1
|
Wang X, Li J, Ju J, Fan Y, Xu H. Effect of different types and dosages of statins on plasma lipoprotein(a) levels: A network meta-analysis. Pharmacol Res 2021; 163:105275. [PMID: 33166736 DOI: 10.1016/j.phrs.2020.105275] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/06/2020] [Accepted: 10/22/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND AIM Studies differ with respect to the effects of statins and their on lipoprotein(a)[Lp(a)] levels. The aim of the present study was to resolve these differences by determining the effect of various types and dosages of statins on Lp(a) levels. METHODS We searched PubMed, Embase and the Cochrane library for randomized controlled trials (RCTs) investigating the efficacy of statins on plasma Lp(a) levels. Study selection, data extraction and risk of bias assessment were conducted independently by four authors. We conducted pairwise meta-analysis and network meta-analysis (NMA). Consistency models were applied to NMA and the ranking probabilities for each treatment's efficacy were calculated. Node-splitting analysis was used to test inconsistency. This study was registered with PROSPERO, number CRD42020167612. RESULTS Twenty RCTs with 23,605 participants were included, involving 11 interventions. Most of the included studies presented some risks of bias, especially risks of performance and detection bias. In the pairwise meta-analysis, pooled results showed a small but statistically significant difference between high-intensity rosuvastatin and placebo on Lp(a) levels (MD = 1.81, 95 % CI [0.43, 3.19], P = 0.01). In the NMA, different types and dosages of statins showed no significant effect on the level of Lp(a), and there was no obvious difference between them. Subgroup analysis based on different populations and treatment durations did not provide any statistically significant findings about different statins on Lp(a) levels. Node-splitting analysis showed that no significant inconsistency existed (P > 0.05). CONCLUSIONS Statins have no clinically significant effect on Lp(a) levels, and there is no significant difference in the effect on Lp(a) levels between different types and dosages of statins. Moderate-intensity pitavastatin tended to have the best effect on reducing Lp(a) levels; nevertheless, it was insignificant. Our findings highlight the necessity for further study of the effect of statins on Lp(a) levels in future studies.
Collapse
Affiliation(s)
- Xinyi Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Jingen Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
| | - Jianqing Ju
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yixuan Fan
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Hao Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
2
|
Lippi G, Favaloro EJ, Sanchis-Gomar F. Antisense lipoprotein[a] therapy: State-of-the-art and future perspectives. Eur J Intern Med 2020; 76:8-13. [PMID: 32336611 DOI: 10.1016/j.ejim.2020.04.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Several lines of evidence now attest that lipoprotein[a] (Lp[a]) is a significant risk factor for many cardiovascular disorders. This enigmatic lipoprotein, composed of a single copy of apolipoprotein B (apoB) and apolipoprotein[a] (apo [a]), expresses peculiar metabolism, virtually independent from lifestyle interventions. Several therapeutic options have hence been proposed for lowering elevated Lp[a] values, with or without concomitant effect on low density lipoprotein (LDL) particles, mostly encompassing statins, ezetimibe, nicotinic acid, lipoprotein apheresis, and anti-PCSK9 monoclonal antibodies. Since all these medical treatments have some technical and clinical drawbacks, a novel strategy is currently being proposed, based on the use of antisense apo[a] and/or apoB inhibitors. Although the role of these agents in hypercholesterolemic patients is now nearby entering clinical practice, the collection of information on Lp[a] is still underway. Preliminary evidence would suggest that apo[a] antisense therapy seems more appropriate in patients with isolated Lp[a] elevations, while apoB antisense therapy is perhaps more advisable in patients with isolated LDL elevations. In patients with concomitant elevations of Lp[a] and LDL, either combining the two apo[a] and apoB antisense therapies (a strategy which has never been tested), or the combination of well-known and relatively inexpensive drugs such as statins with antisense apo[a] inhibitors can be theoretically suggested. The results of an upcoming phase 3 study with antisense apo[a] inhibitors will hopefully provide definitive clues as to whether this approach may become the standard of care in patients with increased Lp[a] concentrations.
Collapse
Affiliation(s)
- Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy.
| | - Emmanuel J Favaloro
- Department of Haematology, Sydney Centres for Thrombosis and Haemostasis, Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Fabian Sanchis-Gomar
- Department of Physiology, Faculty of Medicine, University of Valencia and INCLIVA Biomedical Research Institute, Valencia, Spain
| |
Collapse
|
3
|
Jawi MM, Frohlich J, Chan SY. Lipoprotein(a) the Insurgent: A New Insight into the Structure, Function, Metabolism, Pathogenicity, and Medications Affecting Lipoprotein(a) Molecule. J Lipids 2020; 2020:3491764. [PMID: 32099678 PMCID: PMC7016456 DOI: 10.1155/2020/3491764] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/17/2019] [Indexed: 12/15/2022] Open
Abstract
Lipoprotein(a) [Lp(a)], aka "Lp little a", was discovered in the 1960s in the lab of the Norwegian physician Kåre Berg. Since then, we have greatly improved our knowledge of lipids and cardiovascular disease (CVD). Lp(a) is an enigmatic class of lipoprotein that is exclusively formed in the liver and comprises two main components, a single copy of apolipoprotein (apo) B-100 (apo-B100) tethered to a single copy of a protein denoted as apolipoprotein(a) apo(a). Plasma levels of Lp(a) increase soon after birth to a steady concentration within a few months of life. In adults, Lp(a) levels range widely from <2 to 2500 mg/L. Evidence that elevated Lp(a) levels >300 mg/L contribute to CVD is significant. The improvement of isoform-independent assays, together with the insight from epidemiologic studies, meta-analyses, genome-wide association studies, and Mendelian randomization studies, has established Lp(a) as the single most common independent genetically inherited causal risk factor for CVD. This breakthrough elevated Lp(a) from a biomarker of atherosclerotic risk to a target of therapy. With the emergence of promising second-generation antisense therapy, we hope that we can answer the question of whether Lp(a) is ready for prime-time clinic use. In this review, we present an update on the metabolism, pathophysiology, and current/future medical interventions for high levels of Lp(a).
Collapse
Affiliation(s)
- Motasim M. Jawi
- Healthy Heart Program, St. Paul's Hospital, Vancouver V6Z 1Y6, Canada
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver V5Z 1M9, Canada
- Department of Clinical PhysiologyCorrection: Department of Physiology, University of Jeddah, P.O. Box: 24, Jeddah 21959, Saudi Arabia
| | - Jiri Frohlich
- Healthy Heart Program, St. Paul's Hospital, Vancouver V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Sammy Y. Chan
- Healthy Heart Program, St. Paul's Hospital, Vancouver V6Z 1Y6, Canada
- Department of Medicine, Division of Cardiology, University of British Columbia, Vancouver V5Z 1M9, Canada
| |
Collapse
|
4
|
Labudovic D, Kostovska I, Tosheska Trajkovska K, Cekovska S, Brezovska Kavrakova J, Topuzovska S. Lipoprotein(a) – Link between Atherogenesis and Thrombosis. Prague Med Rep 2019; 120:39-51. [DOI: 10.14712/23362936.2019.9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Lipoprotein(a) – Lp(a) – is an independent risk factor for cardiovascular disease (CVD). Indeed, individuals with plasma concentrations of Lp(a) > 200 mg/l carry an increased risk of developing CVD. Circulating levels of Lp(a) are remarkably resistant to common lipid lowering therapies, currently available treatment for reduction of Lp(a) is plasma apheresis, which is costly and labour intensive. The Lp(a) molecule is composed of two parts: LDL/apoB-100 core and glycoprotein, apolipoprotein(a) – Apo(a), both of them can interact with components of the coagulation cascade, inflammatory pathways and blood vessel cells (smooth muscle cells and endothelial cells). Therefore, it is very important to determine the molecular pathways by which Lp(a) affect the vascular system in order to design therapeutics for targeting the Lp(a) cellular effects. This paper summarises the cellular effects and molecular mechanisms by which Lp(a) participate in atherogenesis, thrombogenesis, inflammation and development of cardiovascular diseases.
Collapse
|
5
|
Shitara J, Kasai T, Konishi H, Endo H, Wada H, Doi S, Naito R, Tsuboi S, Ogita M, Dohi T, Okazaki S, Miyauchi K, Daida H. Impact of Lipoprotein (a) Levels on Long-Term Outcomes in Patients With Coronary Artery Disease and Left Ventricular Systolic Dysfunction. Circ J 2019; 83:1047-1053. [PMID: 30918220 DOI: 10.1253/circj.cj-18-0970] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
BACKGROUND Serum levels of lipoprotein (a) (Lp(a)) could be a risk factor for adverse events in patients with coronary artery disease (CAD). However, the effect of Lp(a) on long-term outcomes in patients with left ventricular (LV) systolic dysfunction, possibly through the increased likelihood for development of heart failure (HF), remains to be elucidated. This study aimed to determine the prognostic impact of Lp(a) in patients with CAD and LV systolic dysfunction. METHODS AND RESULTS A total of 3,508 patients who underwent percutaneous coronary intervention were candidates. We analyzed 369 patients with LV systolic dysfunction (defined as LV ejection fraction <50%). They were assigned to groups according to a median level of Lp(a) (i.e., high Lp(a), ≥21.6 mg/dL, n=185; low Lp(a), <21.6 mg/dL, n=184). The primary outcome was a composite of all-cause death and readmission for acute coronary syndrome and/or HF. The median follow-up period was 5.1 years. Cumulative event-free survival was significantly worse for the group with high Lp(a) than for the group with low Lp(a) (P=0.005). In the multivariable analysis, a high Lp(a) level was an independent predictor of the primary outcomes (hazard ratio, 1.54; 95% confidence interval, 1.09-2.18; P=0.014). CONCLUSIONS A high Lp(a) value could be associated with long-term adverse clinical outcomes among patients with CAD and LV systolic dysfunction.
Collapse
Affiliation(s)
- Jun Shitara
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine
| | - Takatoshi Kasai
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine
- Cardiovascular Respiratory Sleep Medicine, Juntendo University Graduate School of Medicine
- Sleep and Sleep Disordered Breathing Center, Juntendo University Hospital
| | | | - Hirohisa Endo
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine
| | - Hideki Wada
- Department of Cardiology, Juntendo University Shizuoka Hospital
| | - Shinichiro Doi
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine
| | - Ryo Naito
- Department of Cardiovascular Medicine, Juntendo University Urayasu Hospital
| | - Shuta Tsuboi
- Department of Cardiology, Juntendo University Shizuoka Hospital
| | - Manabu Ogita
- Department of Cardiology, Juntendo University Shizuoka Hospital
| | - Tomotaka Dohi
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine
| | - Shinya Okazaki
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine
| | - Katsumi Miyauchi
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine
| | - Hiroyuki Daida
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine
| |
Collapse
|
6
|
Reiner Ž. Can Lp(a) Lowering Against Background Statin Therapy Really Reduce Cardiovascular Risk? Curr Atheroscler Rep 2019; 21:14. [PMID: 30847681 DOI: 10.1007/s11883-019-0773-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW The association between elevated plasma levels of lipoprotein (a) [Lp(a)] and atherosclerotic cardiovascular disease (ASCVD) has been discussed for many years. Recent genetic findings have confirmed that elevated Lp(a) similar to elevated LDL-cholesterol (LDL-C) might be causally related to premature ASCVD. Lp(a) is relatively refractory to lifestyle interventions. The results of studies with statins and their possible effect on Lp(a) are conflicting. Specific Lp(a) apheresis is used as a treatment against background statin therapy and can decrease Lp(a). The purpose of this review is to discuss whether new drugs which decrease Lp(a) can prevent ASCVD and decrease ASCVD mortality when applied in addition to statins. RECENT FINDINGS Some new LDL-C-lowering drugs such as mipomersen and lomitapide decrease elevated Lp(a) in addition to statins but they have some unpleasant adverse effects. Recently, an antisense oligonucleotide against apo(a), AKCEA-APO(a)Rx, has been shown to selectively decrease Lp(a). The most recent advance in LDL-C lowering are PCSK9 inhibitors. Alirocumab and evolocumab do not only significantly reduce LDL-C on top of maximally tolerated statin therapy and prevent ASCVD events, but also further decrease Lp(a). There is no data to indicate whether mipomersen, lomitapide, or IONIS-APO(a)-LRx decrease ASCVD events and mortality. Conclusive evidence is still lacking as to whether the treatment with PCSK9 inhibitors against background statin therapy actually additionally reduces ASCVD risk due to the lowering of Lp(a) or simply due to lowering LDL-C to levels much lower than high-intensity statin treatment as monotherapy. Ongoing trials will probably provide an answer to these questions.
Collapse
Affiliation(s)
- Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Kispaticeva 12, 10000, Zagreb, Croatia.
| |
Collapse
|
7
|
Momtazi-Borojeni AA, Katsiki N, Pirro M, Banach M, Rasadi KA, Sahebkar A. Dietary natural products as emerging lipoprotein(a)-lowering agents. J Cell Physiol 2019; 234:12581-12594. [PMID: 30637725 DOI: 10.1002/jcp.28134] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/07/2018] [Indexed: 12/13/2022]
Abstract
Elevated plasma lipoprotein(a) (Lp(a)) levels are associated with an increased risk of cardiovascular disease (CVD). Hitherto, niacin has been the drug of choice to reduce elevated Lp(a) levels in hyperlipidemic patients but its efficacy in reducing CVD outcomes has been seriously questioned by recent clinical trials. Additional drugs may reduce to some extent plasma Lp(a) levels but the lack of a specific therapeutic indication for Lp(a)-lowering limits profoundly reduce their use. An attractive therapeutic option is natural products. In several preclinical and clinical studies as well as meta-analyses, natural products, including l-carnitine, coenzyme Q 10 , and xuezhikang were shown to significantly decrease Lp(a) levels in patients with Lp(a) hyperlipoproteinemia. Other natural products, such as pectin, Ginkgo biloba, flaxseed, red wine, resveratrol and curcuminoids can also reduce elevated Lp(a) concentrations but to a lesser degree. In conclusion, aforementioned natural products may represent promising therapeutic agents for Lp(a) lowering.
Collapse
Affiliation(s)
- Amir Abbas Momtazi-Borojeni
- Department of Medical Biotechnology, Nanotechnology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niki Katsiki
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippocration Hospital, Thessaloniki, Greece
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Lodz, Poland.,Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Khalid Al Rasadi
- Department of Clinical Biochemistry, Sultan Qaboos University Hospital, Muscat, Oman
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Salvagno GL, Pavan C, Lippi G. Rare thrombophilic conditions. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:342. [PMID: 30306081 DOI: 10.21037/atm.2018.08.12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thrombophilia, either acquired or inherited, can be defined as a predisposition to developing thromboembolic complications. Since the discovery of antithrombin deficiency in the 1965, many other conditions have been described so far, which have then allowed to currently detect an inherited or acquired predisposition in approximately 60-70% of patients with thromboembolic disorders. These prothrombotic risk factors mainly include qualitative or quantitative defects of endogenous coagulation factor inhibitors, increased concentration or function of clotting proteins, defects in the fibrinolytic system, impaired platelet function, and hyperhomocysteinemia. In this review article, we aim to provide an overview on epidemiologic, clinic and laboratory aspects of both acquired and inherited rare thrombophilic risk factors, especially including dysfibrinogenemia, heparin cofactor II, thrombomodulin, lipoprotein(a), sticky platelet syndrome, plasminogen activator inhibitor-1 apolipoprotein E, tissue factor pathway inhibitor, paroxysmal nocturnal haemoglobinuria and heparin-induced thrombocytopenia.
Collapse
Affiliation(s)
| | - Chiara Pavan
- Division of Geriatric Medicine, Mater Salutis Hospital, Legnago, Verona, Italy
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| |
Collapse
|
9
|
Hiyoshi T, Fujiwara M, Yao Z. Postprandial hyperglycemia and postprandial hypertriglyceridemia in type 2 diabetes. J Biomed Res 2017; 33:1. [PMID: 29089472 PMCID: PMC6352876 DOI: 10.7555/jbr.31.20160164] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/23/2017] [Indexed: 12/18/2022] Open
Abstract
Postprandial glucose level is an independent risk factor for cardiovascular disease that exerts effects greater than glucose levels at fasting state, whereas increase in serum triglyceride level, under both fasting and postprandial conditions, contributes to the development of arteriosclerosis. Insulin resistance is a prevailing cause of abnormalities in postabsorptive excursion of blood glucose and postprandial lipid profile. Excess fat deposition renders a vicious cycle of hyperglycemia and hypertriglyceridemia in the postprandial state, and both of which are contributors to atherosclerotic change of vessels especially in patients with type 2 diabetes mellitus. Several therapeutic approaches for ameliorating each of these abnormalities have been attempted, including various antidiabetic agents or new compounds targeting lipid metabolism.
Collapse
Affiliation(s)
- Toru Hiyoshi
- . Division of Diabetes and Endocrinology, Department of Internal Medicine, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Mutsunori Fujiwara
- . Division of Diabetes and Endocrinology, Department of Internal Medicine, Japanese Red Cross Medical Center, Tokyo, Japan
- . Department of Laboratory Medicine, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Zemin Yao
- . Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| |
Collapse
|
10
|
Reyes-Soffer G, Ginsberg HN, Ramakrishnan R. The metabolism of lipoprotein (a): an ever-evolving story. J Lipid Res 2017; 58:1756-1764. [PMID: 28720561 DOI: 10.1194/jlr.r077693] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/18/2017] [Indexed: 02/06/2023] Open
Abstract
Lipoprotein (a) [Lp(a)] is characterized by apolipoprotein (a) [apo(a)] covalently bound to apolipoprotein B 100. It was described in human plasma by Berg et al. in 1963 and the gene encoding apo(a) (LPA) was cloned in 1987 by Lawn and colleagues. Epidemiologic and genetic studies demonstrate that increases in Lp(a) plasma levels increase the risk of atherosclerotic cardiovascular disease. Novel Lp(a) lowering treatments highlight the need to understand the regulation of plasma levels of this atherogenic lipoprotein. Despite years of research, significant uncertainty remains about the assembly, secretion, and clearance of Lp(a). Specifically, there is ongoing controversy about where apo(a) and apoB-100 bind to form Lp(a); which apoB-100 lipoproteins bind to apo(a) to create Lp(a); whether binding of apo(a) is reversible, allowing apo(a) to bind to more than one apoB-100 lipoprotein during its lifespan in the circulation; and how Lp(a) or apo(a) leave the circulation. In this review, we highlight past and recent data from stable isotope studies of Lp(a) metabolism, highlighting the critical metabolic uncertainties that exist. We present kinetic models to describe results of published studies using stable isotopes and suggest what future studies are required to improve our understanding of Lp(a) metabolism.
Collapse
Affiliation(s)
- Gissette Reyes-Soffer
- Departments of Medicine Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Henry N Ginsberg
- Departments of Medicine Columbia University College of Physicians and Surgeons, New York, NY 10032
| | | |
Collapse
|
11
|
Vassiliou VS, Flynn PD, Raphael CE, Newsome S, Khan T, Ali A, Halliday B, Studer Bruengger A, Malley T, Sharma P, Selvendran S, Aggarwal N, Sri A, Berry H, Donovan J, Lam W, Auger D, Cook SA, Pennell DJ, Prasad SK. Lipoprotein(a) in patients with aortic stenosis: Insights from cardiovascular magnetic resonance. PLoS One 2017; 12:e0181077. [PMID: 28704465 PMCID: PMC5509300 DOI: 10.1371/journal.pone.0181077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 06/26/2017] [Indexed: 12/21/2022] Open
Abstract
Background Aortic stenosis is the most common age-related valvular pathology. Patients with aortic stenosis and myocardial fibrosis have worse outcome but the underlying mechanism is unclear. Lipoprotein(a) is associated with adverse cardiovascular risk and is elevated in patients with aortic stenosis. Although mechanistic pathways could link Lipoprotein(a) with myocardial fibrosis, whether the two are related has not been previously explored. In this study, we investigated whether elevated Lipoprotein(a) was associated with the presence of myocardial replacement fibrosis. Methods A total of 110 patients with mild, moderate and severe aortic stenosis were assessed by late gadolinium enhancement (LGE) cardiovascular magnetic resonance to identify fibrosis. Mann Whitney U tests were used to assess for evidence of an association between Lp(a) and the presence or absence of myocardial fibrosis and aortic stenosis severity and compared to controls. Univariable and multivariable linear regression analysis were undertaken to identify possible predictors of Lp(a). Results Thirty-six patients (32.7%) had no LGE enhancement, 38 (34.6%) had midwall enhancement suggestive of midwall fibrosis and 36 (32.7%) patients had subendocardial myocardial fibrosis, typical of infarction. The aortic stenosis patients had higher Lp(a) values than controls, however, there was no significant difference between the Lp(a) level in mild, moderate or severe aortic stenosis. No association was observed between midwall or infarction pattern fibrosis and Lipoprotein(a), in the mild/moderate stenosis (p = 0.91) or severe stenosis patients (p = 0.42). Conclusion There is no evidence to suggest that higher Lipoprotein(a) leads to increased myocardial midwall or infarction pattern fibrosis in patients with aortic stenosis.
Collapse
Affiliation(s)
- Vassilios S. Vassiliou
- CMR Unit, Royal Brompton Hospital and NIHR Biomedical Research Unit, Royal Brompton and Harefield Hospitals and Imperial College London, London, United Kingdom
- Norwich Medical School, University of East Anglia, Bob Champion Research & Education Building, Norwich, United Kingdom
- * E-mail: (BH); (VSV)
| | - Paul D. Flynn
- The Lipid Clinic, Addenbrooke’s Hospital, Cambridge University Foundation NHS Trust, UK and University of Cambridge, Cambridge, United Kingdom
| | - Claire E. Raphael
- CMR Unit, Royal Brompton Hospital and NIHR Biomedical Research Unit, Royal Brompton and Harefield Hospitals and Imperial College London, London, United Kingdom
| | - Simon Newsome
- CMR Unit, Royal Brompton Hospital and NIHR Biomedical Research Unit, Royal Brompton and Harefield Hospitals and Imperial College London, London, United Kingdom
- Department of Statistics, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Tina Khan
- CMR Unit, Royal Brompton Hospital and NIHR Biomedical Research Unit, Royal Brompton and Harefield Hospitals and Imperial College London, London, United Kingdom
| | - Aamir Ali
- CMR Unit, Royal Brompton Hospital and NIHR Biomedical Research Unit, Royal Brompton and Harefield Hospitals and Imperial College London, London, United Kingdom
| | - Brian Halliday
- CMR Unit, Royal Brompton Hospital and NIHR Biomedical Research Unit, Royal Brompton and Harefield Hospitals and Imperial College London, London, United Kingdom
- * E-mail: (BH); (VSV)
| | - Annina Studer Bruengger
- CMR Unit, Royal Brompton Hospital and NIHR Biomedical Research Unit, Royal Brompton and Harefield Hospitals and Imperial College London, London, United Kingdom
- Clinic of Cardiology, Stadtspital Triemli, Zurich, Switzerland
| | - Tamir Malley
- CMR Unit, Royal Brompton Hospital and NIHR Biomedical Research Unit, Royal Brompton and Harefield Hospitals and Imperial College London, London, United Kingdom
| | - Pranev Sharma
- CMR Unit, Royal Brompton Hospital and NIHR Biomedical Research Unit, Royal Brompton and Harefield Hospitals and Imperial College London, London, United Kingdom
| | - Subothini Selvendran
- CMR Unit, Royal Brompton Hospital and NIHR Biomedical Research Unit, Royal Brompton and Harefield Hospitals and Imperial College London, London, United Kingdom
| | - Nikhil Aggarwal
- CMR Unit, Royal Brompton Hospital and NIHR Biomedical Research Unit, Royal Brompton and Harefield Hospitals and Imperial College London, London, United Kingdom
| | - Anita Sri
- CMR Unit, Royal Brompton Hospital and NIHR Biomedical Research Unit, Royal Brompton and Harefield Hospitals and Imperial College London, London, United Kingdom
| | - Helen Berry
- Department of Biochemistry, Royal Brompton and Harefield NHS Trust, London, United Kingdom
| | - Jackie Donovan
- Department of Biochemistry, Royal Brompton and Harefield NHS Trust, London, United Kingdom
| | - Willis Lam
- CMR Unit, Royal Brompton Hospital and NIHR Biomedical Research Unit, Royal Brompton and Harefield Hospitals and Imperial College London, London, United Kingdom
| | - Dominique Auger
- CMR Unit, Royal Brompton Hospital and NIHR Biomedical Research Unit, Royal Brompton and Harefield Hospitals and Imperial College London, London, United Kingdom
| | - Stuart A. Cook
- CMR Unit, Royal Brompton Hospital and NIHR Biomedical Research Unit, Royal Brompton and Harefield Hospitals and Imperial College London, London, United Kingdom
- Duke National University Hospital, Singapore, Singapore
- Cardiovascular Magnetic Resonance Imaging and Genetics, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Dudley J. Pennell
- CMR Unit, Royal Brompton Hospital and NIHR Biomedical Research Unit, Royal Brompton and Harefield Hospitals and Imperial College London, London, United Kingdom
| | - Sanjay K. Prasad
- CMR Unit, Royal Brompton Hospital and NIHR Biomedical Research Unit, Royal Brompton and Harefield Hospitals and Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Sahebkar A, Simental-Mendía LE, Watts GF, Serban MC, Banach M. Comparison of the effects of fibrates versus statins on plasma lipoprotein(a) concentrations: a systematic review and meta-analysis of head-to-head randomized controlled trials. BMC Med 2017; 15:22. [PMID: 28153024 PMCID: PMC5290642 DOI: 10.1186/s12916-017-0787-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 01/07/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Raised plasma lipoprotein(a) (Lp(a)) concentration is an independent and causal risk factor for atherosclerotic cardiovascular disease. Several types of pharmacological approaches are under evaluation for their potential to reduce plasma Lp(a) levels. There is suggestive evidence that statins and fibrates, two frequently employed lipid-lowering drugs, can lower plasma Lp(a). The present study aims to compare the efficacy of fibrates and statins in reducing plasma concentrations of Lp(a) using a meta-analysis of randomized head-to-head trials. METHODS Medline and Scopus databases were searched to identify randomized head-to-head comparative trials investigating the efficacy of fibrates versus statins in reducing plasma Lp(a) levels. Meta-analysis was performed using a random-effects model, with inverse variance weighted mean differences (WMDs) and 95% confidence intervals (CIs) as summary statistics. The impact of putative confounders on the estimated effect size was explored using random effects meta-regression. RESULTS Sixteen head-to-head comparative trials with a total of 1388 subjects met the eligibility criteria and were selected for this meta-analysis. Meta-analysis revealed a significantly greater effect of fibrates versus statins in reducing plasma Lp(a) concentrations (WMD, -2.70 mg/dL; 95% CI, -4.56 to -0.84; P = 0.004). Combination therapy with fibrates and statins had a significantly greater effect compared with statin monotherapy (WMD, -1.60 mg/dL; 95% CI, -2.93 to -0.26; P = 0.019) but not fibrate monotherapy (WMD, -1.76 mg/dL; 95% CI, -5.44 to +1.92; P = 0.349) in reducing plasma Lp(a) concentrations. The impact of fibrates versus statins in reducing plasma Lp(a) concentrations was not found to be significantly associated with treatment duration (P = 0.788). CONCLUSIONS Fibrates have a significantly greater effect in reducing plasma Lp(a) concentrations than statins. Addition of fibrates to statins can enhance the Lp(a)-lowering effect of statins.
Collapse
Affiliation(s)
- Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Medicine, University of Western Australia, Perth, Australia.
| | | | - Gerald F Watts
- School of Medicine, University of Western Australia, Perth, Australia
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Perth, Australia
| | - Maria-Corina Serban
- Department of Functional Sciences, Discipline of Pathophysiology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
13
|
Kotani K, Serban MC, Penson P, Lippi G, Banach M. Evidence-based assessment of lipoprotein(a) as a risk biomarker for cardiovascular diseases - Some answers and still many questions. Crit Rev Clin Lab Sci 2016; 53:370-8. [PMID: 27173621 DOI: 10.1080/10408363.2016.1188055] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The present article is aimed at outlining the current state of knowledge regarding the clinical value of lipoprotein(a) (Lp(a)) as a marker of cardiovascular disease (CVD) risk by summarizing the results of recent clinical studies, meta-analyses and systematic reviews. The literature supports the predictive value of Lp(a) on CVD outcomes, although the effect size is modest. Lp(a) would also appear to have an effect on cerebrovascular outcomes, however the effect appears even smaller than that for CVD outcomes. Consideration of apolipoprotein(a) (apo(a)) isoforms and LPA genetics in relation to the simple assessment of Lp(a) concentration may enhance clinical practice in vascular medicine. We also describe recent advances in Lp(a) research (including therapies) and highlight areas where further research is needed such as the measurement of Lp(a) and its involvement in additional pathophysiological processes.
Collapse
Affiliation(s)
- Kazuhiko Kotani
- a Division of Community and Family MedicinevJichi Medical University , Shimotsuke-City , Japan .,b Department of Clinical Laboratory Medicine , Jichi Medical University , Shimotsuke-City , Japan
| | - Maria-Corina Serban
- c Department of Epidemiology , University of Alabama at Birmingham , Birmingham , AL , USA .,d Department of Functional Sciences , Discipline of Pathophysiology, "Victor Babes" University of Medicine and Pharmacy , Timisoara , Romania
| | - Peter Penson
- e Section of Clinical Biochemistry , School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University , Liverpool , UK
| | - Giuseppe Lippi
- f Section of Clinical Biochemistry , University of Verona , Verona , Italy , and
| | - Maciej Banach
- g Department of Hypertension , Chair of Nephrology and Hypertension, Medical University of Lodz , Lodz , Poland
| |
Collapse
|
14
|
Serban MC, Sahebkar A, Mikhailidis DP, Toth PP, Jones SR, Muntner P, Blaha MJ, Andrica F, Martin SS, Borza C, Lip GYH, Ray KK, Rysz J, Hazen SL, Banach M. Impact of L-carnitine on plasma lipoprotein(a) concentrations: A systematic review and meta-analysis of randomized controlled trials. Sci Rep 2016; 6:19188. [PMID: 26754058 PMCID: PMC4709689 DOI: 10.1038/srep19188] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/07/2015] [Indexed: 02/06/2023] Open
Abstract
We aimed to assess the impact of L-carnitine on plasma Lp(a) concentrations through systematic review and meta-analysis of available RCTs. The literature search included selected databases up to 31st January 2015. Meta-analysis was performed using fixed-effects or random-effect model according to I2 statistic. Effect sizes were expressed as weighted mean difference (WMD) and 95% confidence interval (CI). The meta-analysis showed a significant reduction of Lp(a) levels following L-carnitine supplementation (WMD: −8.82 mg/dL, 95% CI: −10.09, −7.55, p < 0.001). When the studies were categorized according to the route of administration, a significant reduction in plasma Lp(a) concentration was observed with oral (WMD: −9.00 mg/dL, 95% CI: −10.29, −7.72, p < 0.001) but not intravenous L-carnitine (WMD: −2.91 mg/dL, 95% CI: −10.22, 4.41, p = 0.436). The results of the meta-regression analysis showed that the pooled estimate is independent of L-carnitine dose (slope: −0.30; 95% CI: −4.19, 3.59; p = 0.878) and duration of therapy (slope: 0.18; 95% CI: −0.22, 0.59; p = 0.374). In conclusion, the meta-analysis suggests a significant Lp(a) lowering by oral L-carnitine supplementation. Taking into account the limited number of available Lp(a)-targeted drugs, L-carnitine might be an effective alternative to effectively reduce Lp(a). Prospective outcome trials will be required to fully elucidate the clinical value and safety of oral L-carnitine supplementation.
Collapse
Affiliation(s)
- Maria-Corina Serban
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Functional Sciences, Discipline of Pathophysiology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Research Centre, Royal Perth Hospital, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Campus, University College London Medical School, University College London (UCL), London, UK
| | - Peter P Toth
- Preventive Cardiology, CGH Medical Center, Sterling, Illinois, USA.,The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA
| | - Steven R Jones
- The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA
| | - Paul Muntner
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael J Blaha
- The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA
| | - Florina Andrica
- Faculty of Pharmacy, Discipline of Pharmaceutical Chemistry "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Seth S Martin
- The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA
| | - Claudia Borza
- Department of Functional Sciences, Discipline of Pathophysiology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Gregory Y H Lip
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, UK
| | - Kausik K Ray
- Department of Primary Care and Public Health, School of Public Health, Imperial College London, UK
| | - Jacek Rysz
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Poland
| | - Stanley L Hazen
- Department for Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Poland
| |
Collapse
|
15
|
McNeal CJ. Lipoprotein(a): Its relevance to the pediatric population. J Clin Lipidol 2015; 9:S57-66. [PMID: 26343213 DOI: 10.1016/j.jacl.2015.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/09/2015] [Accepted: 07/14/2015] [Indexed: 11/26/2022]
Abstract
Lipoprotein(a) (Lp(a)) is a highly atherogenic and heterogeneous lipoprotein that is inherited in an autosomal codominant trait. A unique aspect of this lipoprotein is that it is fully expressed by the first or second year of life in children, a pattern that is distinctly different from other lipoproteins, which typically only reach adult levels after adolescence. Despite decades of research, Lp(a) metabolism is still poorly understood but what is abundantly clear is that it is an independent risk factor for atherosclerotic cardiovascular disease (ASCVD). The Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents does not recommend measuring Lp(a) levels as part of routine screening except in youth with an ischemic or hemorrhagic stroke or youth with a parental history of ASCVD not explained by classical risk factors. One of the reasons that both the pediatric and adult guidelines fail to include this lipoprotein as part of routine lipid screening is the absence of data to show that lowering Lp(a) will reduce current or future ASCVD risk independently of low-density lipoprotein cholesterol (LDL-C) lowering. The cholesterol carried by Lp(a) is included in the low-density lipoprotein cholesterol measurement, but a separate test is used to measure the lipoprotein mass and/or cholesterol carried only by Lp(a). Because levels seem to be largely under genetic control, studies of lifestyle modification have been inconclusive although one study in obese children showed a decrease in the Lp(a) level comparable with the favorable effect on other lipids. The most compelling data regarding the importance of Lp(a) in the pediatric population are the increased risk associated with arterial ischemic stroke, a risk that is comparable with that associated with antiphospholipid antibodies or protein C deficiency. Although no specific pharmaceutical treatments are recommended to lower Lp(a) levels in youth, it is vitally important to educate youth and their parents about the excessive risk associated with this lipoprotein and the need to avoid the acquisition of other lifestyle-related risk factors such as smoking, excess weight, and physical inactivity to preserve more ideal cardiovascular health in adulthood.
Collapse
Affiliation(s)
- Catherine J McNeal
- Division of Cardiology, Department of Internal Medicine, Baylor Scott & White Health, Temple, TX, USA.
| |
Collapse
|
16
|
Palazhy S, Kamath P, Vasudevan DM. Elevated oxidative stress among coronary artery disease patients on statin therapy: A cross sectional study. Indian Heart J 2015; 67:227-32. [PMID: 26138179 PMCID: PMC4495669 DOI: 10.1016/j.ihj.2015.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 02/21/2015] [Accepted: 03/29/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Statins are a major group of drugs that reduces LDL-C levels, which are proven to have other beneficial effects such as preventing coronary events. The objective of this study was to evaluate oxidative stress and select novel coronary artery disease risk factors among coronary artery disease patients on statins. METHODS In this observational, cross-sectional study, we compared total cholesterol, triglycerides, HDL-cholesterol, LDL-cholesterol, apolipoprotein B, lipoprotein (a), homocysteine, reduced glutathione, glutathione peroxidase, superoxide dismutase, ascorbic acid, malondialdehyde and oxidized LDL among male coronary artery disease patients on statin therapy (group 2, n = 151) with sex-matched, diabetic patients (group 3, n = 80) as well as healthy controls (group 1, n = 84). RESULTS Total cholesterol, triglycerides, HDL-cholesterol and LDL-cholesterol were significantly lower among subjects of group 2 compared to other two groups. The novel risk factors studied did not differ significantly between groups, except for a higher homocysteine level among group 2 subjects compared to the other two groups. Elevated oxidative stress, indicated by lower reduced glutathione, glutathione peroxidase, and ascorbic acid as well as higher malondialdehyde and oxidized LDL was observed among group 2 subjects. Triglycerides, HDL-cholesterol, ascorbic acid and malondialdehyde were found to be independent predictors for coronary artery disease among this study population. CONCLUSIONS Though coronary artery disease subjects had healthy lipid profile, oxidative stress, a recognized risk factor for coronary events, was still elevated among this patient group. Novel risk factors were not found to be major predictors for coronary artery disease among the study subjects.
Collapse
Affiliation(s)
- Sabitha Palazhy
- Department of Biochemistry, Amrita School of Medicine, Kochi 682041, India.
| | - Prakash Kamath
- Department of Cardiology, Amrita Institute of Medical Sciences, Kochi 682041, India
| | | |
Collapse
|
17
|
Müller N, Schulte DM, Türk K, Freitag-Wolf S, Hampe J, Zeuner R, Schröder JO, Gouni-Berthold I, Berthold HK, Krone W, Rose-John S, Schreiber S, Laudes M. IL-6 blockade by monoclonal antibodies inhibits apolipoprotein (a) expression and lipoprotein (a) synthesis in humans. J Lipid Res 2015; 56:1034-42. [PMID: 25713100 DOI: 10.1194/jlr.p052209] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Indexed: 11/20/2022] Open
Abstract
Lipoprotein (a) [Lp(a)] is a highly atherogenic lipid particle. Although earlier reports suggested that Lp(a) levels are mostly determined by genetic factors, several recent studies have revealed that Lp(a) induction is also caused by chronic inflammation. Therefore, we aimed to examine whether cytokine blockade by monoclonal antibodies may inhibit Lp(a) metabolism. We found that interleukin 6 (IL-6) blockade by tocilizumab (TCZ) reduced Lp(a) while TNF-α-inhibition by adalimumab in humans had no effect. The specificity of IL-6 in regulating Lp(a) was further demonstrated by serological measurements of human subjects (n = 1,153) revealing that Lp(a) levels are increased in individuals with elevated serum IL-6. Transcriptomic analysis of human liver biopsies (n = 57) revealed typical IL-6 response genes being correlated with the LPA gene expression in vivo. On a molecular level, we found that TCZ inhibited IL-6-induced LPA mRNA and protein expression in human hepatocytes. Furthermore, examination of IL-6-responsive signal transducer and activator of transcription 3 binding sites within the LPA promoter by reporter gene assays, promoter deletion experiments, and electrophoretic mobility shift assay analysis showed that the Lp(a)-lowering effect of TCZ is specifically mediated via a responsive element at -46 to -40. Therefore, IL-6 blockade might be a potential therapeutic option to treat elevated Lp(a) serum concentrations in humans and might be a noninvasive alternative to lipid apheresis in the future.
Collapse
Affiliation(s)
- Nike Müller
- Department I of Internal Medicine, University of Kiel, Kiel, Germany
| | - Dominik M Schulte
- Department I of Internal Medicine, University of Kiel, Kiel, Germany Cluster of Excellence Inflammation at Interfaces, University of Kiel, Kiel, Germany
| | - Kathrin Türk
- Department I of Internal Medicine, University of Kiel, Kiel, Germany
| | - Sandra Freitag-Wolf
- Institute of Medical Informatics and Statistics, University of Kiel, Kiel, Germany
| | - Jochen Hampe
- Department of Medicine I, University Hospital Carl Gustav Carus, University of Dresden, Dresden, Germany
| | - Rainald Zeuner
- Department I of Internal Medicine, University of Kiel, Kiel, Germany
| | - Johann O Schröder
- Department I of Internal Medicine, University of Kiel, Kiel, Germany Cluster of Excellence Inflammation at Interfaces, University of Kiel, Kiel, Germany
| | - Ioanna Gouni-Berthold
- Center for Endocrinology, Diabetes and Preventive Medicine, University of Cologne, Cologne, Germany
| | - Heiner K Berthold
- Department of Internal Medicine and Geriatrics, Bielefeld Evangelical Hospital, Bielefeld, Germany
| | - Wilhelm Krone
- Center for Endocrinology, Diabetes and Preventive Medicine, University of Cologne, Cologne, Germany
| | - Stefan Rose-John
- Cluster of Excellence Inflammation at Interfaces, University of Kiel, Kiel, Germany Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Stefan Schreiber
- Department I of Internal Medicine, University of Kiel, Kiel, Germany Cluster of Excellence Inflammation at Interfaces, University of Kiel, Kiel, Germany
| | - Matthias Laudes
- Department I of Internal Medicine, University of Kiel, Kiel, Germany Cluster of Excellence Inflammation at Interfaces, University of Kiel, Kiel, Germany
| |
Collapse
|
18
|
New therapies targeting apoB metabolism for high-risk patients with inherited dyslipidaemias: what can the clinician expect? Cardiovasc Drugs Ther 2014; 27:559-67. [PMID: 23913122 DOI: 10.1007/s10557-013-6479-4] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Apolipoprotein B (apoB) has a key role in the assembly and secretion of very low-density lipoprotein (VLDL) from the liver. Plasma apoB concentration affects the number of circulating atherogenic particles, and serves as an independent predictor of the risk of atherosclerotic cardiovascular disease. While statins are the most potent apoB-lowering agents currently prescribed, their efficacy in achieving therapeutic targets for low-density lipoprotein cholesterol (LDL-C) in high-risk patients, such as those with familial hypercholesterolaemia (FH), is limited. Resistance and intolerance to statins also occurs in a significant number of patients, necessitating new types of lipid-lowering therapies. Monoclonal antibodies against proprotein convertase subtilisin/kexin type 9 (PCSK9; AMG 145 and REGN727), a sequence-specific antisense oligonucleotide against apoB mRNA (mipomersen) and a synthetic inhibitor of microsomal triglyceride transfer protein (MTTP; lomitapide) have been tested in phase III clinical trials, particularly in patients with FH. The trials demonstrated the efficacy of these agents in lowering apoB, LDL-C, non-high-density lipoprotein cholesterol and lipoprotein(a) by 32-55 %, 37-66 %, 38-61 % and 22-50 % (AMG 145), 21-68 %, 29-72 %, 16-60 % and 8-36 % (REGN727), 16-71 %, 15-71 %, 12-66 % and 23-49 % (mipomersen) and 24-55 %, 25-51 %, 27-50 % and 15-19 % (lomitapide), respectively. Monoclonal antibodies against PCSK9 have an excellent safety profile and may be indicated not only in heterozygous FH, but also in statin-intolerant patients and those with other inherited dyslipidemias, such as familial combined hyperlipidaemia and familial elevation in Lp(a). Mipomersen and lomitapide increase hepatic fat content and are at present indicated for treating adult patients with homozygous FH alone.
Collapse
|
19
|
Plasma lipoprotein(a) levels in patients with slow coronary flow. ADVANCES IN INTERVENTIONAL CARDIOLOGY 2014; 9:323-7. [PMID: 24570746 PMCID: PMC3927102 DOI: 10.5114/pwki.2013.38404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 06/22/2013] [Accepted: 08/12/2013] [Indexed: 11/17/2022] Open
Abstract
Introduction Slow coronary flow (SCF) is a microvascular disorder characterized by delayed opacification of coronary vessels with normal coronary angiogram. It may be due to endothelial dysfunction and diffuse atherosclerosis. Lipoprotein(a) [Lp(a)] is related to cardiovascular events. Plasma Lp(a) levels have not been studied previously in SCF patients. Aim We investigated plasma Lp(a) and fibrinogen levels, and their relation to coronary flow rate in patients with SCF. Material and methods This cross-sectional study included 50 patients with SCF and 30 age- and sex-matched controls who had normal coronary arteries and normal flow. Coronary flow rates of patients and controls were counted with the thrombolysis in myocardial infarction (TIMI) frame count. Plasma Lp(a) and fibrinogen levels were measured in SCF patients and controls, with routine biochemical tests. Results There were no significant differences between the two groups with respect to plasma Lp(a) (21 mg/dl vs. 14 mg/dl, p = 0.11) and fibrinogen (278 mg/dl vs. 291 mg/dl, p = 0.48) levels. The TIMI frame count was not correlated with plasma Lp(a) (r = 0.13, p = 0.25) or fibrinogen (r = –0.14, p = 0.28) levels. Conclusions Our results show that there is no significant association between SCF and Lp(a) and fibrinogen levels.
Collapse
|
20
|
Lipoprotein(a): a promising marker for residual cardiovascular risk assessment. DISEASE MARKERS 2013; 35:551-9. [PMID: 24249942 PMCID: PMC3819768 DOI: 10.1155/2013/563717] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/03/2013] [Accepted: 09/04/2013] [Indexed: 01/14/2023]
Abstract
Atherosclerotic cardiovascular diseases (CVD) are still the leading cause of morbidity and mortality worldwide, although optimal medical therapy has been prescribed for primary and secondary preventions. Residual cardiovascular risk for some population groups is still considerably high although target low density lipoprotein-cholesterol (LDL-C) level has been achieved. During the past few decades, compelling pieces of evidence from clinical trials and meta-analyses consistently illustrate that lipoprotein(a) (Lp(a)) is a significant risk factor for atherosclerosis and CVD due to its proatherogenic and prothrombotic features. However, the lack of effective medication for Lp(a) reduction significantly hampers randomized, prospective, and controlled trials conducting. Based on previous findings, for patients with LDL-C in normal range, Lp(a) may be a useful marker for identifying and evaluating the residual cardiovascular risk, and aggressively lowering LDL-C level than current guidelines' recommendation may be reasonable for patients with particularly high Lp(a) level.
Collapse
|
21
|
Vascular Access versus the Effect of Statins on Inflammation and Fibrinolysis in Renal Dialysis Patients. J Vasc Access 2013; 14:335-41. [DOI: 10.5301/jva.5000132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2012] [Indexed: 11/20/2022] Open
Abstract
Purpose The aim of this work was to assess the effect of statin therapy on inflammatory and fibrinolytic/endothelial (dys)function markers in end-stage renal disease (ESRD) patients under hemodialysis (HD), according to the type of vascular access. Methods This transversal study includes 191 ESRD patients under regular HD, divided into four groups according to vascular access and statin therapy: 87 patients with arteriovenous fistula (AVF) and no statins (AVF-NS), 61 with AVF and statins (AVF-S), 27 with central venous dialysis catheter (CVC) and no statins (CVC-NS) and 16 with CVC and statins (CVC-S). The basic lipid profile and fibrinolytic/endothelial cell function markers were assessed. Results Patients with CVC presented significantly higher levels of D-dimers compared with AVF groups. CVC-NS patients also presented the highest IL-6 values, which were significantly higher than those presented by CVC-S patients. AVF-S patients presented significantly higher t-PA and PAI-1 values and lower adiponectin levels compared with AVF-NS. Conclusions Our results demonstrate that patients with CVC, particularly those not under statin therapy, present a higher production and turnover of fibrin. We also found that statin therapy decreases inflammation in CVC patients but is associated with a reduction of adiponectin and increased endothelial function marker levels in AVF patients.
Collapse
|
22
|
Lipoprotein(a): Cellular Effects and Molecular Mechanisms. CHOLESTEROL 2012; 2012:923289. [PMID: 22991657 PMCID: PMC3443569 DOI: 10.1155/2012/923289] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 07/24/2012] [Indexed: 01/31/2023]
Abstract
Lipoprotein(a) (Lp(a)) is an independent risk factor for the development of cardiovascular disease (CVD). Indeed, individuals with plasma concentrations >20 mg/dL carry a 2-fold increased risk of developing CVD, accounting for ~25% of the population. Circulating levels of Lp(a) are remarkably resistant to common lipid lowering therapies, and there are currently no robust treatments available for reduction of Lp(a) apart from plasma apheresis, which is costly and labour intensive. The Lp(a) molecule is composed of two parts, an LDL/apoB-100 core and a unique glycoprotein, apolipoprotein(a) (apo(a)), both of which can interact with components of the coagulation cascade, inflammatory pathways, and cells of the blood vessel wall (smooth muscle cells (SMC) and endothelial cells (EC)). Therefore, it is of key importance to determine the molecular pathways by which Lp(a) exerts its influence on the vascular system in order to design therapeutics to target its cellular effects. This paper will summarise the role of Lp(a) in modulating cell behaviour in all aspects of the vascular system including platelets, monocytes, SMC, and EC.
Collapse
|
23
|
Chennamsetty I, Kostner KM, Claudel T, Vinod M, Frank S, Weiss TS, Trauner M, Kostner GM. Nicotinic acid inhibits hepatic APOA gene expression: studies in humans and in transgenic mice. J Lipid Res 2012; 53:2405-12. [PMID: 22930813 DOI: 10.1194/jlr.m029769] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Elevated plasma lipoprotein(a) (LPA) levels are recognized as an independent risk factor for cardiovascular diseases. Our knowledge on LPA metabolism is incomplete, which makes it difficult to develop LPA-lowering medications. Nicotinic acid (NA) is the main drug recommended for the treatment of patients with increased plasma LPA concentrations. The mechanism of NA in lowering LPA is virtually unknown. To study this mechanism, we treated transgenic (tg) APOA mice with NA and measured plasma APOA and hepatic mRNA levels. In addition, mouse and human primary hepatocytes were incubated with NA, and the expression of APOA was followed. Feeding 1% NA reduced plasma APOA and hepatic expression of APOA in tg-APOA mice. Experiments with cultured human and mouse primary hepatocytes in addition to reporter assays performed in HepG2 cells revealed that NA suppresses APOA transcription. The region between -1446 and -857 of the human APOA promoter harboring several cAMP response element binding sites conferred the negative effect of NA. In accordance, cAMP stimulated APOA transcription, and NA reduced hepatic cAMP levels. It is suggested that cAMP signaling might be involved in reducing APOA transcription, which leads to the lowering of plasma LPA.
Collapse
|