1
|
Zhang W, Wei Y, Jin X, Lv X, Liu Z, Ni L. Spoilage of tilapia by Pseudomonas putida with different adhesion abilities. Curr Res Food Sci 2022; 5:710-717. [PMID: 35479657 PMCID: PMC9035656 DOI: 10.1016/j.crfs.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/19/2022] [Accepted: 04/05/2022] [Indexed: 01/17/2023] Open
Abstract
Four Pseudomonas putida strains isolated from spoiled tilapia were divided into three adhesion abilities—high, medium, and low—by an in vitro mucus model. Four strains had no significant difference in spoilage ability to the inoculated fish fillets. However, according to the in vivo experiment, the spoilage caused by the four P.putida was positively correlated with their adhesion abilities. High adhesion strains not only caused more TVB-N in chilled fish, but also activated the spoilage activity of intestinal flora. The diversity of intestinal flora and the changes in volatile components in fish were detected by high-throughput sequencing and SPME-GC/MS. The strains with high adhesion abilities significantly changed the intestinal flora, which led to a significant increase in low-grade aldehydes, indole, and esters in flesh of fish, as well as the production of a fishy and pungent odor. The intestinal adhesion ability of spoilage bacteria was considered the key factor in spoilage of chilled fish. A positive correlation between the intestinal adhesion ability of P.putida and the spoilage ability in vivo. P.putida affected the intestinal microflora and led to increase in fishy and pungent odor. The intestinal adhesion ability of P.putida was considered as a key factor in spoilage.
Collapse
|
2
|
Molecular Characterization of Three Tandemly Located Flagellin Genes of Stenotrophomonas maltophilia. Int J Mol Sci 2022; 23:ijms23073863. [PMID: 35409223 PMCID: PMC8998449 DOI: 10.3390/ijms23073863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 01/25/2023] Open
Abstract
Stenotrophomonas maltophilia is a motile, opportunistic pathogen. The flagellum, which is involved in swimming, swarming, adhesion, and biofilm formation, is considered a virulence factor for motile pathogens. Three flagellin genes, fliC1, fliC2, and fliC3, were identified from the sequenced S. maltophilia genome. FliC1, fliC2, and fliC3 formed an operon, and their encoding proteins shared 67–82% identity. Members of the fliC1C2C3 operon were deleted individually or in combination to generate single mutants, double mutants, and a triple mutant. The contributions of the three flagellins to swimming, swarming, flagellum morphology, adhesion, and biofilm formation were assessed. The single mutants generally had a compromise in swimming and no significant defects in swarming, adhesion on biotic surfaces, and biofilm formation on abiotic surfaces. The double mutants displayed obvious defects in swimming and adhesion on abiotic and biotic surfaces. The flagellin-null mutant lost swimming ability and was compromised in adhesion and biofilm formation. All tested mutants demonstrated substantial but different flagellar morphologies, supporting that flagellin composition affects filament morphology. Bacterial swimming motility was significantly compromised under an oxidative stress condition, irrespective of flagellin composition. Collectively, the utilization of these three flagellins for filament assembly equips S. maltophilia with flagella adapted to provide better ability in swimming, adhesion, and biofilm formation for its pathogenesis.
Collapse
|
3
|
Reis AC, Kolvenbach BA, Chami M, Gales L, Egas C, Corvini PFX, Nunes OC. Comparative genomics reveals a novel genetic organization of the sad cluster in the sulfonamide-degrader 'Candidatus Leucobacter sulfamidivorax' strain GP. BMC Genomics 2019; 20:885. [PMID: 31752666 PMCID: PMC6868719 DOI: 10.1186/s12864-019-6206-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/21/2019] [Indexed: 02/01/2023] Open
Abstract
Background Microbial communities recurrently establish metabolic associations resulting in increased fitness and ability to perform complex tasks, such as xenobiotic degradation. In a previous study, we have described a sulfonamide-degrading consortium consisting of a novel low-abundant actinobacterium, named strain GP, and Achromobacter denitrificans PR1. However, we found that strain GP was unable to grow independently and could not be further purified. Results Previous studies suggested that strain GP might represent a new putative species within the Leucobacter genus (16S rRNA gene similarity < 97%). In this study, we found that average nucleotide identity (ANI) with other Leucobacter spp. ranged between 76.8 and 82.1%, further corroborating the affiliation of strain GP to a new provisional species. The average amino acid identity (AAI) and percentage of conserved genes (POCP) values were near the lower edge of the genus delimitation thresholds (65 and 55%, respectively). Phylogenetic analysis of core genes between strain GP and Leucobacter spp. corroborated these findings. Comparative genomic analysis indicates that strain GP may have lost genes related to tetrapyrrole biosynthesis and thiol transporters, both crucial for the correct assembly of cytochromes and aerobic growth. However, supplying exogenous heme and catalase was insufficient to abolish the dependent phenotype. The actinobacterium harbors at least two copies of a novel genetic element containing a sulfonamide monooxygenase (sadA) flanked by a single IS1380 family transposase. Additionally, two homologs of sadB (4-aminophenol monooxygenase) were identified in the metagenome-assembled draft genome of strain GP, but these were not located in the vicinity of sadA nor of mobile or integrative elements. Conclusions Comparative genomics of the genus Leucobacter suggested the absence of some genes encoding for important metabolic traits in strain GP. Nevertheless, although media and culture conditions were tailored to supply its potential metabolic needs, these conditions were insufficient to isolate the PR1-dependent actinobacterium further. This study gives important insights regarding strain GP metabolism; however, gene expression and functional studies are necessary to characterize and further isolate strain GP. Based on our data, we propose to classify strain GP in a provisional new species within the genus Leucobacter, ‘Candidatus Leucobacter sulfamidivorax‘.
Collapse
Affiliation(s)
- Ana C Reis
- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering - LEPABE, Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal.,Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Gruendenstrasse 40, 4132, Muttenz, Switzerland
| | - Boris A Kolvenbach
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Gruendenstrasse 40, 4132, Muttenz, Switzerland
| | - Mohamed Chami
- BioEM lab, C-Cina, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Luís Gales
- Instituto de Investigação e Inovação em Saúde - i3S, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,Instituto de Biologia Molecular e Celular - IBMC, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar - ICBAS, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Conceição Egas
- Next Generation Sequencing Unit, Biocant, BiocantPark, Núcleo 04, Lote 8, 3060-197, Cantanhede, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Faculty of Medicine, Rua Larga, Pólo I, 3004-504, Coimbra, Portugal
| | - Philippe F-X Corvini
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Gruendenstrasse 40, 4132, Muttenz, Switzerland
| | - Olga C Nunes
- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering - LEPABE, Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal.
| |
Collapse
|
4
|
Li Y, Tang M, Wang G, Li C, Chen W, Luo Y, Zeng J, Hu X, Zhou Y, Gao Y, Zhang L. Genomic characterization of Kerstersia gyiorum SWMUKG01, an isolate from a patient with respiratory infection in China. PLoS One 2019; 14:e0214686. [PMID: 30978196 PMCID: PMC6461280 DOI: 10.1371/journal.pone.0214686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/18/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The Gram-negative bacterium Kerstersia gyiorum, a potential etiological agent of clinical infections, was isolated from several human patients presenting clinical symptoms. Its significance as a possible pathogen has been previously overlooked as no disease has thus far been definitively associated with this bacterium. To better understand how the organism contributes to the infectious disease, we determined the complete genomic sequence of K. gyiorum SWMUKG01, the first clinical isolate from southwest China. RESULTS The genomic data obtained displayed a single circular chromosome of 3, 945, 801 base pairs in length, which contains 3, 441 protein-coding genes, 55 tRNA genes and 9 rRNA genes. Analysis on the full spectrum of protein coding genes for cellular structures, two-component regulatory systems and iron uptake pathways that may be important for the success of the bacterial survival, colonization and establishment in the host conferred new insights into the virulence characteristics of K. gyiorum. Phylogenomic comparisons with Alcaligenaceae species indicated that K. gyiorum SWMUKG01 had a close evolutionary relationships with Alcaligenes aquatilis and Alcaligenes faecalis. CONCLUSIONS The comprehensive analysis presented in this work determinates for the first time a complete genome sequence of K. gyiorum, which is expected to provide useful information for subsequent studies on pathogenesis of this species.
Collapse
Affiliation(s)
- Ying Li
- Department of Immunology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Min Tang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Guangxi Wang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Chengwen Li
- Department of Immunology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Wenbi Chen
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Yonghong Luo
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Zeng
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoyan Hu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Yungang Zhou
- Department of Immunology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Yan Gao
- Department of Immunology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Luhua Zhang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
- * E-mail:
| |
Collapse
|
5
|
Andres J, Arsène-Ploetze F, Barbe V, Brochier-Armanet C, Cleiss-Arnold J, Coppée JY, Dillies MA, Geist L, Joublin A, Koechler S, Lassalle F, Marchal M, Médigue C, Muller D, Nesme X, Plewniak F, Proux C, Ramírez-Bahena MH, Schenowitz C, Sismeiro O, Vallenet D, Santini JM, Bertin PN. Life in an arsenic-containing gold mine: genome and physiology of the autotrophic arsenite-oxidizing bacterium rhizobium sp. NT-26. Genome Biol Evol 2013; 5:934-53. [PMID: 23589360 PMCID: PMC3673622 DOI: 10.1093/gbe/evt061] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Arsenic is widespread in the environment and its presence is a result of natural or anthropogenic activities. Microbes have developed different mechanisms to deal with toxic compounds such as arsenic and this is to resist or metabolize the compound. Here, we present the first reference set of genomic, transcriptomic and proteomic data of an Alphaproteobacterium isolated from an arsenic-containing goldmine: Rhizobium sp. NT-26. Although phylogenetically related to the plant-associated bacteria, this organism has lost the major colonizing capabilities needed for symbiosis with legumes. In contrast, the genome of Rhizobium sp. NT-26 comprises a megaplasmid containing the various genes, which enable it to metabolize arsenite. Remarkably, although the genes required for arsenite oxidation and flagellar motility/biofilm formation are carried by the megaplasmid and the chromosome, respectively, a coordinate regulation of these two mechanisms was observed. Taken together, these processes illustrate the impact environmental pressure can have on the evolution of bacterial genomes, improving the fitness of bacterial strains by the acquisition of novel functions.
Collapse
Affiliation(s)
- Jérémy Andres
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS Université de Strasbourg, Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Marchal M, Briandet R, Koechler S, Kammerer B, Bertin PN. Effect of arsenite on swimming motility delays surface colonization in Herminiimonas arsenicoxydans. MICROBIOLOGY-SGM 2010; 156:2336-2342. [PMID: 20447996 DOI: 10.1099/mic.0.039313-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Herminiimonas arsenicoxydans is a Gram-negative bacterium able to detoxify arsenic-contaminated environments by oxidizing arsenite [As(III)] to arsenate [As(V)] and by scavenging arsenic ions in an extracellular matrix. Its motility and colonization behaviour have been previously suggested to be influenced by arsenite. Using time-course confocal laser scanning microscopy, we investigated its biofilm development in the absence and presence of arsenite. Arsenite was shown to delay biofilm initiation in the wild-type strain; this was partly explained by its toxicity, which caused an increased growth lag time. However, this delayed adhesion step in the presence of arsenite was not observed in either a swimming motility defective fliL mutant or an arsenite oxidase defective aoxB mutant; both strains displayed the wild-type surface properties and growth capacities. We propose that during the biofilm formation process arsenite acts on swimming motility as a result of the arsenite oxidase activity, preventing the switch between planktonic and sessile lifestyles. Our study therefore highlights the existence, under arsenite exposure, of a competition between swimming motility, resulting from arsenite oxidation, and biofilm initiation.
Collapse
Affiliation(s)
- M Marchal
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS & Université de Strasbourg, Strasbourg, France
| | | | - S Koechler
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS & Université de Strasbourg, Strasbourg, France
| | - B Kammerer
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS & Université de Strasbourg, Strasbourg, France
| | - P N Bertin
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS & Université de Strasbourg, Strasbourg, France
| |
Collapse
|
7
|
Caly D, Takilt D, Lebret V, Tresse O. Sodium chloride affects Listeria monocytogenes adhesion to polystyrene and stainless steel by regulating flagella expression. Lett Appl Microbiol 2009; 49:751-6. [PMID: 19793195 DOI: 10.1111/j.1472-765x.2009.02735.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To study the adhesion capability of seven strains of Listeria monocytogenes to polystyrene and stainless steel surfaces after cultivation at various NaCl concentrations. METHODS AND RESULTS Determination of growth limits indicated that all seven strains were able to grow in up to 11% NaCl in rain heart infusion and 3 g l(-1) yeast extract-glucose at 20 degrees C, but no growth was detected at 15% NaCl. Adhesion of L. monocytogenes was estimated after 4-h incubation at 20 degrees C in 96-well microtitre plates. Statistical results revealed no significant difference between adhesion to polystyrene and stainless steel although surface properties were different. Adhesion between 0% and 6% NaCl was not different, whereas adhesion at 11% NaCl was significantly lower. This discrepancy in adhesion was correlated with the down-regulation of flagella at 11% NaCl. CONCLUSIONS Only high salinity levels, close to nongrowth conditions, repressed the expression of flagella, and consequently, decreased the adhesion capability of L. monocytogenes. SIGNIFICANCE AND IMPACT OF THE STUDY Adhesion of L. monocytogenes to inert surfaces depends on environmental conditions that affect flagellum expression. High salinity concentrations would delay biofilm formation.
Collapse
Affiliation(s)
- D Caly
- UMR-INRA SECALIM, Ecole Vétérinaire de Nantes, France
| | | | | | | |
Collapse
|