1
|
Lim MCX, Loo CT, Wong CY, Lee CS, Koh RY, Lim CL, Kok YY, Chye SM. Prospecting bioactivity in Antarctic algae: A review of extracts, isolated compounds and their effects. Fitoterapia 2024; 176:106025. [PMID: 38768797 DOI: 10.1016/j.fitote.2024.106025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Algae and its metabolites have been a popular subject of research in numerous fields over the years. Various reviews have been written on algal bioactive components, but a specific focus on Antarctic-derived algae is seldom reviewed. Due to the extreme climate conditions of Antarctica, it is hypothesized that the acclimatized algae may have given rise to a new set of bioactive compounds as a result of adaptation. Although most studies done on Antarctic algae are based on ecological and physiological studies, as well as in the field of nanomaterial synthesis, some studies point out the potential therapeutic properties of these compounds. As an effort to shed light on a different application of Antarctic algae, this review focuses on evaluating its different medicinal properties, including antimicrobial, anticancer, antioxidative, anti-inflammatory, and skin protective effects.
Collapse
Affiliation(s)
- Mervyn Chen Xi Lim
- School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chee Tou Loo
- School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chiew Yen Wong
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Choy Sin Lee
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Rhun Yian Koh
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chooi Ling Lim
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Yih Yih Kok
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Soi Moi Chye
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
2
|
Bouyahya A, Bakrim S, Chamkhi I, Taha D, El Omari N, El Mneyiy N, El Hachlafi N, El-Shazly M, Khalid A, Abdalla AN, Goh KW, Ming LC, Goh BH, Aanniz T. Bioactive substances of cyanobacteria and microalgae: Sources, metabolism, and anticancer mechanism insights. Biomed Pharmacother 2024; 170:115989. [PMID: 38103309 DOI: 10.1016/j.biopha.2023.115989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
Cyanobacteria and microalgae contain various phytochemicals, including bioactive components in the form of secondary metabolites, namely flavonoids, phenolic acids, terpenoids, and tannins, with remarkable anticancer effects. This review highlights the recent advances in bioactive compounds, with potential anticancer activity, produced by cyanobacteria and microalgae. Previous in vitro investigations showed that many of these bioactive compounds exhibit potent effects against different human cancer types, such as leukemia and breast cancers. Multiple mechanisms implicated in the antitumor effect of these compounds were elucidated, including their ability to target cellular, subcellular, and molecular checkpoints linked to cancer development and promotion. Recent findings have highlighted various mechanisms of action of bioactive compounds produced by cyanobacteria and microalgae, including induction of autophagy and apoptosis, inhibition of telomerase and protein kinases, as well as modulation of epigenetic modifications. In vivo investigations have demonstrated a potent anti-angiogenesis effect on solid tumors, as well as a reduction in tumor volume. Some of these compounds were examined in clinical investigations for certain types of cancers, making them potent candidates/scaffolds for antitumor drug development.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, 10106, Morocco.
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnologies, and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, Morocco
| | - Imane Chamkhi
- Geo-Biodiversity and Natural Patrimony Laboratory (GeoBio), Geophysics, Natural Patrimony Research Center (GEOPAC), Scientific Institute, Mohammed V University in Rabat, Morocco
| | - Douae Taha
- Laboratoire de Spectroscopie, Modélisation Moléculaire, Matériaux, Nanomatériaux, Eau et Environnement, CERNE2D, Faculté des Sciences, Mohammed V University, Rabat 10106, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Naoual El Mneyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, 34025 Taouanate, Morocco
| | - Naoufal El Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Imouzzer Road Fez, Fez 30003, Morocco
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt; Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, The German University in Cairo, Cairo 11432, Egypt
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia; Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P.O. Box 2404, Khartoum, Sudan.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, 71800 Nilai, Malaysia
| | - Long Chiau Ming
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia.
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tarik Aanniz
- Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical and Pharmacy School, Mohammed V University, Rabat, Morocco
| |
Collapse
|
3
|
Bisaccia M, Binda E, Rosini E, Caruso G, Dell'Acqua O, Azzaro M, Laganà P, Tedeschi G, Maffioli EM, Pollegioni L, Marinelli F. A novel promising laccase from the psychrotolerant and halotolerant Antarctic marine Halomonas sp. M68 strain. Front Microbiol 2023; 14:1078382. [PMID: 36846806 PMCID: PMC9950745 DOI: 10.3389/fmicb.2023.1078382] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/04/2023] [Indexed: 02/12/2023] Open
Abstract
Microbial communities inhabiting the Antarctic Ocean show psychrophilic and halophilic adaptations conferring interesting properties to the enzymes they produce, which could be exploited in biotechnology and bioremediation processes. Use of cold- and salt-tolerant enzymes allows to limit costs, reduce contaminations, and minimize pretreatment steps. Here, we report on the screening of 186 morphologically diverse microorganisms isolated from marine biofilms and water samples collected in Terra Nova Bay (Ross Sea, Antarctica) for the identification of new laccase activities. After primary screening, 13.4 and 10.8% of the isolates were identified for the ability to oxidize 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and the dye azure B, respectively. Amongst them, the marine Halomonas sp. strain M68 showed the highest activity. Production of its laccase-like activity increased six-fold when copper was added to culture medium. Enzymatic activity-guided separation coupled with mass spectrometry identified this intracellular laccase-like protein (named Ant laccase) as belonging to the copper resistance system multicopper oxidase family. Ant laccase oxidized ABTS and 2,6-dimethoxy phenol, working better at acidic pHs The enzyme showed a good thermostability, with optimal temperature in the 40-50°C range and maintaining more than 40% of its maximal activity even at 10°C. Furthermore, Ant laccase was salt- and organic solvent-tolerant, paving the way for its use in harsh conditions. To our knowledge, this is the first report concerning the characterization of a thermo- and halo-tolerant laccase isolated from a marine Antarctic bacterium.
Collapse
Affiliation(s)
- Melissa Bisaccia
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy,*Correspondence: Melissa Bisaccia,
| | - Elisa Binda
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - Elena Rosini
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - Gabriella Caruso
- Institute of Polar Sciences (CNR-ISP), National Research Council, Messina, Italy
| | - Ombretta Dell'Acqua
- Institute of Polar Sciences (CNR-ISP), National Research Council, Venice, Italy
| | - Maurizio Azzaro
- Institute of Polar Sciences (CNR-ISP), National Research Council, Messina, Italy
| | - Pasqualina Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Milan, Italy,Cimaina, University of Milan, Milan, Italy
| | - Elisa M. Maffioli
- Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Milan, Italy,Cimaina, University of Milan, Milan, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| |
Collapse
|
4
|
Effendi DB, Sakamoto T, Ohtani S, Awai K, Kanesaki Y. Possible involvement of extracellular polymeric substrates of Antarctic cyanobacterium Nostoc sp. strain SO-36 in adaptation to harsh environments. JOURNAL OF PLANT RESEARCH 2022; 135:771-784. [PMID: 36107269 DOI: 10.1007/s10265-022-01411-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacteria are some of the primary producers in extremely cold biospheres such as the Arctic, Antarctic, and vast ice sheets. Many genera of cyanobacteria are identified from these harsh environments, but their specific mechanisms for cold adaptation are not fully understood. Nostoc sp. strain SO-36 is a cyanobacterium isolated in Antarctica more than 30 years ago and regarded as a psychrotolelant species. To determine whether the strain is psychrotolelant or psychrophilic, it was first grown at 30 °C and 10 °C. The cells grew exponentially at 30 °C, but their growth stopped at 10 °C, indicating that the strain is only psychrotolerant. Microscopic analysis revealed that the morphology of the cells grown at 30 °C was filamentous and differentiated heterocysts, which are specialized cells for gaseous nitrogen fixation under nitrogen-deprived conditions, indicating that the strain can grow diazotrophically. The cells grown at 10 °C have a smaller size, shortened filament length and decreased chlorophyll content per cell. At 10 °C, the cells are aggregated with extracellular polymeric substrates (EPSs), which is a common mechanism to protect cells from ultraviolet light. These results imply that segmentation into short filaments was induced by photodamage at low temperatures. To fully understand the adaptation mechanisms of Nostoc sp. strain SO-36 for low-temperature conditions, next-generation sequencing analyses were conducted. Complete genome sequence of the strain revealed that it has one main chromosome of approximately 6.8 Mbp with 4 plasmids, including 6855 coding sequences, 48 tRNA genes, 4 copies of rRNA operons, and 5 CRISPR regions. Putative genes for EPS biosynthesis were found to be conserved in Nostocaceae regardless of their habitat. These results provide basic information to understand the adaptation mechanisms at low temperatures, and the strain can be a model organism to analyze adaptation to extreme environments.
Collapse
Affiliation(s)
- Devi B Effendi
- Graduate School of Science and Technology, Shizuoka University, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Toshio Sakamoto
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - Shuji Ohtani
- Faculty of Education, Shimane University, Matsue, Shimane, 690-8504, Japan
| | - Koichiro Awai
- Graduate School of Science and Technology, Shizuoka University, Suruga-ku, Shizuoka, 422-8529, Japan
- Department of Biological Science, Faculty of Science, Shizuoka University, Suruga-ku, Shizuoka, 422-8529, Japan
- Research Institute of Electronics, Shizuoka University, Johoku-ku, Hamamatsu, 432-8561, Japan
| | - Yu Kanesaki
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
5
|
Lara YJ, McCann A, Malherbe C, François C, Demoulin CF, Sforna MC, Eppe G, De Pauw E, Wilmotte A, Jacques P, Javaux EJ. Characterization of the Halochromic Gloeocapsin Pigment, a Cyanobacterial Biosignature for Paleobiology and Astrobiology. ASTROBIOLOGY 2022; 22:735-754. [PMID: 35333546 DOI: 10.1089/ast.2021.0061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ultraviolet (UV)-screening compounds represent a substantial asset for the survival of cyanobacteria in extreme environments exposed to high doses of UV radiations on modern and early Earth. Among these molecules, the halochromic pigment gloeocapsin remains poorly characterized and studied. In this study, we identified a gloeocapsin-producing cultivable cyanobacteria: the strain Phormidesmis nigrescens ULC007. We succeeded to extract, to partially purify, and to compare the dark blue pigment from both the ULC007 culture and an environmental Gloeocapsa alpina dominated sample. FT-IR and Raman spectra of G. alpina and P. nigrescens ULC007 pigment extracts strongly suggested a common backbone structure. The high-pressure liquid chromatography-UV-MS/MS analysis of the ULC007 pigment extract allowed to narrow down the molecular formula of gloeocapsin to potentially five candidates within three classes of halochromic molecules: anthraquinone derivatives, coumarin derivatives, and flavonoids. With the discovery of gloeocapsin in P. nigrescens, the production of this pigment is now established for three lineages of cyanobacteria (including G. alpina, P. nigrescens, and Solentia paulocellulare) that belong to three distinct orders (Chroococcales, Pleurocapsales, Synechoccocales), inhabiting very diverse environments. This suggests that gloeocapsin production was a trait of their common ancestor or was acquired by lateral gene transfer. This work represents an important step toward the elucidation of the structure of this enigmatic pigment and its biosynthesis, and it potentially provides a new biosignature for ancient cyanobacteria. It also gives a glimpse on the evolution of UV protection strategies, which are relevant for early phototrophic life on Earth and possibly beyond.
Collapse
Affiliation(s)
- Yannick J Lara
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium
| | - Andréa McCann
- MolSys Research Unit, Mass Spectrometry Laboratory, University of Liège, Liège, Belgium
| | - Cédric Malherbe
- MolSys Research Unit, Mass Spectrometry Laboratory, University of Liège, Liège, Belgium
| | - Camille François
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium
| | - Catherine F Demoulin
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium
| | - Marie Catherine Sforna
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium
| | - Gauthier Eppe
- MolSys Research Unit, Mass Spectrometry Laboratory, University of Liège, Liège, Belgium
| | - Edwin De Pauw
- MolSys Research Unit, Mass Spectrometry Laboratory, University of Liège, Liège, Belgium
| | - Annick Wilmotte
- BCCM/ULC Cyanobacteria Collection, InBios-CIP, Institut de Chimie B6a, University of Liège, Liège, Belgium
| | - Philippe Jacques
- Microbial Processes and Interactions, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro UMRt 1158, University of Liège, Gembloux, Belgium
| | - Emmanuelle J Javaux
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium
| |
Collapse
|
6
|
Stirk WA, van Staden J. Bioprospecting for bioactive compounds in microalgae: Antimicrobial compounds. Biotechnol Adv 2022; 59:107977. [DOI: 10.1016/j.biotechadv.2022.107977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/25/2022] [Accepted: 05/06/2022] [Indexed: 12/30/2022]
|
7
|
Babich O, Shevchenko M, Ivanova S, Pavsky V, Zimina M, Noskova S, Anohova V, Chupakhin E, Sukhikh S. Antimicrobial Potential of Microorganisms Isolated from the Bottom Sediments of Lake Baikal. Antibiotics (Basel) 2021; 10:927. [PMID: 34438977 PMCID: PMC8388859 DOI: 10.3390/antibiotics10080927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 01/18/2023] Open
Abstract
Extremophilic microorganisms attract researchers by their unique characteristics, primarily antagonistic ones, acquired in the process of survival in extreme natural conditions. The antimicrobial potential of the metabolites of these microorganisms is quite broad, from the food industry to therapeutic drugs. Microbial mats of Lake Baikal are a source of unique and diverse microorganisms. The study aimed to evaluate the antimicrobial activity of bacterial strains isolated from the bottom sediments of the lake. Using heterotrophic growth conditions, seven bacterial strains were isolated from samples collected in several coastal zones of Lake Baikal. Thisstudy identified both widespread strains of the genera Pseudomonas and Bacillus and rare genera Micrococcus and Acinetobacterrepresentatives. Metabolites of five strains were found to have a broad spectrum of antimicrobial activity. Four large fractions of metabolites of the isolated strains wereidentified. Two peptides of the isolated fractions of metabolites (one is produced by microorganisms of all five isolated strains, another-only by Pseudomonas putida) are low molecular weight oligopeptides. These peptides were proved to be bacteriocins.
Collapse
Affiliation(s)
- Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (M.S.); (M.Z.); (S.N.); (V.A.); (E.C.); (S.S.)
| | - Margarita Shevchenko
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (M.S.); (M.Z.); (S.N.); (V.A.); (E.C.); (S.S.)
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
- Department of General Mathematics and Informatics, Kemerovo State University, Krasnaya Street, 6, 650043 Kemerovo, Russia;
| | - Valery Pavsky
- Department of General Mathematics and Informatics, Kemerovo State University, Krasnaya Street, 6, 650043 Kemerovo, Russia;
| | - Maria Zimina
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (M.S.); (M.Z.); (S.N.); (V.A.); (E.C.); (S.S.)
| | - Svetlana Noskova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (M.S.); (M.Z.); (S.N.); (V.A.); (E.C.); (S.S.)
| | - Veronika Anohova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (M.S.); (M.Z.); (S.N.); (V.A.); (E.C.); (S.S.)
| | - Evgeny Chupakhin
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (M.S.); (M.Z.); (S.N.); (V.A.); (E.C.); (S.S.)
| | - Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (M.S.); (M.Z.); (S.N.); (V.A.); (E.C.); (S.S.)
| |
Collapse
|
8
|
Rizzo C, Lo Giudice A. The Variety and Inscrutability of Polar Environments as a Resource of Biotechnologically Relevant Molecules. Microorganisms 2020; 8:microorganisms8091422. [PMID: 32947905 PMCID: PMC7564310 DOI: 10.3390/microorganisms8091422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 11/16/2022] Open
Abstract
The application of an ever-increasing number of methodological approaches and tools is positively contributing to the development and yield of bioprospecting procedures. In this context, cold-adapted bacteria from polar environments are becoming more and more intriguing as valuable sources of novel biomolecules, with peculiar properties to be exploited in a number of biotechnological fields. This review aims at highlighting the biotechnological potentialities of bacteria from Arctic and Antarctic habitats, both biotic and abiotic. In addition to cold-enzymes, which have been intensively analysed, relevance is given to recent advances in the search for less investigated biomolecules, such as biosurfactants, exopolysaccharides and antibiotics.
Collapse
Affiliation(s)
- Carmen Rizzo
- Stazione Zoologica Anton Dohrn, Department Marine Biotechnology, National Institute of Biology, Villa Pace, Contrada Porticatello 29, 98167 Messina, Italy
- Correspondence:
| | - Angelina Lo Giudice
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata San Raineri 86, 98122 Messina, Italy;
| |
Collapse
|
9
|
Shishido TK, Popin RV, Jokela J, Wahlsten M, Fiore MF, Fewer DP, Herfindal L, Sivonen K. Dereplication of Natural Products with Antimicrobial and Anticancer Activity from Brazilian Cyanobacteria. Toxins (Basel) 2019; 12:E12. [PMID: 31878347 PMCID: PMC7020483 DOI: 10.3390/toxins12010012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/19/2022] Open
Abstract
Cyanobacteria are photosynthetic organisms that produce a large diversity of natural products with interesting bioactivities for biotechnological and pharmaceutical applications. Cyanobacterial extracts exhibit toxicity towards other microorganisms and cancer cells and, therefore, represent a source of potentially novel natural products for drug discovery. We tested 62 cyanobacterial strains isolated from various Brazilian biomes for antileukemic and antimicrobial activities. Extracts from 39 strains induced selective apoptosis in acute myeloid leukemia (AML) cancer cell lines. Five of these extracts also exhibited antifungal and antibacterial activities. Chemical and dereplication analyses revealed the production of nine known natural products. Natural products possibly responsible for the observed bioactivities and five unknown, chemically related chlorinated compounds present only in Brazilian cyanobacteria were illustrated in a molecular network. Our results provide new information on the vast biosynthetic potential of cyanobacteria isolated from Brazilian environments.
Collapse
Affiliation(s)
- Tania Keiko Shishido
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland; (T.K.S.); (R.V.P.); (J.J.); (M.W.); (D.P.F.)
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5D, FI-00014 Helsinki, Finland
| | - Rafael Vicentini Popin
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland; (T.K.S.); (R.V.P.); (J.J.); (M.W.); (D.P.F.)
| | - Jouni Jokela
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland; (T.K.S.); (R.V.P.); (J.J.); (M.W.); (D.P.F.)
| | - Matti Wahlsten
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland; (T.K.S.); (R.V.P.); (J.J.); (M.W.); (D.P.F.)
| | - Marli Fatima Fiore
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, 13400-970 Piracicaba, São Paulo, Brazil;
| | - David P. Fewer
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland; (T.K.S.); (R.V.P.); (J.J.); (M.W.); (D.P.F.)
| | - Lars Herfindal
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, P.O. Box 7804, 5020 Bergen, Norway;
| | - Kaarina Sivonen
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland; (T.K.S.); (R.V.P.); (J.J.); (M.W.); (D.P.F.)
| |
Collapse
|
10
|
Patel A, Matsakas L, Rova U, Christakopoulos P. A perspective on biotechnological applications of thermophilic microalgae and cyanobacteria. BIORESOURCE TECHNOLOGY 2019; 278:424-434. [PMID: 30685131 DOI: 10.1016/j.biortech.2019.01.063] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/12/2019] [Accepted: 01/15/2019] [Indexed: 05/18/2023]
Abstract
The importance of expanding our knowledge on microorganisms derived from extreme environments stems from the development of novel and sustainable technologies for our health, food, and environment. Microalgae and cyanobacteria represent a group of diverse microorganisms that inhabit a wide range of environments, are capable of oxygenic photosynthesis, and form a thick microbial mat even at extreme environments. Studies of thermophilic microorganisms have shown a considerable biotechnological potential due to their optimum growth and metabolisms at high temperatures (≥50 °C), which is supported by their thermostable enzymes. Microalgal and cyanobacterial communities present in high-temperature ecosystems account for a large part of the total ecosystem biomass and productivity, and can be exploited to generate several value-added products of agricultural, pharmaceutical, nutraceutical, and industrial relevance. This review provides an overview on the current status of biotechnological applications of thermophilic microalgae and cyanobacteria, with an outlook on the challenges and future prospects.
Collapse
Affiliation(s)
- Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden.
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| |
Collapse
|
11
|
Yasin D, Fatma T, Zafaryab M, Ahmad N, Aziz N, Rizvi MMA. Exploring the Bio-efficacies of Methanolic Extracts of Nostoc muscorum and Calothrix brevissima with their Characterization Using GC-MS. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/2210315508666180807095636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Durdana Yasin
- Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi-110025, India
| | - Tasneem Fatma
- Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi-110025, India
| | - Md. Zafaryab
- Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi-110025, India
| | - Nazia Ahmad
- Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi-110025, India
| | - Nafe Aziz
- Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi-110025, India
| | - M. Moshahid Alam Rizvi
- Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi-110025, India
| |
Collapse
|
12
|
Núñez-Montero K, Barrientos L. Advances in Antarctic Research for Antimicrobial Discovery: A Comprehensive Narrative Review of Bacteria from Antarctic Environments as Potential Sources of Novel Antibiotic Compounds Against Human Pathogens and Microorganisms of Industrial Importance. Antibiotics (Basel) 2018; 7:E90. [PMID: 30347637 PMCID: PMC6316688 DOI: 10.3390/antibiotics7040090] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/05/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022] Open
Abstract
The recent emergence of antibiotic-resistant bacteria has become a critical public health problem. It is also a concern for industries, since multidrug-resistant microorganisms affect the production of many agricultural and food products of economic importance. Therefore, discovering new antibiotics is crucial for controlling pathogens in both clinical and industrial spheres. Most antibiotics have resulted from bioprospecting in natural environments. Today, however, the chances of making novel discoveries of bioactive molecules from various well-known sources have dramatically diminished. Consequently, unexplored and unique environments have become more likely avenues for discovering novel antimicrobial metabolites from bacteria. Due to their extreme polar environment, Antarctic bacteria in particular have been reported as a potential source for new antimicrobial compounds. We conducted a narrative review of the literature about findings relating to the production of antimicrobial compounds by Antarctic bacteria, showing how bacterial adaptation to extreme Antarctic conditions confers the ability to produce these compounds. We highlighted the diversity of antibiotic-producing Antarctic microorganisms, including the phyla Proteobacteria, Actinobacteria, Cyanobacteria, Firmicutes, and Bacteroidetes, which has led to the identification of new antibiotic molecules and supports the belief that research on Antarctic bacterial strains has important potential for biotechnology applications, while providing a better understanding of polar ecosystems.
Collapse
Affiliation(s)
- Kattia Núñez-Montero
- Laboratorio de Biología Molecular Aplicada, Centro de Excelencia en Medicina Traslacional, Universidad de La Frontera, Avenida Alemania 0458, 4810296 Temuco, Chile.
- Núcleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar 01145, 481123 Temuco, Chile.
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, 30101 Cartago, Costa Rica.
| | - Leticia Barrientos
- Laboratorio de Biología Molecular Aplicada, Centro de Excelencia en Medicina Traslacional, Universidad de La Frontera, Avenida Alemania 0458, 4810296 Temuco, Chile.
- Núcleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar 01145, 481123 Temuco, Chile.
| |
Collapse
|
13
|
Toxic Cyanobacteria in Svalbard: Chemical Diversity of Microcystins Detected Using a Liquid Chromatography Mass Spectrometry Precursor Ion Screening Method. Toxins (Basel) 2018; 10:toxins10040147. [PMID: 29614044 PMCID: PMC5923313 DOI: 10.3390/toxins10040147] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 11/16/2022] Open
Abstract
Cyanobacteria synthesize a large variety of secondary metabolites including toxins. Microcystins (MCs) with hepato- and neurotoxic potential are well studied in bloom-forming planktonic species of temperate and tropical regions. Cyanobacterial biofilms thriving in the polar regions have recently emerged as a rich source for cyanobacterial secondary metabolites including previously undescribed congeners of microcystin. However, detection and detailed identification of these compounds is difficult due to unusual sample matrices and structural congeners produced. We here report a time-efficient liquid chromatography-mass spectrometry (LC-MS) precursor ion screening method that facilitates microcystin detection and identification. We applied this method to detect six different MC congeners in 8 out of 26 microbial mat samples of the Svalbard Archipelago in the Arctic. The congeners, of which [Asp3, ADMAdda5, Dhb7] MC-LR was most abundant, were similar to those reported in other polar habitats. Microcystins were also determined using an Adda-specific enzyme-linked immunosorbent assay (Adda-ELISA). Nostoc sp. was identified as a putative toxin producer using molecular methods that targeted 16S rRNA genes and genes involved in microcystin production. The mcy genes detected showed highest similarities to other Arctic or Antarctic sequences. The LC-MS precursor ion screening method could be useful for microcystin detection in unusual matrices such as benthic biofilms or lichen.
Collapse
|
14
|
Strieth D, Schwing J, Kuhne S, Lakatos M, Muffler K, Ulber R. A semi-continuous process based on an ePBR for the production of EPS using Trichocoleus sociatus. J Biotechnol 2017; 256:6-12. [DOI: 10.1016/j.jbiotec.2017.06.1205] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/29/2017] [Indexed: 01/02/2023]
|
15
|
Rafiq M, Hayat M, Anesio AM, Jamil SUU, Hassan N, Shah AA, Hasan F. Recovery of metallo-tolerant and antibiotic resistant psychrophilic bacteria from Siachen glacier, Pakistan. PLoS One 2017; 12:e0178180. [PMID: 28746396 PMCID: PMC5528264 DOI: 10.1371/journal.pone.0178180] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/09/2017] [Indexed: 11/18/2022] Open
Abstract
Cultureable bacterial diversity of previously unexplored Siachen glacier, Pakistan, was studied. Out of 50 isolates 33 (66%) were Gram negative and 17 (34%) Gram positive. About half of the isolates were pigment producers and were able to grow at 4-37°C. 16S rRNA gene sequences revealed Gram negative bacteria dominated by Proteobacteria (especially γ-proteobacteria and β-proteobacteria) and Flavobacteria. The genus Pseudomonas (51.51%, 17) was dominant among γ- proteobacteria. β-proteobacteria constituted 4 (12.12%) Alcaligenes and 4 (12.12%) Janthinobacterium strains. Among Gram positive bacteria, phylum Actinobacteria, Rhodococcus (23.52%, 4) and Arthrobacter (23.52%, 4) were the dominating genra. Other bacteria belonged to Phylum Firmicutes with representative genus Carnobacterium (11.76%, 2) and 4 isolates represented 4 genera Bacillus, Lysinibacillus, Staphylococcus and Planomicrobium. Most of the Gram negative bacteria were moderate halophiles, while most of the Gram positives were extreme halophiles and were able to grow up to 6.12 M of NaCl. More than 2/3 of the isolates showed antimicrobial activity against multidrug resistant S. aureus, E. coli, Klebsiella pneumonia, Enterococcus faecium, Candida albicans, Aspergillus flavus and Aspergillus fumigatus and ATCC strains. Gram positive bacteria (94.11%) were more resistant to heavy metals as compared to Gram negative (78.79%) and showed maximum tolerance against iron and least tolerance against mercury.
Collapse
Affiliation(s)
- Muhammad Rafiq
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Microbiology, Abdul Wali Khan University, Mardan, Pakistan
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
| | - Muhammad Hayat
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Alexandre M. Anesio
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
| | - Syed Umair Ullah Jamil
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Earth and Environmental Sciences, Bahria University, Islamabad, Pakistan
| | - Noor Hassan
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aamer Ali Shah
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fariha Hasan
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
16
|
Van Goethem MW, Makhalanyane TP, Valverde A, Cary SC, Cowan DA. Characterization of bacterial communities in lithobionts and soil niches from Victoria Valley, Antarctica. FEMS Microbiol Ecol 2016; 92:fiw051. [DOI: 10.1093/femsec/fiw051] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2016] [Indexed: 12/18/2022] Open
|
17
|
Abd El-Kar MS. Chemical Composition and Antimicrobial Activities of Cyanobacterial Mats from Hyper Saline Lakes, Northern Western Desert, Egypt. JOURNAL OF APPLIED SCIENCES 2015; 16:1-10. [DOI: 10.3923/jas.2016.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
18
|
Tomova I, Stoilova-Disheva M, Lazarkevich I, Vasileva-Tonkova E. Antimicrobial activity and resistance to heavy metals and antibiotics of heterotrophic bacteria isolated from sediment and soil samples collected from two Antarctic islands. FRONTIERS IN LIFE SCIENCE 2015. [DOI: 10.1080/21553769.2015.1044130] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Limnology and cyanobacterial diversity of high altitude lakes of Lahaul-Spiti in Himachal Pradesh, India. J Biosci 2014; 39:643-57. [PMID: 25116619 DOI: 10.1007/s12038-014-9458-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Limnological data of four high altitude lakes from the cold desert region of Himachal Pradesh, India, has been correlated with cyanobacterial diversity. Physico-chemical characteristics and nutrient contents of the studied lakes revealed that Sissu Lake is mesotrophic while Chandra Tal, Suraj Tal and Deepak Tal are ultra-oligotrophic. Based on morphology and 16S rRNA gene sequence, a total of 20 cyanobacterial species belonging to 11 genera were identified. Canonical correspondence analysis distinguished three groups of species with respect to their occurrence and nutrient/physical environment demand. The first group, which included Nostoc linckia, N. punctiforme, Nodularia sphaerocarpa, Geitlerinema acutissimum, Limnothrix redekii, Planktothrix agardhii and Plank. clathrata, was characteristic of water with high nutrient content and high temperature. The second group, including Gloeocapsopsis pleurocapsoides, Leptolyngbya antarctica, L. frigida, Pseudanabaena frigida and N. spongiaeforme, occurred in oligotrophic water with high pH and low temperature. The distribution of third group of Cyanobium parvum, Synechocystis pevalekii, L. benthonica, L. foveolarum, L. lurida, L. valderiana, Phormidium autumnale and P. chalybeum could not be associated with a particular environmental condition because of their presence in all sampling sites.
Collapse
|
20
|
Hemala L, Zhang D, Margesin R. Cold-active antibacterial and antifungal activities and antibiotic resistance of bacteria isolated from an alpine hydrocarbon-contaminated industrial site. Res Microbiol 2014; 165:447-56. [DOI: 10.1016/j.resmic.2014.05.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 05/12/2014] [Indexed: 01/06/2023]
|
21
|
de Pascale D, De Santi C, Fu J, Landfald B. The microbial diversity of Polar environments is a fertile ground for bioprospecting. Mar Genomics 2012. [PMID: 23199876 DOI: 10.1016/j.margen.2012.04.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The term bioprospecting has been adopted for systematic searches in nature for new bioactive compounds, genes, proteins, microorganisms and other products with potential for commercial use. Much effort has been focused on microorganisms able to thrive under harsh conditions, including the Polar environments. Both the lipid and protein cellular building blocks of Polar microorganisms are shaped by their adaptation to the permanently low temperatures. In addition, strongly differing environments, such as permafrost, glaciers and sea ice, have contributed to additional functional diversity. Emerging massive-parallel sequencing technologies have revealed the existence of a huge, hitherto unseen diversity of low-abundance phylotypes--the rare biosphere--even in the Polar environments. This realization has further strengthened the need to employ cultivation-independent approaches, including metagenomics and single-cell genomic sequencing, to get comprehensive access to the genetic diversity of microbial communities for bioprospecting purposes. In this review, we present an updated snapshot of recent findings on the molecular basis for adaptation to the cold and the phylogenetic diversities of different Polar environments. Novel approaches in bioprospecting are presented and we conclude by showing recent bioprospecting outcomes in terms of new molecules patented or applied by some biotech companies.
Collapse
Affiliation(s)
- Donatella de Pascale
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, I-80134 Naples, Italy.
| | | | | | | |
Collapse
|
22
|
Wide distribution of closely related, antibiotic-producing Arthrobacter strains throughout the Arctic Ocean. Appl Environ Microbiol 2012; 78:2039-42. [PMID: 22247128 DOI: 10.1128/aem.07096-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We isolated 16 antibiotic-producing bacterial strains throughout the central Arctic Ocean, including seven Arthrobacter spp. with almost identical 16S rRNA gene sequences. These strains were numerically rare, as revealed using 454 pyrosequencing libraries. Arthrobacter spp. produced arthrobacilins A to C under different culture conditions, but other, unidentified compounds likely contributed to their antibiotic activity.
Collapse
|
23
|
Singh RK, Tiwari SP, Rai AK, Mohapatra TM. Cyanobacteria: an emerging source for drug discovery. J Antibiot (Tokyo) 2011; 64:401-12. [PMID: 21468079 DOI: 10.1038/ja.2011.21] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The c group of Gram-negative gliding bacteria, has a long history of cosmopolitan occurrence. It has great biodiversity despite the absence of sexual reproduction. This wide biodiversity may be reflected in the wide spectrum of its secondary metabolites. These cyanobacterial secondary metabolites are biosynthesized by a variety of routes, notably by non-ribosomal peptide synthetase or polyketide synthetase systems, and show a wide range of biological activities including anticancer, antibacterial, antiviral and protease inhibition activities. This high degree of chemical diversity in cyanobacterial secondary metabolites may thus constitute a prolific source of new entities leading to the development of new pharmaceuticals.
Collapse
Affiliation(s)
- Rahul Kunwar Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | | | | | |
Collapse
|
24
|
Silva-Stenico ME, Silva CSP, Lorenzi AS, Shishido TK, Etchegaray A, Lira SP, Moraes LAB, Fiore MF. Non-ribosomal peptides produced by Brazilian cyanobacterial isolates with antimicrobial activity. Microbiol Res 2011; 166:161-75. [DOI: 10.1016/j.micres.2010.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 04/08/2010] [Accepted: 04/18/2010] [Indexed: 10/19/2022]
|
25
|
Koksharova OA. Application of molecular genetic and microbiological techniques in ecology and biotechnology of cyanobacteria. Microbiology (Reading) 2010. [DOI: 10.1134/s0026261710060020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
26
|
Brunati M, Rojas JL, Sponga F, Ciciliato I, Losi D, Göttlich E, de Hoog S, Genilloud O, Marinelli F. Diversity and pharmaceutical screening of fungi from benthic mats of Antarctic lakes. Mar Genomics 2009; 2:43-50. [PMID: 21798171 DOI: 10.1016/j.margen.2009.04.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 04/01/2009] [Accepted: 04/08/2009] [Indexed: 10/20/2022]
Abstract
During the MICROMAT project, the fungal diversity of microbial mats growing in the benthic environment of Antarctic lakes was accessed for the discovery of novel antibiotics and anticancers. In all, 160 filamentous fungi belonging to fifteen different genera and 171 yeasts were isolated from 11 lakes, classified and cultivated in different media and at different temperatures. Filamentous fungi were then screened to discover novel antimicrobial and cytotoxic compounds. A total of 1422 extracts were prepared by solid phase extraction of the culture broths or by biomass solvent extraction. 47 (29%) filamentous fungi showed antimicrobial activity; most of them inhibited the growth of gram-positive Staphyloccus aureus (14%), gram-negative E. coli (10%), and of yeasts Candida albicans (11%) and Cryptococcus neoformans (8%). Less activity was detected against representatives of enterobacteria and filamentous fungi. The most productive in terms of bioactivities were cold-tolerant cosmopolitan hyphomycetes such as Penicillium, Aspergillus, Beauveria and Cladosporium. Two bioactive bis-anthraquinones (rugulosin and skyrin) were identified by LC-MS as the main products in a strain of Penicillium chrysogenum isolated from a saline lake in the Vestfold Hills. LC-MS fractionation of extracts from two diverse species of Aspergillus, that exhibited relatively potent antimicrobial activities, evidenced a chemical novelty that was further investigated. To our knowledge, this is the first report of new antibiotics produced by fungi from benthic microbial mats from Antarctic lakes. It can be concluded that these microbial assemblages represent an extremely rich source for the isolation of new strains producing novel bioactive metabolites with the potential to be developed as drugs.
Collapse
Affiliation(s)
- Mara Brunati
- Vicuron Pharmaceuticals (formerly Biosearch Italia S.p.A), Via R. Lepetit 34, 21040 Gerenzano Varese, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Rojas JL, Martín J, Tormo JR, Vicente F, Brunati M, Ciciliato I, Losi D, Van Trappen S, Mergaert J, Swings J, Marinelli F, Genilloud O. Bacterial diversity from benthic mats of Antarctic lakes as a source of new bioactive metabolites. Mar Genomics 2009; 2:33-41. [PMID: 21798170 DOI: 10.1016/j.margen.2009.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 01/22/2009] [Accepted: 03/02/2009] [Indexed: 11/19/2022]
Abstract
During the MICROMAT project, the bacterial diversity of microbial mats growing in the benthic environment of Antarctic lakes was accessed for the discovery of novel antibiotics. In all, 723 Antarctic heterotrophic bacteria belonging to novel and/or endemic taxa in the α-, β- and γ-subclasses of the Proteobacteria, the Bacteroidetes branch, and of the high and low percentage G+C Gram-positives, were isolated, cultivated in different media and at different temperatures, and then screened for the production of antimicrobial activities. A total of 6348 extracts were prepared by solid phase extraction of the culture broths or by biomass solvent extraction. 122 bacteria showed antibacterial activity against the Gram-positives Staphylococcus aureus and to a lower extent Enterococcus faecium, and versus the Gram-negative Escherichia coli. Few of these strains showed also some antifungal activity against Cryptococcus neoformans, Aspergillus fumigatus and to a lower extent Candida albicans. LC-MS fractionation of extracts from a subset of strains (hits) that exhibited relatively potent antibacterial activities evidenced a chemical novelty that was further investigated. Two strains of Arthrobacter agilis produced potent antibacterial compounds with activity against Gram-positives and possibly related to novel cyclic thiazolyl peptides. To our knowledge, this is the first report of new antibiotics produced by bacteria from benthic microbial mats from Antarctic lakes. With no doubts these microbial assemblages represent an extremely rich source for the isolation of new strains producing novel bioactive metabolites with the potential to be developed as antibiotic compounds.
Collapse
Affiliation(s)
- Jose Luis Rojas
- CIBE, Merck Research Laboratories, Merck Sharp and Dohme de España S.A., Josefa Valcárcel 38, E-28027 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Marinelli F. Chapter 2 From Microbial Products to Novel Drugs that Target a Multitude of Disease Indications. Methods Enzymol 2009; 458:29-58. [DOI: 10.1016/s0076-6879(09)04802-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|