1
|
Kiarashi M, Yasamineh S. The role of cellular lipid metabolism and lipid-lowering drugs in periodontitis. Int Immunopharmacol 2025; 152:114434. [PMID: 40086058 DOI: 10.1016/j.intimp.2025.114434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Initiated by bacteria, periodontitis (PD) is a complex, chronic inflammatory disease of the supporting tissue of the gums and teeth. Also linked to PD include human papillomavirus (HPV), hepatitis B virus (HBV), Epstein-Barr virus (EBV), human cytomegalovirus (CMV), and Herpes Simplex Virus (HSV). PD also raises the risk of cardiovascular disease (CVD) because it triggers inflammatory reactions throughout the body. CVD and chronic PD were linked to significantly elevated levels of C-reactive protein and blood lipids. Furthermore, elevated lipid peroxidation (LPO) levels may influence PD-related inflammation and periodontium degradation. In addition, there was a correlation between a reduction in oxidized low-density lipoprotein (LDL) levels and a reduction in circulating oxidative stress (OS); this was shown to be achieved by improved dental hygiene and non-surgical periodontal treatment. Consequently, this research set out to examine the connections between lipid metabolism and PD, as well as the effects of PD on the efficacy of statins and other medications that decrease cholesterol, as well as inhibitors and other lipid-lowering agents. Additionally, it's worth mentioning that statins and other cholesterol-lowering drugs may affect gum and tooth health. We found that higher blood levels of bad cholesterol exacerbate PD. Furthermore, PD makes CVD worse. The involvement of proprotein convertase subtilisin/kexin type 9 (PCSK9) in bacterial infections and the development of PD is inversely proportional to the increase in LDL levels. The treatment of this disease could, therefore, benefit greatly by inhibiting this chemical. Medications that lower cholesterol levels may potentially help treat this problem. The possible side effects of this medication on PD patients need more investigation. We have reviewed the literature on PD and its relationship to lipid metabolism, LDL receptors, and lipid rafts. Afterward, we investigated the role of lipid metabolism in the local viral infection that causes PD. Lastly, we examined how statins and other lipid-lowering medications impact PD.
Collapse
Affiliation(s)
- Mohammad Kiarashi
- College of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
2
|
Han JM, Yun I, Yang KM, Kim HS, Kim YY, Jeong W, Hong SS, Hwang I. Ethanol extract from Astilbe chinensis inflorescence suppresses inflammation in macrophages and growth of oral pathogenic bacteria. PLoS One 2024; 19:e0306543. [PMID: 38959234 PMCID: PMC11221678 DOI: 10.1371/journal.pone.0306543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/18/2024] [Indexed: 07/05/2024] Open
Abstract
Chronic oral inflammation and biofilm-mediated infections drive diseases such as dental caries and periodontitis. This study investigated the anti-inflammatory and antibacterial potential of an ethanol extract from Astilbe chinensis inflorescence (GA-13-6) as a prominent candidate for natural complex substances (NCS) with therapeutic potential. In LPS-stimulated RAW 264.7 macrophages, GA-13-6 significantly suppressed proinflammatory mediators, including interleukin-6 (IL-6), tumor necrosis factor (TNF), and nitric oxide (NO), surpassing purified astilbin, a known bioactive compound found in A. chinensis. Furthermore, GA-13-6 downregulated the expression of cyclooxygenase-2 (COX2) and inducible nitric oxide synthase (iNOS), indicating an inhibitory effect on the inflammatory cascade. Remarkably, GA-13-6 exhibited selective antibacterial activity against Streptococcus mutans, Streptococcus sanguinis, and Porphyromonas gingivalis, key players in dental caries and periodontitis, respectively. These findings suggest that complex GA-13-6 holds the potential for the treatment or prevention of periodontal and dental diseases, as well as various other inflammation-related conditions, while averting the induction of antibiotic resistance.
Collapse
Affiliation(s)
- Jong Min Han
- DOCSmedi OralBiome Co. Ltd., Goyang-si, Republic of Korea
| | - Ina Yun
- Apple Tree Institute of Biomedical Science, Apple Tree Medical Foundation, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Kyung Mi Yang
- Apple Tree Institute of Biomedical Science, Apple Tree Medical Foundation, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Hye-Sung Kim
- Apple Tree Institute of Biomedical Science, Apple Tree Medical Foundation, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Young-Youn Kim
- Apple Tree Institute of Biomedical Science, Apple Tree Medical Foundation, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Wonsik Jeong
- Bio Industry Department, Gyeonggido Business & Science Accelerator (GBSA), Suwon-si, Gyeonggi-do, Republic of Korea
| | - Seong Su Hong
- Bio Industry Department, Gyeonggido Business & Science Accelerator (GBSA), Suwon-si, Gyeonggi-do, Republic of Korea
| | - Inseong Hwang
- Apple Tree Institute of Biomedical Science, Apple Tree Medical Foundation, Goyang-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Gualtero DF, Lafaurie GI, Buitrago DM, Castillo Y, Vargas-Sanchez PK, Castillo DM. Oral microbiome mediated inflammation, a potential inductor of vascular diseases: a comprehensive review. Front Cardiovasc Med 2023; 10:1250263. [PMID: 37711554 PMCID: PMC10498784 DOI: 10.3389/fcvm.2023.1250263] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023] Open
Abstract
The dysbiosis of the oral microbiome and vascular translocation of the periodontopathic microorganism to peripheral blood can cause local and systemic extra-oral inflammation. Microorganisms associated with the subgingival biofilm are readily translocated to the peripheral circulation, generating bacteremia and endotoxemia, increasing the inflammation in the vascular endothelium and resulting in endothelial dysfunction. This review aimed to demonstrate how the dysbiosis of the oral microbiome and the translocation of oral pathogen-induced inflammation to peripheral blood may be linked to cardiovascular diseases (CVDs). The dysbiosis of the oral microbiome can regulate blood pressure and activate endothelial dysfunction. Similarly, the passage of periodontal microorganisms into the peripheral circulation and their virulence factors have been associated with a vascular compartment with a great capacity to activate endothelial cells, monocytes, macrophages, and plaquettes and increase interleukin and chemokine secretion, as well as oxidative stress. This inflammatory process is related to atherosclerosis, hypertension, thrombosis, and stroke. Therefore, oral diseases could be involved in CVDs via inflammation. The preclinic and clinical evidence suggests that periodontal disease increases the proinflammatory markers associated with endothelial dysfunction. Likewise, the evidence from clinical studies of periodontal treatment in the long term evidenced the reduction of these markers and improved overall health in patients with CVDs.
Collapse
|
4
|
Choi H, Dey AK, Priyamvara A, Aksentijevich M, Bandyopadhya D, Dey D, Dani S, Guha A, Nambiar P, Nasir K, Jneid H, Mehta NN, Lavie C, Amar S. Role of Periodontal Infection, Inflammation and Immunity in Atherosclerosis. Curr Probl Cardiol 2021; 46:100638. [PMID: 32646544 PMCID: PMC8761259 DOI: 10.1016/j.cpcardiol.2020.100638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Inflammation plays a major role in the development and progression of cardiovascular disease (CVD) morbidity and mortality. The well-established relationship between periodontal disease (PD) and CVD may be causal. Left untreated, PD can lead to high systemic inflammation, thus contributing to inflammatory CVD, such as atherosclerosis. Multiple mechanisms have been proposed to elucidate the causal relationship between PD and its contribution to CVD. OBJECTIVE This review article highlights the current evidence supporting the role of PD in the development and progression of atherosclerosis. METHODS After creating a list of relevant medical subject heading (MeSH) terms, a systematic search within PubMed in English for each MeSH term between 2000 and 2019 was used to generate evidence for this review article. CONCLUSION There is overwhelming evidence in the current literature that supports an association between PD and CVD that is independent of known CVD risk factors. However, the supporting evidence that PD directly causes CVD in humans continues to remain elusive. Multiple biologically plausible mechanisms have been proposed and investigated, yet most studies are limited to mouse models and in vitro cell cultures. Additional studies testing the various proposed mechanisms in longitudinal human studies are required to provide deeper insight into the mechanistic link between these 2 related diseases.
Collapse
Affiliation(s)
- Harry Choi
- National Heart Lung and Blood Institute, Bethesda, MD, USA
| | - Amit K. Dey
- National Heart Lung and Blood Institute, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | - Nehal N. Mehta
- National Heart Lung and Blood Institute, Bethesda, MD, USA
| | - Carl Lavie
- Ochsner Clinical School-UQ School of Medicine, New Orleans, LA, USA
| | | |
Collapse
|
5
|
Boyapati R, Vudathaneni V, Nadella SB, Ramachandran R, Dhulipalla R, Adurty C. Mapping the link between cardiac biomarkers and chronic periodontitis: A clinico-biochemical study. J Indian Soc Periodontol 2020; 24:309-315. [PMID: 32831502 PMCID: PMC7418541 DOI: 10.4103/jisp.jisp_417_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/23/2020] [Accepted: 03/22/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Various risk factors are coupled with atherosclerotic complications, such as myocardial infarction and stroke. Periodontitis is considered one of them. Aims and Objectives: The objective of the study is to compare and correlate the occurrences of periodontitis with serum levels of cardiac-biomarkers in patients with coronary heart-disorders. Materials and Methods: Of 70 individuals diagnosed with coronary artery diseases, 32 patients with chronic periodontitis constituted the test group, 31 without chronic periodontitis constituted the control group. Cardiac-biomarkers analyzed were Troponin T, Troponin I, Myoglobin; low density lipoprotein (LDL), high-density lipoprotein, very LDL (VLDL), total cholesterol (TC), and highly sensitive C-reactive protein (Hs-CRP). Periodontal characteristics were drawn from the plaque index (PI) and gingival index, probing depth (PD), clinical attachment loss, and periodontal inflammatory surface area (PISA). Statistical Analysis: In order to separate any association between cardiac biomarkers and clinical parameters of periodontitis, detailed statistical analysis through independent t-test and Pearson test of correlation was done. Results: Statistically significant differences were seen not only in PI, PD, and PISA between both the groups (P < 0.05), but also between various cardiac parameters of test and control groups (P < 0.001). Positive relations were seen in the test group, between cardiac biomarkers such as TC, VLDL, Hs-CRP, and Troponin T with periodontal parameters such as PD and PISA. Conclusion: The study reveals, a strong association between periodontitis and diseases of cardiovascular nature, highlighting the need for awareness and timely medical interventions to prevent periodontitis from scaling up and interfering with the risk of cardiovascular problems.
Collapse
Affiliation(s)
- Ramanarayana Boyapati
- Department of Periodontics, Sibar Institute of Dental Sciences, Guntur, Andhra Pradesh, India
| | - Vijaya Vudathaneni
- Department of Internal Medicine, North Central Bronx Hospital, Bronx, New York, USA
| | | | | | - Ravindranath Dhulipalla
- Department of Periodontics, Sibar Institute of Dental Sciences, Guntur, Andhra Pradesh, India
| | - Chaitanya Adurty
- Department of Periodontics, Sibar Institute of Dental Sciences, Guntur, Andhra Pradesh, India
| |
Collapse
|
6
|
Kononoff A, Elfving P, Pussinen P, Hörkkö S, Kautiainen H, Arstila L, Laasonen L, Savolainen E, Niinisalo H, Rutanen J, Marjoniemi O, Hämäläinen M, Vuolteenaho K, Moilanen E, Kaipiainen-Seppänen O. Association of rheumatoid arthritis disease activity and antibodies to periodontal bacteria with serum lipoprotein profile in drug naive patients. Ann Med 2020; 52:32-42. [PMID: 32011179 PMCID: PMC7877970 DOI: 10.1080/07853890.2020.1724321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Objective: We investigated lipid concentrations, particle sizes and antibodies binding to periodontal bacteria Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis and to malondialdehyde-acetaldehyde (MAA) modified low-density lipoprotein in immunoglobulin (Ig) class A, G and M among patients with newly diagnosed rheumatoid arthritis (RA) in a population-based cohort.Methods: Concentrations and sizes of lipoprotein particles analysed by proton nuclear magnetic resonance spectroscopy and antibody levels to MAA modified low-density lipoprotein were studied at baseline and after one-year of follow-up. Serum Ig A and G class antibodies to periodontal bacteria were determined at baseline.Results: Sixty-three patients were divided into tertiles according to disease activity by disease activity score with 28 joint count and erythrocyte sedimentation rate (ESR) (<3.9, 3.9-4.7, >4.7). Small low-density lipoprotein concentration was lowest in the tertile with the highest disease activity. In high-density lipoprotein, the concentrations of total, medium and small particles decreased with disease activity. The particle size in low-density lipoprotein associated with disease activity and the presence of antibodies to P. gingivalis. Ig G and M antibodies to MAA modified low-density lipoprotein correlated with disease activity. Inflammation associated changes faded by one year.Conclusions: Drug naive RA patients had proatherogenic changes in lipid profiles, but they were reversible, when inflammation diminished.Key messagesPatients with drug naive rheumatoid arthritis showed proatherogenic lipid profiles.Reversible changes in lipid profiles can be achieved as response to inflammation suppression.Active therapy aimed at remission is essential in all patients with rheumatoid arthritis.
Collapse
Affiliation(s)
- Aulikki Kononoff
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Pia Elfving
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Pirkko Pussinen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Sohvi Hörkkö
- Institute of Diagnostics, Medical Microbiology and Immunology, Research Unit of Biomedicine, Oulu University Hospital, University of Oulu and Medical Research Center and Nordlab Oulu, Oulu, Finland
| | - Hannu Kautiainen
- Unit of Primary Health Care, Kuopio University Hospital, Kuopio, Finland.,Unit of Family Practice, Central Finland Central Hospital, Jyväskylä, Finland
| | - Leena Arstila
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland.,Department of Medicine, Iisalmi Hospital
| | - Leena Laasonen
- Helsinki Medical Imaging Center, Helsinki University Hospital, Helsinki, Finland
| | - Elina Savolainen
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Helena Niinisalo
- Department of Medicine, Varkaus Hospital.,Outpatient Clinic, Suonenjoki Health Center
| | - Jarno Rutanen
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Olga Marjoniemi
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Mari Hämäläinen
- School of Medicine, The Immunopharmacology Research Group, Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Katriina Vuolteenaho
- School of Medicine, The Immunopharmacology Research Group, Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Eeva Moilanen
- School of Medicine, The Immunopharmacology Research Group, Tampere University Hospital, University of Tampere, Tampere, Finland
| | | |
Collapse
|
7
|
Pietiäinen M, Liljestrand JM, Kopra E, Pussinen PJ. Mediators between oral dysbiosis and cardiovascular diseases. Eur J Oral Sci 2019; 126 Suppl 1:26-36. [PMID: 30178551 DOI: 10.1111/eos.12423] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2018] [Indexed: 12/11/2022]
Abstract
Clinical periodontitis is associated with an increased risk for cardiovascular diseases (CVDs) through systemic inflammation as the etiopathogenic link. Whether the oral microbiota, especially its quality, quantity, serology, and virulence factors, plays a role in atherogenesis is not clarified. Patients with periodontitis are exposed to bacteria and their products, which have access to the circulation directly through inflamed oral tissues and indirectly (via saliva) through the gastrointestinal tract, resulting in systemic inflammatory and immunologic responses. Periodontitis is associated with persistent endotoxemia, which has been identified as a notable cardiometabolic risk factor. The serology of bacterial biomarkers for oral dysbiosis is associated with an increased risk for subclinical atherosclerosis, prevalent and future coronary artery disease, and incident and recurrent stroke. In addition to species-specific antibodies, the immunologic response includes persistent, cross-reactive, proatherogenic antibodies against host-derived antigens. Periodontitis may affect lipoprotein metabolism at all levels, and all lipoprotein classes are affected. Periodontitis or its bacterial signatures may be involved not only in increased storage of proatherogenic lipids but also in attenuation of the anti-atherogenic processes, thereby putatively increasing the net risk of atherosclerosis. In this review we summarize possible molecular mediators between the dysbiotic oral microbiota and atherosclerotic processes.
Collapse
Affiliation(s)
- Milla Pietiäinen
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - John M Liljestrand
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Elisa Kopra
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pirkko J Pussinen
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
8
|
Modified lipoproteins in periodontitis: a link to cardiovascular disease? Biosci Rep 2019; 39:BSR20181665. [PMID: 30842338 PMCID: PMC6434390 DOI: 10.1042/bsr20181665] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/04/2019] [Accepted: 02/28/2019] [Indexed: 12/16/2022] Open
Abstract
There is a strong association between periodontal disease and atherosclerotic cardiovascular disorders. A key event in the development of atherosclerosis is accumulation of modified lipoproteins within the arterial wall. We hypothesise that patients with periodontitis have an altered lipoprotein profile towards an atherogenic form. Therefore, the present study aims at identifying modifications of plasma lipoproteins in periodontitis. Lipoproteins from ten female patients with periodontitis and gender- and age-matched healthy controls were isolated by density-gradient ultracentrifugation. Proteins were separated by 2D gel-electrophoresis and identified by map-matching or by nano-LC followed by MS. Apolipoprotein (Apo) A-I (ApoA-I) methionine oxidation, Oxyblot, total antioxidant capacity and a multiplex of 71 inflammation-related plasma proteins were assessed. Reduced levels of apoJ, phospholipid transfer protein, apoF, complement C3, paraoxonase 3 and increased levels of α-1-antichymotrypsin, apoA-II, apoC-III were found in high-density lipoprotein (HDL) from the patients. In low-density lipoprotein (LDL)/very LDL (VLDL), the levels of apoL-1 and platelet-activating factor acetylhydrolase (PAF-AH) as well as apo-B fragments were increased. Methionine oxidation of apoA-I was increased in HDL and showed a relationship with periodontal parameters. α-1 antitrypsin and α-2-HS glycoprotein were oxidised in LDL/VLDL and antioxidant capacity was increased in the patient group. A total of 17 inflammation-related proteins were important for group separation with the highest discriminating proteins identified as IL-21, Fractalkine, IL-17F, IL-7, IL-1RA and IL-2. Patients with periodontitis have an altered plasma lipoprotein profile, defined by altered protein levels as well as post-translational and other structural modifications towards an atherogenic form, which supports a role of modified plasma lipoproteins as central in the link between periodontal and cardiovascular disease (CVD).
Collapse
|
9
|
Jayaprakash K, Demirel I, Khalaf H, Bengtsson T. Porphyromonas gingivalis-induced inflammatory responses in THP1 cells are altered by native and modified low-density lipoproteins in a strain-dependent manner. APMIS 2018; 126:667-677. [DOI: 10.1111/apm.12860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/19/2018] [Indexed: 01/08/2023]
Affiliation(s)
| | - Isak Demirel
- Department of Medical Sciences; Örebro University; Örebro Sweden
| | - Hazem Khalaf
- Department of Medical Sciences; Örebro University; Örebro Sweden
| | | |
Collapse
|
10
|
Lönn J, Ljunggren S, Klarström‐Engström K, Demirel I, Bengtsson T, Karlsson H. Lipoprotein modifications by gingipains of Porphyromonas gingivalis. J Periodontal Res 2018; 53:403-413. [PMID: 29341140 PMCID: PMC5969291 DOI: 10.1111/jre.12527] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVE Several studies have shown an association between periodontitis and cardiovascular disease (CVD). Atherosclerosis is the major cause of CVD, and a key event in the development of atherosclerosis is accumulation of lipoproteins within the arterial wall. Bacteria are the primary etiologic agents in periodontitis and Porphyromonas gingivalis is the major pathogen in the disease. Several studies support a role of modified low-density lipoprotein (LDL) in atherogenesis; however, the pathogenic stimuli that induce the changes and the mechanisms by which this occur are unknown. This study aims to identify alterations in plasma lipoproteins induced by the periodontopathic species of bacterium, P. gingivalis, in vitro. MATERIAL AND METHODS Plasma lipoproteins were isolated from whole blood treated with wild-type and gingipain-mutant (lacking either the Rgp- or Kgp gingipains) P. gingivalis by density/gradient-ultracentrifugation and were studied using 2-dimensional gel electrophoresis followed by matrix-assisted laser desorption/ionization mass spectrometry. Porphyromonas gingivalis-induced lipid peroxidation and antioxidant levels were measured by thiobarbituric acid-reactive substances and antioxidant assay kits, respectively, and lumiaggregometry was used for measurement of reactive oxygen species (ROS) and aggregation. RESULTS Porphyromonas gingivalis exerted substantial proteolytic effects on the lipoproteins. The Rgp gingipains were responsible for producing 2 apoE fragments, as well as 2 apoB-100 fragments, in LDL, and the Kgp gingipain produced an unidentified fragment in high-density lipoproteins. Porphyromonas gingivalis and its different gingipain variants induced ROS and consumed antioxidants. Both the Rgp and Kgp gingipains were involved in inducing lipid peroxidation. CONCLUSION Porphyromonas gingivalis has the potential to change the expression of lipoproteins in blood, which may represent a crucial link between periodontitis and CVD.
Collapse
MESH Headings
- Adhesins, Bacterial/blood
- Adhesins, Bacterial/genetics
- Adhesins, Bacterial/metabolism
- Antioxidants/analysis
- Apolipoprotein A-I/metabolism
- Apolipoprotein B-100/metabolism
- Cysteine Endopeptidases/blood
- Cysteine Endopeptidases/genetics
- Cysteine Endopeptidases/metabolism
- Cysteine Endopeptidases/pharmacokinetics
- Gingipain Cysteine Endopeptidases
- Humans
- Lipid Peroxidation
- Lipoproteins/blood
- Lipoproteins/drug effects
- Lipoproteins/metabolism
- Lipoproteins, HDL/blood
- Lipoproteins, HDL/metabolism
- Lipoproteins, LDL/blood
- Lipoproteins, LDL/drug effects
- Lipoproteins, LDL/metabolism
- Methionine/metabolism
- Periodontitis/metabolism
- Periodontitis/microbiology
- Porphyromonas gingivalis/metabolism
- Porphyromonas gingivalis/pathogenicity
- Reactive Oxygen Species/metabolism
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- J. Lönn
- Department of Oral BiologyInstitute of OdontologyMalmö UniversityMalmöSweden
- PEAS Institute ABLinköpingSweden
| | - S. Ljunggren
- Department of Clinical and Experimental MedicineOccupational and Environmental Medicine CenterLinköping UniversityLinköpingSweden
| | | | - I. Demirel
- Department of Medical SciencesÖrebro UniversityÖrebroSweden
| | - T. Bengtsson
- Department of Medical SciencesÖrebro UniversityÖrebroSweden
| | - H. Karlsson
- Department of Clinical and Experimental MedicineOccupational and Environmental Medicine CenterLinköping UniversityLinköpingSweden
| |
Collapse
|
11
|
Infectious Agents in Atherosclerotic Cardiovascular Diseases through Oxidative Stress. Int J Mol Sci 2017; 18:ijms18112459. [PMID: 29156574 PMCID: PMC5713425 DOI: 10.3390/ijms18112459] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence demonstrates that vascular oxidative stress is a critical feature of atherosclerotic process, potentially triggered by several infectious agents that are considered as risk co-factors for the atherosclerotic cardiovascular diseases (CVDs). C. pneumoniae has been shown to upregulate multiple enzymatic systems capable of producing reactive oxygen species (ROS) such as NADPH oxidase (NOX) and cyclooxygenase in vascular endothelial cells, NOX and cytochrome c oxidase in macrophages as well as nitric oxide synthase and lipoxygenase in platelets contributing to both early and late stages of atherosclerosis. P. gingivalis seems to be markedly involved in the atherosclerotic process as compared to A. actinomycetemcomitans contributing to LDL oxidation and foam cell formation. Particularly interesting is the evidence describing the NLRP3 inflammasome activation as a new molecular mechanism underlying P. gingivalis-induced oxidative stress and inflammation. Amongst viral agents, immunodeficiency virus-1 and hepatitis C virus seem to have a major role in promoting ROS production, contributing, hence, to the early stages of atherosclerosis including endothelial dysfunction and LDL oxidation. In conclusion, oxidative mechanisms activated by several infectious agents during the atherosclerotic process underlying CVDs are very complex and not well-known, remaining, thus, an attractive target for future research.
Collapse
|
12
|
Periodontal Disease Associated with Aortic Arch Atheroma in Patients with Stroke or Transient Ischemic Attack. J Stroke Cerebrovasc Dis 2017; 26:2137-2144. [DOI: 10.1016/j.jstrokecerebrovasdis.2017.04.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/21/2017] [Accepted: 04/29/2017] [Indexed: 11/22/2022] Open
|
13
|
Shaik-Dasthagirisaheb YB, Mekasha S, He X, Gibson FC, Ingalls RR. Signaling events in pathogen-induced macrophage foam cell formation. Pathog Dis 2016; 74:ftw074. [PMID: 27481727 DOI: 10.1093/femspd/ftw074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2016] [Indexed: 12/31/2022] Open
Abstract
Macrophage foam cell formation is a key event in atherosclerosis. Several triggers induce low-density lipoprotein (LDL) uptake by macrophages to create foam cells, including infections with Porphyromonas gingivalis and Chlamydia pneumoniae, two pathogens that have been linked to atherosclerosis. While gene regulation during foam cell formation has been examined, comparative investigations to identify shared and specific pathogen-elicited molecular events relevant to foam cell formation are not well documented. We infected mouse bone marrow-derived macrophages with P. gingivalis or C. pneumoniae in the presence of LDL to induce foam cell formation, and examined gene expression using an atherosclerosis pathway targeted plate array. We found over 30 genes were significantly induced in response to both pathogens, including PPAR family members that are broadly important in atherosclerosis and matrix remodeling genes that may play a role in plaque development and stability. Six genes mainly involved in lipid transport were significantly downregulated. The response overall was remarkably similar and few genes were regulated in a pathogen-specific manner. Despite very divergent lifestyles, P. gingivalis and C. pneumoniae activate similar gene expression profiles during foam cell formation that may ultimately serve as targets for modulating infection-elicited foam cell burden, and progression of atherosclerosis.
Collapse
Affiliation(s)
- Yazdani B Shaik-Dasthagirisaheb
- Section of Infectious Diseases, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, MA 02118, USA
| | - Samrawit Mekasha
- Section of Infectious Diseases, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, MA 02118, USA
| | - Xianbao He
- Section of Infectious Diseases, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, MA 02118, USA
| | - Frank C Gibson
- Section of Infectious Diseases, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, MA 02118, USA
| | - Robin R Ingalls
- Section of Infectious Diseases, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
14
|
Links between atherosclerotic and periodontal disease. Exp Mol Pathol 2016; 100:220-35. [DOI: 10.1016/j.yexmp.2016.01.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 02/06/2023]
|
15
|
|
16
|
Periodontal Disease-Induced Atherosclerosis and Oxidative Stress. Antioxidants (Basel) 2015; 4:577-90. [PMID: 26783845 PMCID: PMC4665422 DOI: 10.3390/antiox4030577] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/11/2015] [Accepted: 08/18/2015] [Indexed: 01/22/2023] Open
Abstract
Periodontal disease is a highly prevalent disorder affecting up to 80% of the global population. Recent epidemiological studies have shown an association between periodontal disease and cardiovascular disease, as oxidative stress plays an important role in chronic inflammatory diseases such as periodontal disease and cardiovascular disease. In this review, we focus on the mechanisms by which periodontopathic bacteria cause chronic inflammation through the enhancement of oxidative stress and accelerate cardiovascular disease. Furthermore, we comment on the antioxidative activity of catechin in atherosclerosis accelerated by periodontitis.
Collapse
|
17
|
Gingipains from the Periodontal Pathogen Porphyromonas gingivalis Play a Significant Role in Regulation of Angiopoietin 1 and Angiopoietin 2 in Human Aortic Smooth Muscle Cells. Infect Immun 2015; 83:4256-65. [PMID: 26283334 DOI: 10.1128/iai.00498-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/11/2015] [Indexed: 12/24/2022] Open
Abstract
Angiopoietin 1 (Angpt1) and angiopoietin 2 (Angpt2) are the ligands of tyrosine kinase (Tie) receptors, and they play important roles in vessel formation and the development of inflammatory diseases, such as atherosclerosis. Porphyromonas gingivalis is a Gram-negative periodontal bacterium that is thought to contribute to the progression of cardiovascular disease. The aim of this study was to investigate the role of P. gingivalis infection in the modulation of Angpt1 and Angpt2 in human aortic smooth muscle cells (AoSMCs). We exposed AoSMCs to wild-type (W50 and 381), gingipain mutant (E8 and K1A), and fimbrial mutant (DPG-3 and KRX-178) P. gingivalis strains and to different concentrations of tumor necrosis factor (TNF). The atherosclerosis risk factor TNF was used as a positive control in this study. We found that P. gingivalis (wild type, K1A, DPG3, and KRX178) and TNF upregulated the expression of Angpt2 and its transcription factor ETS1, respectively, in AoSMCs. In contrast, Angpt1 was inhibited by P. gingivalis and TNF. However, the RgpAB mutant E8 had no effect on the expression of Angpt1, Angpt2, or ETS1 in AoSMCs. The results also showed that ETS1 is critical for P. gingivalis induction of Angpt2. Exposure to Angpt2 protein enhanced the migration of AoSMCs but had no effect on proliferation. This study demonstrates that gingipains are crucial to the ability of P. gingivalis to markedly increase the expressed Angpt2/Angpt1 ratio in AoSMCs, which determines the regulatory role of angiopoietins in angiogenesis and their involvement in the development of atherosclerosis. These findings further support the association between periodontitis and cardiovascular disease.
Collapse
|
18
|
Palm E, Khalaf H, Bengtsson T. Suppression of inflammatory responses of human gingival fibroblasts by gingipains fromPorphyromonas gingivalis. Mol Oral Microbiol 2014; 30:74-85. [DOI: 10.1111/omi.12073] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2014] [Indexed: 12/13/2022]
Affiliation(s)
- E. Palm
- Department of Biomedicine; School of Health and Medical Sciences; Örebro University; Örebro Sweden
| | - H. Khalaf
- Department of Biomedicine; School of Health and Medical Sciences; Örebro University; Örebro Sweden
| | - T. Bengtsson
- Department of Biomedicine; School of Health and Medical Sciences; Örebro University; Örebro Sweden
| |
Collapse
|
19
|
Hyperlipidemia causes changes in inflammatory responses to periodontal pathogen challenge: implications in acute and chronic infections. Arch Oral Biol 2014; 59:1075-84. [PMID: 24992577 DOI: 10.1016/j.archoralbio.2014.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 06/02/2014] [Accepted: 06/12/2014] [Indexed: 12/16/2022]
Abstract
OBJECTIVE In this study, the effect of hyperlipidemia on immune responses to periodontal bacterial infections was investigated. METHODS Sixty male New Zealand white rabbits were equally assigned to normal diet (ND) and high-fat diet (HFD) for 6 weeks. Every six rabbits with ND or HFD were orally inoculated with live Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis three times a week for 8 weeks. Also every six rabbits with ND or HFD rabbits were injected intravenously with A. actinomycetemcomitans and P. gingivalis LPS. Periodontal disease severity was quantified by macroscopic and radiographical evaluation. Serum cytokines were examined by enzyme-linked immunosorbent assay. In vitro, peripheral mononuclear cells were collected and stimulated with LPS. Quantitative real-time polymerase chain reaction was used to determine the changes in gene expression of macrophages. RESULTS In the early stages of infection, HFD rabbits were exposed to oral infection and systemic infection developed a weak inflammatory response to the reduced cytokine expression compared with ND rabbits. However, HFD rabbits exhibited higher inflammatory cytokine expression during long-term infections. Moreover, the pronounced changes in inflammatory cytokine expression elicited a significantly increase in bone loss in HFD rabbits with oral infection. Peripheral macrophages harvested from HFD rabbits and exposed to LPS exhibited reduced levels of pro-inflammatory cytokines compared with those from ND rabbits in vitro. CONCLUSION These data indicated that hyperlipidemia interfered with immune responses differently. The mechanism is possibly associated with immune paralysis in the acute phase and accumulation of inflammatory mediators in the chronic period.
Collapse
|
20
|
Periodontal pathogens and atherosclerosis: implications of inflammation and oxidative modification of LDL. BIOMED RESEARCH INTERNATIONAL 2014; 2014:595981. [PMID: 24949459 PMCID: PMC4052162 DOI: 10.1155/2014/595981] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/07/2014] [Accepted: 04/28/2014] [Indexed: 12/29/2022]
Abstract
Inflammation is well accepted to play a crucial role in the development of atherosclerotic lesions, and recent studies have demonstrated an association between periodontal disease and cardiovascular disease. Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, causative agents of destructive chronic inflammation in the periodontium, can accelerate atheroma deposition in animal models. Emerging evidence suggests that vaccination against virulence factors of these pathogens and anti-inflammatory therapy may confer disease resistance. In this review, we focus on the role of inflammatory mechanisms and oxidative modification in the formation and activation of atherosclerotic plaques accelerated by P. gingivalis or A. actinomycetemcomitans in an ApoE-deficient mouse model and high-fat-diet-fed mice. Furthermore, we examine whether mucosal vaccination with a periodontal pathogen or the anti-inflammatory activity of catechins can reduce periodontal pathogen-accelerated atherosclerosis.
Collapse
|
21
|
Assinger A, Wang Y, Butler LM, Hansson GK, Yan ZQ, Söderberg-Nauclér C, Ketelhuth DFJ. Apolipoprotein B100 danger-associated signal 1 (ApoBDS-1) triggers platelet activation and boosts platelet-leukocyte proinflammatory responses. Thromb Haemost 2014; 112:332-41. [PMID: 24816772 DOI: 10.1160/th13-12-1026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/20/2014] [Indexed: 12/21/2022]
Abstract
Low-density lipoproteins (LDL), occurring in vivo in both their native and oxidative form, modulate platelet function and thereby contribute to atherothrombosis. We recently identified and demonstrated that 'ApoB100 danger-associated signal 1' (ApoBDS-1), a native peptide derived from Apolipoprotein B-100 (ApoB100) of LDL, induces inflammatory responses in innate immune cells. Platelets are critically involved in the development as well as in the lethal consequences of atherothrombotic diseases, but whether ApoBDS-1 has also an impact on platelet function is unknown. In this study we examined the effect of ApoBDS-1 on human platelet function and platelet-leukocyte interactions in vitro. Stimulation with ApoBDS-1 induced platelet activation, degranulation, adhesion and release of proinflammatory cytokines. ApoBDS-1-stimulated platelets triggered innate immune responses by augmenting leukocyte activation, adhesion and transmigration to/through activated HUVEC monolayers, under flow conditions. These platelet-activating effects were sequence-specific, and stimulation of platelets with ApoBDS-1 activated intracellular signalling pathways, including Ca2+, PI3K/Akt, PLC, and p38- and ERK-MAPK. Moreover, our data indicates that ApoBDS-1-induced platelet activation is partially dependent of positive feedback from ADP on P2Y1 and P2Y12, and TxA2. In conclusion, we demonstrate that ApoBDS-1 is an effective platelet agonist, boosting platelet-leukocyte's proinflammatory responses, and potentially contributing to the multifaceted inflammatory-promoting effects of LDL in the pathogenesis of atherothrombosis.
Collapse
Affiliation(s)
- A Assinger
- Dr. Alice Assinger, Institute of Physiology, Center for Physiology and Pathophysiology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria, E-mail:
| | | | | | | | | | | | - D F J Ketelhuth
- Dr. Daniel FJ Ketelhuth, Cardiovascular Research Unit, Center for Molecular Medicine, L8:03, Karolinska University Hospital, S-17176 Stockholm, Sweden, Fax: +46 8 313147, E-mail:
| |
Collapse
|
22
|
Zhang B, Elmabsout AA, Khalaf H, Basic VT, Jayaprakash K, Kruse R, Bengtsson T, Sirsjö A. The periodontal pathogen Porphyromonas gingivalis changes the gene expression in vascular smooth muscle cells involving the TGFbeta/Notch signalling pathway and increased cell proliferation. BMC Genomics 2013; 14:770. [PMID: 24209892 PMCID: PMC3827841 DOI: 10.1186/1471-2164-14-770] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/05/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Porphyromonas gingivalis is a gram-negative bacterium that causes destructive chronic periodontitis. In addition, this bacterium is also involved in the development of cardiovascular disease. The aim of this study was to investigate the effects of P. gingivalis infection on gene and protein expression in human aortic smooth muscle cells (AoSMCs) and its relation to cellular function. RESULTS AoSMCs were exposed to viable P. gingivalis for 24 h, whereafter confocal fluorescence microscopy was used to study P. gingivalis invasion of AoSMCs. AoSMCs proliferation was evaluated by neutral red assay. Human genome microarray, western blot and ELISA were used to investigate how P. gingivalis changes the gene and protein expression of AoSMCs. We found that viable P. gingivalis invades AoSMCs, disrupts stress fiber structures and significantly increases cell proliferation. Microarray results showed that, a total of 982 genes were identified as differentially expressed with the threshold log2 fold change > |1| (adjust p-value <0.05). Using bioinformatic data mining, we demonstrated that up-regulated genes are enriched in gene ontology function of positive control of cell proliferation and down-regulated genes are enriched in the function of negative control of cell proliferation. The results from pathway analysis revealed that all the genes belonging to these two categories induced by P. gingivalis were enriched in 25 pathways, including genes of Notch and TGF-beta pathways. CONCLUSIONS This study demonstrates that P. gingivalis is able to invade AoSMCs and stimulate their proliferation. The activation of TGF-beta and Notch signaling pathways may be involved in the bacteria-mediated proliferation of AoSMCs. These findings further support the association between periodontitis and cardiovascular diseases.
Collapse
Affiliation(s)
- Boxi Zhang
- Department of Clinical Medicine, School of Health and Medical Sciences, Örebro University, Örebro, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Eberini I, Wait R, Calabresi L, Sensi C, Miller I, Gianazza E. A proteomic portrait of atherosclerosis. J Proteomics 2013; 82:92-112. [DOI: 10.1016/j.jprot.2013.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/11/2013] [Accepted: 02/13/2013] [Indexed: 01/11/2023]
|
24
|
Shaik-Dasthagirisaheb YB, Huang N, Baer MT, Gibson FC. Role of MyD88-dependent and MyD88-independent signaling in Porphyromonas gingivalis-elicited macrophage foam cell formation. Mol Oral Microbiol 2013; 28:28-39. [PMID: 23194377 PMCID: PMC3543481 DOI: 10.1111/omi.12003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2012] [Indexed: 12/13/2022]
Abstract
Clinical studies and experimental modeling identify a potential link between periodontal disease and periodontal pathogens such as Porphyromonas gingivalis and atherosclerosis and formation of macrophage foam cells. Toll-like receptors and molecules governing their intracellular signaling pathways such as MyD88 play roles in atherosclerosis, as well as host response to P. gingivalis. The aim of this study was to define roles of MyD88 and TRIF during macrophage foam cell formation in response to P. gingivalis. In the presence of human low-density lipoprotein (LDL) mouse bone-marrow-derived macrophages (BMφ) cultured with P. gingivalis responded with significant reduction in tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). The BMφ stained strongly with oil red O, regardless of whether bacterial challenge occurred concurrent with or before LDL treatment. Heat-killed P. gingivalis stimulated foam cell formation in a similar way to live bacteria. The BMφ from MyD88-knockout and Lps2 mice revealed a significant role for MyD88, and a minor role for TRIF in P. gingivalis-elicited foam cell formation. Porphyromonas gingivalis-elicited TNF-α and IL-6 were affected by MyD88 ablation and to a lesser extent by TRIF status. These data indicate that LDL affects the TNF-α and IL-6 response of macrophages to P. gingivalis challenge and that MyD88 and TRIF play important roles in P. gingivalis-elicited foam cell formation.
Collapse
Affiliation(s)
| | - Nasi Huang
- Section of Infectious Diseases, Department of Medicine, Boston University Medical Center, Boston, MA 02118
| | | | - Frank C. Gibson
- Section of Infectious Diseases, Department of Medicine, Boston University Medical Center, Boston, MA 02118
| |
Collapse
|
25
|
Cai Y, Kurita-Ochiai T, Hashizume T, Yamamoto M. Green tea epigallocatechin-3-gallate attenuates Porphyromonas gingivalis-induced atherosclerosis. Pathog Dis 2012; 67:76-83. [PMID: 23620122 DOI: 10.1111/2049-632x.12001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 08/24/2012] [Accepted: 08/27/2012] [Indexed: 11/30/2022] Open
Abstract
The purpose of this study was to determine whether epigallocatechin-3-gallate (EGCG) ameliorates Porphyromonas gingivalis-induced atherosclerosis. EGCG is a polyphenol extract from green tea with health benefits and P. gingivalis is shown here to accelerate atheroma formation in a murine model. Apolipoprotein E knockout mice were administered EGCG or vehicle in drinking water; they were then fed high-fat diets and injected with P. gingivalis three times a week for 3 weeks. Mice were then killed at 15 weeks. Atherosclerotic plaques in the proximal aorta were determined by Oil Red O staining. Atherosclerosis risk factors in serum, liver or aorta were analysed using cytokine antibody arrays, enzyme-linked immunosorbent assay and real-time PCR. Atherosclerotic lesion areas of the aortic sinus caused by P. gingivalis infection decreased in EGCG-treated groups, wherein EGCG reduced the production of C-reactive protein, monocyte chemoattractant protein-1, and oxidized low-density lipoprotein (LDL), and slightly lowered LDL/very LDL cholesterol in P. gingivalis-challenged mice serum. Furthermore, the increase in CCL2, MMP-9, ICAM-1, HSP60, CD44, LOX-1, NOX-4, p22phox and iNOS gene expression levels in the aorta of P. gingivalis-challenged mice were reduced in EGCG-treated mice. However, HO-1 mRNA levels were elevated by EGCG treatment, suggesting that EGCG, as a natural substance, inhibits P. gingivalis-induced atherosclerosis through anti-inflammatory and antioxidative effects.
Collapse
Affiliation(s)
- Yu Cai
- Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | | | | | | |
Collapse
|
26
|
Rizzo M, Cappello F, Marfil R, Nibali L, Marino Gammazza A, Rappa F, Bonaventura G, Galindo-Moreno P, O'Valle F, Zummo G, Conway de Macario E, Macario AJL, Mesa F. Heat-shock protein 60 kDa and atherogenic dyslipidemia in patients with untreated mild periodontitis: a pilot study. Cell Stress Chaperones 2012; 17:399-407. [PMID: 22215516 PMCID: PMC3312963 DOI: 10.1007/s12192-011-0315-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 12/02/2011] [Accepted: 12/02/2011] [Indexed: 12/21/2022] Open
Abstract
Identification of predictors of cardiovascular risk can help in the prevention of pathologic episodes and the management of patients at all stages of illness. Here, we investigated the relationships between serum levels of Hsp60 and dyslipidemia in patients with periodontitis by performing a cross-sectional study of 22 patients with mild periodontitis without any prior treatment for it (i.e., drug naïve) and 22 healthy controls, matched for age and body mass index (BMI). All subjects were evaluated for periodontal status, gingival inflammation, and oral hygiene. Levels of circulating Hsp60, C-reactive protein (CRP), and plasma lipids were measured, and small, dense low-density lipoproteins (LDL) were indirectly assessed by determining the triglycerides/high-density lipoproteins (HDL) cholesterol ratio. We also assessed by immunohistochemistry Hsp60 levels in oral mucosa of patients and controls. No difference was found in CRP levels or plasma lipids between the two groups, but subjects with periodontitis showed, in comparison to controls, higher levels of small, dense LDL (p = 0.0355) and circulating Hsp60 concentrations (p < 0.0001). However, levels of mucosal Hsp60 did not change significantly between groups. Correlation analysis revealed that circulating Hsp60 inversely correlated with HDL-cholesterol (r = -0.589, p = 0.0039), and positively with triglycerides (r = +0.877, p < 0.0001), and small, dense LDL (r = +0.925, p < 0.0001). Serum Hsp60 significantly correlated with the degree of periodontal disease (r = +0.403, p = 0.0434). In brief, untreated patients with mild periodontitis had increased small, dense LDL and serum Hsp60 concentrations, in comparison to age- and BMI-matched controls and both parameters showed a strong positive correlation. Our data indicate that atherogenic dyslipidemia and elevated circulating Hsp60 tend to be linked and associated to periodontal pathology. Thus, the road is open to investigate the potential value of elevated levels of circulating Hsp60 as predictor of risk for cardiovascular disease when associated to dyslipidemia in periodontitis patients.
Collapse
Affiliation(s)
- Manfredi Rizzo
- Department of Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Fukasawa A, Kurita-Ochiai T, Hashizume T, Kobayashi R, Akimoto Y, Yamamoto M. Porphyromonas gingivalis accelerates atherosclerosis in C57BL/6 mice fed a high-fat diet. Immunopharmacol Immunotoxicol 2011; 34:470-6. [PMID: 22047042 DOI: 10.3109/08923973.2011.627866] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Porphyromonas gingivalis has been shown to accelerate atherosclerotic lesion development in atherosclerotic apo E-deficient mice. Here, we investigated whether repeated P. gingivalis injection affected the inflammatory and atherosclerotic responses of C57BL/6 mice fed a high-fat diet (HFD). MATERIALS AND METHODS Eight-week-old C57BL/6 mice fed either HFD or a regular chow diet (RD) were inoculated intravenously with P. gingivalis or phosphate-buffered saline three times per week for 10 weeks and sacrificed at 19 weeks of age. Atheromatous lesions in the proximal aorta of each animal were analyzed histomorphometrically, and the serum cytokine and C-reactive protein (CRP) levels were determined. RESULTS Long-term HFD feeding as compared to RD feeding led to a slight increase in atheromatous lesions in the aortic sinus as well as increases in the levels of serum monocyte chemoattractant protein 1. Further, P. gingivalis injection significantly enhanced the formation of atherosclerotic plaque, and increased CRP and inflammatory cytokine levels, in mice fed the HFD, although no further increase in LDL was observed. CONCLUSION These results suggest that bacteremia-induced by repeated injection with P. gingivalis accelerates atherosclerosis in normal C57BL/6 mice by initiating inflammation, and is therefore implicated in chronic infection-related pathogenicity.
Collapse
Affiliation(s)
- Asuka Fukasawa
- Department of Oral Surgery, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
It is now well accepted that besides the cholesterol associated mechanisms of atherogenesis, inflammation plays a crucial role in all stages of the development of the atherosclerotic lesion. This 'inflammation hypothesis' raises the possibility that through systemic elevations of pro-inflammatory cytokines, periodontal diseases might also contribute to systemic inflammation and, therefore, to atherogenesis. In fact, there is evidence that periodontal diseases are associated with higher systemic levels of high-sensitivity C-reactive protein and a low grade systemic inflammation. This phenomenon has been explained based on mechanisms associated with either the infectious or the inflammatory nature of periodontal diseases. The purposes of this article were to review (1) the evidence suggesting a role for oral bacterial species, particularly periodontal pathogens, in atherogenesis; (2) the potential mechanisms explaining an etiological role for oral bacteria in atherosclerosis; (3) the evidence suggesting that periodontal infections are accompanied by a heightened state of systemic inflammation; (4) the potential sources of systemic inflammatory biomarkers associated with periodontal diseases; and (5) the effects of periodontal therapy on systemic inflammatory biomarkers and cardiovascular risk.
Collapse
Affiliation(s)
- R Teles
- Department of Periodontology, The Forsyth Institute, Cambridge, MA 02142, USA.
| | | |
Collapse
|
29
|
Lipoxin A₄ inhibits porphyromonas gingivalis-induced aggregation and reactive oxygen species production by modulating neutrophil-platelet interaction and CD11b expression. Infect Immun 2011; 79:1489-97. [PMID: 21263017 DOI: 10.1128/iai.00777-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Porphyromonas gingivalis is an etiological agent that is strongly associated with periodontal disease, and it correlates with numerous inflammatory disorders, such as cardiovascular disease. Circulating bacteria may contribute to atherogenesis by promoting CD11b/CD18-mediated interactions between neutrophils and platelets, causing reactive oxygen species (ROS) production and aggregation. Lipoxin A₄ (LXA₄) is an endogenous anti-inflammatory and proresolving mediator that is protective of inflammatory disorders. The aim of this study was to investigate the effect of LXA₄ on the P. gingivalis-induced activation of neutrophils and platelets and the possible involvement of Rho GTPases and CD11b/CD18 integrins. Platelet/leukocyte aggregation and ROS production was examined by lumiaggregometry and fluorescence microscopy. Integrin activity was studied by flow cytometry, detecting the surface expression of CD11b/CD18 as well as the exposure of the high-affinity integrin epitope, whereas the activation of Rac2/Cdc42 was examined using a glutathione S-transferase pulldown assay. The study shows that P. gingivalis activates Rac2 and Cdc42 and upregulates CD11b/CD18 and its high-affinity epitope on neutrophils, and that these effects are diminished by LXA₄. Furthermore, we found that LXA₄ significantly inhibits P. gingivalis-induced aggregation and ROS generation in whole blood. However, in platelet-depleted blood and in isolated neutrophils and platelets, LXA₄ was unable to inhibit either aggregation or ROS production, respectively. In conclusion, this study suggests that LXA₄ antagonizes P. gingivalis-induced cell activation in a manner that is dependent on leukocyte-platelet interaction, likely via the inhibition of Rho GTPase signaling and the downregulation of CD11b/CD18. These findings may contribute to new strategies in the prevention and treatment of periodontitis-induced inflammatory disorders, such as atherosclerosis.
Collapse
|
30
|
Abstract
Plasma lipoproteins (VLDL, LDL, Lp[a] and HDL) function primarily in lipid transport among tissues and organs. However, cumulative evidence suggests that lipoproteins may also prevent bacterial, viral and parasitic infections and are therefore a component of innate immunity. Lipoproteins can also detoxify lipopolysaccharide and lipoteichoic acid. Infections can induce oxidation of LDL, and oxLDL in turn plays important anti-infective roles and protects against endotoxin-induced tissue damage. There is also evidence that apo(a) is protective against pathogens. Taken together, the evidence suggests that it might be valuable to introduce the concept that plasma lipoproteins belong in the realm of host immune response.
Collapse
Affiliation(s)
- Runlin Han
- Research Center of Plasma Lipoprotein Immunology, College of Animal Medicine, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Huhhot, 010018, China.
| |
Collapse
|
31
|
Abstract
Plasma lipoproteins (VLDL, LDL, Lp[a] and HDL) function primarily in lipid transport among tissues and organs. However, cumulative evidence suggests that lipoproteins may also prevent bacterial, viral and parasitic infections and are therefore a component of innate immunity. Lipoproteins can also detoxify lipopolysaccharide and lipoteichoic acid. Infections can induce oxidation of LDL, and oxLDL in turn plays important anti-infective roles and protects against endotoxin-induced tissue damage. There is also evidence that apo(a) is protective against pathogens. Taken together, the evidence suggests that it might be valuable to introduce the concept that plasma lipoproteins belong in the realm of host immune response.
Collapse
Affiliation(s)
- Runlin Han
- Research Center of Plasma Lipoprotein Immunology, College of Animal Medicine, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Huhhot, 010018, China.
| |
Collapse
|
32
|
Receptor for advanced glycation endproducts mediates pro-atherogenic responses to periodontal infection in vascular endothelial cells. Atherosclerosis 2010; 212:451-6. [PMID: 20701913 DOI: 10.1016/j.atherosclerosis.2010.07.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 06/28/2010] [Accepted: 07/10/2010] [Indexed: 12/23/2022]
Abstract
OBJECTIVE A link between periodontal infections and an increased risk for vascular disease has been demonstrated. Porphyromonas gingivalis, a major periodontal pathogen, localizes in human atherosclerotic plaques, accelerates atherosclerosis in animal models and modulates vascular cell function. The receptor for advanced glycation endproducts (RAGE) regulates vascular inflammation and atherogenesis. We hypothesized that RAGE is involved in P. gingivalis's contribution to pro-atherogenic responses in vascular endothelial cells. METHODS AND RESULTS Murine aortic endothelial cells (MAEC) were isolated from wild-type C57BL/6 or RAGE-/- mice and were infected with P. gingivalis strain 381. P. gingivalis 381 infection significantly enhanced expression of RAGE in wild-type MAEC. Levels of pro-atherogenic advanced glycation endproducts (AGEs) and monocyte chemoattractant protein 1 (MCP-1) were significantly increased in wild-type MAEC following P. gingivalis 381 infection, but were unaffected in MAEC from RAGE-/- mice or in MAEC infected with DPG3, a fimbriae-deficient mutant of P. gingivalis 381. Consistent with a role for oxidative stress and an AGE-dependent activation of RAGE in this setting, both antioxidant treatment and AGE blockade significantly suppressed RAGE gene expression and RAGE and MCP-1 protein levels in P. gingivalis 381-infected human aortic endothelial cells (HAEC). CONCLUSION The present findings implicate for the first time the AGE-RAGE axis in the amplification of pro-atherogenic responses triggered by P. gingivalis in vascular endothelial cells.
Collapse
|
33
|
Kebschull M, Demmer RT, Papapanou PN. "Gum bug, leave my heart alone!"--epidemiologic and mechanistic evidence linking periodontal infections and atherosclerosis. J Dent Res 2010; 89:879-902. [PMID: 20639510 DOI: 10.1177/0022034510375281] [Citation(s) in RCA: 330] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Evidence from epidemiologic studies suggests that periodontal infections are independently associated with subclinical and clinical atherosclerotic vascular disease. Although the strength of the reported associations is modest, the consistency of the data across diverse populations and a variety of exposure and outcome variables suggests that the findings are not spurious or attributable only to the effects of confounders. Analysis of limited data from interventional studies suggests that periodontal treatment generally results in favorable effects on subclinical markers of atherosclerosis, although such analysis also indicates considerable heterogeneity in responses. Experimental mechanistic in vitro and in vivo studies have established the plausibility of a link between periodontal infections and atherogenesis, and have identified biological pathways by which these effects may be mediated. However, the utilized models are mostly mono-infections of host cells by a limited number of 'model' periodontal pathogens, and therefore may not adequately portray human periodontitis as a polymicrobial, biofilm-mediated disease. Future research must identify in vivo pathways in humans that may (i) lead to periodontitis-induced atherogenesis, or (ii) result in treatment-induced reduction of atherosclerosis risk. Data from these studies will be essential for determining whether periodontal interventions have a role in the primary or secondary prevention of atherosclerosis.
Collapse
Affiliation(s)
- M Kebschull
- Division of Periodontics, Section of Oral and Diagnostic Sciences, College of Dental Medicine, 630 W 168th Street, PH-7-E-110, New York, NY 10032, USA
| | | | | |
Collapse
|
34
|
Griffiths R, Barbour S. Lipoproteins and lipoprotein metabolism in periodontal disease. CLINICAL LIPIDOLOGY 2010; 5:397-411. [PMID: 20835400 PMCID: PMC2933935 DOI: 10.2217/clp.10.27] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A growing body of evidence indicates that the incidence of atherosclerosis is increased in subjects with periodontitis - a chronic infection of the oral cavity. This article summarizes the evidence that suggests periodontitis shifts the lipoprotein profile to be more proatherogenic. LDL-C is elevated in periodontitis and most studies indicate that triglyceride levels are also increased. By contrast, antiatherogenic HDL tends to be low in periodontitis. Periodontal therapy tends to shift lipoprotein levels to a healthier profile and also reduces subclinical indices of atherosclerosis. In summary, periodontal disease alters lipoprotein metabolism in ways that could promote atherosclerosis and cardiovascular disease.
Collapse
Affiliation(s)
- Rachel Griffiths
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University School of Medicine, Box 980614, Richmond, VA 23298-0614, USA
| | - Suzanne Barbour
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University School of Medicine, Box 980614, Richmond, VA 23298-0614, USA
| |
Collapse
|
35
|
Development of a 2-D apoB peptide profile to detect conformational changes associated with apoB-containing lipoproteins. Electrophoresis 2009; 30:2227-33. [DOI: 10.1002/elps.200800725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Goteiner D, Craig RG, Ashmen R, Janal MN, Eskin B, Lehrman N. Endotoxin levels are associated with high-density lipoprotein, triglycerides, and troponin in patients with acute coronary syndrome and angina: possible contributions from periodontal sources. J Periodontol 2009; 79:2331-9. [PMID: 19053924 DOI: 10.1902/jop.2008.080068] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Recent studies have reported an association between poor dental health and acute coronary syndrome (ACS). The purpose of this study was to correlate the presence of periodontitis with serum endotoxin/lipopolysaccharides (LPS), lipid profiles, troponin, and immunoglobulin G (IgG) antibody to Porphyromonas gingivalis in control patients or patients with ACS or angina at the time of hospital admission. METHODS Blood samples from 194 subjects presenting with ACS, angina, or non-cardiac chest pain were analyzed for endotoxin/LPS (Limulus amebocyte lysate assay), lipid profile, troponin, and IgG antibody to P. gingivalis. Data were collected from hospital charts and dental records, and health questionnaire responses. RESULTS Subjects with ACS or angina were more likely to have poor oral care, fewer remaining teeth, and increased alveolar radiographic bone loss compared to subjects with chest pain. In all subjects, endotoxin/LPS and IgG antibody to P. gingivalis tended to increase in association with increased radiographic bone loss. Endotoxin/LPS increased directly with triglyceride and troponin levels (P = 0.04 and P = 0.006, respectively) and inversely with high-density lipoprotein (HDL) levels (P = 0.002). IgG antibody to P. gingivalis levels was directly correlated with very low-density lipoprotein (P = 0.03) and triglycerides (P = 0.06) and inversely with low-density lipoprotein (P = 0.01). CONCLUSIONS Results showed more alveolar bone loss in patients with cardiac disease than in patients without cardiac disease, but there was no difference between the groups in the serum levels of endotoxin/LPS or IgG antibody to P. gingivalis. However, there were associations between endotoxin/LPS and levels of serum triglycerides, troponin, and HDL.
Collapse
Affiliation(s)
- David Goteiner
- Department of Periodontology, New Jersey Dental School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07930, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Ahnström J, Axler O, Jauhiainen M, Salomaa V, Havulinna AS, Ehnholm C, Frikke-Schmidt R, Tybjaerg-Hansen A, Dahlbäck B. Levels of apolipoprotein M are not associated with the risk of coronary heart disease in two independent case-control studies. J Lipid Res 2008; 49:1912-7. [PMID: 18490703 DOI: 10.1194/jlr.m700471-jlr200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apolipoprotein M (apoM), a 25 kDa plasma protein belonging to the lipocalin protein family, is predominantly associated with HDL. Studies in mice have suggested apoM to be important for the formation of pre-beta-HDL and to increase cholesterol efflux from macrophage foam cells. Overexpression of human apoM in LDL receptor-deficient mice reduced the atherogenic effect of a cholesterol-rich diet. The aim of the present study was to investigate whether the apoM levels in man predict the risk for coronary heart disease (CHD). ApoM was measured in samples from two separate case-control studies. FINRISK '92 consisted of 255 individuals, of whom 80 developed CHD during follow-up and 175 were controls. The Copenhagen City Heart Study included 1,865 individuals, of whom 921 developed CHD during follow-up and 944 were controls. Correlation studies of apoM concentration with several analytes showed a marked positive correlation with HDL and total cholesterol as well as with apoA-I and apoB. There was no significant difference in mean apoM level between CHD and control subjects in either study. In conditional logistic regression analyses, apoM was not a predictor of CHD events, [odds ratio (95% CI) 0.97 (0.74-1.27) and 0.92 (0.84-1.02), respectively]. In conclusion, no association between apoM and CHD could be found in this study.
Collapse
Affiliation(s)
- Josefin Ahnström
- Department of Laboratory Medicine, Clinical Chemistry, University of Lund, University Hospital, Malmö, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Oörni K, Kovanen PT. Proteolysis of low density lipoprotein particles by Porphyromonas gingivalis microorganisms: a novel biochemical link between periodontitis and cardiovascular diseases? J Intern Med 2008; 263:553-7. [PMID: 18410598 DOI: 10.1111/j.1365-2796.2008.01949.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|