1
|
Cui Y, Leong WH, Liu CF, Xia K, Feng X, Gergely C, Liu RB, Li Q. Revealing Capillarity in AFM Indentation of Cells by Nanodiamond-Based Nonlocal Deformation Sensing. NANO LETTERS 2022; 22:3889-3896. [PMID: 35507005 DOI: 10.1021/acs.nanolett.1c05037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoindentation based on atomic force microscopy (AFM) can measure the elasticity of biomaterials and cells with high spatial resolution and sensitivity, but relating the data to quantitative mechanical properties depends on information on the local contact, which is unclear in most cases. Here, we demonstrate nonlocal deformation sensing on biorelevant soft matters upon AFM indentation by using nitrogen-vacancy centers in nanodiamonds, providing data for studying both the elasticity and capillarity without requiring detailed knowledge about the local contact. Using fixed HeLa cells for demonstration, we show that the apparent elastic moduli of the cells would have been overestimated if the capillarity was not considered. In addition, we observe that both the elastic moduli and the surface tensions are reduced after depolymerization of the actin cytoskeleton in cells. This work demonstrates that the nanodiamond sensing of nonlocal deformation with nanometer precision is particularly suitable for studying mechanics of soft biorelevant materials.
Collapse
Affiliation(s)
- Yue Cui
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Weng-Hang Leong
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Chu-Feng Liu
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Kangwei Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xi Feng
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Csilla Gergely
- Laboratoire Charles Coulomb, University of Montpellierr, CNRS, Montpellier, 34095, France
| | - Ren-Bao Liu
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Centre for Quantum Coherence, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- The Hong Kong Institute of Quantum Information Science and Technology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Quan Li
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Centre for Quantum Coherence, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- The Hong Kong Institute of Quantum Information Science and Technology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
2
|
Wallis SS, Ventimiglia LN, Otigbah E, Infante E, Cuesta-Geijo MA, Kidiyoor GR, Carbajal MA, Fleck RA, Foiani M, Garcia-Manyes S, Martin-Serrano J, Agromayor M. The ESCRT machinery counteracts Nesprin-2G-mediated mechanical forces during nuclear envelope repair. Dev Cell 2021; 56:3192-3202.e8. [PMID: 34818527 PMCID: PMC8657813 DOI: 10.1016/j.devcel.2021.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/03/2021] [Accepted: 10/28/2021] [Indexed: 12/31/2022]
Abstract
Transient nuclear envelope ruptures during interphase (NERDI) occur due to cytoskeletal compressive forces at sites of weakened lamina, and delayed NERDI repair results in genomic instability. Nuclear envelope (NE) sealing is completed by endosomal sorting complex required for transport (ESCRT) machinery. A key unanswered question is how local compressive forces are counteracted to allow efficient membrane resealing. Here, we identify the ESCRT-associated protein BROX as a crucial factor required to accelerate repair of the NE. Critically, BROX binds Nesprin-2G, a component of the linker of nucleoskeleton and cytoskeleton complex (LINC). This interaction promotes Nesprin-2G ubiquitination and facilitates the relaxation of mechanical stress imposed by compressive actin fibers at the rupture site. Thus, BROX rebalances excessive cytoskeletal forces in cells experiencing NE instability to promote effective NERDI repair. Our results demonstrate that BROX coordinates mechanoregulation with membrane remodeling to ensure the maintenance of nuclear-cytoplasmic compartmentalization and genomic stability. Cytoskeletal forces exerted on the nucleus can rupture its membrane BROX is recruited to sites of rupture by the ESCRT membrane remodeling machinery BROX ubiquitinates the LINC complex protein Nesprin-2G, targeting it for degradation BROX coordinates local relaxation of mechanical stress with membrane remodeling
Collapse
Affiliation(s)
- Samuel S Wallis
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London SE1 9RT, UK
| | - Leandro N Ventimiglia
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London SE1 9RT, UK
| | - Evita Otigbah
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London SE1 9RT, UK
| | - Elvira Infante
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, and London Centre for Nanotechnology, King's College London, London WC2R 2LS, UK
| | - Miguel Angel Cuesta-Geijo
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London SE1 9RT, UK; Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (CSIC), Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain
| | - Gururaj Rao Kidiyoor
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy; Università degli Studi di Milano, 20122 Milan, Italy
| | | | - Roland A Fleck
- Centre for Ultrastructural Imaging, King's College London, London SE1 1UL, UK
| | - Marco Foiani
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy; Università degli Studi di Milano, 20122 Milan, Italy
| | - Sergi Garcia-Manyes
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, and London Centre for Nanotechnology, King's College London, London WC2R 2LS, UK; the Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Juan Martin-Serrano
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London SE1 9RT, UK.
| | - Monica Agromayor
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London SE1 9RT, UK.
| |
Collapse
|
3
|
Papadakis L, Kanakousaki D, Bakopoulou A, Tsouknidas A, Michalakis K. A finite element model of an osteoblast to quantify the transduction of exogenous forces to cellular components. Med Eng Phys 2021; 94:61-69. [PMID: 34303503 DOI: 10.1016/j.medengphy.2021.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/12/2021] [Accepted: 06/28/2021] [Indexed: 01/16/2023]
Abstract
Encouraged by recent advances of biophysical and biochemical assays we introduce a 3D finite element model of an osteoblast, seeking an analogue between exogenous forces and intracellularly activated sensory mechanisms. The cell was reverse engineered and the dimensions of the internal cellular structures were based on literature data. The model was verified and validated against atomic force microscopy experiments and four loading scenarios were considered. The stress distributions developing on the main cellular components were calculated along with their corresponding strain values. The nucleus and mitochondria exhibited similar loading trends, with the mitochondria being stressed by an order of magnitude higher than the nucleus (e.g. 1.4 vs. 0.16 MPa). Equivalent stiffness was determined to increase by almost 50%, from the apex to the cell's periphery, as was the cell's elasticity, which was lowest when the load was exerted directly above the nucleus. The assessment of how extrinsic loads are propagated to a cell's internal structures is inherently a problem of high complexity. The findings presented in this study can provide important insight into biophysical and biochemical responses elicited in cells through mechanical stimulus. This was evident in both the nuclear and mitochondrial loading and would stipulate the important contribution of even more accurate models in the interpretation of cellular events. One Sentence Summary: The results of this numerical biomechanical study demonstrated that even minor extrinsic loads irrespective of the application site, are transduced by a fraction of the cytoskeleton to its internal structure (primarily to its mitochondria and secondary to the cell's nucleus), indicating mechanical stimulus as the dominant pathway to cell expression.
Collapse
Affiliation(s)
- Labros Papadakis
- Laboratory for Biomaterials and Computational Mechanics, Department of Mechanical Engineering, University of Western Macedonia, Bakola & Sialvera, GR-50132, Kozani, Greece
| | - Dimitra Kanakousaki
- School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki GR-54124, Thessaloniki, Greece
| | - Athina Bakopoulou
- School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki GR-54124, Thessaloniki, Greece
| | - Alexander Tsouknidas
- Laboratory for Biomaterials and Computational Mechanics, Department of Mechanical Engineering, University of Western Macedonia, Bakola & Sialvera, GR-50132, Kozani, Greece.
| | - Konstantinos Michalakis
- School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki GR-54124, Thessaloniki, Greece; Division of Postgraduate Prosthodontics, Tufts University School of Dental Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
4
|
Kar S, Katti DR, Katti KS. Evaluation of quasi-static and dynamic nanomechanical properties of bone-metastatic breast cancer cells using a nanoclay cancer testbed. Sci Rep 2021; 11:3096. [PMID: 33542384 PMCID: PMC7862348 DOI: 10.1038/s41598-021-82664-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/20/2021] [Indexed: 01/07/2023] Open
Abstract
In recent years, there has been increasing interest in investigating the mechanical properties of individual cells to delineate disease mechanisms. Reorganization of cytoskeleton facilitates the colonization of metastatic breast cancer at bone marrow space, leading to bone metastasis. Here, we report evaluation of mechanical properties of two breast cancer cells with different metastatic ability at the site of bone metastases, using quasi-static and dynamic nanoindentation methods. Our results showed that the significant reduction in elastic modulus along with increased liquid-like behavior of bone metastasized MCF-7 cells was induced by depolymerization and reorganization of F-actin to the adherens junctions, whereas bone metastasized MDA-MB-231 cells showed insignificant changes in elastic modulus and F-actin reorganization over time, compared to their respective as-received counterparts. Taken together, our data demonstrate evolution of breast cancer cell mechanics at bone metastases.
Collapse
Affiliation(s)
- Sumanta Kar
- Center for Engineered Cancer Test Beds, Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND, 58108, USA
| | - Dinesh R Katti
- Center for Engineered Cancer Test Beds, Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND, 58108, USA
| | - Kalpana S Katti
- Center for Engineered Cancer Test Beds, Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND, 58108, USA.
| |
Collapse
|
5
|
Hirano R, Kanzaki M, Arakawa M, Hermawan N, Kobayashi K, Saijo Y. Biomechanics of C2C12 Cells Observed with Cellular Resolution Scanning Acoustic Microscope Combined with Optical Microscope .. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:4828-4831. [PMID: 31946942 DOI: 10.1109/embc.2019.8857008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Biomechanics of the cell indicates the inner structure and viability of the cell. Mechanical properties are represented by acoustic properties such as speed of sound (SOS) or acoustic impedance. In the present study, cellular resolution scanning acoustic microscope combined with optical microscope (OptSAM) is developed to observe the change of mechanical properties in cell differentiation. Main part of the OptSAM was consisted of 350 MHz ultrasound transducer mechanically scanned by a piezo-actuator. Thickness, SOS, acoustic impedance, density and elastic bulk modulus of the cell were deduced by the ultrasound responses in both time domain and frequency domain. C2C12 cell changing its form from myoblast to myotube was observed by OptSAM. The value of bulk modulus slightly increased in response to differentiation process. OptSAM non-invasively provides important information on biomechanics of cells without contact or staining.
Collapse
|
6
|
Kumar SS, Baker MS, Okandan M, Muthuswamy J. Engineering microscale systems for fully autonomous intracellular neural interfaces. MICROSYSTEMS & NANOENGINEERING 2020; 6:1. [PMID: 34567658 PMCID: PMC8433365 DOI: 10.1038/s41378-019-0121-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 05/08/2023]
Abstract
Conventional electrodes and associated positioning systems for intracellular recording from single neurons in vitro and in vivo are large and bulky, which has largely limited their scalability. Further, acquiring successful intracellular recordings is very tedious, requiring a high degree of skill not readily achieved in a typical laboratory. We report here a robotic, MEMS-based intracellular recording system to overcome the above limitations associated with form factor, scalability, and highly skilled and tedious manual operations required for intracellular recordings. This system combines three distinct technologies: (1) novel microscale, glass-polysilicon penetrating electrode for intracellular recording; (2) electrothermal microactuators for precise microscale movement of each electrode; and (3) closed-loop control algorithm for autonomous positioning of electrode inside single neurons. Here we demonstrate the novel, fully integrated system of glass-polysilicon microelectrode, microscale actuators, and controller for autonomous intracellular recordings from single neurons in the abdominal ganglion of Aplysia californica (n = 5 cells). Consistent resting potentials (<-35 mV) and action potentials (>60 mV) were recorded after each successful penetration attempt with the controller and microactuated glass-polysilicon microelectrodes. The success rate of penetration and quality of intracellular recordings achieved using electrothermal microactuators were comparable to that of conventional positioning systems. Preliminary data from in vivo experiments in anesthetized rats show successful intracellular recordings. The MEMS-based system offers significant advantages: (1) reduction in overall size for potential use in behaving animals, (2) scalable approach to potentially realize multi-channel recordings, and (3) a viable method to fully automate measurement of intracellular recordings. This system will be evaluated in vivo in future rodent studies.
Collapse
Affiliation(s)
- Swathy Sampath Kumar
- Biomedical Engineering, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287 USA
| | - Michael S. Baker
- Mechanical Engineering, Sandia National laboratories, Albuquerque, NM USA
| | | | - Jit Muthuswamy
- Biomedical Engineering, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287 USA
| |
Collapse
|
7
|
Querol Cano L, Tagit O, Dolen Y, van Duffelen A, Dieltjes S, Buschow SI, Niki T, Hirashima M, Joosten B, van den Dries K, Cambi A, Figdor CG, van Spriel AB. Intracellular Galectin-9 Controls Dendritic Cell Function by Maintaining Plasma Membrane Rigidity. iScience 2019; 22:240-255. [PMID: 31786520 PMCID: PMC6906692 DOI: 10.1016/j.isci.2019.11.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/17/2019] [Accepted: 11/11/2019] [Indexed: 12/24/2022] Open
Abstract
Endogenous extracellular Galectins constitute a novel mechanism of membrane protein organization at the cell surface. Although Galectins are also highly expressed intracellularly, their cytosolic functions are poorly understood. Here, we investigated the role of Galectin-9 in dendritic cell (DC) surface organization and function. By combining functional, super-resolution and atomic force microscopy experiments to analyze membrane stiffness, we identified intracellular Galectin-9 to be indispensable for plasma membrane integrity and structure in DCs. Galectin-9 knockdown studies revealed intracellular Galectin-9 to directly control cortical membrane structure by modulating Rac1 activity, providing the underlying mechanism of Galectin-9-dependent actin cytoskeleton organization. Consequent to its role in maintaining plasma membrane structure, phagocytosis studies revealed that Galectin-9 was essential for C-type-lectin receptor-mediated pathogen uptake by DCs. This was confirmed by the impaired phagocytic capacity of Galectin-9-null murine DCs. Together, this study demonstrates a novel role for intracellular Galectin-9 in modulating DC function, which may be evolutionarily conserved.
Collapse
Affiliation(s)
- Laia Querol Cano
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26-28, Nijmegen 6525 GA, The Netherlands
| | - Oya Tagit
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26-28, Nijmegen 6525 GA, The Netherlands
| | - Yusuf Dolen
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26-28, Nijmegen 6525 GA, The Netherlands
| | - Anne van Duffelen
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26-28, Nijmegen 6525 GA, The Netherlands
| | - Shannon Dieltjes
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26-28, Nijmegen 6525 GA, The Netherlands
| | - Sonja I Buschow
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Toshiro Niki
- GalPharma Co., Ltd., Takamatsu, Kagawa 761-0301, Japan; Department of Immunology and Immunopathology, Faculty of Medicine, Kagawa University, Takamatsu, Kagawa, 761-0793, Japan
| | - Mitsuomi Hirashima
- GalPharma Co., Ltd., Takamatsu, Kagawa 761-0301, Japan; Department of Immunology and Immunopathology, Faculty of Medicine, Kagawa University, Takamatsu, Kagawa, 761-0793, Japan
| | - Ben Joosten
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands
| | - Koen van den Dries
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands
| | - Carl G Figdor
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26-28, Nijmegen 6525 GA, The Netherlands
| | - Annemiek B van Spriel
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26-28, Nijmegen 6525 GA, The Netherlands.
| |
Collapse
|
8
|
Hu J, Chen S, Hu W, Lü S, Long M. Mechanical Point Loading Induces Cortex Stiffening and Actin Reorganization. Biophys J 2019; 117:1405-1418. [PMID: 31585706 DOI: 10.1016/j.bpj.2019.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022] Open
Abstract
Global cytoskeleton reorganization is well-recognized when cells are exposed to distinct mechanical stimuli, but the localized responses at a specified region of a cell are still unclear. In this work, we mapped the cell-surface mechanical property of single cells in situ before and after static point loading these cells using atomic force microscopy in PeakForce-Quantitative Nano Mechanics mode. Cell-surface stiffness was elevated at a maximum of 1.35-fold at the vicinity of loading site, indicating an enhanced structural protection of the cortex to the cell. Mechanical modeling also elucidated the structural protection from the stiffened cell cortex, in which 9-15% and 10-19% decrease of maximum stress and strain of the nucleus were obtained. Furthermore, the flat-ended atomic force microscopy probes were used to capture cytoskeleton reorganization after point loading quantitatively, revealing that the larger the applied force and the longer the loading time are, the more pronounced cytoskeleton reorganization is. Also, point loading using a microneedle combined with real-time confocal microscopy uncovered the fast dynamics of actin cytoskeleton reorganization for actin-stained live cells after point loading (<10 s). These results furthered the understandings in the transmission of localized mechanical forces into an adherent cell.
Collapse
Affiliation(s)
- Jinrong Hu
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shenbao Chen
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Wenhui Hu
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China
| | - Shouqin Lü
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China.
| | - Mian Long
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
9
|
Mahajan G, Lee MY, Kothapalli C. Biophysical and biomechanical properties of neural progenitor cells as indicators of developmental neurotoxicity. Arch Toxicol 2019; 93:2979-2992. [PMID: 31428840 DOI: 10.1007/s00204-019-02549-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/14/2019] [Indexed: 11/24/2022]
Abstract
Conventional in vitro toxicity studies have focused on identifying IC50 and the underlying mechanisms, but how toxicants influence biophysical and biomechanical changes in human cells, especially during developmental stages, remain understudied. Here, using an atomic force microscope, we characterized changes in biophysical (cell area, actin organization) and biomechanical (Young's modulus, force of adhesion, tether force, membrane tension, tether radius) aspects of human fetal brain-derived neural progenitor cells (NPCs) induced by four classes of widely used toxic compounds, including rotenone, digoxin, N-arachidonoylethanolamide (AEA), and chlorpyrifos, under exposure up to 36 h. The sub-cellular mechanisms (apoptosis, mitochondria membrane potential, DNA damage, glutathione levels) by which these toxicants induced biochemical changes in NPCs were assessed. Results suggest a significant compromise in cell viability with increasing toxicant concentration (p < 0.01), and biophysical and biomechanical characteristics with increasing exposure time (p < 0.01) as well as toxicant concentration (p < 0.01). Impairment of mitochondrial membrane potential appears to be the most sensitive mechanism of neurotoxicity for rotenone, AEA and chlorpyrifos exposure, but compromise in plasma membrane integrity for digoxin exposure. The surviving NPCs remarkably retained stemness (SOX2 expression) even at high toxicant concentrations. A negative linear correlation (R2 = 0.92) exists between the elastic modulus of surviving cells and the number of living cells in that environment. We propose that even subtle compromise in cell mechanics could serve as a crucial marker of developmental neurotoxicity (mechanotoxicology) and therefore should be included as part of toxicology assessment repertoire to characterize as well as predict developmental outcomes.
Collapse
Affiliation(s)
- Gautam Mahajan
- Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, 2121 Euclid Ave, FH 460, Cleveland, OH, 44115, USA
| | - Moo-Yeal Lee
- Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, 2121 Euclid Ave, FH 460, Cleveland, OH, 44115, USA
| | - Chandrasekhar Kothapalli
- Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, 2121 Euclid Ave, FH 460, Cleveland, OH, 44115, USA.
| |
Collapse
|
10
|
Senapati S, Poma AB, Cieplak M, Filipek S, Park PSH. Differentiating between Inactive and Active States of Rhodopsin by Atomic Force Microscopy in Native Membranes. Anal Chem 2019; 91:7226-7235. [PMID: 31074606 DOI: 10.1021/acs.analchem.9b00546] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Membrane proteins, including G protein-coupled receptors (GPCRs), present a challenge in studying their structural properties under physiological conditions. Moreover, to better understand the activity of proteins requires examination of single molecule behaviors rather than ensemble averaged behaviors. Force-distance curve-based AFM (FD-AFM) was utilized to directly probe and localize the conformational states of a GPCR within the membrane at nanoscale resolution based on the mechanical properties of the receptor. FD-AFM was applied to rhodopsin, the light receptor and a prototypical GPCR, embedded in native rod outer segment disc membranes from photoreceptor cells of the retina in mice. Both FD-AFM and computational studies on coarse-grained models of rhodopsin revealed that the active state of the receptor has a higher Young's modulus compared to the inactive state of the receptor. Thus, the inactive and active states of rhodopsin could be differentiated based on the stiffness of the receptor. Differentiating the states based on the Young's modulus allowed for the mapping of the different states within the membrane. Quantifying the active states present in the membrane containing the constitutively active G90D rhodopsin mutant or apoprotein opsin revealed that most receptors adopt an active state. Traditionally, constitutive activity of GPCRs has been described in terms of two-state models where the receptor can achieve only a single active state. FD-AFM data are inconsistent with a two-state model but instead require models that incorporate multiple active states.
Collapse
Affiliation(s)
- Subhadip Senapati
- Department of Ophthalmology and Visual Sciences , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Adolfo B Poma
- Institute of Fundamental Technological Research , Polish Academy of Sciences , Pawińskiego 5B , 02-106 Warsaw , Poland.,Institute of Physics , Polish Academy of Sciences , Aleja Lotników 32/46 , 02-668 Warsaw , Poland
| | - Marek Cieplak
- Institute of Physics , Polish Academy of Sciences , Aleja Lotników 32/46 , 02-668 Warsaw , Poland
| | - Sławomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre , University of Warsaw , 02-093 Warsaw , Poland
| | - Paul S H Park
- Department of Ophthalmology and Visual Sciences , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| |
Collapse
|
11
|
A Microfluidic Micropipette Aspiration Device to Study Single-Cell Mechanics Inspired by the Principle of Wheatstone Bridge. MICROMACHINES 2019; 10:mi10020131. [PMID: 30781497 PMCID: PMC6413237 DOI: 10.3390/mi10020131] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 12/20/2022]
Abstract
The biomechanical properties of single cells show great potential for early disease diagnosis and effective treatments. In this study, a microfluidic device was developed for quantifying the mechanical properties of a single cell. Micropipette aspiration was integrated into a microfluidic device that mimics a classical Wheatstone bridge circuit. This technique allows us not only to effectively alter the flow direction for single-cell trapping, but also to precisely control the pressure exerted on the aspirated cells, analogous to the feature of the Wheatstone bridge that can precisely control bridge voltage and current. By combining the micropipette aspiration technique into the microfluidic device, we can effectively trap the microparticles and Hela cells as well as measure the deformability of cells. The Young's modulus of Hela cells was evaluated to be 387 ± 77 Pa, which is consistent with previous micropipette aspiration studies. The simplicity, precision, and usability of our device show good potential for biomechanical trials in clinical diagnosis and cell biology research.
Collapse
|
12
|
Bowler MA, Bersi MR, Ryzhova LM, Jerrell RJ, Parekh A, Merryman WD. Cadherin-11 as a regulator of valve myofibroblast mechanobiology. Am J Physiol Heart Circ Physiol 2018; 315:H1614-H1626. [PMID: 30359089 DOI: 10.1152/ajpheart.00277.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cadherin-11 (CDH11) is upregulated in a variety of fibrotic diseases, including arthritis and calcific aortic valve disease. Our recent work has identified CDH11 as a potential therapeutic target and shown that treatment with a CDH11 functional blocking antibody can prevent hallmarks of calcific aortic valve disease in mice. The present study investigated the role of CDH11 in regulating the mechanobiological behavior of valvular interstitial cells believed to cause calcification. Aortic valve interstitial cells were harvested from Cdh11+/+, Cdh11+/-, and Cdh11-/- immortomice. Cells were subjected to inflammatory cytokines transforming growth factor (TGF)-β1 and IL-6 to characterize the molecular mechanisms by which CDH11 regulates their mechanobiological changes. Histology was performed on aortic valves from Cdh11+/+, Cdh11+/-, and Cdh11-/- mice to identify key responses to CDH11 deletion in vivo. We showed that CDH11 influences cell behavior through its regulation of contractility and its ability to bind substrates via focal adhesions. We also show that transforming growth factor-β1 overrides the normal relationship between CDH11 and smooth muscle α-actin to exacerbate the myofibroblast disease phenotype. This phenotypic switch is potentiated through the IL-6 signaling axis and could act as a paracrine mechanism of myofibroblast activation in neighboring aortic valve interstitial cells in a positive feedback loop. These data suggest CDH11 is an important mediator of the myofibroblast phenotype and identify several mechanisms by which it modulates cell behavior. NEW & NOTEWORTHY Cadherin-11 influences valvular interstitial cell contractility by regulating focal adhesions and inflammatory cytokine secretion. Transforming growth factor-β1 overrides the normal balance between cadherin-11 and smooth muscle α-actin expression to promote a myofibroblast phenotype. Cadherin-11 is necessary for IL-6 and chitinase-3-like protein 1 secretion, and IL-6 promotes contractility. Targeting cadherin-11 could therapeutically influence valvular interstitial cell phenotypes in a multifaceted manner.
Collapse
Affiliation(s)
- Meghan A Bowler
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| | - Matthew R Bersi
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| | - Larisa M Ryzhova
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| | - Rachel J Jerrell
- Department of Otolaryngology, Vanderbilt University , Nashville, Tennessee
| | - Aron Parekh
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee.,Department of Otolaryngology, Vanderbilt University , Nashville, Tennessee.,Vanderbilt-Ingram Cancer Center , Nashville, Tennessee
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| |
Collapse
|
13
|
Abdalrahman T, Dubuis L, Green J, Davies N, Franz T. Cellular mechanosensitivity to substrate stiffness decreases with increasing dissimilarity to cell stiffness. Biomech Model Mechanobiol 2017; 16:2063-2075. [PMID: 28733924 DOI: 10.1007/s10237-017-0938-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 07/11/2017] [Indexed: 01/07/2023]
Abstract
Computational modelling has received increasing attention to investigate multi-scale coupled problems in micro-heterogeneous biological structures such as cells. In the current study, we investigated for a single cell the effects of (1) different cell-substrate attachment (2) and different substrate modulus [Formula: see text] on intracellular deformations. A fibroblast was geometrically reconstructed from confocal micrographs. Finite element models of the cell on a planar substrate were developed. Intracellular deformations due to substrate stretch of [Formula: see text], were assessed for: (1) cell-substrate attachment implemented as full basal contact (FC) and 124 focal adhesions (FA), respectively, and [Formula: see text]140 KPa and (2) [Formula: see text], 140, 1000, and 10,000 KPa, respectively, and FA attachment. The largest strains in cytosol, nucleus and cell membrane were higher for FC (1.35[Formula: see text], 0.235[Formula: see text] and 0.6[Formula: see text]) than for FA attachment (0.0952[Formula: see text], 0.0472[Formula: see text] and 0.05[Formula: see text]). For increasing [Formula: see text], the largest maximum principal strain was 4.4[Formula: see text], 5[Formula: see text], 5.3[Formula: see text] and 5.3[Formula: see text] in the membrane, 9.5[Formula: see text], 1.1[Formula: see text], 1.2[Formula: see text] and 1.2[Formula: see text] in the cytosol, and 4.5[Formula: see text], 5.3[Formula: see text], 5.7[Formula: see text] and 5.7[Formula: see text] in the nucleus. The results show (1) the importance of representing FA in cell models and (2) higher cellular mechanical sensitivity for substrate stiffness changes in the range of cell stiffness. The latter indicates that matching substrate stiffness to cell stiffness, and moderate variation of the former is very effective for controlled variation of cell deformation. The developed methodology is useful for parametric studies on cellular mechanics to obtain quantitative data of subcellular strains and stresses that cannot easily be measured experimentally.
Collapse
Affiliation(s)
- Tamer Abdalrahman
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Laura Dubuis
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Jason Green
- Cardiovascular Research Unit, Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town, Observatory, South Africa
| | - Neil Davies
- Cardiovascular Research Unit, Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town, Observatory, South Africa
| | - Thomas Franz
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa. .,Bioengineering Science Research Group, Engineering Sciences, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK.
| |
Collapse
|
14
|
Relat-Goberna J, Beedle AEM, Garcia-Manyes S. The Nanomechanics of Lipid Multibilayer Stacks Exhibits Complex Dynamics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1700147. [PMID: 28503797 DOI: 10.1002/smll.201700147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/17/2017] [Indexed: 06/07/2023]
Abstract
The nanomechanics of lipid membranes regulates a large number of cellular functions. However, the molecular mechanisms underlying the plastic rupture of individual bilayers remain elusive. This study uses force clamp spectroscopy to capture the force-dependent dynamics of membrane failure on a model diphytanoylphosphatidylcholine multilayer stack, which is devoid of surface effects. The obtained kinetic measurements demonstrate that the rupture of an individual lipid bilayer, occurring in the bilayer parallel plane, is a stochastic process that follows a log-normal distribution, compatible with a pore formation mechanism. Furthermore, the vertical individual force-clamp trajectories, occurring in the bilayer orthogonal bilayer plane, reveal that rupturing process occurs through distinct intermediate mechanical transition states that can be ascribed to the fine chemical composition of the hydrated phospholipid moiety. Altogether, these results provide a first description of unanticipated complexity in the energy landscape governing the mechanically induced bilayer rupture process.
Collapse
Affiliation(s)
- Josep Relat-Goberna
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London, Strand, London, WC2R 2LS, UK
| | - Amy E M Beedle
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London, Strand, London, WC2R 2LS, UK
| | - Sergi Garcia-Manyes
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London, Strand, London, WC2R 2LS, UK
| |
Collapse
|
15
|
Katti DR, Katti KS. Cancer cell mechanics with altered cytoskeletal behavior and substrate effects: A 3D finite element modeling study. J Mech Behav Biomed Mater 2017; 76:125-134. [PMID: 28571747 DOI: 10.1016/j.jmbbm.2017.05.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 02/07/2023]
Abstract
A robust computational model of a cancer cell is presented using finite element modeling. The model accurately captures nuances of the various components of the cellular substructure. The role of degradation of cytoskeleton on overall elastic properties of the cancer cell is reported. The motivation for degraded cancer cellular substructure, the cytoskeleton is the observation that the innate mechanics of cytoskeleton is disrupted by various anti-cancer drugs as therapeutic treatments for the destruction of the cancer tumors. We report a significant influence on the degradation of the cytoskeleton on the mechanics of cancer cell. Further, a simulations based study is reported where we evaluate mechanical properties of the cancer cell attached to a variety of substrates. The loading of the cancer cell is less influenced by nature of the substrate, but low modulus substrates such as osteoblasts and hydrogels indicate a significant change in unloading behavior and also the plastic deformation. Overall, softer substrates such as osteoblasts and other bone cells result in a much altered unloading response as well as significant plastic deformation. These substrates are relevant to metastasis wherein certain type of cancers such as prostate and breast cancer cells migrate to the bone and colonize through mesenchymal to epithelial transition. The modeling study presented here is an important first step in the development of strong predictive methodologies for cancer progression.
Collapse
Affiliation(s)
- Dinesh R Katti
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58108, USA.
| | - Kalpana S Katti
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
16
|
Garcia A, Rodriguez Matas JF, Raimondi MT. Modeling of the mechano-chemical behaviour of the nuclear pore complex: current research and perspectives. Integr Biol (Camb) 2016; 8:1011-1021. [PMID: 27713975 PMCID: PMC5166569 DOI: 10.1039/c6ib00153j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/19/2016] [Indexed: 12/30/2022]
Abstract
Recent evidence suggests that mechanical deformation of the cell nucleus regulates the nuclear import of the transcriptional activators of genes involved in primary physiological cell responses such as stem cell differentiation. In addition, this nuclear mechanosensing response is de-regulated in pathological states, such as cancer and neurodegeneration. One hypothesis that could greatly advance the field is that the deformation of the nuclear envelope activates nuclear pore complexes through a direct mechanical link. The understanding of this possible mechanism for nuclear pore complex stretch-activation entails studying the mechanical connection of this complex to the nuclear envelope at the nanoscale. The nanomechanics of the nuclear pore complex is thus emerging as a novel research field, bridging nanoscience with nanotechnology. This review examines the frontier of research methodologies that are potentially useful for building a computational model of this interaction. This includes, for example, electron tomography to assess the geometrical features of the nuclear pore complex and nanoindentation to estimate its mechanical properties and that of the nuclear envelope. In order to summarize the state-of-the-art and perspectives in the field of NPC nanomechanics, this review covers highly interdisciplinary experimental and theoretical research methodologies pertaining to the fields of physics, chemistry, biology, materials and mechanics.
Collapse
Affiliation(s)
- Alberto Garcia
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milan, Italy.
| | - Jose F Rodriguez Matas
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milan, Italy.
| | - Manuela T Raimondi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milan, Italy.
| |
Collapse
|
17
|
Maherally Z, Smith JR, Ghoneim MK, Dickson L, An Q, Fillmore HL, Pilkington GJ. Silencing of CD44 in Glioma Leads to Changes in Cytoskeletal Protein Expression and Cellular Biomechanical Deformation Properties as Measured by AFM Nanoindentation. BIONANOSCIENCE 2015. [DOI: 10.1007/s12668-015-0189-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Beedle AEM, Williams A, Relat-Goberna J, Garcia-Manyes S. Mechanobiology - chemical origin of membrane mechanical resistance and force-dependent signaling. Curr Opin Chem Biol 2015; 29:87-93. [PMID: 26517566 DOI: 10.1016/j.cbpa.2015.09.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/15/2015] [Indexed: 11/16/2022]
Abstract
The cell membrane is a highly complex designed material with remarkable physicochemical properties; comprised mainly of lipid moieties, it is capable of self-assembling, changing morphology, housing a range of distinct proteins, and withstanding electrical, chemical and mechanical perturbations. All of these fundamental cellular functions occurring within a 5nm thick film is an astonishing feat of engineering, made possible due to the interplay of a variety of intermolecular forces. Elucidating how the interactions within the chemically distinct partners influence the nanomechanical properties of the membrane is essential to gain a comprehensive understanding of a wide-variety of both force-triggered and force-sensing mechanisms that dictate essential cellular processes.
Collapse
Affiliation(s)
- Amy E M Beedle
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London, Strand, London WC2R 2LS, UK
| | - Aisling Williams
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London, Strand, London WC2R 2LS, UK
| | - Josep Relat-Goberna
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London, Strand, London WC2R 2LS, UK
| | - Sergi Garcia-Manyes
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London, Strand, London WC2R 2LS, UK.
| |
Collapse
|
19
|
Haase K, Pelling AE. Investigating cell mechanics with atomic force microscopy. J R Soc Interface 2015; 12:20140970. [PMID: 25589563 PMCID: PMC4345470 DOI: 10.1098/rsif.2014.0970] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/18/2014] [Indexed: 12/12/2022] Open
Abstract
Transmission of mechanical force is crucial for normal cell development and functioning. However, the process of mechanotransduction cannot be studied in isolation from cell mechanics. Thus, in order to understand how cells 'feel', we must first understand how they deform and recover from physical perturbations. Owing to its versatility, atomic force microscopy (AFM) has become a popular tool to study intrinsic cellular mechanical properties. Used to directly manipulate and examine whole and subcellular reactions, AFM allows for top-down and reconstitutive approaches to mechanical characterization. These studies show that the responses of cells and their components are complex, and largely depend on the magnitude and time scale of loading. In this review, we generally describe the mechanotransductive process through discussion of well-known mechanosensors. We then focus on discussion of recent examples where AFM is used to specifically probe the elastic and inelastic responses of single cells undergoing deformation. We present a brief overview of classical and current models often used to characterize observed cellular phenomena in response to force. Both simple mechanistic models and complex nonlinear models have been used to describe the observed cellular behaviours, however a unifying description of cell mechanics has not yet been resolved.
Collapse
Affiliation(s)
- Kristina Haase
- Department of Physics, Centre for Interdisciplinary NanoPhysics, MacDonald Hall, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario, Canada
| | - Andrew E Pelling
- Department of Physics, Centre for Interdisciplinary NanoPhysics, MacDonald Hall, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario, Canada Department of Biology, Gendron Hall, 30 Marie Curie, University of Ottawa, Ottawa, Ontario, Canada Institute for Science Society and Policy, Desmarais Building, 55 Laurier Ave. East, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
20
|
Morphological and physical analysis of natural phospholipids-based biomembranes. PLoS One 2014; 9:e107435. [PMID: 25238543 PMCID: PMC4169657 DOI: 10.1371/journal.pone.0107435] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 08/11/2014] [Indexed: 01/15/2023] Open
Abstract
Background Liposomes are currently an important part of biological, pharmaceutical, medical and nutritional research, as they are considered to be among the most effective carriers for the introduction of various types of bioactive agents into target cells. Scope of Review In this work, we study the lipid organization and mechanical properties of biomembranes made of marine and plant phospholipids. Membranes based on phospholipids extracted from rapeseed and salmon are studied in the form of liposome and as supported lipid bilayer. Dioleylphosphatidylcholine (DOPC) and dipalmitoylphosphatidylcholine (DPPC) are used as references to determine the lipid organization of marine and plant phospholipid based membranes. Atomic force microscopy (AFM) imaging and force spectroscopy measurements are performed to investigate the membranes' topography at the micrometer scale and to determine their mechanical properties. Major Conclusions The mechanical properties of the membranes are correlated to the fatty acid composition, the morphology, the electrophoretic mobility and the membrane fluidity. Thus, soft and homogeneous mechanical properties are evidenced for salmon phospholipids membrane containing various polyunsaturated fatty acids. Besides, phase segregation in rapeseed membrane and more important mechanical properties were emphasized for this type of membranes by contrast to the marine phospholipids based membranes. General Significance This paper provides new information on the nanomechanical and morphological properties of membrane in form of liposome by AFM. The originality of this work is to characterize the physico-chemical properties of the nanoliposome from the natural sources containing various fatty acids and polar head.
Collapse
|
21
|
Louvet E, Yoshida A, Kumeta M, Takeyasu K. Probing the stiffness of isolated nucleoli by atomic force microscopy. Histochem Cell Biol 2014; 141:365-81. [PMID: 24297448 DOI: 10.1007/s00418-013-1167-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2013] [Indexed: 11/24/2022]
Abstract
In eukaryotic cells, ribosome biogenesis occurs in the nucleolus, a membraneless nuclear compartment. Noticeably, the nucleolus is also involved in several nuclear functions, such as cell cycle regulation, non-ribosomal ribonucleoprotein complex assembly, aggresome formation and some virus assembly. The most intriguing question about the nucleolus is how such dynamics processes can occur in such a compact compartment. We hypothesized that its structure may be rather flexible. To investigate this, we used atomic force microscopy (AFM) on isolated nucleoli. Surface topography imaging revealed the beaded structure of the nucleolar surface. With the AFM's ability to measure forces, we were able to determine the stiffness of isolated nucleoli. We could establish that the nucleolar stiffness varies upon drastic morphological changes induced by transcription and proteasome inhibition. Furthermore, upon ribosomal proteins and LaminB1 knockdowns, the nucleolar stiffness was increased. This led us to propose a model where the nucleolus has steady-state stiffness dependent on ribosome biogenesis activity and requires LaminB1 for its flexibility.
Collapse
Affiliation(s)
- Emilie Louvet
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan,
| | | | | | | |
Collapse
|
22
|
Dividing cells regulate their lipid composition and localization. Cell 2014; 156:428-39. [PMID: 24462247 PMCID: PMC3909459 DOI: 10.1016/j.cell.2013.12.015] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 10/16/2013] [Accepted: 12/04/2013] [Indexed: 12/18/2022]
Abstract
Although massive membrane rearrangements occur during cell division, little is known about specific roles that lipids might play in this process. We report that the lipidome changes with the cell cycle. LC-MS-based lipid profiling shows that 11 lipids with specific chemical structures accumulate in dividing cells. Using AFM, we demonstrate differences in the mechanical properties of live dividing cells and their isolated lipids relative to nondividing cells. In parallel, systematic RNAi knockdown of lipid biosynthetic enzymes identified enzymes required for division, which highly correlated with lipids accumulated in dividing cells. We show that cells specifically regulate the localization of lipids to midbodies, membrane-based structures where cleavage occurs. We conclude that cells actively regulate and modulate their lipid composition and localization during division, with both signaling and structural roles likely. This work has broader implications for the active and sustained participation of lipids in basic biology. Systematic, comprehensive lipid analyses in dividing cells and midbodies AFM shows dividing cells and their lipids have specific physical properties Screen of lipid biosynthetic enzymes reveals 23 genes required for division Perturbing lipid levels alters actin cytoskeleton and cell stiffness
Collapse
|
23
|
Haase K, Pelling AE. Resiliency of the plasma membrane and actin cortex to large-scale deformation. Cytoskeleton (Hoboken) 2013; 70:494-514. [PMID: 23929821 DOI: 10.1002/cm.21129] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 07/23/2013] [Accepted: 07/29/2013] [Indexed: 01/05/2023]
Abstract
The tight coupling between the plasma membrane and actin cortex allows cells to rapidly change shape in response to mechanical cues and during physiological processes. Mechanical properties of the membrane are critical for organizing the actin cortex, which ultimately governs the conversion of mechanical information into signaling. The cortex has been shown to rapidly remodel on timescales of seconds to minutes, facilitating localized deformations and bundling dynamics that arise during the exertion of mechanical forces and cellular deformations. Here, we directly visualized and quantified the time-dependent deformation and recovery of the membrane and actin cortex of HeLa cells in response to externally applied loads both on- and off-nucleus using simultaneous confocal and atomic force microscopy. The local creep-like deformation of the membrane and actin cortex depends on both load magnitude and duration and does not appear to depend on cell confluency. The membrane and actin cortex rapidly recover their initial shape after prolonged loading (up to 10 min) with large forces (up to 20 nN) and high aspect ratio deformations. Cytoplasmic regions surrounding the nucleus are shown to be more resistant to long-term creep than nuclear regions. These dynamics are highly regulated by actomyosin contractility and an intact actin cytoskeleton. Results suggest that in response to local deformations, the nucleus does not appear to provide significant resistance or play a major role in cell shape recovery. The membrane and actin cortex clearly possess remarkable mechanical stability, critical for the transduction of mechanical deformation into long term biochemical signals and cellular remodeling.
Collapse
Affiliation(s)
- Kristina Haase
- Department of Physics, University of Ottawa, MacDonald Hall, 150 Louis Pasteur, Ottawa, Ontario, Canada
| | | |
Collapse
|
24
|
Guillaume-Gentil O, Potthoff E, Ossola D, Dörig P, Zambelli T, Vorholt JA. Force-controlled fluidic injection into single cell nuclei. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:1904-7. [PMID: 23166090 DOI: 10.1002/smll.201202276] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Indexed: 05/03/2023]
Affiliation(s)
- Orane Guillaume-Gentil
- ETH Zurich, Institute of Microbiology, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
25
|
Imaging living cells surface and quantifying its properties at high resolution using AFM in QI™ mode. Micron 2013; 48:26-33. [PMID: 23522742 DOI: 10.1016/j.micron.2013.02.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 11/21/2022]
Abstract
Since the last 10 years, AFM has become a powerful tool to study biological samples. However, the classical modes offered (imaging or tapping mode) often damage sample that are too soft or loosely immobilized. If imaging and mechanical properties are required, it requests long recording time as two different experiments must be conducted independently. In this study we compare the new QI™ mode against contact imaging mode and force volume mode, and we point out its benefit in the new challenges in biology on six different models: Escherichia coli, Candida albicans, Aspergillus fumigatus, Chinese hamster ovary cells and their isolated nuclei, and human colorectal tumor cells.
Collapse
|
26
|
Moussavi-Baygi R, Jamali Y, Karimi R, Mofrad MRK. Biophysical coarse-grained modeling provides insights into transport through the nuclear pore complex. Biophys J 2011; 100:1410-9. [PMID: 21402022 DOI: 10.1016/j.bpj.2011.01.061] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/13/2010] [Accepted: 01/19/2011] [Indexed: 11/16/2022] Open
Abstract
The nuclear pore complex (NPC) is the gatekeeper of the nucleus, capable of actively discriminating between the active and inert cargo while accommodating a high rate of translocations. The biophysical mechanisms underlying transport, however, remain unclear due to the lack of information about biophysical factors playing role in transport. Based on published experimental data, we have established a coarse-grained model of an intact NPC structure to examine nucleocytoplasmic transport with refined spatial and temporal resolutions. Using our model, we estimate the transport time versus cargo sizes. Our findings suggest that the mean transport time of cargos smaller than 15 nm is independent of size, while beyond this size, there is a sharp increase in the mean transport time. The model confirms that kap-FG hydrophobicity is sufficient for active cargo transport. Moreover, our model predicts that during translocation, small and large cargo-complexes are hydrophobically attached to FG-repeat domains for 86 and 96% of their transport time, respectively. Inside the central channel FG-repeats form a thick layer on the wall leaving an open tube. The cargo-complex is almost always attached to this layer and diffuses back and forth, regardless of the cargo size. Finally, we propose a plausible model for transport in which the NPC can be viewed as a lubricated gate. This model incorporates basic assumptions underlying virtual-gate and reduction-of-dimensionality models with the addition of the FG-layer inside the central channel acting as a lubricant.
Collapse
Affiliation(s)
- R Moussavi-Baygi
- Molecular Cell Biomechanics Laboratory, Department of Bioengineering, University of California, Berkeley, California, USA
| | | | | | | |
Collapse
|
27
|
Moussavi-Baygi R, Jamali Y, Karimi R, Mofrad MRK. Brownian dynamics simulation of nucleocytoplasmic transport: a coarse-grained model for the functional state of the nuclear pore complex. PLoS Comput Biol 2011; 7:e1002049. [PMID: 21673865 PMCID: PMC3107250 DOI: 10.1371/journal.pcbi.1002049] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 03/28/2011] [Indexed: 11/19/2022] Open
Abstract
The nuclear pore complex (NPC) regulates molecular traffic across the nuclear envelope (NE). Selective transport happens on the order of milliseconds and the length scale of tens of nanometers; however, the transport mechanism remains elusive. Central to the transport process is the hydrophobic interactions between karyopherins (kaps) and Phe-Gly (FG) repeat domains. Taking into account the polymeric nature of FG-repeats grafted on the elastic structure of the NPC, and the kap-FG hydrophobic affinity, we have established a coarse-grained model of the NPC structure that mimics nucleocytoplasmic transport. To establish a foundation for future works, the methodology and biophysical rationale behind the model is explained in details. The model predicts that the first-passage time of a 15 nm cargo-complex is about 2.6±0.13 ms with an inverse Gaussian distribution for statistically adequate number of independent Brownian dynamics simulations. Moreover, the cargo-complex is primarily attached to the channel wall where it interacts with the FG-layer as it passes through the central channel. The kap-FG hydrophobic interaction is highly dynamic and fast, which ensures an efficient translocation through the NPC. Further, almost all eight hydrophobic binding spots on kap-β are occupied simultaneously during transport. Finally, as opposed to intact NPCs, cytoplasmic filaments-deficient NPCs show a high degree of permeability to inert cargos, implying the defining role of cytoplasmic filaments in the selectivity barrier. Perforating and spanning the nuclear envelope (NE), the nuclear pore complex (NPC) is a supramolecular assembly that regulates all traffic between the nucleus and cytoplasm. As the unique gateway to the nucleus, NPC selectively facilitates the transport of large cargo while offering a relatively unobstructed pathway for small molecules and ions. Despite the high throughput of about 1000 translocations per NPC per second, the NPC strictly controls the passage of individual cargos. However, the dynamic mechanism of nucleocytoplasmic transport is poorly understood. It is too difficult to experiment on the transport mechanism within the confined geometry of this tiny pore in vivo. Currently, only computational techniques can elucidate the detailed events happening at this tiny pore with a refined spatiotemporal resolution to account for transient bonds. Based on experimental data regarding the NPC structure and nucleocytoplasmic transport, we have established a coarse-grained model of the functional state of the NPC. The model mimics nucleocytoplasmic transport and allows us to directly observe the processes happening within the pore from a biophysical perspective. The first-passage time of a single cargo-complex is found to be about 2.6 ms. Furthermore, kap-FG hydrophobic bonds are highly dynamic and short-lived, ensuring efficient transport.
Collapse
Affiliation(s)
- Ruhollah Moussavi-Baygi
- Molecular Cell Biomechanics Laboratory, Department of Bioengineering, University of California, Berkeley, California, United States of America
| | - Yousef Jamali
- Molecular Cell Biomechanics Laboratory, Department of Bioengineering, University of California, Berkeley, California, United States of America
| | - Reza Karimi
- Molecular Cell Biomechanics Laboratory, Department of Bioengineering, University of California, Berkeley, California, United States of America
| | - Mohammad R. K. Mofrad
- Molecular Cell Biomechanics Laboratory, Department of Bioengineering, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
28
|
Modern Atomic Force Microscopy and Its Application to the Study of Genome Architecture. SCANNING PROBE MICROSCOPY IN NANOSCIENCE AND NANOTECHNOLOGY 2010. [DOI: 10.1007/978-3-642-03535-7_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|