1
|
Kim C, Bushlaibi M, Alrefaei R, Ndegwa E, Kaseloo P, Wynn C. Influence of prior pH and thermal stresses on thermal tolerance of foodborne pathogens. Food Sci Nutr 2019; 7:2033-2042. [PMID: 31289651 PMCID: PMC6593373 DOI: 10.1002/fsn3.1034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/19/2019] [Accepted: 03/27/2019] [Indexed: 11/23/2022] Open
Abstract
Improper food processing is one of the major causes of foodborne illness. Accurate prediction of the thermal destruction rate of foodborne pathogens is therefore vital to ensure proper processing and food safety. When bacteria are subjected to pH and thermal stresses during growth, sublethal stresses can occur that may lead to differences in their subsequent tolerance to thermal treatment. As a preliminary study to test this concept, the current study evaluated the effect of prior pH and thermal stresses on thermal tolerance of Salmonella and Staphylococcus using a tryptic soy broth supplemented with yeast extract. Bacteria incubated at three pH values (6.0, 7.4, and 9.0) and four temperatures (15, 25, 35, and 45°C) for 24 hr were subjected to thermal treatments at 55, 60, and 65°C. At the end of each treatment time, bacterial suspensions were surface-plated on standard method agar for quantification of bacterial survival and further calculation of the thermal death decimal reduction time (D-value) and thermal destruction temperature (z-value). The effect of pH stress alone during the incubation on the thermal tolerance of both bacteria was generally insignificant. An increasing pattern of D-value was observed with the increment of thermal stress (incubation temperature). The bacteria incubated at 35°C required the highest z-value to reduce the 90% in D-values. Staphylococcus mostly displayed higher tolerance to thermal treatment than Salmonella. Although further research is needed to validate the current findings on food matrices, findings in this study clearly affirm that adaptation of bacteria to certain stresses may reduce the effectiveness of preservation procedures applied during later stage of food processing and storage.
Collapse
Affiliation(s)
- Chyer Kim
- Agricultural Research StationVirginia State UniversityPetersburgVirginia
| | - Mariam Bushlaibi
- Department of BiologyVirginia State UniversityPetersburgVirginia
| | - Rana Alrefaei
- Department of BiologyVirginia State UniversityPetersburgVirginia
| | - Eunice Ndegwa
- Agricultural Research StationVirginia State UniversityPetersburgVirginia
| | - Paul Kaseloo
- Department of BiologyVirginia State UniversityPetersburgVirginia
| | - Crystal Wynn
- Department of Family and Consumer SciencesVirginia State UniversityPetersburgVirginia
| |
Collapse
|
2
|
Delgado Suárez EJ, Chairéz Espinosa A, Sierra Gómez pedroso LDC, Rodas Suárez O, Quiñones Ramírez EI, Rubio Lozano MS. Hot Water Shrinkage as a Post-Lethal Intervention against L
isteria Monocytogenes
: Preliminary Assessment in a Turkey-Based Virginia Ham Model. J Food Saf 2014. [DOI: 10.1111/jfs.12168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Enrique Jesús Delgado Suárez
- Facultad de Medicina Veterinaria y Zootecnia; Universidad Nacional Autónoma de México; Ciudad Universitaria 04510 México DF México
| | - Aldebarán Chairéz Espinosa
- Facultad de Medicina Veterinaria y Zootecnia; Universidad Nacional Autónoma de México; Ciudad Universitaria 04510 México DF México
| | | | - Oscar Rodas Suárez
- Escuela Nacional de Ciencias Biológicas; Instituto Politécnico Nacional; México D. F. México
| | | | - María Salud Rubio Lozano
- Facultad de Medicina Veterinaria y Zootecnia; Universidad Nacional Autónoma de México; Ciudad Universitaria 04510 México DF México
| |
Collapse
|
3
|
Breslin TJ, Tenorio-Bernal MI, Marks BP, Booren AM, Ryser ET, Hall NO. Evaluation of Salmonella thermal inactivation model validity for slow cooking of whole-muscle meat roasts in a pilot-scale oven. J Food Prot 2014; 77:1897-903. [PMID: 25364923 DOI: 10.4315/0362-028x.jfp-14-035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sublethal heating can increase subsequent thermal resistance of bacteria, which may compromise the validity of thermal process validations for slow-roasted meats. Therefore, this research evaluated the accuracy of a traditional log-linear inactivation model, developed via prior laboratory-scale isothermal tests, and a novel path-dependent model accounting for sublethal injury, applied to pilot-scale slow cooking of whole-muscle roasts. Irradiated turkey breasts, beef rounds, and pork loins were inoculated with an eight-serovar Salmonella cocktail via vacuum tumble marination in a salt-phosphate marinade. The resulting initial Salmonella population in the geometric center (core) was 7.0, 6.3, and 6.3 log CFU/g for turkey, beef, and pork, respectively. Seven different cooking schedules representing industry practices were evaluated in a pilot-scale, moist-air convection oven. Core temperatures recorded during cooking were used to calculate lethality real-time via the log-linear model. The path-dependent model reduced the bias (mean residual) and root mean square error by 4.24 and 4.60 log CFU/g respectively, in turkey; however, the new model did not reduce the prediction error in beef or pork. Overall, results demonstrated that slow-cooked roasts, processed to a computed lethality at or near that required by the regulatory performance standards, as calculated with a state-dependent model, may be underprocessed.
Collapse
Affiliation(s)
- T J Breslin
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824-1323, USA
| | - M I Tenorio-Bernal
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, Michigan 48824-1323, USA
| | - B P Marks
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824-1323, USA; Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, Michigan 48824-1323, USA.
| | - A M Booren
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824-1323, USA; Department of Animal Science, Michigan State University, East Lansing, Michigan 48824-1323, USA
| | - E T Ryser
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824-1323, USA
| | - N O Hall
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, Michigan 48824-1323, USA
| |
Collapse
|
4
|
Aryani DC, den Besten HMW, Hazeleger WC, Zwietering MH. Quantifying variability on thermal resistance of Listeria monocytogenes. Int J Food Microbiol 2014; 193:130-8. [PMID: 25462932 DOI: 10.1016/j.ijfoodmicro.2014.10.021] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/13/2014] [Accepted: 10/19/2014] [Indexed: 10/24/2022]
Abstract
Knowledge of the impact of strain variability and growth history on thermal resistance is needed to provide a realistic prediction and an adequate design of thermal treatments. In the present study, apart from quantifying strain variability on thermal resistance of Listeria monocytogenes, also biological variability and experimental variability were determined to prioritize their importance. Experimental variability was defined as the repeatability of parallel experimental replicates and biological variability was defined as the reproducibility of biologically independent reproductions. Furthermore, the effect of growth history was quantified. The thermal inactivation curves of 20 L. monocytogenes strains were fitted using the modified Weibull model, resulting in total 360 D-value estimates. The D-value ranged from 9 to 30 min at 55 °C; from 0.6 to 4 min at 60 °C; and from 0.08 to 0.6 min at 65 °C. The estimated z-values of all strains ranged from 4.4 to 5.7 °C. The strain variability was ten times higher than the experimental variability and four times higher than the biological variability. Furthermore, the effect of growth history on thermal resistance variability was not significantly different from that of strain variability and was mainly determined by the growth phase.
Collapse
Affiliation(s)
- D C Aryani
- Top Institute Food and Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen, The Netherlands; Laboratory of Food Microbiology, Wageningen University, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - H M W den Besten
- Top Institute Food and Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen, The Netherlands; Laboratory of Food Microbiology, Wageningen University, PO Box 17, 6700 AA Wageningen, The Netherlands.
| | - W C Hazeleger
- Laboratory of Food Microbiology, Wageningen University, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - M H Zwietering
- Top Institute Food and Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen, The Netherlands; Laboratory of Food Microbiology, Wageningen University, PO Box 17, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
5
|
Shen Q, Jangam PM, Soni KA, Nannapaneni R, Schilling W, Silva JL. Low, medium, and high heat tolerant strains of Listeria monocytogenes and increased heat stress resistance after exposure to sublethal heat. J Food Prot 2014; 77:1298-307. [PMID: 25198590 DOI: 10.4315/0362-028x.jfp-13-423] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A group of 37 strains representing all 13 serotypes of Listeria monocytogenes with an initial cell density of 10(7) CFU/ml were analyzed for their heat tolerance at 60°C for 10 min. These L. monocytogenes strains were categorized into three heat tolerance groups: low (<2 log CFU/ml survival), medium (2 to 4 log CFU/ml survival), and high (4 to 6 log CFU/ml survival). Serotype 1/2a strains had relatively low heat tolerance; seven of the eight tested strains were classified as low heat tolerant. Of the two serotype 1/2b strains tested, one was very heat sensitive (not detectable) and the other was very heat resistant (5.4 log CFU/ml survival). Among the 16 serotype 4b strains, survival ranged from not detectable to 4 log CFU/ml. When one L. monocytogenes strain from each heat tolerance group was subjected to sublethal heat stress at 48°C for 30 or 60 min, the survival of heat-stressed cells at 60°C for 10 min increased by 5 log CFU/ml (D60°C-values nearly doubled) compared with the nonstressed control cells. Sublethal heat stress at 48°C for 60 or 90 min increased the lag phase of L. monocytogenes in tryptic soy broth supplemented with 0.6% yeast extract at room temperature by 3 to 5 h compared with nonstressed control cells. The heat stress adaptation in L. monocytogenes was reversed after 2 h at room temperature but was maintained for up to 24 h at 4°C. Our results indicate a high diversity in heat tolerance among strains of L. monocytogenes, and once acquired this heat stress adaptation persists after cooling, which should be taken into account while conducting risk analyses for this pathogen.
Collapse
Affiliation(s)
- Qian Shen
- Department of Food Science, Nutrition and Health Promotion, P.O. Box 9805, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Priyanka M Jangam
- Department of Food Science, Nutrition and Health Promotion, P.O. Box 9805, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Kamlesh A Soni
- Department of Food Science, Nutrition and Health Promotion, P.O. Box 9805, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Ramakrishna Nannapaneni
- Department of Food Science, Nutrition and Health Promotion, P.O. Box 9805, Mississippi State University, Mississippi State, Mississippi 39762, USA.
| | - Wes Schilling
- Department of Food Science, Nutrition and Health Promotion, P.O. Box 9805, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Juan L Silva
- Department of Food Science, Nutrition and Health Promotion, P.O. Box 9805, Mississippi State University, Mississippi State, Mississippi 39762, USA
| |
Collapse
|
6
|
Tenorio-Bernal MI, Marks BP, Ryser ET, Booren AM. Evaluating the predictive ability of a path-dependent thermal inactivation model for salmonella subjected to prior sublethal heating in ground turkey, beef, and pork. J Food Prot 2013; 76:220-6. [PMID: 23433368 DOI: 10.4315/0362-028x.jfp-12-279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pathogen thermal inactivation models currently available to and used by industry consider only the present state of the product when predicting inactivation rates. However, bacteria subjected to sublethal thermal injury can develop partial protection against lethal temperatures. The objective of this study was to extend the capabilities of a previously published path-dependent Salmonella inactivation model by accounting for longer sublethal heating periods and different substrates and to test this new model against independent data. Ground samples of irradiated (> 10 kGy) turkey breast, beef round, and pork loin were inoculated with an eight-serovar Salmonella cocktail and subjected to 53 nonisothermal treatments (in triplicate) that combined a linear heating rate (1, 2, 3, 4, or 7 K/min), a variable length sublethal holding period (at 40, 45, or 50°C), a lethal holding temperature (55, 58, 61, or 64°C), and a nominal target kill (3- or 5-log reductions) (n = 159 for each meat species). When validated against nonisothermal data from similar treatments, traditional state-dependent model predictions resulted in root mean squared errors (RMSEs) of 2.9, 2.2, and 4.6 log CFU/g for turkey, beef, and pork, respectively. RMSEs for the new path-dependent model were 0.90, 0.81, and 0.82 log CFU/g for the same species, respectively, with reductions in error of 63 to 82 % relative to the state-dependent model. This new path-dependent model can significantly reduce error from the state-dependent model and could become a useful tool for assuring product safety, particularly relative to slow heating processes.
Collapse
Affiliation(s)
- M I Tenorio-Bernal
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824-1323, USA
| | | | | | | |
Collapse
|
7
|
Cebrián G, Raso J, Condón S, Mañas P. Acquisition of pulsed electric fields resistance in Staphylococcus aureus after exposure to heat and alkaline shocks. Food Control 2012. [DOI: 10.1016/j.foodcont.2011.10.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
8
|
Abstract
Vegetables and fruits are staple food for the human mankind, and they are also considered as the symbol of healthy nutrition. They are consumed fresh and cooked, in salad mixes, freshly pressed, fermented, minimally processed form, stored under different conditions, etc. Since they are in close contact with the environment, natural or artificial, and have a natural microbiota on their surface highly variable as a function of the surrounding, they are prone to get contaminated with human pathogens, too. More attention is paid to the food-borne outbreaks in the last 10 years related to the consumption of contaminated plant foods, and it is also in the focus of our interest. The main activities of the Unit cover the following areas: microbial contamination of fruits and vegetables, also in relation to the soil, the methods of cell count reduction using also non-thermal methods, the biofilm formation and the response ofBacillus cereusto the technological stresses.
Collapse
Affiliation(s)
- J. Beczner
- 1 Central Food Research Institute Unit of Microbiology, Department of Food Safety H-1021 Budapest Herman Ottó u.15. Hungary
| | - I. Bata-Vidács
- 1 Central Food Research Institute Unit of Microbiology, Department of Food Safety H-1021 Budapest Herman Ottó u.15. Hungary
| |
Collapse
|
9
|
Ágoston R, Soni K, Jesudhasan PR, Russell WK, Mohácsi-Farkas C, Pillai SD. Differential Expression of Proteins inListeria monocytogenesUnder Thermotolerance-Inducing, Heat Shock, and Prolonged Heat Shock Conditions. Foodborne Pathog Dis 2009; 6:1133-40. [DOI: 10.1089/fpd.2009.0286] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Réka Ágoston
- Corvinus University of Budapest, Budapest, Hungary
| | - Kamlesh Soni
- Departments of Poultry Science and Nutrition and Food Science, Texas A&M University, College Station, Texas
| | - Palmy R. Jesudhasan
- Departments of Poultry Science and Nutrition and Food Science, Texas A&M University, College Station, Texas
| | - William K. Russell
- Departments of Poultry Science and Nutrition and Food Science, Texas A&M University, College Station, Texas
| | | | - Suresh D. Pillai
- Departments of Poultry Science and Nutrition and Food Science, Texas A&M University, College Station, Texas
| |
Collapse
|
10
|
Sergelidis D, Abrahim A. Adaptive response of Listeria monocytogenes to heat and its impact on food safety. Food Control 2009. [DOI: 10.1016/j.foodcont.2008.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Hassani M, Mañas P, Pagán R, Condón S. Effect of a previous heat shock on the thermal resistance of Listeria monocytogenes and Pseudomonas aeruginosa at different pHs. Int J Food Microbiol 2007; 116:228-38. [PMID: 17355896 DOI: 10.1016/j.ijfoodmicro.2007.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 12/12/2006] [Accepted: 01/02/2007] [Indexed: 10/23/2022]
Abstract
In this work we study the effect of heat shocks of various durations up to 60 min, at different temperatures between 35 and 45 degrees C, in media of pH 4.0, 5.5 and 7.4 on the heat resistance of Listeria monocytogenes and Pseudomonas aeruginosa. The pattern of survival curves after heat treatment did not change with the application of a previous heat shock. However, the kinetics of inactivation was different for the two microorganisms studied. Whereas the inactivation of L. monocytogenes was similar to an exponential function of heating time and therefore straight survival curves were obtained, survival curves corresponding to P. aeruginosa showed convex profiles. All survival curves obtained in this investigation were fitted to Weibull-based Mafart equation: log(10)S(t)=-(t / delta)(p). The magnitude of the heat shock induced thermotolerance increased with treatment medium pH. At pH 7.4 the increase in heat tolerance depended on the duration and temperature of the heat shock. On the contrary, at pH 5.5 and pH 4.0, the heat-shock temperature did not exert any effect. The observed maximum delta values increased 2.3, 4.0 and 9.3 fold for L. monocytogenes, and 1.3, 2.1 and 8.4 fold for P. aeruginosa, at pH 4.0, 5.5 and 7.4, respectively. This research has proven that Mafart equation allows studying and quantifying the effect of heat shocks on bacterial heat resistance.
Collapse
Affiliation(s)
- M Hassani
- Tecnología de los Alimentos, Facultad de Veterinaria, Zaragoza, Spain
| | | | | | | |
Collapse
|
12
|
|
13
|
Chiang ML, Yu RC, Chou CC. Fatty acid composition, cell morphology and responses to challenge by organic acid and sodium chloride of heat-shocked Vibrio parahaemolyticus. Int J Food Microbiol 2005; 104:179-87. [PMID: 15982770 DOI: 10.1016/j.ijfoodmicro.2005.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 01/19/2005] [Accepted: 02/12/2005] [Indexed: 11/27/2022]
Abstract
Vibrio parahaemolyticus 690, a clinical strain, was subjected to heat shock at 42 degrees C for 45 min. The fatty acid profile and recovery of the heat-shocked cells of V. parahaemolyticus on TSA-3.0% NaCl, APS agar (Alkaline peptone salt broth supplemented with 1.5% agar) and TCBS (Thiosulfate-citrate-bile salts-sucrose agar) were compared with those of the nonheat-shocked cells. Furthermore, the morphology of V. parahaemolyticus and survival in the presence of various organic acids (25 mM acetic acid, lactic acid, citric acid or tartaric acid) and NaCl (0.1% and 20.0%) as influenced by heat shock treatment were also investigated. It was found that heat shock caused a change in the proportions of the unsaturated and saturated fatty acid. The ratio of saturated fatty acids to unsaturated fatty acids observed on heat-shocked V. parahaemolyticus cells was significantly (p<0.05) higher than that on the control cells. Extensive cell-wall pitting and cell disruption, representing cell-surface damage, were also observed on the cells which were subjected to heat shock treatment. Recovery of heat-shocked cells of V. parahaemolyticus was significantly less on TCBS and APS agar than on TSA-3.0% NaCl. Heat shock decreased the tolerance of V. parahaemolyticus to organic acids. The extent of decreased acid tolerance observed on heat-shocked cells varied with the organic acid tested. While heat shock increased the survival of V. parahaemolyticus in the presence of 0.1% NaCl and made the test organism more susceptible to 20.0% NaCl than the control cells.
Collapse
Affiliation(s)
- Ming-Lun Chiang
- Graduate Institute of Food Science and Technology, National Taiwan University 59, lane 144, Keelung Rd., Sec. 4, Taipei, Taiwan
| | | | | |
Collapse
|
14
|
Pardey KK, Schuchmann HP, Schubert H. Modellierung der thermischen Inaktivierung vegetativer Mikroorganismen. CHEM-ING-TECH 2005. [DOI: 10.1002/cite.200500018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Hassani M, Mañas P, Raso J, Condón S, Pagán R. Predicting heat inactivation of Listeria monocytogenes under nonisothermal treatments. J Food Prot 2005; 68:736-43. [PMID: 15830664 DOI: 10.4315/0362-028x-68.4.736] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of this study was to find a model that accurately predicts the heat inactivation of Listeria monocytogenes (ATCC 15313) at constantly rising heating rates (0.5 to 9 degrees C/min) in media of different pH values (4.0 to 7.4). Survival curves of L. monocytogenes obtained under isothermal treatments at any temperature were nearly linear. Estimations of survival curves under nonisothermal treatments obtained from heat resistance parameters of isothermal treatments adequately fit experimental values obtained at pH 4.0. On the contrary, survivors were much higher than estimations at pH 5.5 and 7.4. The slower the heating rate and the longer the treatment time, the greater the differences between the experimental and estimated values. An equation based on the Weibullian-like distribution, log S(t) = (t/delta)p, accurately described survival curves of L. monocytogenes obtained under nonisothermal conditions within the range of heating rates investigated. A nonlinear relationship was observed between the scale parameter (delta) and the heating rate, which allowed the development of an equation capable of predicting the inactivation rate of L. monocytogenes under nonisothermal treatments at pH 5.5 and 7.4. The model predictions were a good fit to the measured data independent of the magnitude of the thermotolerance increase. This work might contribute to the increase in safety of those food products that require long heating lag phases during the pasteurization process.
Collapse
Affiliation(s)
- M Hassani
- Departamento Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | | | | | | | | |
Collapse
|
16
|
Effect of heat shock on thermal tolerance and susceptibility of Listeria monocytogenes to other environmental stresses. Food Microbiol 2004. [DOI: 10.1016/j.fm.2003.10.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Survival of Salmonella senftenberg 775W to current liquid whole egg pasteurization treatments. Food Microbiol 2003. [DOI: 10.1016/s0740-0020(02)00088-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Alvarez I, Pagán R, Raso J, Condón S. Environmental factors influencing the inactivation of Listeria monocytogenes by pulsed electric fields. Lett Appl Microbiol 2003; 35:489-93. [PMID: 12460430 DOI: 10.1046/j.1472-765x.2002.01221.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To investigate the influence of the growth phase, growth temperature, storage time, pH and aw of the treatment medium on the resistance of Listeria monocytogenes to pulsed electric fields (PEF). METHODS AND RESULTS Square wave pulses of 2 micros at a frequency of 1 Hz and 25 and 28 kV cm(-1) were used. Cells were more PEF resistant in the stationary than in the exponential phase at both incubation temperatures investigated (4 and 35 degrees C). Cells grown at 4 degrees C were more PEF sensitive than cells grown at 35 degrees C independent of the growth phase. After a treatment of 25 kV cm(-1) and 800 micros, 1.48, 3.86 and 5.09 log10 cycles of inactivation were obtained at pH 7.0, 5.4 and 3.8, respectively. A reduction in the aw of the treatment medium protected cells against PEF treatments. CONCLUSIONS The PEF resistance of L. monocytogenes depended on different environmental factors. The influence of growth conditions and treatment medium characteristics should be known and controlled to obtain reproducible and reliable PEF inactivation data. SIGNIFICANCE AND IMPACT OF THE STUDY Erroneous conclusions and misinterpretation of results are possible if factors affecting the PEF resistance of L. monocytogenes are not considered during PEF inactivation studies.
Collapse
Affiliation(s)
- I Alvarez
- Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | | | | | | |
Collapse
|
19
|
Sörqvist S. Heat resistance in liquids of Enterococcus spp., Listeria spp., Escherichia coli, Yersinia enterocolitica, Salmonella spp. and Campylobacter spp. Acta Vet Scand 2003; 44:1-19. [PMID: 14650540 PMCID: PMC1831557 DOI: 10.1186/1751-0147-44-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2002] [Accepted: 10/28/2002] [Indexed: 11/19/2022] Open
Abstract
The aim of the work was to collect, evaluate, summarize and compare heat resistance data reported for Campylobacter, Enterococcus, Escherichia, Listeria, Salmonella and Yersinia spp. The work was limited to resistance in liquids with pH values 6-8. Results obtained under similar experimental conditions were sought. Thermal destruction lines for the various bacterial groups studied were constructed using log10 D values and treatment temperatures. There was a good linear relationship between log10 D and temperature with Escherichia coli, listerias and salmonellas. For campylobacters, enterococci and yersinias the relationships were weaker but, nevertheless, present. Using the slopes of the lines and their 95% confidence limits, z values and their 95% confidence limits were calculated. z values were compared with z values obtained from reports. The equations for the lines were also used for calculation of predicted means of D values at various treatment temperatures. 95% confidence limits on predicted means of D values and on predicted individual D values were also calculated. Lines and values are shown in figures and tables. Differences in heat resistance noted between and within the bacterial groups studied are discussed.
Collapse
Affiliation(s)
- S Sörqvist
- Department of Food Hygiene, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
20
|
Novak JS, Juneja VK. Effects of refrigeration or freezing on survival of Listeria monocytogenes Scott A in under-cooked ground beef. Food Control 2003. [DOI: 10.1016/s0956-7135(02)00048-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Mathew FP, Ryser ET. Competition of thermally injured listeria monocytogenes with a mesophilic lactic acid starter culture in milk for various heat treatments. J Food Prot 2002; 65:643-50. [PMID: 11952213 DOI: 10.4315/0362-028x-65.4.643] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Overnight tryptose broth cultures of three L monocytogenes strains were combined, centrifuged, suspended in 200 ml of tryptose phosphate broth, and heated at 56 degrees C for 20 min and at 64 degrees C for 2 min to obtain low-heat-injured (LHI) and high-heat-injured (HHI) cells, respectively, showing >99.6% injury. Flasks containing 200 ml of raw, low-heat-treated (56 degrees C for 20 min), high-heat-treated (64 degrees C for 2 min), pasteurized, and ultrahigh-temperature (UHT) milk were tempered to 31.1 degrees C and inoculated to contain 10(4) to 10(6) CFU/ml of LHI, HHI, or healthy L. monocytogenes cells and a commercial Lactococcus lactis subsp. lactis-Lactococcus lactis subsp. cremoris starter culture at levels of 0.5, 1.0, and 2.0%. Numbers of healthy and injured L. monocytogenes cells and starter organisms were determined using tryptose phosphate agar with or without 4.0% NaCl at selected intervals during 24 h of incubation at 31.1 degrees C. The presence of L. monocytogenes did not adversely affect the growth of the starter culture at any inoculation level. Overall, L. monocytogenes survived the 24-h fermentation period and grew to some extent. In starter-free controls. 76 to 81% of LHI cells and 59 to 69% of HHI cells were repaired after 8 h of incubation, with the lowest repair rates being observed for raw rather than heat-treated or pasteurized milk. Increased injury was observed for healthy L. monocytogenes cells at the 1.0 and 2.0% starter levels, with less injury seen for LHI and HHI cells. Raw and subpasteurized milk allowed less of a decrease in the percentage of injury and also showed higher numbers of injured cells than did pasteurized and UHT milks. These findings may have important implications for the survival of Listeria spp. in certain cheeses that can be prepared from raw or heat-treated milk.
Collapse
Affiliation(s)
- Finny P Mathew
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing 48824-1224, USA
| | | |
Collapse
|
22
|
Abstract
The heat resistance data on Listeria monocytogenes in culture media and foods are summarized. Most heat resistance data for foods have been obtained in dairy, meat, poultry, and egg products. Limited data have been published on seafood, fruits, and vegetables. The methodologies employed have evolved over time; hence data from earlier experiments are not directly comparable to more recent studies. Many factors influence the heat resistance of L. monocytogenes. Variation exists among different strains in their ability to withstand heat treatment. In addition, heat resistance is influenced by age of the culture, growth conditions, recovery media, and characteristics of foods such as salt content, a(w), acidity, and the presence of other inhibitors. Listeriae are more heat resistant than most other nonspore-forming foodborne pathogens, and thus, processing recommendations based on data from experiments with Salmonella spp. or pathogenic Escherichia coli may not be sufficient to eliminate similar numbers of L. monocytogenes. The data provided in this review may prove useful for food processors in determining appropriate times and temperatures for producing foods free of vegetative pathogens.
Collapse
Affiliation(s)
- M E Doyle
- Food Research Institute, University of Wisconsin, Madison 53706, USA
| | | | | | | | | |
Collapse
|
23
|
Geeraerd AH, Herremans CH, Van Impe JF. Structural model requirements to describe microbial inactivation during a mild heat treatment. Int J Food Microbiol 2000; 59:185-209. [PMID: 11020040 DOI: 10.1016/s0168-1605(00)00362-7] [Citation(s) in RCA: 408] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The classical concept of D and z values, established for sterilisation processes, is unable to deal with the typical non-loglinear behaviour of survivor curves occurring during the mild heat treatment of sous vide or cook-chill food products. Structural model requirements are formulated, eliminating immediately some candidate model types. Promising modelling approaches are thoroughly analysed and, if applicable, adapted to the specific needs: two models developed by Casolari (1988), the inactivation model of Sapru et al. (1992), the model of Whiting (1993), the Baranyi and Roberts growth model (1994), the model of Chiruta et al. (1997), the model of Daughtry et al. (1997) and the model of Xiong et al. (1999). A range of experimental data of Bacillus cereus, Yersinia enterocolitica, Escherichia coli O157:H7, Listeria monocytogenes and Lactobacillus sake are used to illustrate the different models' performances. Moreover, a novel modelling approach is developed, fulfilling all formulated structural model requirements, and based on a careful analysis of literature knowledge of the shoulder and tailing phenomenon. Although a thorough insight in the occurrence of shoulders and tails is still lacking from a biochemical point of view, this newly developed model incorporates the possibility of a straightforward interpretation within this framework.
Collapse
Affiliation(s)
- A H Geeraerd
- BioTeC-Bioprocess Technology and Control, Department of Food and Microbial Technology, Katholieke Universiteit Leuven, Belgium
| | | | | |
Collapse
|
24
|
PAGÁN R, MAÑAS P, ALVAREZ I, SALA F. HEAT RESISTANCE IN DIFFERENT HEATING MEDIA OF LISTERIA MONOCYTOGENES ATCC 15313 GROWN AT DIFFERENT TEMPERATURES. J Food Saf 1998. [DOI: 10.1111/j.1745-4565.1998.tb00215.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Han CJ, Kelly RM. Biooxidation capacity of the extremely thermoacidophilic archaeon metallosphaera sedula under bioenergetic challenge. Biotechnol Bioeng 1998; 58:617-24. [PMID: 10099299 DOI: 10.1002/(sici)1097-0290(19980620)58:6<617::aid-bit7>3.0.co;2-l] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The biooxidation capacity of an extremely thermoacidophilic archaeon Metallosphaera sedula (DSMZ 5348) was examined under bioenergetic challenges imparted by thermal or chemical stress in regard to its potential use in microbial bioleaching processes. Within the normal growth temperature range of M. sedula (70-79 degrees C) at pH 2.0, upward temperature shifts resulted in bioleaching rates that followed an Arrhenius-like dependence. When the cells were subjected to supraoptimal temperatures through gradual thermal acclimation at 81 degrees C (Han et al., 1997), cell densities were reduced but 3 to 5 times faster specific leaching rates (Fe3+ released from iron pyrite/cell/h) could be achieved by the stressed cells compared to cells at 79 degrees C and 73 degrees C, respectively. The respiration capacity of M. sedula growing at 74 degrees C was challenged by poisoning the cells with uncouplers to generate chemical stress. When the protonophore 2,4-dinitrophenol (5-10 μM) was added to a growing culture of M. sedula on iron pyrite, there was little effect on specific leaching rates compared to a culture with no protonophore at 74 degrees C; 25 μM levels proved to be toxic to M. sedula. However, a significant stimulation in specific rate was observed when the cells were subjected to 1 μM nigericin (+135%) and 2 μM (+63%); 5 μM levels of the ionophore completely arrested cell growth. The ionophore effect was further investigated in continuous culture growing on ferrous sulfate at 74 degrees C. When 1 μM nigericin was added as a pulse to a continuous culture, a 30% increase in specific iron oxidation rate was observed for short intervals, indicating a potential positive impact on leaching when periodic chemical stress is applied. This study suggests that biooxidation rates can be increased by strategic exposure of extreme thermoacidophiles to chemical or thermal stress, and this approach should be considered for improving process performance. Copyright 1998 John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- CJ Han
- Department of Chemical Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, USA
| | | |
Collapse
|
26
|
Rowan NJ, Anderson JG. Effects of above-optimum growth temperature and cell morphology on thermotolerance of Listeria monocytogenes cells suspended in bovine milk. Appl Environ Microbiol 1998; 64:2065-71. [PMID: 9603815 PMCID: PMC106279 DOI: 10.1128/aem.64.6.2065-2071.1998] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/1997] [Accepted: 03/20/1998] [Indexed: 02/07/2023] Open
Abstract
The thermotolerances of two different cell forms of Listeria monocytogenes (serotype 4b) grown at 37 and 42.8 degrees C in commercially pasteurized and laboratory-tyndallized whole milk (WM) were investigated. Test strains, after growth at 37 or 42.8 degreesC, were suspended in WM at concentrations of approximately 1.5 x 10(8) to 3.0 x 10(8) cells/ml and were then heated at 56, 60, and 63 degrees C for various exposure times. Survival was determined by enumeration on tryptone-soya-yeast extract agar and Listeria selective agar, and D values (decimal reduction times) and Z values (numbers of degrees Celsius required to cause a 10-fold change in the D value) were calculated. Higher average recovery and higher D values (i.e., seen as a 2.5- to 3-fold increase in thermotolerance) were obtained when cells were grown at 42.8 degrees C prior to heat treatment. A relationship was observed between thermotolerance and cell morphology of L. monocytogenes. Atypical Listeria cell types (consisting predominantly of long cell chains measuring up to 60 micron in length) associated with rough (R) culture variants were shown to be 1.2-fold more thermotolerant than the typical dispersed cell form associated with normal smooth (S) cultures (P = 0.001). The thermal death-time (TDT) curves of R-cell forms contained a tail section in addition to the shoulder section characteristic of TDT curves of normal single to paired cells (i.e., S form). The factors shown to influence the thermoresistance of suspended Listeria cells (P = 0.001) were as follows: growth and heating temperatures, type of plating medium, recovery method, and cell morphology. Regression analysis of nonlinear data can underestimate survival of L. monocytogenes; the end point recovery method was shown to be a better method for determining thermotolerance because it takes both shoulders and tails into consideration. Despite their enhanced heat resistance, atypical R-cell forms of L. monocytogenes were unable to survive the low-temperature, long-time pasteurization process when freely suspended and heated in WM.
Collapse
Affiliation(s)
- N J Rowan
- Department of Bioscience and Biotechnology, University of Strathclyde, Glasgow, Scotland.
| | | |
Collapse
|
27
|
Gross C, Watson K. Transcriptional and translational regulation of major heat shock proteins and patterns of trehalose mobilization during hyperthermic recovery in repressed and derepressed Saccharomyces cerevisiae. Can J Microbiol 1998; 44:341-50. [PMID: 9674106 DOI: 10.1139/w98-006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Patterns of heat shock gene transcription and translation, as well as trehalose content, were investigated in both glucose (repressed) and acetate (derepressed) grown cells of Saccharomyces cerevisiae during heat shock and subsequent return of cells to 25 degrees C. Heat-shocked cells (37 degrees C for 30 min), grown in either glucose- or acetate-supplemented media, initially acquired high thermotolerance to a 50 degrees C heat stress, which was progressively lost when cultures were allowed to recover at 25 degrees C and subsequently exposed to a second heat stress. In all cases, with the notable exception of repressed cells of a relatively thermosensitive strain, inhibition of protein synthesis and coincident decrease in trehalose accumulation during the heat shock had little effect on the kinetics of loss of thermotolerance. Heat shock at 37 degrees C elicited a marked increase in transcription and translation of genes encoding major heat shock proteins (hsps). During recovery at 25 degrees C, both metabolic activities were suppressed followed by a gradual increase in hsp mRNA transcription to levels observed prior to heat shock. De novo translation of hsp mRNAs, however, was no longer observed during the recovery phase, although immunodetection analyses demonstrated persistence of high levels of hsps 104, 90, 70, and 60 in cells throughout the 240-min recovery period. In addition, while heat shock induced trehalose was rapidly degraded during recovery in repressed cells, levels remained high in derepressed cells. Results therefore indicated that the progressive loss of induced thermotolerance exhibited by glucose- and acetate-grown cells was not closely correlated with levels of hsp or trehalose. It was concluded that both constitutive and de novo synthesized hsps require heat shock associated activation to confer thermotolerance and this modification is progressively reversed upon release from the heat-shocked state.
Collapse
Affiliation(s)
- C Gross
- Division of Molecular and Cellular Biology, School of Biological Sciences, University of New England, Armidale, NSW, Australia
| | | |
Collapse
|
28
|
Pagán R, Condón S, Sala FJ. Effects of several factors on the heat-shock-induced thermotolerance of Listeria monocytogenes. Appl Environ Microbiol 1997; 63:3225-32. [PMID: 9251209 PMCID: PMC168620 DOI: 10.1128/aem.63.8.3225-3232.1997] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The influence of the temperature at which Listeria monocytogenes had been grown (4 or 37 degrees C) on the response to heat shocks of different durations at different temperatures was investigated. For cells grown at 4 degrees C, the effect of storage, prior to and after heat shock, on the induced thermotolerance was also studied. Death kinetics of heat-shocked cells is also discussed. For L. monocytogenes grown at 37 degrees C, the greatest response to heat shock was a fourfold increase in thermotolerance. For L. monocytogenes grown at 4 degrees C, the greatest response to heat shock was a sevenfold increase in thermotolerance. The only survival curves of cells to have shoulders were those for cells that had been heat shocked. A 3% concentration of sodium chloride added to the recovery medium made these shoulders disappear and decreased decimal reduction times. The percentage of cells for which thermotolerance increased after a heat shock was smaller the milder the heat shock and the longer the prior storage.
Collapse
Affiliation(s)
- R Pagán
- Departamento PACA, Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | | | | |
Collapse
|