1
|
Chen S, Zhang N, Zhang R, Zhang L, Luo D, Li J, Liu Y, Wang Y, Duan X, Tian X, Wang T. The causal relationship between systemic lupus erythematosus and juvenile myoclonic epilepsy: A Mendelian randomization study and mediation analysis. IBRAIN 2025; 11:98-105. [PMID: 40103704 PMCID: PMC11911104 DOI: 10.1002/ibra.12191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 03/20/2025]
Abstract
This study aimed to investigate the causal relationship between systemic lupus erythematosus (SLE) and juvenile myoclonic epilepsy (JME). Univariable and reverse Mendelian randomization (MR) analyses were performed to investigate the potential causal associations between SLE, systemic autoimmune disorders (SADs), and JME. Two-step mediation MR analysis was further performed to explore indirect factors that may influence the relationship between SLE and JME. Summary data on SADs were extracted from the Integrative Epidemiology Unit Open genome-wide association study database, and summary statistics for JME were acquired from the International League Against Epilepsy Consortium. The inverse-variance weighted (IVW) method was used for primary analysis, supplemented by MR-Egger and weighted median. In the univariable MR analysis, IVW results indicated a causal relationship between SLE and an increased risk of JME (odds ratio = 1.0030, 95% confidence interval, 1.0004-1.0057; p = 0.023). The subsequent mediation MR analysis showed that inflammatory cytokines may not be the mediating factors between SLE and JME, while the inverse MR analysis found no significant relationship. Our study indicated that genetic susceptibility to SLE was causally linked to JME. However, subsequent mediation analysis failed to identify the potential mediators that could influence this relationship. Moreover, evidence suggested that other SADs were not causally associated with JME. This study may provide guidance for screening risk factors for seizures and exploring potential treatments in SLE and JME, and even all SADs and JME.
Collapse
Affiliation(s)
- Sirui Chen
- The Second Hospital & Clinical Medical School Lanzhou University Lanzhou China
| | - Ningning Zhang
- The Second Hospital & Clinical Medical School Lanzhou University Lanzhou China
| | - Ruirui Zhang
- The Second Hospital & Clinical Medical School Lanzhou University Lanzhou China
| | - Lan Zhang
- The Second Hospital & Clinical Medical School Lanzhou University Lanzhou China
| | - Dadong Luo
- The Second Hospital & Clinical Medical School Lanzhou University Lanzhou China
| | - Junqiang Li
- Department of Neurology, Epilepsy Center, The Second Hospital & Clinical Medical School Lanzhou University Lanzhou China
| | - Yaqing Liu
- Department of Neurology, Epilepsy Center, The Second Hospital & Clinical Medical School Lanzhou University Lanzhou China
| | - Yunan Wang
- The First Clinical Medical College Chongqing Medical University Chongqing China
| | - Xinyue Duan
- The First Clinical Medical College Chongqing Medical University Chongqing China
| | - Xin Tian
- Department of Neurology The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology Chongqing China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education) Chongqing Medical University Chongqing China
| | - Tiancheng Wang
- Department of Neurology, Epilepsy Center, The Second Hospital & Clinical Medical School Lanzhou University Lanzhou China
| |
Collapse
|
2
|
Ishibazawa E, Nagamori T, Kurisawa MJ, Sato M, Yoshida Y, Takahashi H, Manabe H, Ishioka T, Miura Y, Kajino H, Suzuki Y, Wada S, Ogiwara S, Tomii Y, Aoyagi H, Nagai K, Naito H, Takahashi S. A novel scoring system for the prediction of disease severity in STEC-HUS. Pediatr Int 2024; 66:e15833. [PMID: 39696971 DOI: 10.1111/ped.15833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/29/2024] [Accepted: 05/17/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Shiga toxin-producing Escherichia coli-associated hemolytic uremic syndrome (STEC-HUS) is a life-threatening condition complicated by acute kidney injury, acute respiratory distress syndrome, and central nervous system disorders. The early identification of high-risk patients is required to facilitate timely and appropriate treatment. METHODS The medical records of patients with STEC-HUS treated at 11 hospitals in Hokkaido, Japan, were reviewed retrospectively. A multi-institutional retrospective analysis was performed in which patients were divided into two groups according to the presence or absence of severe complications requiring blood purification therapy or encephalopathy. We compared the laboratory values at diagnosis between the severe and mild groups. To identify patients at high risk of developing severe complications, a scoring system, referred to as the "STEC-HUS severity (STEC-HUSS) score," was constructed based on the parameters showing significant differences. RESULTS Of the 41 patients with STEC-HUS, 11 were classified into the severe group and 30 into the mild group. Significant differences were observed between the groups in terms of white blood cell count, activated partial thromboplastin time, fibrinogen, D-dimer, total protein, aspartate transaminase, alanine transaminase, lactate dehydrogenase, creatinine, and C-reactive protein levels. The STEC-HUSS score was calculated on a scale of 0-10 by summing the number of test items that demonstrated abnormal values. The STEC-HUSS score, when the cut-off value was 4, showed a sensitivity of 100% and a specificity of 91% in the severe group. CONCLUSION We developed a novel scoring system to identify patients at high risk of severe STEC-HUS.
Collapse
Affiliation(s)
- Emi Ishibazawa
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Tsunehisa Nagamori
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Mio June Kurisawa
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Masayuki Sato
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Yoichiro Yoshida
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Hironori Takahashi
- Department of Pediatrics, Asahikawa-Kosei General Hospital, Asahikawa, Hokkaido, Japan
| | - Hiromi Manabe
- Department of Pediatrics, Asahikawa-Kosei General Hospital, Asahikawa, Hokkaido, Japan
| | - Toru Ishioka
- Department of Pediatrics, Wakkanai City Hospital, Wakkanai, Hokkaido, Japan
| | - Yurika Miura
- Department of Pediatrics, Engaru-Kosei General Hospital, Engaru, Hokkaido, Japan
| | - Hiroki Kajino
- Department of Pediatrics, Abashiri-Kosei General Hospital, Abashiri, Hokkaido, Japan
| | - Yasuto Suzuki
- Department of Pediatrics, Kushiro Red Cross Hospital, Kushiro, Hokkaido, Japan
| | - Soichiro Wada
- Department of Pediatrics, Teine Keijinkai Hospital, Sapporo, Hokkaido, Japan
| | - Shigetoshi Ogiwara
- Department of Pediatrics, Teine Keijinkai Hospital, Sapporo, Hokkaido, Japan
| | - Yuji Tomii
- Department of Pediatrics, Hokkaido Medical Center for Child Health and Rehabilitation, Sapporo, Hokkaido, Japan
| | - Hayato Aoyagi
- Department of Pediatrics, Obihiro Kyokai Hospital, Obihiro, Hokkaido, Japan
| | - Kazushige Nagai
- Department of Pediatrics, Takikawa Municipal Hospital, Takikawa, Hokkaido, Japan
| | - Hiroyuki Naito
- Department of Pediatrics, Chitose City Hospital, Chitose, Hokkaido, Japan
| | - Satoru Takahashi
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
3
|
Lin L, Li J, Song Q, Cheng W, Chen P. The role of HMGB1/RAGE/TLR4 signaling pathways in cigarette smoke-induced inflammation in chronic obstructive pulmonary disease. Immun Inflamm Dis 2022; 10:e711. [PMID: 36301039 PMCID: PMC9552978 DOI: 10.1002/iid3.711] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/10/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common chronic respiratory disease with irreversible and continuous progression. It has become the fifth most burdensome disease and the third most deadly disease globally. Therefore, the prevention and treatment of COPD are urgent, and it is also important to clarify the pathogenesis of it. Smoking is the main and most common risk factor for COPD. Cigarette smoke (CS) can cause lung inflammation and other pathological mechanisms in the airways and lung tissue. Airway inflammation is one of the important mechanisms leading to the pathogenesis of COPD. Recent studies have shown that high mobility group box 1 (HMGB1) is involved in the occurrence and development of respiratory diseases, including COPD. HMGB1 is a typical damage-associated molecular pattern (DAMP) protein, which mainly exerts its activity by binding to the receptor for advanced glycation end products (RAGE) and toll-like receptor 4 (TLR4) and further participate in the process of airway inflammation. Studies have shown that the abnormal expression of HMGB1, RAGE, and TLR4 are related to inflammation in COPD. Herein, we discuss the roles of HMGB1, RAGE, and TLR4 in CS/cigarette smoke extract-induced inflammation in COPD, providing a new target for the diagnosis, treatment and prevention of COPD.
Collapse
Affiliation(s)
- Ling Lin
- Department of Respiratory and Critical Care Medicine, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center of Respiratory DiseaseCentral South UniversityChangshaHunanChina
| | - Jing Li
- Department of Respiratory and Critical Care Medicine, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Research Unit of Respiratory DiseaseCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center of Respiratory DiseaseCentral South UniversityChangshaHunanChina
| | - Qing Song
- Department of Respiratory and Critical Care Medicine, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Research Unit of Respiratory DiseaseCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center of Respiratory DiseaseCentral South UniversityChangshaHunanChina
| | - Wei Cheng
- Department of Respiratory and Critical Care Medicine, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Research Unit of Respiratory DiseaseCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center of Respiratory DiseaseCentral South UniversityChangshaHunanChina
| | - Ping Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Research Unit of Respiratory DiseaseCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center of Respiratory DiseaseCentral South UniversityChangshaHunanChina
| |
Collapse
|
4
|
Ailioaie LM, Ailioaie C, Litscher G. Biomarkers in Systemic Juvenile Idiopathic Arthritis, Macrophage Activation Syndrome and Their Importance in COVID Era. Int J Mol Sci 2022; 23:12757. [PMID: 36361547 PMCID: PMC9655921 DOI: 10.3390/ijms232112757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 08/30/2023] Open
Abstract
Systemic juvenile idiopathic arthritis (sJIA) and its complication, macrophage activation syndrome (sJIA-MAS), are rare but sometimes very serious or even critical diseases of childhood that can occasionally be characterized by nonspecific clinical signs and symptoms at onset-such as non-remitting high fever, headache, rash, or arthralgia-and are biologically accompanied by an increase in acute-phase reactants. For a correct positive diagnosis, it is necessary to rule out bacterial or viral infections, neoplasia, and other immune-mediated inflammatory diseases. Delays in diagnosis will result in late initiation of targeted therapy. A set of biomarkers is useful to distinguish sJIA or sJIA-MAS from similar clinical entities, especially when arthritis is absent. Biomarkers should be accessible to many patients, with convenient production and acquisition prices for pediatric medical laboratories, as well as being easy to determine, having high sensitivity and specificity, and correlating with pathophysiological disease pathways. The aim of this review was to identify the newest and most powerful biomarkers and their synergistic interaction for easy and accurate recognition of sJIA and sJIA-MAS, so as to immediately guide clinicians in correct diagnosis and in predicting disease outcomes, the response to treatment, and the risk of relapses. Biomarkers constitute an exciting field of research, especially due to the heterogeneous nature of cytokine storm syndromes (CSSs) in the COVID era. They must be selected with utmost care-a fact supported by the increasingly improved genetic and pathophysiological comprehension of sJIA, but also of CSS-so that new classification systems may soon be developed to define homogeneous groups of patients, although each with a distinct disease.
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania
| | - Constantin Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania
| | - Gerhard Litscher
- Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, Research Unit for Complementary and Integrative Laser Medicine, Traditional Chinese Medicine (TCM) Research Center Graz, Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 39, 8036 Graz, Austria
| |
Collapse
|
5
|
Shang Y, Yang HX, Li X, Zhang Y, Chen N, Jiang XL, Zhang ZH, Zuo RM, Wang H, Lan XQ, Ren J, Wu YL, Cui ZY, Nan JX, Lian LH. Modulation of IL-36-based inflammatory feedback loop through hepatocytes-derived IL-36R-P2X7R axis improves steatosis in alcoholic steatohepatitis. Br J Pharmacol 2022; 179:4378-4399. [PMID: 35481896 DOI: 10.1111/bph.15858] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/02/2022] [Accepted: 04/18/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE IL-36 is induced by proinflammatory cytokines and itself promotes inflammatory responses, shaping an IL-36-based inflammation loop. Although, hepatocytes, as "epithelial cell-like" hepatic parenchymal cells, produce IL-36 responses to drug-induced liver injury, little is known about the mechanistic role of the IL-36 signalling during the progression of alcoholic steatohepatitis (ASH). Regarding IL-36/IL-36R and P2X7R coregulates the inflammatory response, we elucidated the modulation of IL-36R-P2X7R-TLRs axis affected hepatocytes steatosis and IL-36-based inflammatory feedback loop that accompanies the onset of ASH. EXPERIMENTAL APPROACH C57BL/6J mice were subjected to chronic-plus-binge ethanol feeding or acute gavage with multiple doses of ethanol to establish ASH, followed by pharmacological inhibition or genetic silencing of IL-36R and P2X7R. AML12 cells or mouse primary hepatocytes were stimulated with alcohol, LPS plus ATP or Poly(I:C) plus ATP, followed by silencing of IL-36γ, IL-36R or P2X7R. KEY RESULTS P2X7R and IL-36R deficiency blocked the inflammatory loop, especially made by IL-36 cytokines, in hepatocytes of mice suffering from ASH. Pharmacological inhibition to P2X7R or IL-36R alleviated lipid accumulation and inflammatory response in ASH. IL-36R was indispensable for P2X7R modulated NLRP3 inflammasome activation in ASH and IL-36 led to a vicious cycle of P2X7R-driven inflammation in alcohol-exposed hepatocytes. TLR ligands promoted IL-36γ production in hepatocytes based on the synergism of P2X7R. CONCLUSIONS AND IMPLICATIONS Blockade of IL-36-based inflammatory feedback loop via IL-36R-P2X7R-TLRs-modulated NLRP3 inflammasome activation circumvented the steatosis and inflammation that accompanies the onset of ASH, suggesting that targeting IL-36 might serve as a novel therapeutic approach to combat ASH.
Collapse
Affiliation(s)
- Yue Shang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission; College of Pharmacy, Yanbian University, Yanji, Jilin Province, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Hong-Xu Yang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission; College of Pharmacy, Yanbian University, Yanji, Jilin Province, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Xia Li
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Yu Zhang
- School of Life Science and Medicine, Shandong University of Technology, Zibo, Shandong Province, China
| | - Nan Chen
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission; College of Pharmacy, Yanbian University, Yanji, Jilin Province, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China.,Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, Jilin Province, China
| | - Xue-Li Jiang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission; College of Pharmacy, Yanbian University, Yanji, Jilin Province, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Zhi-Hong Zhang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission; College of Pharmacy, Yanbian University, Yanji, Jilin Province, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Rong-Mei Zuo
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission; College of Pharmacy, Yanbian University, Yanji, Jilin Province, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Hui Wang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission; College of Pharmacy, Yanbian University, Yanji, Jilin Province, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Xiao-Qi Lan
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission; College of Pharmacy, Yanbian University, Yanji, Jilin Province, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China.,Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, Jilin Province, China
| | - Jie Ren
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission; College of Pharmacy, Yanbian University, Yanji, Jilin Province, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Yan-Ling Wu
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission; College of Pharmacy, Yanbian University, Yanji, Jilin Province, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China.,Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, Jilin Province, China
| | - Zhen-Yu Cui
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission; College of Pharmacy, Yanbian University, Yanji, Jilin Province, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Ji-Xing Nan
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission; College of Pharmacy, Yanbian University, Yanji, Jilin Province, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China.,Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, Jilin Province, China
| | - Li-Hua Lian
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission; College of Pharmacy, Yanbian University, Yanji, Jilin Province, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China.,Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, Jilin Province, China
| |
Collapse
|
6
|
Wang N, Liu H, Ma B, Zhao T, Chen Y, Yang Y, Zhao P, Han X. CSF high-mobility group box 1 is associated with drug-resistance and symptomatic etiology in adult patients with epilepsy. Epilepsy Res 2021; 177:106767. [PMID: 34543830 DOI: 10.1016/j.eplepsyres.2021.106767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE Extracellular high-mobility group box 1 (HMGB1) is considered a proinflammatory mediator and is involved in various neurological disorders. This study aims to determine the expression profiles of HMGB1 in cerebrospinal fluid (CSF) and paired serum, and to explore whether there is a relationship between CSF HMGB1 concentrations with seizure parameters in adult patients with epilepsy. METHODS CSF and paired serum HMGB1 concentrations were measured in patients with drug-refractory epilepsy (DRE, n = 27), newly diagnosed epilepsy (NDE, n = 56), and other non-inflammatory neurological disorders (ONNDs, n = 22). The correlations in HMGB1 levels between CSF and blood were performed. The associations between HMGB1 levels and seizure parameters were analyzed. RESULTS Mean (± SD) CSF HMGB1 concentrations were 5.08 ± 3.06, 3.03 ± 2.25, 0.83 ± 0.77 ng/mL in patients with DRE, NDE, and ONNDs, respectively. Corresponding mean (± SD) serum concentrations were 4.53 ± 2.81, 2.32 ± 1.54, 1.56 ± 0.84 ng/mL. The CSF HMGB1 concentrations were significantly higher in the DRE and NDE groups compared with the ONNDs group (p < 0.001). There were no correlations in HMGB1 levels between CSF and serum in the DRE, NDE, and ONNDs groups. Furthermore, patients with symptomatic etiology showed significantly high levels of CSF HMGB1. Patients without remission expressed elevated levels of CSF HMGB1 at one-year follow-up. Additionally, the CSF HMGB1 levels were positively associated with seizure frequency. CONCLUSION Our study shows that HMGB1 may be a critical player in seizure mechanisms and CSF HMGB1 might be predictive in determining epilepsy etiology and prognosis.
Collapse
Affiliation(s)
- Na Wang
- Department of Neurology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Haipeng Liu
- Department of Neurological Rehabilitation, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Bingqian Ma
- Department of Neurology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China; Department of Rehabilitation Medicine, Xinxiang Central Hospital, Xinxiang, Henan, 453000, China
| | - Ting Zhao
- Department of Neurology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Yanan Chen
- Department of Neurology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Yongguang Yang
- Ministry of Scientific Research and Discipline Construction, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Pan Zhao
- Department of Neurology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Xiong Han
- Department of Neurology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China.
| |
Collapse
|
7
|
Zhang J, Li F, Augi T, Williamson KM, Onishi K, Hogan MV, Neal MD, Wang JHC. Platelet HMGB1 in Platelet-Rich Plasma (PRP) promotes tendon wound healing. PLoS One 2021; 16:e0251166. [PMID: 34529657 PMCID: PMC8445483 DOI: 10.1371/journal.pone.0251166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/24/2021] [Indexed: 11/18/2022] Open
Abstract
Platelet-rich plasma (PRP) is a widely used autologous treatment for tendon injuries in clinics. Platelets (PLTs) are a major source of high mobility group box1 (HMGB1) that is gaining attention as a chemoattractant that can recruit stem cells to the wound area to enhance healing of injured tissues; however, the contribution of PLT HMGB1 in wounded tendon healing remains unexplored. This study investigated the effect of PLT HMGB1 within PRP on tendon healing using PLT HMGB1 knockout (KO) and GFP mice. A window defect was created in the patellar tendons of both groups of mice, and wounds were treated with either saline, PRP isolated from PLT HMGB1-KO mice, or PRP isolated from GFP mice. Seven days post-treatment, animals were sacrificed and analyzed by gross inspection, histology, and immunostaining for characteristic signs of tendon healing and repair. Our results showed that in comparison to mice treated with PRP from PLT HMGB1-KO mice, wounds treated with PRP from GFP mice healed faster and exhibited a better organization in tendon structure. Mice treated with PRP from PLT HMGB1-KO mice produced tendon tissue with large premature wound areas and low cell densities. However, wounds of PLT HMGB1-KO mice showed better healing with PRP from HMGB1-KO mice compared to saline treatment. Moreover, wounds treated with PRP from GFP mice had increased extracellular HMGB1, decreased CD68, increased stem cell markers CD146 and CD73, and increased collagen III protein expression levels compared to those treated with PRP from PLT HMGB1-KO mice. Thus, PLT HMGB1 within PRP plays an important role in tendon wound healing by decreasing inflammation, increasing local HMGB1 levels, and recruiting stem cells to the wound area in the tendon. Our findings also suggest that the efficacy of PRP treatment for tendon injuries in clinics may depend on PLT HMGB1 within PRP preparations.
Collapse
Affiliation(s)
- Jianying Zhang
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Feng Li
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Tyler Augi
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Kelly M. Williamson
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Kentaro Onishi
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - MaCalus V. Hogan
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Matthew D. Neal
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - James H.-C. Wang
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
8
|
Glycyrrhizin ameliorating sterile inflammation induced by low-dose radiation exposure. Sci Rep 2021; 11:18356. [PMID: 34526618 PMCID: PMC8443578 DOI: 10.1038/s41598-021-97800-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/31/2021] [Indexed: 01/01/2023] Open
Abstract
Glycyrrhizin (GL) is a direct inhibitor of HMGB1 which acts as an alarmin when excreted into the extracellular space. High-dose radiation in radiotherapy induces collateral damage to the normal tissue, which can be mitigated by GL inhibiting HMGB1. The purpose of this study was to assess changes in HMGB1 and pro-inflammatory cytokines and to evaluate the protective effect of GL after low-dose radiation exposure. BALB/c mice were irradiated with 0.1 Gy (n = 10) and 1 Gy (n = 10) with GL being administered to half of the mice (n = 5, respectively) before irradiation. Blood and spleen samples were harvested and assessed for oxidative stress, HMGB1, pro-inflammatory cytokines, and cell viability. HMGB1 and pro-inflammatory cytokines increased and cell viability decreased after irradiation in a dose-dependent manner. Oxidative stress also increased after irradiation, but did not differ between 0.1 Gy and 1 Gy. With the pretreatment of GL, oxidative stress, HMGB1, and all of the pro-inflammatory cytokines decreased while cell viability was preserved. Our findings indicate that even low-dose radiation can induce sterile inflammation by increasing serum HMGB1 and pro-inflammatory cytokines and that GL can ameliorate the sterile inflammatory process by inhibiting HMGB1 to preserve cell viability.
Collapse
|
9
|
Yang H, Lundbäck P, Ottosson L, Erlandsson-Harris H, Venereau E, Bianchi ME, Al-Abed Y, Andersson U, Tracey KJ. Redox modifications of cysteine residues regulate the cytokine activity of HMGB1. Mol Med 2021; 27:58. [PMID: 34098868 PMCID: PMC8185929 DOI: 10.1186/s10020-021-00307-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/28/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND High mobility group box 1 (HMGB1) is a nuclear protein with extracellular inflammatory cytokine activity. It is passively released during cell death and secreted by activated cells of many lineages. HMGB1 contains three conserved redox-sensitive cysteine residues: cysteines in position 23 and 45 (C23 and C45) can form an intramolecular disulfide bond, whereas C106 is unpaired and is essential for the interaction with Toll-Like Receptor (TLR) 4. However, a comprehensive characterization of the dynamic redox states of each cysteine residue and of their impacts on innate immune responses is lacking. METHODS Primary human macrophages or murine macrophage-like RAW 264.7 cells were activated in cell cultures by redox-modified or point-mutated (C45A) recombinant HMGB1 preparations or by lipopolysaccharide (E. coli.0111: B4). Cellular phosphorylated NF-κB p65 subunit and subsequent TNF-α release were quantified by commercial enzyme-linked immunosorbent assays. RESULTS Cell cultures with primary human macrophages and RAW 264.7 cells demonstrated that fully reduced HMGB1 with all three cysteines expressing thiol side chains failed to generate phosphorylated NF-КB p65 subunit or TNF-α. Mild oxidation forming a C23-C45 disulfide bond, while leaving C106 with a thiol group, was required for HMGB1 to induce phosphorylated NF-КB p65 subunit and TNF-α production. The importance of a C23-C45 disulfide bond was confirmed by mutation of C45 to C45A HMGB1, which abolished the ability for cytokine induction. Further oxidation of the disulfide isoform also inactivated HMGB1. CONCLUSIONS These results reveal critical post-translational redox mechanisms that control the proinflammatory activity of HMGB1 and its inactivation during inflammation.
Collapse
Affiliation(s)
- Huan Yang
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, USA.
| | - Peter Lundbäck
- Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Ottosson
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Helena Erlandsson-Harris
- Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Marco E Bianchi
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, Chromatin Dynamics Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Yousef Al-Abed
- Center for Molecular Innovation, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Ulf Andersson
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
| | - Kevin J Tracey
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| |
Collapse
|
10
|
Ni YA, Chen H, Nie H, Zheng B, Gong Q. HMGB1: An overview of its roles in the pathogenesis of liver disease. J Leukoc Biol 2021; 110:987-998. [PMID: 33784425 DOI: 10.1002/jlb.3mr0121-277r] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 01/06/2021] [Accepted: 02/04/2021] [Indexed: 12/15/2022] Open
Abstract
High-mobility group box 1 (HMGB1) is an abundant architectural chromosomal protein that has multiple biologic functions: gene transcription, DNA replication, DNA-damage repair, and cell signaling for inflammation. HMGB1 can be released passively by necrotic cells or secreted actively by activated immune cells into the extracellular milieu after injury. Extracellular HMGB1 acts as a damage-associated molecular pattern to initiate the innate inflammatory response to infection and injury by communicating with neighboring cells through binding to specific cell-surface receptors, including Toll-like receptors (TLRs) and the receptor for advanced glycation end products (RAGE). Numerous studies have suggested HMGB1 to act as a key protein mediating the pathogenesis of chronic and acute liver diseases, including nonalcoholic fatty liver disease, hepatocellular carcinoma, and hepatic ischemia/reperfusion injury. Here, we provide a detailed review that focuses on the role of HMGB1 and HMGB1-mediated inflammatory signaling pathways in the pathogenesis of liver diseases.
Collapse
Affiliation(s)
- Yuan-Ao Ni
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China
| | - Hui Chen
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China
| | - Hao Nie
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China
| | - Bing Zheng
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China
| |
Collapse
|
11
|
Wang S, Guan Y, Li T. The Potential Therapeutic Role of the HMGB1-TLR Pathway in Epilepsy. Curr Drug Targets 2021; 22:171-182. [PMID: 32729417 DOI: 10.2174/1389450121999200729150443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 02/08/2023]
Abstract
Epilepsy is one of the most common serious neurological disorders, affecting over 70 million people worldwide. For the treatment of epilepsy, antiepileptic drugs (AEDs) and surgeries are widely used. However, drug resistance and adverse effects indicate the need to develop targeted AEDs based on further exploration of the epileptogenic mechanism. Currently, many efforts have been made to elucidate the neuroinflammation theory in epileptogenesis, which may show potential in the treatment of epilepsy. In this respect, an important target protein, high mobility group box 1 (HMGB1), has received increased attention and has been developed rapidly. HMGB1 is expressed in various eukaryotic cells and localized in the cell nucleus. When HMGB1 is released by injuries or diseases, it participates in inflammation. Recent studies suggest that HMGB1 via Toll-like receptor (TLR) pathways can trigger inflammatory responses and play an important role in epilepsy. In addition, studies of HMGB1 have shown its potential in the treatment of epilepsy. Herein, the authors analyzed the experimental and clinical evidence of the HMGB1-TLR pathway in epilepsy to summarize the theory of epileptogenesis and provide insights into antiepileptic therapy in this novel field.
Collapse
Affiliation(s)
- Shu Wang
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Yuguang Guan
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Tianfu Li
- Department of Neurology, SanBo Brain Hospital, Capital Medical University, Beijing 100093, China
| |
Collapse
|
12
|
Tachibana S, Iyoda M, Matsumoto K, Wada Y, Suzuki T, Iseri K, Kanazawa N, Shibata T. Recombinant human soluble thrombomodulin attenuates anti-glomerular basement membrane glomerulonephritis in Wistar-Kyoto rats through anti-inflammatory effects. Nephrol Dial Transplant 2020; 34:774-782. [PMID: 29982644 DOI: 10.1093/ndt/gfy201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Since recombinant human soluble thrombomodulin (RH-TM) has anti-inflammatory properties through neutralizing high-mobility group box 1 protein (HMGB1), the protective effects of RH-TM were examined in anti-glomerular basement membrane (GBM) glomerulonephritis (GN) in Wistar-Kyoto rats. METHODS Rats were injected with nephrotoxic serum (NTS) to induce anti-GBM GN on Day 0, and were given either RH-TM or vehicle from Day 0 to Day 6. Rats were sacrificed 7 days after NTS injection. RESULTS RH-TM-treated rats had decreased proteinuria and serum creatinine level. RH-TM significantly reduced the percentage of glomeruli with crescentic features and fibrinoid necrosis. In addition, RH-TM-treated rats had significantly reduced glomerular ED1+ macrophage accumulation as well as reduced renal cortical proinflammatory cytokine expression. Furthermore, RH-TM had a potent effect in reducing intercellular adhesion molecule-1 (ICAM-1) expression in kidneys and urine. RH-TM significantly reduced renal cortical mRNA levels for toll-like receptor -2 and -4, known as receptors for HMGB1, and their downstream adopter protein, myeloid differentiation primary respond protein 88 (MyD88). CONCLUSIONS We showed for the first time that anti-inflammatory effects, which were characterized by reduced glomerular macrophage influx concomitant with a marked reduction in proinflammatory cytokines, were involved in the mechanism of attenuating experimental anti-GBM GN by RH-TM. The observed effects might be attributable to the downregulation of ICAM-1 by reducing the HMGB1/TLR/MyD88 signaling pathway.
Collapse
Affiliation(s)
- Shohei Tachibana
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Masayuki Iyoda
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Kei Matsumoto
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yukihiro Wada
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Taihei Suzuki
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Ken Iseri
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Nobuhiro Kanazawa
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Takanori Shibata
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Paudel YN, Angelopoulou E, C BK, Piperi C, Othman I. High mobility group box 1 (HMGB1) protein in Multiple Sclerosis (MS): Mechanisms and therapeutic potential. Life Sci 2019; 238:116924. [DOI: 10.1016/j.lfs.2019.116924] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/27/2019] [Accepted: 09/29/2019] [Indexed: 02/07/2023]
|
14
|
Paudel YN, Semple BD, Jones NC, Othman I, Shaikh MF. High mobility group box 1 (HMGB1) as a novel frontier in epileptogenesis: from pathogenesis to therapeutic approaches. J Neurochem 2019; 151:542-557. [DOI: 10.1111/jnc.14663] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Yam Nath Paudel
- Neuropharmacology Research Laboratory Jeffrey Cheah School of Medicine and Health Sciences Monash University Malaysia Bandar Sunway Selangor Malaysia
| | - Bridgette D. Semple
- Department of Neuroscience Central Clinical School Monash University The Alfred Hospital Melbourne Australia
- Department of Medicine (Royal Melbourne Hospital) The University of Melbourne Royal Parade Parkville Victoria Australia
| | - Nigel C. Jones
- Department of Neuroscience Central Clinical School Monash University The Alfred Hospital Melbourne Australia
- Department of Medicine (Royal Melbourne Hospital) The University of Melbourne Royal Parade Parkville Victoria Australia
| | - Iekhsan Othman
- Neuropharmacology Research Laboratory Jeffrey Cheah School of Medicine and Health Sciences Monash University Malaysia Bandar Sunway Selangor Malaysia
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Laboratory Jeffrey Cheah School of Medicine and Health Sciences Monash University Malaysia Bandar Sunway Selangor Malaysia
| |
Collapse
|
15
|
Zhang W, Zhang Y, Ding K, Zhang H, Zhao Q, Liu Z, Xu Y. Involvement of JNK1/2-NF-κBp65 in the regulation of HMGB2 in myocardial ischemia/reperfusion-induced apoptosis in human AC16 cardiomyocytes. Biomed Pharmacother 2018; 106:1063-1071. [DOI: 10.1016/j.biopha.2018.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 12/20/2022] Open
|
16
|
Kerr NA, de Rivero Vaccari JP, Abbassi S, Kaur H, Zambrano R, Wu S, Dietrich WD, Keane RW. Traumatic Brain Injury-Induced Acute Lung Injury: Evidence for Activation and Inhibition of a Neural-Respiratory-Inflammasome Axis. J Neurotrauma 2018; 35:2067-2076. [PMID: 29648974 DOI: 10.1089/neu.2017.5430] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Approximately 20-25% of traumatic brain injury (TBI) subjects develop acute lung injury (ALI), but the pathomechanisms of TBI-induced ALI remain poorly defined. Our previous work has shown that the inflammasome plays a critical role in TBI-induced secondary pathophysiology and that inflammasome proteins are released in extracellular vesicles (EV) after TBI. Here we investigated whether EV-mediated inflammasome signaling contributed to the etiology of TBI-induced ALI. C57/BL6 male mice were subjected to controlled cortical impact (CCI), and the brains and lungs were examined for inflammasome activation and ALI at 4 and 24 h after TBI. We show that TBI releases EV containing inflammasome proteins into serum that target the lung to cause ALI, supporting activation of a neural-respiratory-inflammasome axis. Administration of a low-molecular-weight heparin (enoxaparin, a blocker of EV uptake) or treatment with a monoclonal antibody against apoptosis speck-like staining protein containing a caspase recruitment domain (anti-ASC) after adoptive transfer of EV isolated from TBI-injured mice significantly inhibited inflammasome activation in the lungs of recipient mice resulting in improved ALI scores.This axis constitutes an important arm of the innate inflammatory response in lung pathology after TBI and targeting this axis represents a novel therapeutic treatment for TBI-induced ALI.
Collapse
Affiliation(s)
- Nadine A Kerr
- 1 Department of Neurological Surgery, University of Miami Miller School of Medicine , Miami, Florida.,2 Department of Physiology and Biophysics, University of Miami Miller School of Medicine , Miami, Florida
| | - Juan Pablo de Rivero Vaccari
- 1 Department of Neurological Surgery, University of Miami Miller School of Medicine , Miami, Florida.,2 Department of Physiology and Biophysics, University of Miami Miller School of Medicine , Miami, Florida
| | - Sam Abbassi
- 2 Department of Physiology and Biophysics, University of Miami Miller School of Medicine , Miami, Florida
| | - Harmanpreet Kaur
- 1 Department of Neurological Surgery, University of Miami Miller School of Medicine , Miami, Florida
| | - Ronald Zambrano
- 3 Department of Pediatrics, University of Miami Miller School of Medicine , Miami, Florida
| | - Shu Wu
- 3 Department of Pediatrics, University of Miami Miller School of Medicine , Miami, Florida
| | - W Dalton Dietrich
- 1 Department of Neurological Surgery, University of Miami Miller School of Medicine , Miami, Florida
| | - Robert W Keane
- 1 Department of Neurological Surgery, University of Miami Miller School of Medicine , Miami, Florida.,2 Department of Physiology and Biophysics, University of Miami Miller School of Medicine , Miami, Florida
| |
Collapse
|
17
|
Huan CC, Wang HX, Sheng XX, Wang R, Wang X, Liao Y, Liu QF, Tong GZ, Ding C, Fan HJ, Wu JQ, Mao X. Porcine epidemic diarrhea virus nucleoprotein contributes to HMGB1 transcription and release by interacting with C/EBP-β. Oncotarget 2018; 7:75064-75080. [PMID: 27634894 PMCID: PMC5342723 DOI: 10.18632/oncotarget.11991] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/02/2016] [Indexed: 01/09/2023] Open
Abstract
Porcine epidemic diarrhea is a devastating swine enteric disease, which is caused by porcine epidemic diarrhea virus (PEDV) infection. Our studies demonstrated that PEDV infection resulted in the up-regulation of proinflammatory cytokines. Meanwhile, PEDV infection and overexpression of viral nucleoprotein resulted in the acetylation and release of high mobility group box 1 proteins in vitro, an important proinflammatory response mediator, which contributes to the pathogenesis of various inflammatory diseases. Our studies also showed that SIRT1, histone acetyltransferase, and NF-κB regulated the acetylation and release of HMGB1. Chromatin immunoprecipitation, dual-luciferase reporter gene assay, and co-immunoprecipitation experiments illustrated that PEDV-N could induce HMGB1 transcription by interacting with C/EBP-β, which could bind to C/EBP motif in HMGB1 promotor region. Collectively, our data indicate PEDV-N contributes to HMGB1 transcription and the subsequent release/acetylation of HMGB1 during PEDV infection.
Collapse
Affiliation(s)
- Chang-Chao Huan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China, 210095
| | - Hua-Xia Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China, 210095
| | - Xiang-Xiang Sheng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China, 210095
| | - Rui Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China, 210095
| | - Xin Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China, 210095
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China, 200241
| | - Qin-Fang Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China, 200241
| | - Guang-Zhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China, 200241
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China, 200241
| | - Hong-Jie Fan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China, 210095
| | - Jia-Qiang Wu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Province, China, 250100
| | - Xiang Mao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China, 210095.,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China, 200241
| |
Collapse
|
18
|
Combined therapy with gas gangrene antitoxin and recombinant human soluble thrombomodulin for Clostridium perfringens sepsis in a rat model. Toxicon 2017; 141:112-117. [PMID: 29246581 DOI: 10.1016/j.toxicon.2017.12.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/13/2017] [Accepted: 12/11/2017] [Indexed: 02/08/2023]
Abstract
Cases of Clostridium perfringens septicemia, such as liver abscess, often develop a rapidly progressive intravascular hemolysis and coagulation; the mortality rate with current standard care including antibiotics and surgery is high. Herein, we firstly investigated the effects of gas gangrene antitoxin (GGA) (antitoxin against C. perfringens) and recombinant human soluble thrombomodulin (rTM) on the hemolysis, coagulation status, inflammatory process, and mortality in α-toxin-treated rats. Male 11-week-old Sprague Dawley rats were randomly divided into five groups: control group, α-toxin group, GGA group, rTM group, and combined GGA and rTM (combination group). After α-toxin injection, mortality and platelet counts, and hemolysis were observed for 6 h. The fibrin/fibrinogen degradation products (FDP), and plasma high-mobility group box 1 (HMGB1) were also measured at 6 h. The combination group demonstrated 100% survival compared with 50% survival in the α-toxin group and demonstrated significantly improved hemolysis, platelet counts, and lactate levels compared with those in the α-toxin group (p < .01). The FDP and HMGB1 levels in the combination therapy group were significantly lower than those in the α-toxin group (p < .05). Combination therapy with GGA and rTM administration is applicable as adjunct therapy for fatal C. perfringens sepsis.
Collapse
|
19
|
Inkaya AC, Demir NA, Kolgelier S, Sumer S, Demir LS, Ural O, Pehlivan FS, Aslan M, Arpaci A. Is serum high-mobility group box 1 (HMGB-1) level correlated with liver fibrosis in chronic hepatitis B? Medicine (Baltimore) 2017; 96:e7547. [PMID: 28885322 PMCID: PMC6392731 DOI: 10.1097/md.0000000000007547] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 06/18/2017] [Accepted: 06/26/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND High-mobility group box 1 (HMGB1), identified as an alarmin molecule, was shown to have a role in virus-triggered liver injury. We aimed to evaluate the association between serum levels of HMGB1 and liver fibrosis. METHOD This cross-sectional case-control study included 189 chronic hepatitis B (CHB) patients and 51 healthy controls. All patients underwent liver biopsy and modified Knodell scoring system used to determine the fibrosis level in CHB patients. Serum HMGB1 levels were determined with enzyme-linked immunosorbent assay (ELISA). RESULTS Mean serum HMGB1 levels of patients (58.1 ± 54.7) were found to be higher than those of the control group (7.1 ± 4.3) (P = .001). HMGB1 levels of patients with advanced-stage fibrosis (stage 4 and 5) were detected to be higher than those of patients with early-stage fibrosis (stage 1-3). However, this difference was not statistically significant (P > .05). Albumin levels of fibrosis 3 and 4 patients were lower than fibrosis 1 and 2 patients. ALT, HBV DNA, and AFP levels of fibrosis 5 patients were significantly higher than fibrosis 1 and 2 patients, and their platelet and albumin levels are lower than fibrosis 1 and 2 patients (P < .001). In a logistic regression model, fibrosis levels were correlated with ALT values and inversely correlated with albumin levels. CONCLUSION In this study, we demonstrated that serum HMGB1 levels increase in the early course of liver injury and this increase is not correlated with severity of the liver damage.
Collapse
Affiliation(s)
- Ahmet Cagkan Inkaya
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Hacettepe University, Ankara
| | - Nazlim Aktug Demir
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Selçuk University, Konya
| | - Servet Kolgelier
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Adiyaman University, Adiyaman
| | - Sua Sumer
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Selçuk University, Konya
| | - Lutfi Saltuk Demir
- Department of Public Health, Faculty of Medicine, Necmettin Erbakan University, Konya
| | - Onur Ural
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Selçuk University, Konya
| | | | - Mahmure Aslan
- Department of Biochemistry, Adiyaman Education and Research Hospital, Adiyaman
| | - Abdullah Arpaci
- Department of Biochemistry, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey
| |
Collapse
|
20
|
Komai K, Shichita T, Ito M, Kanamori M, Chikuma S, Yoshimura A. Role of scavenger receptors as damage-associated molecular pattern receptors in Toll-like receptor activation. Int Immunol 2017; 29:59-70. [PMID: 28338748 DOI: 10.1093/intimm/dxx010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/22/2017] [Indexed: 12/22/2022] Open
Abstract
Damage-associated molecular patterns (DAMPs) have been implicated in sterile inflammation in various tissue injuries. High-mobility group box 1 (HMGB1) is a representative DAMP, and has been shown to transmit signals through receptors for advanced glycation end products (RAGEs) and TLRs, including TLR2 and TLR4. HMGB1 does not, however, bind to TLRs with high affinity; therefore, the mechanism of HMGB1-mediated TLR activation remains unclear. In this study, we found that fluorescently labeled HMGB1 was efficiently internalized into macrophages through class A scavenger receptors. Although both M1- and M2-type macrophages internalized HMGB1, only M1-type macrophages secreted cytokines in response to HMGB1. The pan-class A scavenger receptor competitive inhibitor, maleylated bovine serum albumin (M-BSA), inhibited HMGB1 internalization and reduced cytokine production from macrophages in response to HMGB1 but not to LPS. The C-terminal acidic domain of HMGB1 is responsible for scavenger receptor-mediated internalization and cytokine production. HMGB1 and TLR4 co-localized in macrophages, and this interaction was disrupted by M-BSA, suggesting that class A scavenger receptors function as co-receptors of HMGB1 for TLR activation. M-BSA ameliorated LPS-induced sepsis and dextran sulfate sodium (DSS)-induced colitis models in which HMGB1 has been shown to play progressive roles. These data suggest that scavenger receptors function as co-receptors along with TLRs for HMGB1 in M1-type inflammatory macrophages.
Collapse
Affiliation(s)
- Kyoko Komai
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takashi Shichita
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Minako Ito
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Mitsuhiro Kanamori
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shunsuke Chikuma
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
21
|
Double-stranded RNA induces inflammation via the NF-κB pathway and inflammasome activation in the outer root sheath cells of hair follicles. Sci Rep 2017; 7:44127. [PMID: 28266599 PMCID: PMC5339809 DOI: 10.1038/srep44127] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 02/03/2017] [Indexed: 12/16/2022] Open
Abstract
Alopecia areata (AA), a chronic, relapsing, hair-loss disorder, is considered to be a T cell-mediated autoimmune disease. It affects approximately 1.7% of the population, but its precise pathogenesis remains to be elucidated. Despite the recent attention focused on the roles of inflammasomes in the pathogenesis of autoinflammatory diseases, little is known about inflammasome activation in AA. Thus, in this study, we investigated the pattern of NLRP3 inflammasome activation in the outer root sheath (ORS) cells of hair follicles. We found that interleukin (IL)-1β and caspase-1 expression was increased in hair follicle remnants and inflammatory cells of AA tissue specimens. After stimulation of ORS cells with the double-stranded (ds)RNA mimic polyinosinic:polycytidylic acid (poly[I:C]), the activation of caspase-1 and secretion of IL-1β were enhanced. Moreover, NLRP3 knockdown decreased this poly(I:C)-induced IL-1β production. Finally, we found that high-mobility group box 1 (HMGB1) translocated from the nucleus to the cytosol and was secreted into the extracellular space by inflammasome activation. Taken together, these findings suggest that ORS cells are important immunocompetent cells that induce NLRP3 inflammasomes. In addition, dsRNA-induced IL-1β and HMGB1 secretion from ORS cells may contribute to clarifying the pathogenesis and therapeutic targets of AA.
Collapse
|
22
|
Abstract
PURPOSE Alarmins are constitutively present endogenous molecules that essentially act as early warning signals for the immune system. We provide a brief overview of major alarmins and highlight their roles in tumor immunity. METHODS We searched PubMed up to January 10, 2016, using alarmins and/or damage-associated molecular patterns (DAMPs), as key words. We selected and reviewed articles that focused on the discovery and functions of alarmin and their roles in tumor immunity. FINDINGS Alarmins are essentially endogenous immunostimulatory DAMP molecules that are exposed in response to danger (eg, infection or tissue injury) as a result of degranulation, cell death, or induction. They are sensed by chemotactic receptors and pattern recognition receptors to induce immune responses by promoting the recruitment and activation of leukocytes, particularly antigen-presenting cells. IMPLICATIONS Accumulating data suggest that certain alarmins, High-mobility group nucleosome-binding protein 1 (HMGN1) in particular, contribute to the generation of antitumor immunity. Some alarmins can also be used as cancer biomarkers. Therefore, alarmins can potentially be applied for our fight against cancers.
Collapse
Affiliation(s)
- Yingjie Nie
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland; Guizhou Provincial Peoples' Hospital, Guiyang, Guizhou Province, China
| | - De Yang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland; Basic Research Program, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Joost J Oppenheim
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland.
| |
Collapse
|
23
|
Luan G, Gao Q, Zhai F, Chen Y, Li T. Upregulation of HMGB1, toll-like receptor and RAGE in human Rasmussen's encephalitis. Epilepsy Res 2016; 123:36-49. [PMID: 27108105 DOI: 10.1016/j.eplepsyres.2016.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 02/15/2016] [Accepted: 03/23/2016] [Indexed: 10/21/2022]
Abstract
Rasmussen encephalitis (RE) is a rare neurological disorder of childhood characterized by uni-hemispheric inflammation, progressive neurological deficits and intractable focal epilepsy. The pathogenesis of RE is still enigmatic. Activation of endogenous high-mobility group box-1 (HMGB1) and Toll-like receptor (TLR) has been proved to be with pro-inflammatory as well as pro-convulsant effects. We hypothesized that the epileptogenic mechanisms underlying RE are related to activation of HMGB1/TLR signaling. Immunnohistochemistry approach was used to examine the expression of HMGB1, TLR2, TLR4, receptor for advanced glycation end products (RAGE) in surgically resected human epileptic cortical specimens from RE (n=12), and compared that with control cortical issue (n=6). HMGB1 was ubiquitously detected in nuclei of astrocytes while its receptors were not detected in control cortex specimens. Marked expression of the receptors were observed in the lesions of RE. In particular, HMGB1 was in stead detected in cytoplasm of reactive astrocytes in RE cortex, predictive its release from glial cells. Significant greater HMGB1 and its receptors expression in RE vs. control was demonstrated by western blot. These results provide the novel evidence of intrinsic activation of these pro-inflammation pathways in RE, which suggest the specific targets in the treatment of epilepsy associated with RE.
Collapse
Affiliation(s)
- Guoming Luan
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Qing Gao
- Department of Brian Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Feng Zhai
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Yin Chen
- Department of Brian Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Tianfu Li
- Department of Brian Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China; Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China.
| |
Collapse
|
24
|
Latha TS, Lomada D, Dharani PK, Muthukonda SV, Reddy MC. Ti–O based nanomaterials ameliorate experimental autoimmune encephalomyelitis and collagen-induced arthritis. RSC Adv 2016. [DOI: 10.1039/c5ra18974h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Administration of Ti–O based nanomaterials ameliorated the clinical severity of experimental autoimmune encephalomyelitis and collagen induced arthritis, thus provide novel therapeutic approach for multiple sclerosis and rheumatoid arthritis.
Collapse
Affiliation(s)
- T. Sree Latha
- Department of Genetics and Genomics
- Yogi Vemana University
- Kadapa
- India
| | - Dakshayani Lomada
- Department of Genetics and Genomics
- Yogi Vemana University
- Kadapa
- India
| | - Praveen Kumar Dharani
- Nanocatalysis and Solar Fuels Research Laboratory
- Department of Materials Science and Nanotechnology
- Yogi Vemana University
- Kadapa
- India
| | - Shankar V. Muthukonda
- Nanocatalysis and Solar Fuels Research Laboratory
- Department of Materials Science and Nanotechnology
- Yogi Vemana University
- Kadapa
- India
| | - Madhava C. Reddy
- Department of Biotechnology and Bioinformatics
- Yogi Vemana University
- Kadapa
- India
| |
Collapse
|
25
|
Kuhn A, Wenzel J, Bijl M. Lupus erythematosus revisited. Semin Immunopathol 2015; 38:97-112. [PMID: 26637330 DOI: 10.1007/s00281-015-0550-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/03/2015] [Indexed: 12/18/2022]
Abstract
Lupus erythematosus (LE) is a multifactorial autoimmune disease with clinical manifestations of differing severity. The exact pathomechanisms and interactions resulting in the inflammatory and immunological processes of this heterogeneous disease remain elusive. Approaches in the understanding of the pathomechanisms revealed that the clinical expression of LE is predisposed by susceptibility genes and that various environmental factors are responsible for an abnormal immune response. Several studies demonstrated that ultraviolet (UV) light is one of the major factors in the pathogenesis of the disease. Standardized photoprovocation in patients with LE has been shown to be a safe and efficient model for evaluating the underlying pathomechanisms which lead to the production of autoantibodies and immune complexes. In particular, interferons were defined as important players in the early activation of the immune system and were observed to play a specific role in the immunological interface between the innate and the adaptive immune system. Abnormalities or disturbances in the different processes of cell death, such as apoptosis or necrosis, have also been recognized as crucial in the pathogenesis of LE. Although each process is different and characterized by unique features, the processes are interrelated and result in a complex disease.
Collapse
Affiliation(s)
- Annegret Kuhn
- Interdisciplinary Center for Clinical Trials (IZKS), University Medical Center Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
- Division of Immunogenetics, Tumor Immunology Program, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Joerg Wenzel
- Department of Dermatology, University Hospital Bonn, Bonn, Germany
| | - Marc Bijl
- Department of Internal Medicine and Rheumatology, Martini Hospital, Groningen, Netherlands
| |
Collapse
|
26
|
Vogel S, Bodenstein R, Chen Q, Feil S, Feil R, Rheinlaender J, Schäffer TE, Bohn E, Frick JS, Borst O, Münzer P, Walker B, Markel J, Csanyi G, Pagano PJ, Loughran P, Jessup ME, Watkins SC, Bullock GC, Sperry JL, Zuckerbraun BS, Billiar TR, Lotze MT, Gawaz M, Neal MD. Platelet-derived HMGB1 is a critical mediator of thrombosis. J Clin Invest 2015; 125:4638-54. [PMID: 26551681 DOI: 10.1172/jci81660] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 10/01/2015] [Indexed: 12/16/2022] Open
Abstract
Thrombosis and inflammation are intricately linked in several major clinical disorders, including disseminated intravascular coagulation and acute ischemic events. The damage-associated molecular pattern molecule high-mobility group box 1 (HMGB1) is upregulated by activated platelets in multiple inflammatory diseases; however, the contribution of platelet-derived HMGB1 in thrombosis remains unexplored. Here, we generated transgenic mice with platelet-specific ablation of HMGB1 and determined that platelet-derived HMGB1 is a critical mediator of thrombosis. Mice lacking HMGB1 in platelets exhibited increased bleeding times as well as reduced thrombus formation, platelet aggregation, inflammation, and organ damage during experimental trauma/hemorrhagic shock. Platelets were the major source of HMGB1 within thrombi. In trauma patients, HMGB1 expression on the surface of circulating platelets was markedly upregulated. Moreover, evaluation of isolated platelets revealed that HMGB1 is critical for regulating platelet activation, granule secretion, adhesion, and spreading. These effects were mediated via TLR4- and MyD88-dependent recruitment of platelet guanylyl cyclase (GC) toward the plasma membrane, followed by MyD88/GC complex formation and activation of the cGMP-dependent protein kinase I (cGKI). Thus, we establish platelet-derived HMGB1 as an important mediator of thrombosis and identify a HMGB1-driven link between MyD88 and GC/cGKI in platelets. Additionally, these findings suggest a potential therapeutic target for patients sustaining trauma and other inflammatory disorders associated with abnormal coagulation.
Collapse
|
27
|
Morande PE, Borge M, Abreu C, Galletti J, Zanetti SR, Nannini P, Bezares RF, Pantano S, Dighiero G, Oppezzo P, Gamberale R, Giordano M. Surface localization of high-mobility group nucleosome-binding protein 2 on leukemic B cells from patients with chronic lymphocytic leukemia is related to secondary autoimmune hemolytic anemia. Leuk Lymphoma 2015; 56:1115-22. [DOI: 10.3109/10428194.2014.957205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Bobek D, Grčević D, Kovačić N, Lukić IK, Jelušić M. The presence of high mobility group box-1 and soluble receptor for advanced glycation end-products in juvenile idiopathic arthritis and juvenile systemic lupus erythematosus. Pediatr Rheumatol Online J 2014; 12:50. [PMID: 25516724 PMCID: PMC4267139 DOI: 10.1186/1546-0096-12-50] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 11/05/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The involvement of high mobility group box-1 (HMGB1) in various inflammatory and autoimmune diseases has been documented but clinical trials on the contribution of this pro-inflammatory alarmin in children with juvenile idiopathic arthritis (JIA) and systemic lupus erythematosus (SLE) are basically absent. To address the presence of HMGB1 and a soluble receptor for advanced glycation end products (sRAGE) in different subtypes of JIA and additionally in children with SLE, we enrolled a consecutive sample of children harvested peripheral blood as well as synovial fluids (SF) at diagnosis and correlated it with ordinary acute-phase reactants and clinical markers. METHODS Serum and synovial fluids levels of HMGB1 and sRAGE in total of 144 children (97 with JIA, 19 with SLE and 27 healthy controls) were determined by ELISA. RESULTS The children with JIA and those with SLE were characterised by significantly higher serum levels of HMGB1 and significantly lower sRAGE levels compared to the healthy controls. A positive correlation between serum HMGB1 and ESR, CRP, α2 globulin was found while serum sRAGE levels were inversely correlated with the same inflammatory markers in children with JIA. Additionally, high level of serum HMGB1 was related to hepatosplenomegaly or serositis in systemic onset JIA. CONCLUSION The inverse relationship of the HMGB1 and its soluble receptor RAGE in the blood and SF indicates that inflammation triggered by alarmins may play a role in pathogenesis of JIA as well as SLE. HMGB1 may serve as an inflammatory marker and a potential target of biological therapy in these patients. Further studies need to show whether the determination of HMGB1 levels in patients with JIA can be a useful guideline for detecting disease activity.
Collapse
Affiliation(s)
- Dubravka Bobek
- Department of Pediatrics, Division of Pediatric Rheumatology and Immunology, University Hospital Centre Zagreb, University of Zagreb School of Medicine, Kišpatićeva 12, 10000 Zagreb, Croatia
| | - Danka Grčević
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Nataša Kovačić
- Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivan Krešimir Lukić
- Department of Research in Biomedicine, and Health, University of Split School of Medicine, Split, Croatia
| | - Marija Jelušić
- Department of Pediatrics, Division of Pediatric Rheumatology and Immunology, University Hospital Centre Zagreb, University of Zagreb School of Medicine, Kišpatićeva 12, 10000 Zagreb, Croatia
| |
Collapse
|
29
|
Tan G, Zhu N, Shi Z, Meng Z, Yu M, Li K, Yin J, Wei K, Mi X, Wang L. Anti-high mobility group box 1 (anti-HMGB1) antibodies are not related to the occurrence of cutaneous lesions in systemic lupus erythematosus. Scand J Rheumatol 2014; 44:150-6. [DOI: 10.3109/03009742.2014.928946] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Balosso S, Liu J, Bianchi ME, Vezzani A. Disulfide-containing high mobility group box-1 promotes N-methyl-D-aspartate receptor function and excitotoxicity by activating Toll-like receptor 4-dependent signaling in hippocampal neurons. Antioxid Redox Signal 2014; 21:1726-40. [PMID: 24094148 DOI: 10.1089/ars.2013.5349] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIMS Using primary cultures of mouse hippocampal neurons, we studied the molecular and functional interactions between high mobility group box-1 (HMGB1) and the N-methyl-d-aspartate receptor (NMDAR), two proteins playing a key role in neuronal hyperexcitability. By measuring NMDA-induced calcium (Ca(2+)) increase in neuronal somata and neurotoxicity as functional read-out parameters, we explored the role of the redox state of HMGB1, the receptor involved, and the molecular signaling underlying its interactions with postsynaptic NMDAR. We also investigated whether HMGB1 redox state affects its proconvulsive effects in mice. RESULTS Nonoxidizable HMGB1 with a triple cysteine-to-serine replacement (3S-HMGB1) was ineffective on NMDA response. Conversely, the disulfide-containing form of HMGB1 dose dependently enhanced NMDA-induced Ca(2+) increase in neuronal cell bodies. This effect was prevented by BoxA, a competitive HMGB1 antagonist, and by Rhodobacter sphaeroides lipopolysaccharide (LPS-RS), a toll-like receptor 4 (TLR4) selective antagonist, and it was abrogated in neurons lacking TLR4 while persisting in the absence of receptor for advanced glycation end products (RAGE). TLR4 and NMDAR subunit 1 (NR1) and 2B (NR2B) were colocalized in neurons. Disulfide HMGB1 effect on NMDA-induced Ca(2+) influx was prevented by 3-O-methylsphingomyelin (3-O-MS) and 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo [3,4-d] pyrimidine, (PP2) selective inhibitors of neutral sphingomyelinase and Src-family Tyr kinases, respectively. Disulfide HMGB1, but not 3S-HMGB1, increased Tyr(1472) phosphorylation of the NR2B subunit of the NMDAR, which is known to increase Ca(2+) channel permeability. Similarly, disulfide HMGB1 increased NMDA-induced neuronal cell death in vitro and enhanced kainate-induced seizures in vivo. INNOVATION AND CONCLUSION We describe a novel molecular neuronal pathway activated by HMGB1 that could be targeted in vivo to prevent neurodegeneration and seizures mediated by excessive NMDARs stimulation.
Collapse
Affiliation(s)
- Silvia Balosso
- 1 Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Milano, Italy
| | | | | | | |
Collapse
|
31
|
D'Ambrosio R, Eastman CL, Fattore C, Perucca E. Novel frontiers in epilepsy treatments: preventing epileptogenesis by targeting inflammation. Expert Rev Neurother 2014; 13:615-25. [PMID: 23738999 DOI: 10.1586/ern.13.54] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Currently available epilepsy drugs only affect the symptoms (seizures), and there is a need for innovative treatments that target the underlying disease. Increasing evidence points to inflammation as a potentially important mechanism in epileptogenesis. In the last decade, a new generation of etiologically realistic syndrome-specific experimental models have been developed, which are expected to capture the epileptogenic mechanisms operating in corresponding patient populations, and to exhibit similar treatment responsiveness. Recently, an intervention known to have broad-ranging anti-inflammatory effects (selective brain cooling) has been found to prevent the development of spontaneously occurring seizures in an etiologically realistic rat model of post-traumatic epilepsy. Several drugs used clinically for other indications also have the potential for inhibiting inflammation, and should be investigated for antiepileptogenic activity in these models. If results of such studies are positive, these compounds could rapidly enter Phase III trials in patients at high risk of developing epilepsy.
Collapse
Affiliation(s)
- Raimondo D'Ambrosio
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | | | | | | |
Collapse
|
32
|
Totsingan F, Bell AJ. Interaction of HMG proteins and H1 with hybrid PNA-DNA junctions. Protein Sci 2013; 22:1552-62. [PMID: 23963921 DOI: 10.1002/pro.2342] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/15/2013] [Accepted: 08/15/2013] [Indexed: 12/21/2022]
Abstract
The objective of this study was to evaluate the effects of inserting peptide nucleic acid (PNA) sequences into the protein-binding surface of an immobilized four-way junction (4WJ). Here we compare the classic immobile DNA junction, J1, with two PNA containing hybrid junctions (4WJ-PNA1 and 4WJ-PNA3 ). The protein interactions of each 4WJ were evaluated using recombinant high mobility group proteins from rat (HMGB1b and HMGB1b/R26A) and human histone H1. In vitro studies show that both HMG and H1 proteins display high binding affinity toward 4WJ's. A 4WJ can access different conformations depending on ionic environment, most simply interpreted by a two-state equilibrium between: (i) an open-x state favored by absence of Mg(2+), low salt, and protein binding, and (ii) a compact stacked-x state favored by Mg(2+). 4WJ-PNA3, like J1, shifts readily from an open to stacked conformation in the presence of Mg(+2), while 4WJ-PNA1 does not. Circular dichroism spectra indicate that HMGB1b recognizes each of the hybrid junctions. H1, however, displays a strong preference for J1 relative to the hybrids. More extensive binding analysis revealed that HMGB1b binds J1 and 4WJ-PNA3 with nearly identical affinity (K(D)s) and 4WJ-PNA1 with two-fold lower affinity. Thus both the sequence/location of the PNA sequence and the protein determine the structural and protein recognition properties of 4WJs.
Collapse
|
33
|
Weng H, Deng Y, Xie Y, Liu H, Gong F. Expression and significance of HMGB1, TLR4 and NF-κB p65 in human epidermal tumors. BMC Cancer 2013; 13:311. [PMID: 23803172 PMCID: PMC3697986 DOI: 10.1186/1471-2407-13-311] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 06/20/2013] [Indexed: 12/16/2022] Open
Abstract
Background High mobility group protein box 1 (HMGB1) is a DNA binding protein located in nucleus. It is released into extracellular fluid where it acts as a novel proinflammatory cytokine which interacts with Toll like receptor 4 (TLR4) to activate nuclear factor-κB (NF-κB). This sequence of events is involved in tumor growth and progression. However, the effects of HMGB1, TLR4 and NF-κB on epidermal tumors remain unclear. Methods Human epidermal tumor specimens were obtained from 96 patients. Immunohistochemistry was used to detect expression of HMGB1, TLR4 and NF-κB p65 in human epidermal tumor and normal skin specimens. Western blot analysis was used to detect the expression of NF-κB p65 in epithelial cell nuclei in human epidermal tumor and normal tissues. Results Immunohistochemistry and western blot analysis indicated a progressive but statistically significant increase in p65 expression in epithelial nuclei in benign seborrheic keratosis (SK), precancerous lesions (PCL), low malignancy basal cell carcinoma (BCC) and high malignancy squamous cell carcinoma (SCC) (P <0.01). The level of extracellular HMGB1 in SK was significantly higher than in normal skin (NS) (P <0.01), and was higher than in SCC but without statistical significance. The level of TLR4 on epithelial membranes of SCC cells was significantly higher than in SK, PCL, BCC and NS (P <0.01). There was a significant positive correlation between p65 expression in the epithelial nuclei and TLR4 expression on the epithelial cell membranes (r = 0.3212, P <0.01). Conclusions These findings indicate that inflammation is intensified in parallel with increasing malignancy. They also indicate that the TLR4 signaling pathway, rather than HMGB1, may be the principal mediator of inflammation in high-grade malignant epidermal tumors. Combined detection of p65 in the epithelial nuclei and TLR4 on the epithelial membranes may assist the accurate diagnosis of malignant epidermal tumors.
Collapse
Affiliation(s)
- Hui Weng
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | | | | | | | | |
Collapse
|
34
|
Ranzato E, Martinotti S, Pedrazzi M, Patrone M. High mobility group box protein-1 in wound repair. Cells 2012; 1:699-710. [PMID: 24710526 PMCID: PMC3901153 DOI: 10.3390/cells1040699] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 09/10/2012] [Accepted: 09/19/2012] [Indexed: 12/21/2022] Open
Abstract
High-mobility group box 1 protein (HMGB1), a member of highly conserved non-histone DNA binding protein family, has been studied as transcription factor and growth factor. Secreted extracellularly by activated monocytes and macrophages or passively released by necrotic or damaged cells, extracellular HMGB1 is a potent mediator of inflammation. Extracellular HMGB1 has apparently contrasting biological actions: it sustains inflammation (with the possible establishment of autoimmunity or of self-maintaining tissue damage), but it also activates and recruits stem cells, boosting tissue repair. Here, we focus on the role of HMGB1 in physiological and pathological responses, the mechanisms by which it contributes to tissue repair and therapeutic strategies base on targeting HMGB1.
Collapse
Affiliation(s)
- Elia Ranzato
- Department of Sciences and Innovative Technology, (DiSIT), University of Piemonte Orientale "A. Avogadro", Viale Teresa Michel 11, Alessandria 15121, Italy.
| | - Simona Martinotti
- Department of Sciences and Innovative Technology, (DiSIT), University of Piemonte Orientale "A. Avogadro", Viale Teresa Michel 11, Alessandria 15121, Italy.
| | - Marco Pedrazzi
- Department of Experimental Medicine (DIMES)-Biochemistry Section, Center of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV, Genoa 1-16132, Italy.
| | - Mauro Patrone
- Department of Sciences and Innovative Technology, (DiSIT), University of Piemonte Orientale "A. Avogadro", Viale Teresa Michel 11, Alessandria 15121, Italy.
| |
Collapse
|
35
|
Yu X, Xing C, Pan Y, Ma H, Zhang J, Li W. IGF-1 alleviates ox-LDL-induced inflammation via reducing HMGB1 release in HAECs. Acta Biochim Biophys Sin (Shanghai) 2012; 44:746-51. [PMID: 22782142 DOI: 10.1093/abbs/gms059] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Atherosclerosis, a multifactorial chronic inflammatory response, is closely associated with oxidatively modified low-density lipoprotein (ox-LDL). High-mobility group box 1 (HMGB1) is a DNA-binding protein, which upon release from cells exhibits potent inflammatory action. Insulin-like growth factor 1 (IGF-1) can elicit a repertoire of cellular responses including proliferation and anti-apoptosis. However, the role of IGF-1 in inflammation is still unclear. In the present study, we aimed to investigate the role of IGF-1 in inflammation and the underlying mechanism. Human aortic endothelial cells were stimulated by ox-LDL (50 μg/ml) to induce inflammation. The expression of intercellular adhesion molecule 1 (ICAM-1) was assessed by western blot analysis and immunofluorescence. The release of HMGB1 was determined by enzyme-linked immunosorbent assay. IGF-1 receptor (IGF-1R) expression was assessed by reverse transcription-polymerase chain reaction and western blot analysis. IGF-1R phosphorylation was determined by western blot analysis. Ox-LDL stimulation reduced IGF-1R mRNA and protein expression but increased HMGB1 release. IGF-1 treatment decreased ox-LDL-induced ICAM-1 expression potentially through reducing HMGB1 release, while picropodophyllin, an IGF-1R specific inhibitor, increased the inflammatory response. In conclusion, IGF-1 can alleviate ox-LDL-induced inflammation by reducing HMGB1 release, suggesting an unexpected beneficial role of IGF-1 in inflammatory disease.
Collapse
Affiliation(s)
- Xiaofeng Yu
- Department of Thoracic Surgery, Yu Huang Ding Hospital, Yantai 264000, China
| | | | | | | | | | | |
Collapse
|
36
|
Inflammation and epilepsy: the foundations for a new therapeutic approach in epilepsy? Epilepsy Curr 2012; 12:8-12. [PMID: 22368518 DOI: 10.5698/1535-7511-12.1.8] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Emerging data from experimental epilepsy models and resected human brain tissue support the proposed involvement of innate immune system activation and consequent inflammation in epilepsy. Key mediators of this process include interleukin-1β, high-mobility group box protein 1 (HMGB1), and Toll-like receptor (TLR) signaling. These recent findings constitute the basis for a novel avenue of drug development in epilepsy, one that is not only distinct from previous approaches but uniquely based on sound neurobiological evidence.
Collapse
|
37
|
Tian L, Ma L, Kaarela T, Li Z. Neuroimmune crosstalk in the central nervous system and its significance for neurological diseases. J Neuroinflammation 2012; 9:155. [PMID: 22747919 PMCID: PMC3410819 DOI: 10.1186/1742-2094-9-155] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 07/02/2012] [Indexed: 02/07/2023] Open
Abstract
The central nervous system (CNS) is now known to actively communicate with the immune system to control immune responses both centrally and peripherally. Within the CNS, while studies on glial cells, especially microglia, have highlighted the importance of this cell type in innate immune responses of the CNS, the immune regulatory functions of other cell types, especially neurons, are largely unknown. How neuroimmune cross-talk is homeostatically maintained in neurodevelopment and adult plasticity is even more elusive. Inspiringly, accumulating evidence suggests that neurons may also actively participate in immune responses by controlling glial cells and infiltrated T cells. The potential clinical application of this knowledge warrants a deeper understanding of the mutual interactions between neurons and other types of cells during neurological and immunological processes within the CNS, which will help advance diagnosis, prevention, and intervention of various neurological diseases. The aim of this review is to address the immune function of both glial cells and neurons, and the roles they play in regulating inflammatory processes and maintaining homeostasis of the CNS.
Collapse
Affiliation(s)
- Li Tian
- Neuroscience Center, Viikinkaari 4, FIN-00014, University of Helsinki, Helsinki, Finland.
| | | | | | | |
Collapse
|
38
|
Yang H, Lundbäck P, Ottosson L, Erlandsson-Harris H, Venereau E, Bianchi ME, Al-Abed Y, Andersson U, Tracey KJ, Antoine DJ. Redox modification of cysteine residues regulates the cytokine activity of high mobility group box-1 (HMGB1). Mol Med 2012; 18:250-9. [PMID: 22105604 DOI: 10.2119/molmed.2011.00389] [Citation(s) in RCA: 342] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 11/07/2011] [Indexed: 11/06/2022] Open
Abstract
High mobility group box 1 (HMGB1) is a nuclear protein with extracellular inflammatory cytokine activity. It is released passively during cell injury and necrosis, and secreted actively by immune cells. HMGB1 contains three conserved redox-sensitive cysteine residues: C23 and C45 can form an intramolecular disulfide bond, whereas C106 is unpaired and is essential for the interaction with Toll-Like Receptor (TLR) 4. However, a comprehensive characterization of the dynamic redox states of each cysteine residue and of their impacts on innate immune responses is lacking. Using tandem mass spectrometric analysis, we now have established that the C106 thiol and the C23-C45 disulfide bond are required for HMGB1 to induce nuclear NF-κB translocation and tumor necrosis factor (TNF) production in macrophages. Both irreversible oxidation to sulphonates and complete reduction to thiols of these cysteines inhibited TNF production markedly. In a proof of concept murine model of hepatic necrosis induced by acetaminophen, during inflammation, the predominant form of serum HMGB1 is the active one, containing a C106 thiol group and a disulfide bond between C23 and C45, whereas the inactive form of HMGB1, containing terminally oxidized cysteines, accumulates during inflammation resolution and hepatic regeneration. These results reveal critical posttranslational redox mechanisms that control the proinflammatory activity of HMGB1 and its inactivation during pathogenesis.
Collapse
Affiliation(s)
- Huan Yang
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Theofilopoulos AN, Kono DH, Beutler B, Baccala R. Intracellular nucleic acid sensors and autoimmunity. J Interferon Cytokine Res 2011; 31:867-86. [PMID: 22029446 DOI: 10.1089/jir.2011.0092] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A collection of molecular sensors has been defined by studies in the last decade that can recognize a diverse array of pathogens and initiate protective immune and inflammatory responses. However, if the molecular signatures recognized are shared by both foreign and self-molecules, as is the case of nucleic acids, then the responses initiated by these sensors may have deleterious consequences. Notably, this adverse occurrence may be of primary importance in autoimmune disease pathogenesis. In this case, microbe-induced damage or mishandled physiologic processes could lead to the generation of microparticles containing self-nucleic acids. These particles may inappropriately gain access to the cytosol or endolysosomes and, hence, engage resident RNA and DNA sensors. Evidence, as reviewed here, strongly indicates that these sensors are primary contributors to autoimmune disease pathogenesis, spearheading efforts toward development of novel therapeutics for these disorders.
Collapse
Affiliation(s)
- Argyrios N Theofilopoulos
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92137, USA.
| | | | | | | |
Collapse
|