been complemented by a literature search of biological effects of the investigated biocides, ecotoxicological tests with several species and a risk analysis for organisms exposed to runoff water. This will be presented in Part 2 of this contribution.
Collapse
Affiliation(s)
- Christian Jungnickel
- UFT-Centre for Environmental Research and Technology, University of Bremen, Leobener Strasse, 28359 Bremen, Germany
| | | | | | | |
Collapse
|
18
|
Laopaiboon L, Phukoetphim N, Vichitphan K, Laopaiboon P. Biodegradation of an aldehyde biocide in rotating biological contactors. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9656-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Arning J, Dringen R, Schmidt M, Thiessen A, Stolte S, Matzke M, Bottin-Weber U, Caesar-Geertz B, Jastorff B, Ranke J. Structure-activity relationships for the impact of selected isothiazol-3-one biocides on glutathione metabolism and glutathione reductase of the human liver cell line Hep G2. Toxicology 2008; 246:203-12. [PMID: 18313196 DOI: 10.1016/j.tox.2008.01.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 01/16/2008] [Accepted: 01/17/2008] [Indexed: 11/29/2022]
Abstract
To investigate the toxic mode of action of isothiazol-3-one biocides the four compounds N-methylisothiazol-3-one (MIT), 5-chloro-N-methylisothiazol-3-one (CIT), N-octylisothiazol-3-one (OIT) and 4,5-dichloro-N-octylisothiazol-3-one (DCOIT) were purified and tested as single chemical entities for their effects on the human hepatoblastoma cell line Hep G2 and on isolated and cellular glutathione reductase GR). The two chlorinated substances CIT and DCOIT significantly decreased the amount of total cellular glutathione (GSx) in a dose and time dependent manner. Concomitantly, an increase in the level of oxidised glutathione (GSSG) was observed. The resulting shift in the GSH/GSSG ratio entailing the breakdown of the cellular thiol reduction potential was accompanied by necrotic morphological changes like swelling of the plasma membrane and subsequent lysis of the cells. Additionally, CIT and DCOIT were found to inhibit cellular GR in the cells in a concentration dependent manner. The T-SAR-based (thinking in terms of structure-activity relationships) comparison of the chlorine-substituted structures CIT and DCOIT with their non-chlorinated and less active analogues MIT and OIT identified the chlorine substituents and the resulting reaction mechanisms to be the key structural mediators of the observed toxic effects. Furthermore, differences in the activity of both chlorinated substances could be explained using the T-SAR approach to link the lipophilicity and the intrinsic glutathione-reactivity of the compounds to the expected target site concentrations inside the cells.
Collapse
Affiliation(s)
- Jürgen Arning
- UFT - Centre for Environmental Research and Technology, University of Bremen, Leobener Strabe, D-28359 Bremen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Laopaiboon L, Hall SJ, Smith RN. The effect of a quaternary ammonium biocide on the performance and characteristics of laboratory-scale rotating biological contactors. J Appl Microbiol 2003; 93:1051-8. [PMID: 12452962 DOI: 10.1046/j.1365-2672.2002.01785.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To study the effect of a quaternary ammonium biocide, didecyldimethylammonium chloride (DDAC), on the treatment efficiency of laboratory-scale rotating biological contactors (RBCs) as well as their component biofilms. METHODS AND RESULTS Biofilms were established on the RBCs and then exposed to 0-160 mg l(-)1 (p.p.m.) DDAC at a flow rate of 2.5 l h(-1). The treatment efficiency of the RBC and the microbial activity of the biofilms were markedly decreased when 40 mg l(-1) DDAC or greater were applied to the units. However, DDAC had no effect on the number of viable bacteria in the biofilms when DDAC concentrations up to 80 mg l(-1) were applied to the RBCs. No viable bacteria could be detected in the biofilm when DDAC was applied at 160 mg l(-1). Extended observation over a further 40 d with 20 and 80 mg l(-1) DDAC showed similar results in terms of chemical oxygen demand removal, ATP content and viability of biofilms compared with those values over the first 12 d of exposure. CONCLUSIONS There was at least a fourfold difference in the susceptibility of planktonic and sessile bacteria to DDAC. Cells acclimatized to DDAC did not increase their capability to degrade normal carbon sources or DDAC under the conditions used in this study. SIGNIFICANCE AND IMPACT OF THE STUDY The results show that RBCs can be used to treat effluents containing DDAC at concentrations up to 20 mg l(-1) and that 160 mg l(-1) of DDAC was required to eliminate cells in established biofilms.
Collapse
Affiliation(s)
- L Laopaiboon
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, Thailand.
| | | | | |
Collapse
|
21
|
Laopaiboon L, Smith RN, Hall SJ. A study of the effect of isothiazolones on the performance and characteristics of a laboratory-scale rotating biological contactor. J Appl Microbiol 2001; 91:93-103. [PMID: 11442718 DOI: 10.1046/j.1365-2672.2001.01345.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To study the effect of the isothiazolone biocide (Kathon WT) on the performance of laboratory-scale rotating biological contactors (RBCs) and their component biofilms. METHODS AND RESULTS Biofilms were established on the RBCs and then exposed to 0.7-15 p.p.m. isothiazolones. Young, 1-week-old, biofilms were found to attain treatment efficiency equal to that of mature, 2-month-old, biofilms. Isothiazolone concentrations at 3 p.p.m. and above caused a progressive decline in treatment efficiency and 15 p.p.m. isothiazolones inhibited all microbial activity and resulted in the death of the biofilms. Bio-oxidation and the biodegradation of isothiazolones within the biofilms ontinued unhindered at concentrations which caused the total inhibition of planktonic bacteria. CONCLUSION There was at least a 10-fold difference in susceptibility of planktonic and biofilm bacteria to isothiazolones. The chemical oxygen demand (COD) test was shown to be a reliable tool for investigating the efficiency of wastewater treatment units when the influent contains isothiazolones, while the biochemical oxygen demand (BOD) was unreliable due to the inhibition of bio-oxidation by the biocide. SIGNIFICANCE AND IMPACT OF THE STUDY The results show that RBCs can be used to treat effluents containing isothiazolones at concentrations up to 1.5 p.p.m.
Collapse
Affiliation(s)
- L Laopaiboon
- Department of Biosciences, University of Hertfordshire, Hatfield, Herts AL10 9AB, UK
| | | | | |
Collapse
|