1
|
Leithead AB, Tasker JG, Harony‐Nicolas H. The interplay between glutamatergic circuits and oxytocin neurons in the hypothalamus and its relevance to neurodevelopmental disorders. J Neuroendocrinol 2021; 33:e13061. [PMID: 34786775 PMCID: PMC8951898 DOI: 10.1111/jne.13061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/14/2021] [Accepted: 10/30/2021] [Indexed: 11/27/2022]
Abstract
Oxytocin (OXT) neurons of the hypothalamus are at the center of several physiological functions, including milk ejection, uterus contraction, and maternal and social behavior. In lactating females, OXT neurons show a pattern of burst firing and inter-neuron synchronization during suckling that leads to pulsatile release of surges of OXT into the bloodstream to stimulate milk ejection. This pattern of firing and population synchronization may be facilitated in part by hypothalamic glutamatergic circuits, as has been observed in vitro using brain slices obtained from male rats and neonates. However, it remains unknown how hypothalamic glutamatergic circuits influence OXT cell activity outside the context of lactation. In this review, we summarize the in vivo and in vitro studies that describe the synchronized burst firing pattern of OXT neurons and the implication of hypothalamic glutamate in this pattern of firing. We also make note of the few studies that have traced glutamatergic afferents to the hypothalamic paraventricular and supraoptic nuclei. Finally, we discuss the genetic findings implicating several glutamatergic genes in neurodevelopmental disorders, including autism spectrum disorder, thus underscoring the need for future studies to investigate the impact of these mutations on hypothalamic glutamatergic circuits and the OXT system.
Collapse
Affiliation(s)
- Amanda B. Leithead
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Seaver Autism Center for Research and TreatmentNew YorkNYUSA
- Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Friedman Brain Institute at the Icahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Jeffrey G. Tasker
- Neurobiology DivisionDepartment of Cell and Molecular BiologyTulane UniversityNew OrleansLAUSA
| | - Hala Harony‐Nicolas
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Seaver Autism Center for Research and TreatmentNew YorkNYUSA
- Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Friedman Brain Institute at the Icahn School of Medicine at Mount SinaiNew YorkNYUSA
- Mindich Child Health and Development Institute at the Icahn School of Medicine at Mount SinaiNew YorkNYUSA
| |
Collapse
|
2
|
Wang SC, Parpura V, Wang YF. Astroglial Regulation of Magnocellular Neuroendocrine Cell Activities in the Supraoptic Nucleus. Neurochem Res 2021; 46:2586-2600. [PMID: 33216313 PMCID: PMC8134618 DOI: 10.1007/s11064-020-03172-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 01/02/2023]
Abstract
Studies on the interactions between astrocytes and neurons in the hypothalamo-neurohypophysial system have significantly facilitated our understanding of the regulation of neural activities. This has been exemplified in the interactions between astrocytes and magnocellular neuroendocrine cells (MNCs) in the supraoptic nucleus (SON), specifically during osmotic stimulation and lactation. In response to changes in neurochemical environment in the SON, astrocytic morphology and functions change significantly, which further modulates MNC activity and the secretion of vasopressin and oxytocin. In osmotic regulation, short-term dehydration or water overload causes transient retraction or expansion of astrocytic processes, which increases or decreases the activity of SON neurons, respectively. Prolonged osmotic stimulation causes adaptive change in astrocytic plasticity in the SON, which allows osmosensory neurons to reserve osmosensitivity at new levels. During lactation, changes in neurochemical environment cause retraction of astrocytic processes around oxytocin neurons, which increases MNC's ability to secrete oxytocin. During suckling by a baby/pup, astrocytic processes in the mother/dams exhibit alternative retraction and expansion around oxytocin neurons, which mirrors intermittently synchronized activation of oxytocin neurons and the post-excitation inhibition, respectively. The morphological and functional plasticities of astrocytes depend on a series of cellular events involving glial fibrillary acidic protein, aquaporin 4, volume regulated anion channels, transporters and other astrocytic functional molecules. This review further explores mechanisms underlying astroglial regulation of the neuroendocrine neuronal activities in acute processes based on the knowledge from studies on the SON.
Collapse
Affiliation(s)
- Stephani C Wang
- Division of Cardiology, Department of Medicine, University of California-Irvine, Irvine, CA, USA
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, 35242, USA.
| | - Yu-Feng Wang
- Department of Physiology School of Basic Medical Sciences, Harbin Medical University, 157 Baojian Road, Nangang, Harbin, 150086, China.
| |
Collapse
|
3
|
Török B, Fazekas CL, Szabó A, Zelena D. Epigenetic Modulation of Vasopressin Expression in Health and Disease. Int J Mol Sci 2021; 22:ijms22179415. [PMID: 34502322 PMCID: PMC8430944 DOI: 10.3390/ijms22179415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
Vasopressin is a ubiquitous molecule playing an important role in a wide range of physiological processes thereby implicated in the pathomechanism of many disorders. Its effect is well characterized through V2 receptors, which regulates the water resorption in kidney, while its vasoconstrictory effect through V1a receptor also received a lot of attention in the maintenance of blood pressure during shock. However, the most striking is its central effect both through the V1b receptors in stress-axis regulation as well as through V1a receptors regulating many aspects of our behavior (e.g., social behavior, learning and memory). Vasopressin has been implicated in the development of depression, due to its connection with chronic stress, as well as schizophrenia because of its involvement in social interactions and memory processes. Epigenetic changes may also play a role in the development of these disorders. The possible mechanism includes DNA methylation, histone modification and/or micro RNAs, and these possible regulations will be in the focus of our present review.
Collapse
Affiliation(s)
- Bibiána Török
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (B.T.); (C.L.F.); (A.S.)
- János Szentágothai School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Csilla Lea Fazekas
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (B.T.); (C.L.F.); (A.S.)
- János Szentágothai School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Adrienn Szabó
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (B.T.); (C.L.F.); (A.S.)
- János Szentágothai School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Dóra Zelena
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (B.T.); (C.L.F.); (A.S.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
4
|
Lovett-Barron M, Chen R, Bradbury S, Andalman AS, Wagle M, Guo S, Deisseroth K. Multiple convergent hypothalamus-brainstem circuits drive defensive behavior. Nat Neurosci 2020; 23:959-967. [PMID: 32572237 PMCID: PMC7687349 DOI: 10.1038/s41593-020-0655-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/13/2020] [Indexed: 12/17/2022]
Abstract
The hypothalamus is composed of many neuropeptidergic cell populations and directs multiple survival behaviors, including defensive responses to threats. However, the relationship between the peptidergic identity of neurons and their roles in behavior remains unclear. Here, we address this issue by studying the function of multiple neuronal populations in the zebrafish hypothalamus during defensive responses to a variety of homeostatic threats. Cellular registration of large-scale neural activity imaging to multiplexed in situ gene expression revealed that neuronal populations encoding behavioral features encompass multiple overlapping sets of neuropeptidergic cell classes. Manipulations of different cell populations showed that multiple sets of peptidergic neurons play similar behavioral roles in this fast-timescale behavior through glutamate co-release and convergent output to spinal-projecting premotor neurons in the brainstem. Our findings demonstrate that homeostatic threats recruit neurons across multiple hypothalamic cell populations, which cooperatively drive robust defensive behaviors.
Collapse
Affiliation(s)
| | - Ritchie Chen
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Susanna Bradbury
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Aaron S Andalman
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Mahendra Wagle
- Department of Bioengineering and Therapeutic Sciences, Programs in Human Genetics and Biological Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, Programs in Human Genetics and Biological Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Li D, Liu X, Liu T, Liu H, Tong L, Jia S, Wang YF. Neurochemical regulation of the expression and function of glial fibrillary acidic protein in astrocytes. Glia 2019; 68:878-897. [PMID: 31626364 DOI: 10.1002/glia.23734] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/27/2019] [Accepted: 09/17/2019] [Indexed: 12/30/2022]
Abstract
Glial fibrillary acidic protein (GFAP), a type III intermediate filament, is a marker of mature astrocytes. The expression of GFAP gene is regulated by many transcription factors (TFs), mainly Janus kinase-2/signal transducer and activator of transcription 3 cascade and nuclear factor κ-light-chain-enhancer of activated B cell signaling. GFAP expression is also modulated by protein kinase and other signaling molecules that are elicited by neuronal activity and hormones. Abnormal expression of GFAP proteins occurs in neuroinflammation, neurodegeneration, brain edema-eliciting diseases, traumatic brain injury, psychiatric disorders and others. GFAP, mainly in α-isoform, is the major component of cytoskeleton and the scaffold of astrocytes, which is essential for the maintenance of astrocytic structure and shape. GFAP also has highly morphological plasticity because of its quick changes in assembling and polymerizing states in response to environmental challenges. This plasticity and its corresponding cellular morphological changes endow astrocytes the functions of physical barrier between adjacent neurons and stabilizer of extracellular environment. Moreover, GFAP colocalizes and even molecularly associates with many functional molecules. This feature allows GFAP to function as a platform for direct interactions between different molecules. Last, GFAP involves transportation and localization of other functional proteins and thus serves as a protein transport guide in astrocytes. This guiding role of GFAP involves an elastic retraction and extension cytoskeletal network that couples with GFAP reassembling, transporting, and membrane protein recycling machinery. This paper reviews our current understanding of the expression and functions of GFAP as well as their regulation.
Collapse
Affiliation(s)
- Dongyang Li
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Xiaoyu Liu
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Tianming Liu
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Haitao Liu
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Li Tong
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Shuwei Jia
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Yu-Feng Wang
- Department of Physiology, Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
Jiang-Xie LF, Yin L, Zhao S, Prevosto V, Han BX, Dzirasa K, Wang F. A Common Neuroendocrine Substrate for Diverse General Anesthetics and Sleep. Neuron 2019; 102:1053-1065.e4. [PMID: 31006556 DOI: 10.1016/j.neuron.2019.03.033] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/12/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022]
Abstract
How general anesthesia (GA) induces loss of consciousness remains unclear, and whether diverse anesthetic drugs and sleep share a common neural pathway is unknown. Previous studies have revealed that many GA drugs inhibit neural activity through targeting GABA receptors. Here, using Fos staining, ex vivo brain slice recording, and in vivo multi-channel electrophysiology, we discovered a core ensemble of hypothalamic neurons in and near the supraoptic nucleus, consisting primarily of neuroendocrine cells, which are persistently and commonly activated by multiple classes of GA drugs. Remarkably, chemogenetic or brief optogenetic activations of these anesthesia-activated neurons (AANs) strongly promote slow-wave sleep and potentiates GA, whereas conditional ablation or inhibition of AANs led to diminished slow-wave oscillation, significant loss of sleep, and shortened durations of GA. These findings identify a common neural substrate underlying diverse GA drugs and natural sleep and reveal a crucial role of the neuroendocrine system in regulating global brain states. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Li-Feng Jiang-Xie
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Luping Yin
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Shengli Zhao
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Vincent Prevosto
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Bao-Xia Han
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kafui Dzirasa
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Fan Wang
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
7
|
Abstract
The brain hosts a vast and diverse repertoire of neuropeptides, a class of signalling molecules often described as neurotransmitters. Here I argue that this description entails a catalogue of misperceptions, misperceptions that feed into a narrative in which information processing in the brain can be understood only through mapping neuronal connectivity and by studying the transmission of electrically conducted signals through chemical synapses. I argue that neuropeptide signalling in the brain involves primarily autocrine, paracrine and neurohormonal mechanisms that do not depend on synaptic connectivity and that it is not solely dependent on electrical activity but on mechanisms analogous to secretion from classical endocrine cells. As in classical endocrine systems, to understand the role of neuropeptides in the brain, we must understand not only how their release is regulated, but also how their synthesis is regulated and how the sensitivity of their targets is regulated. We must also understand the full diversity of effects of neuropeptides on those targets, including their effects on gene expression.
Collapse
Affiliation(s)
- Gareth Leng
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Correspondence should be addressed to G Leng:
| |
Collapse
|
8
|
Wang YF, Parpura V. Astroglial Modulation of Hydromineral Balance and Cerebral Edema. Front Mol Neurosci 2018; 11:204. [PMID: 29946238 PMCID: PMC6007284 DOI: 10.3389/fnmol.2018.00204] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Maintenance of hydromineral balance (HB) is an essential condition for life activity at cellular, tissue, organ and system levels. This activity has been considered as a function of the osmotic regulatory system that focuses on hypothalamic vasopressin (VP) neurons, which can reflexively release VP into the brain and blood to meet the demand of HB. Recently, astrocytes have emerged as an essential component of the osmotic regulatory system in addition to functioning as a regulator of the HB at cellular and tissue levels. Astrocytes express all the components of osmoreceptors, including aquaporins, molecules of the extracellular matrix, integrins and transient receptor potential channels, with an operational dynamic range allowing them to detect and respond to osmotic changes, perhaps more efficiently than neurons. The resultant responses, i.e., astroglial morphological and functional plasticity in the supraoptic and paraventricular nuclei, can be conveyed, physically and chemically, to adjacent VP neurons, thereby influencing HB at the system level. In addition, astrocytes, particularly those in the circumventricular organs, are involved not only in VP-mediated osmotic regulation, but also in regulation of other osmolality-modulating hormones, including natriuretic peptides and angiotensin. Thus, astrocytes play a role in local/brain and systemic HB. The adaptive astrocytic reactions to osmotic challenges are associated with signaling events related to the expression of glial fibrillary acidic protein and aquaporin 4 to promote cell survival and repair. However, prolonged osmotic stress can initiate inflammatory and apoptotic signaling processes, leading to glial dysfunction and a variety of brain diseases. Among many diseases of brain injury and hydromineral disorders, cytotoxic and osmotic cerebral edemas are the most common pathological manifestation. Hyponatremia is the most common cause of osmotic cerebral edema. Overly fast correction of hyponatremia could lead to central pontine myelinolysis. Ischemic stroke exemplifies cytotoxic cerebral edema. In this review, we summarize and analyze the osmosensory functions of astrocytes and their implications in cerebral edema.
Collapse
Affiliation(s)
- Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
9
|
Reppucci C, Gergely C, Veenema A. Activation patterns of vasopressinergic and oxytocinergic brain regions following social play exposure in juvenile male and female rats. J Neuroendocrinol 2018; 30:10.1111/jne.12582. [PMID: 29424020 PMCID: PMC6085164 DOI: 10.1111/jne.12582] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/04/2018] [Indexed: 11/28/2022]
Abstract
Social play is a highly rewarding and motivated behavior predominately displayed by juveniles and expressed by nearly all mammalian species. Prior work suggested that the vasopressin (AVP) and oxytocin (OT) systems can regulate the expression of social play in sex-specific ways. Here we investigated whether there are sex differences in the recruitment of vasopressinergic and oxytocinergic brain regions following social play exposure in juvenile rats. Single-housed rats were allowed to play, in their home cage, with an age- and sex-matched unfamiliar conspecific for 10 min, or received similar handling but no partner. Double-labeled fluorescent immunohistochemistry for Fos and either AVP or OT was completed in adjacent series of tissue to determine recruitment of AVP- and OT-immunoreactive neurons in response to social play. Exposure to social play did not increase recruitment of AVP or OT neurons in the supraoptic (SO) or paraventricular (PVH) hypothalamic nuclei of either sex compared to the no-play control condition. Interestingly, there was a robust sex difference in SO recruitment, irrespective of social play condition, with males exhibiting twice the recruitment of SO-AVP and SO-OT neurons compared to females. Lastly, exposure to social play increased recruitment of the posterior bed nuclei of the stria terminalis (pBST) and the posterodorsal medial amygdalar nucleus (MEApd) compared to the no-play control condition, and this effect was most pronounced in females. Our findings revealed sex differences in the recruitment of brain regions (i) independent of play condition (i.e., SO) possibly representing a sex difference in the baseline levels of AVP and OT signaling required for typical functioning and (ii) specific to play condition (i.e., pBST, MEApd). In sum, this study provides further evidence that the neural substrates underlying social play behavior are sex-specific. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- C.J. Reppucci
- Department of Psychology & Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| | - C.K. Gergely
- Department of Psychology, Boston College, Chestnut Hill, MA 02467, United States
| | - A.H. Veenema
- Department of Psychology & Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| |
Collapse
|
10
|
Horváth HR, Fazekas CL, Balázsfi D, Jain SK, Haller J, Zelena D. Contribution of Vesicular Glutamate Transporters to Stress Response and Related Psychopathologies: Studies in VGluT3 Knockout Mice. Cell Mol Neurobiol 2018; 38:37-52. [PMID: 28776199 PMCID: PMC11482036 DOI: 10.1007/s10571-017-0528-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
Abstract
Maintenance of the homeostasis in a constantly changing environment is a fundamental process of life. Disturbances of the homeostatic balance is defined as stress response and is induced by wide variety of challenges called stressors. Being the main excitatory neurotransmitter of the central nervous system glutamate is important in the adaptation process of stress regulating both the catecholaminergic system and the hypothalamic-pituitary-adrenocortical axis. Data are accumulating about the role of different glutamatergic receptors at all levels of these axes, but little is known about the contribution of different vesicular glutamate transporters (VGluT1-3) characterizing the glutamatergic neurons. Here we summarize basic knowledge about VGluTs, their role in physiological regulation of stress adaptation, as well as their contribution to stress-related psychopathology. Most of our knowledge comes from the VGluT3 knockout mice, as VGluT1 and 2 knockouts are not viable. VGluT3 was discovered later than, and is not as widespread as the VGluT1 and 2. It may co-localize with other transmitters, and participate in retrograde signaling; as such its role might be unique. Previous reports using VGluT3 knockout mice showed enhanced anxiety and innate fear compared to wild type. Moreover, these knockout animals had enhanced resting corticotropin-releasing hormone mRNA levels in the hypothalamus and disturbed glucocorticoid stress responses. In conclusion, VGluT3 participates in stress adaptation regulation. The neuroendocrine changes observed in VGluT3 knockout mice may contribute to their anxious, fearful phenotype.
Collapse
Affiliation(s)
- Hanga Réka Horváth
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 43, Szigony utca, Szigony 43, 1083, Budapest, Hungary
| | - Csilla Lea Fazekas
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 43, Szigony utca, Szigony 43, 1083, Budapest, Hungary
| | - Diána Balázsfi
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 43, Szigony utca, Szigony 43, 1083, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, 26, Üllői út, 1085, Budapest, Hungary
| | | | - József Haller
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 43, Szigony utca, Szigony 43, 1083, Budapest, Hungary
| | - Dóra Zelena
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 43, Szigony utca, Szigony 43, 1083, Budapest, Hungary.
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary.
| |
Collapse
|
11
|
Wang YF, Sun MY, Hou Q, Hamilton KA. GABAergic inhibition through synergistic astrocytic neuronal interaction transiently decreases vasopressin neuronal activity during hypoosmotic challenge. Eur J Neurosci 2013; 37:1260-9. [PMID: 23406012 DOI: 10.1111/ejn.12137] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/05/2012] [Accepted: 12/19/2012] [Indexed: 11/30/2022]
Abstract
The neuropeptide vasopressin is crucial to mammalian osmotic regulation. Local hypoosmotic challenge transiently decreases and then increases vasopressin secretion. To investigate mechanisms underlying this transient response, we examined the effects of hypoosmotic challenge on the electrical activity of rat hypothalamic supraoptic nucleus (SON) vasopressin neurons using patch-clamp recordings. We found that 5 min exposure of hypothalamic slices to hypoosmotic solution transiently increased inhibitory postsynaptic current (IPSC) frequency and reduced the firing rate of vasopressin neurons. Recovery occurred by 10 min of exposure, even though the osmolality remained low. The γ-aminobutyric acid (GABA)A receptor blocker, gabazine, blocked the IPSCs and the hypoosmotic suppression of firing. The gliotoxin l-aminoadipic acid blocked the increase in IPSC frequency at 5 min and the recovery of firing at 10 min, indicating astrocytic involvement in hypoosmotic modulation of vasopressin neuronal activity. Moreover, β-alanine, an osmolyte of astrocytes and GABA transporter (GAT) inhibitor, blocked the increase in IPSC frequency at 5 min of hypoosmotic challenge. Confocal microscopy of immunostained SON sections revealed that astrocytes and magnocellular neurons both showed positive staining of vesicular GATs (VGAT). Hypoosmotic stimulation in vivo reduced the number of VGAT-expressing neurons, and increased co-localisation and molecular association of VGAT with glial fibrillary acidic protein that increased significantly by 10 min. By 30 min, neuronal VGAT labelling was partially restored, and astrocytic VGAT was relocated to the ventral portion while it decreased in the somatic zone of the SON. Thus, synergistic astrocytic and neuronal GABAergic inhibition could ensure that vasopressin neuron firing is only transiently suppressed under hypoosmotic conditions.
Collapse
Affiliation(s)
- Yu-Feng Wang
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| | | | | | | |
Collapse
|
12
|
Wang YF, Sun MY, Hou Q, Parpura V. Hyposmolality differentially and spatiotemporally modulates levels of glutamine synthetase and serine racemase in rat supraoptic nucleus. Glia 2013; 61:529-38. [PMID: 23361961 DOI: 10.1002/glia.22453] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 11/09/2012] [Indexed: 01/22/2023]
Abstract
Prolonged hyposmotic challenge (HOC) has a dual effect on vasopressin (VP) secretion [Yagil and Sladek (1990) Am J Physiol 258(2 Pt 2):R492-R500]. We describe an electrophysiological correlate of this phenomenon, whereby in vitro HOC transiently reduced the firing activity of VP neurons within the supraoptic nucleus of brain slices, which was followed by a rebound increase of their activity; this was paralleled by changes in the level of proteins relevant to astroglia-neuronal interactions. Hence, in vitro HOC transiently (at 5 min) increased the level of astrocyte-specific glial fibrillary acidic protein (GFAP), which then declined to control or base level (at 20 min); this was blocked by the gliotoxin L-aminoadipic acid, but not by tetanus toxin, which was used to inhibit neurotransmission. Similarly, in vivo HOC led to changes in GFAP level, which after an early increase (10 min) returned to normal (30 min). Immunoassays revealed that neuronal, but not astrocytic, expression of serine racemase (SR) was increased at the late stage of HOC in vivo, whereas at an early stage there was a transient increase in level of the astrocyte-specific glutamine synthetase (GS). Furthermore, there was an increased molecular association between GFAP and GS at 10 min, whereas SR increased its association with the neuronal nuclear antigen NeuN at 30 min. These results suggest that the dual effect of HOC on VP neuronal secretion/activity could be related to metabolic/signaling changes in astrocytes (glutamate-glutamine conversion) and neurons (D-serine synthesis/ammonia production), which may account for the rebound in VP neuronal activity, presumably by promoting the activation of neuronal glutamate receptors.
Collapse
Affiliation(s)
- Yu-Feng Wang
- Department of Cell Biology and Neuroscience, University of California, Riverside, California, USA.
| | | | | | | |
Collapse
|
13
|
Ferri SL, Flanagan-Cato LM. Oxytocin and dendrite remodeling in the hypothalamus. Horm Behav 2012; 61:251-8. [PMID: 22326383 PMCID: PMC3312999 DOI: 10.1016/j.yhbeh.2012.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 01/13/2012] [Accepted: 01/14/2012] [Indexed: 10/14/2022]
Abstract
For most people, their quality of life depends on their successful interdependence with others, which requires sophisticated social cognition, communication, and emotional bonds. Across the lifespan, new bonds must be forged and maintained, and conspecific menaces must be managed. The dynamic nature of the human social landscape suggests ongoing specific alterations in neural circuitry across several brain systems to subserve social behavior. To discover the biological mechanisms that contribute to normal social activities, animal models of social behavior have been developed. One valuable model system has been female rat sexual behavior, which is governed by cyclic variation of ovarian hormones. This behavior is modulated by the neuropeptide oxytocin (OT) through its actions in the hypothalamic ventromedial nucleus (VMH). The fluctuation of this behavior is associated with dendrite remodeling, like several other examples of behavioral plasticity. This review compares hormone-induced plasticity in the VMH with other examples of dendrite plasticity across the mammalian nervous system, namely the neurobehavioral paradigms of environmental enrichment, chronic stress, and incentive sensitization, which affect the neocortex, hippocampal formation, and ventral striatum, respectively. This comparison suggests that the effects of ovarian hormones on VMH neurons in rats, given the simple dendritic arbor and short time course for dendrite remodeling, provide a dual opportunity for mechanistic and functional studies that will shed light on i) the neural actions of OT that regulate social behavior and, ii) behaviorally relevant dendrite regulation in a variety of brain structures. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.
Collapse
Affiliation(s)
- Sarah L Ferri
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
14
|
Stout RF, Parpura V. Cell culturing of Caenorhabditis elegans glial cells for the assessment of cytosolic Ca²⁺ dynamics. Methods Mol Biol 2012; 814:153-74. [PMID: 22144307 DOI: 10.1007/978-1-61779-452-0_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cell culture has emerged as an important research method for studying various types of primary cells, including neurons and glial cells. This method has been especially instrumental in assessing intracellular Ca(2+) dynamics of neural cells. The invertebrate model organism Caenorhabditis elegans has been extensively used in neurobiology to study wide-spread issues ranging from gene regulation to behavior. We present some of the basic morphological characteristics of the four C. elegans glial cells residing in the cephalic sensilla of the worm, followed by a description of cell culturing methods for these glial cells. We describe the combined genetic and fluorescence microscopy approaches for identification of C. elegans glial cells in culture and assessment of their cytosolic Ca(2+) dynamics.
Collapse
Affiliation(s)
- Randy F Stout
- Department of Neurobiology, University of Alabama, Birmingham, AL, USA
| | | |
Collapse
|
15
|
Griffin GD, Flanagan-Cato LM. Ovarian hormone action in the hypothalamic ventromedial nucleus: remodelling to regulate reproduction. J Neuroendocrinol 2011; 23:465-71. [PMID: 21518031 PMCID: PMC3099740 DOI: 10.1111/j.1365-2826.2011.02143.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The ventromedial nucleus of the hypothalamus (VMH) is a major site for the control of female sexual behaviour by ovarian steroid hormones. This review explores recent details that have emerged regarding the ovarian hormone-induced remodelling of neural circuits within the VMH in adult female rats, with the goal of refining the model of the VMH neural circuit. VMH neurones exhibit simple dendritic arbours, with a single long primary dendrite (LPD) and several short primary dendrites. We recently found that ovarian hormones have unanticipated differential effects on the length of the LPDs, suggesting an intricate synaptic reorganisation. LPDs extend into the lateral fibre plexus where they contact oxytocin-labelled terminals. Oestradiol treatment rearranges this oxytocin innervation, in particular by withdrawing some of the LPDs and intensifying the oxytocin input to the remaining dendrites. These changes are reversed with concomitant progesterone treatment. Incorporating these new results, we have updated our working model of hormone-induced synaptic reorganisation in the VMH, emphasising the rebalancing of local versus extrinsic connectivity. The new working model synthesises the recent evidence for rewiring with insights from electrophysiological and behavioural pharmacological studies that pertain to the roles of oxytocin and glutamate in VMH neural activity and mating behaviour.
Collapse
Affiliation(s)
- G D Griffin
- Department of Psychology and the Mahoney Institute of Neurological Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
16
|
Hu HJ, Gereau RW. Metabotropic glutamate receptor 5 regulates excitability and Kv4.2-containing K⁺ channels primarily in excitatory neurons of the spinal dorsal horn. J Neurophysiol 2011; 105:3010-21. [PMID: 21451053 DOI: 10.1152/jn.01050.2010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors play important roles in the modulation of nociception. Previous studies demonstrated that mGlu5 modulates nociceptive plasticity via activation of ERK signaling. We have reported recently that the Kv4.2 K(+) channel subunit underlies A-type currents in spinal cord dorsal horn neurons and that this channel is modulated by mGlu5-ERK signaling. In the present study, we tested the hypothesis that modulation of Kv4.2 by mGlu5 occurs in excitatory spinal dorsal horn neurons. With the use of a transgenic mouse strain expressing enhanced green fluorescent protein (GFP) under control of the promoter for the γ-amino butyric acid (GABA)-synthesizing enzyme, glutamic acid decarboxylase 67 (GAD67), we found that these GABAergic neurons express less Kv4.2-mediated A-type current than non-GAD67-GFP neurons. Furthermore, the mGlu1/5 agonist, (R,S)-3,5-dihydroxyphenylglycine, had no modulatory effects on A-type currents or neuronal excitability in this subgroup of GABAergic neurons but robustly modulated A-type currents and neuronal excitability in non-GFP-expressing neurons. Immunofluorescence studies revealed that Kv4.2 was highly colocalized with markers of excitatory neurons, such as vesicular glutamate transporter 1/2, PKCγ, and neurokinin 1, in cultured dorsal horn neurons. These results indicate that mGlu5-Kv4.2 signaling is associated with excitatory dorsal horn neurons and suggest that the pronociceptive effects of mGlu5 activation in the spinal cord likely involve enhanced excitability of excitatory neurons.
Collapse
Affiliation(s)
- Hui-Juan Hu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| | | |
Collapse
|
17
|
Griffin GD, Ferri-Kolwicz SL, Reyes BAS, Van Bockstaele EJ, Flanagan-Cato LM. Ovarian hormone-induced reorganization of oxytocin-labeled dendrites and synapses lateral to the hypothalamic ventromedial nucleus in female rats. J Comp Neurol 2011; 518:4531-45. [PMID: 20886620 DOI: 10.1002/cne.22470] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Central oxytocin (OT) modulates many social behaviors, including female rat sexual receptivity, quantified as the copulatory stance known as lordosis. The expression of the lordosis response is modulated by OT action in the ventromedial nucleus of the hypothalamus (VMH), as demonstrated by behavioral pharmacology experiments. However, the subcellular localization of OT in this brain region has been unclear. We tested the hypothesis that ovarian hormones reorganize OT-labeled pre- or postsynaptic elements in the fiber complex lateral to the VMH by using immunoelectron microscopy. OT immunolabeling occurred in axonal boutons identified by the presence of small, clear synaptic vesicles and double labeling with the presynaptic markers synaptophysin and vesicular glutamate transporter 2. OT immunoreactivity also was observed in dendritic profiles, verified with double labeling for the dendrite-specific marker microtubule-associated protein 2. Ovarian hormones did not alter the density of axonal boutons; however, estradiol treatment reduced the density of dendritic profiles by 34%. This effect was reversed when progesterone was given subsequent to estradiol. The effect of estradiol treatment was specific to dendrites that lacked OT immunostaining; the density of OT-labeled dendritic profiles remained constant during estradiol treatment. With the estradiol-induced exit of non-OT-labeled dendritic profiles, the remaining OT-labeled dendritic profiles experienced an increase in their number of synaptic contacts. Thus, hormone treatments that mimic the 4-day rat estrous cycle provoke a chemically coded reorganization of dendrite innervation in the fiber plexus lateral to the VMH that may underlie the hormone-specific effect of OT on reproductive behavior.
Collapse
Affiliation(s)
- Gerald D Griffin
- Neuroscience Graduate Group, Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6241, USA.
| | | | | | | | | |
Collapse
|
18
|
Fung SJ, Xi M, Zhang J, Torterolo P, Sampogna S, Morales FR, Chase MH. Projection neurons from the central nucleus of the amygdala to the nucleus pontis oralis. J Neurosci Res 2010; 89:429-36. [PMID: 21259329 DOI: 10.1002/jnr.22554] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/14/2010] [Accepted: 10/19/2010] [Indexed: 12/19/2022]
Abstract
The present retrograde labeling study was designed to determine the presence and pattern of projections from individual subdivisions of the central nucleus of the amygdala (CNA) to the nucleus pontis oralis (NPO), which is a critical brainstem site involved in the generation and maintenance of active (REM) sleep. Projections from the CNA were labeled with the retrograde tracer cholera toxin B-subunit (CTB), which was injected, unilaterally, via microiontophoresis, into the NPO. Sections of the amygdala were immunostained in order to identify CTB-labeled CNA neurons and CNA neurons that contained CTB plus the vesicular glutamate transporter 2 (VGLUT2), which is a marker for glutamatergic neurons. Histological analyses revealed that retrogradely labeled neurons that project to the NPO were localized, ipsilaterally, within the medial, lateral, and capsular subdivisions of the CNA. In addition, a substantial proportion (24%) of all retrogradely labeled CNA neurons also exhibited VGLUT2 immunoreactivity. The present study demonstrates that glutamatergic neurons, which are present within various subdivisions of the CNA, project directly to the NPO. These data lend credence to the hypothesis that NPO neurons that are involved in the control of active sleep are activated by glutamatergic projections from the amygdala.
Collapse
Affiliation(s)
- Simon J Fung
- VA Greater Los Angeles Healthcare System, Los Angeles, California, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
A transgenic mouse line for molecular genetic analysis of excitatory glutamatergic neurons. Mol Cell Neurosci 2010; 45:245-57. [PMID: 20600924 DOI: 10.1016/j.mcn.2010.06.016] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 06/18/2010] [Accepted: 06/25/2010] [Indexed: 12/22/2022] Open
Abstract
Excitatory glutamatergic neurons are part of most of the neuronal circuits in the mammalian nervous system. We have used BAC-technology to generate a BAC-Vglut2::Cre mouse line where Cre expression is driven by the vesicular glutamate transporter 2 (Vglut2) promotor. This BAC-Vglut2::Cre mouse line showed specific expression of Cre in Vglut2 positive cells in the spinal cord with no ectopic expression in GABAergic or glycinergic neurons. This mouse line also showed specific Cre expression in Vglut2 positive structures in the brain such as thalamus, hypothalamus, superior colliculi, inferior colliculi and deep cerebellar nuclei together with nuclei in the midbrain and hindbrain. Cre-mediated recombination was restricted to Cre expressing cells in the spinal cord and brain and occurred as early as E 12.5. Known Vglut2 positive neurons showed normal electrophysiological properties in the BAC-Vglut2::Cre transgenic mice. Altogether, this BAC-Vglut2::Cre mouse line provides a valuable tool for molecular genetic analysis of excitatory neuronal populations throughout the mouse nervous system.
Collapse
|
20
|
Abstract
In December 2009, Glenn Hatton died, and neuroendocrinology lost a pioneer who had done much to forge our present understanding of the hypothalamus and whose productivity had not faded with the passing years. Glenn, an expert in both functional morphology and electrophysiology, was driven by a will to understand the significance of his observations in the context of the living, behaving organism. He also had the wit to generate bold and challenging hypotheses, the wherewithal to expose them to critical and elegant experimental testing, and a way with words that gave his papers and lectures clarity and eloquence. The hypothalamo-neurohypophysial system offered a host of opportunities for understanding how physiological functions are fulfilled by the electrical activity of neurones, how neuronal behaviour changes with changing physiological states, and how morphological changes contribute to the physiological response. In the vision that Glenn developed over 35 years, the neuroendocrine brain is as dynamic in structure as it is adaptable in function. Its adaptability is reflected not only by mere synaptic plasticity, but also by changes in neuronal morphology and in the morphology of the glial cells. Astrocytes, in Glenn's view, were intimate partners of the neurones, partners with an essential role in adaptation to changing physiological demands.
Collapse
Affiliation(s)
- G Leng
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK.
| | | | | |
Collapse
|
21
|
Wang YF, Hamilton K. Chronic vs. acute interactions between supraoptic oxytocin neurons and astrocytes during lactation: role of glial fibrillary acidic protein plasticity. ScientificWorldJournal 2009; 9:1308-20. [PMID: 19936568 PMCID: PMC3548440 DOI: 10.1100/tsw.2009.148] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In this article, we review studies of astrocytic-neuronal interactions and their effects on the activity of oxytocin (OXT) neurons within the magnocellular hypothalamo-neurohypophysial system. Previous work over several decades has shown that withdrawal of astrocyte processes increases OXT neuron excitability in the hypothalamic supraoptic nucleus (SON) during lactation. However, chronically disabling astrocyte withdrawal does not significantly affect the functioning of OXT neurons during suckling. Nevertheless, acute changes in a cytoskeletal element of astrocytes, glial fibrillary acidic protein (GFAP), occur in concert with changes in OXT neuronal activity during suckling. Here, we compare these changes in GFAP and related proteins with chronic changes that persist throughout lactation. During lactation, a decrease in GFAP levels accompanies retraction of astrocyte processes surrounding OXT neurons in the SON, resulting from high extracellular levels of OXT. During the initial stage of suckling, acute increases in OXT levels further strengthen this GFAP reduction and facilitate the retraction of astrocyte processes. This change, in turn, facilitates burst discharges of OXT neurons and leads to a transient increase in excitatory neurochemicals. This transient neurochemical surge acts to reverse GFAP expression and results in postburst inhibition of OXT neurons. The acute changes in astrocyte GFAP levels seen during suckling likely recur periodically, accompanied by rhythmic changes in glutamate metabolism, water transport, gliotransmitter release, and spatial relationships between astrocytes and OXT neurons. In the neurohypophysis, astrocyte retraction and reversal with accompanying GFAP plasticity also likely occur during lactation and suckling, which facilitates OXT release coordinated with its action in the SON. These studies of the dynamic interactions that occur between astrocytes and OXT neurons mediated by GFAP extend our understanding of astrocyte functions within the central nervous system.
Collapse
Affiliation(s)
- Yu-Feng Wang
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, USA.
| | | |
Collapse
|
22
|
Ni Y, Parpura V. Dual regulation of Ca2+-dependent glutamate release from astrocytes: vesicular glutamate transporters and cytosolic glutamate levels. Glia 2009; 57:1296-305. [PMID: 19191347 DOI: 10.1002/glia.20849] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vesicular glutamate transporters (VGLUTs) are responsible for vesicular glutamate storage and exocytotic glutamate release in neurons and astrocytes. Here, we selectively and efficiently overexpressed individual VGLUT proteins (VGLUT1, 2, or 3) in solitary astrocytes and studied their effects on mechanical stimulation-induced Ca2+-dependent glutamate release. Neither VGLUT1 nor VGLUT2 overexpression changed the amount of glutamate release, whereas overexpression of VGLUT3 significantly enhanced Ca2+-dependent glutamate release from astrocytes. None of the VGLUT overexpression affected mechanically induced intracellular Ca2+ increase. Inhibition of glutamine synthetase activity by L-methionine sulfoximine in astrocytes, which leads to increased cytosolic glutamate concentration, greatly increased their mechanically induced Ca2+-dependent glutamate release, without affecting intracellular Ca2+ dynamics. Taken together, these data indicate that both VGLUT3 and the cytosolic concentration of glutamate are key limiting factors in regulating the Ca2+-dependent release of glutamate from astrocytes.
Collapse
Affiliation(s)
- Yingchun Ni
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
23
|
Characterization of the oxytocin system regulating affiliative behavior in female prairie voles. Neuroscience 2009; 162:892-903. [PMID: 19482070 DOI: 10.1016/j.neuroscience.2009.05.055] [Citation(s) in RCA: 229] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 05/07/2009] [Accepted: 05/26/2009] [Indexed: 11/21/2022]
Abstract
Oxytocin regulates partner preference formation and alloparental behavior in the socially monogamous prairie vole (Microtus ochrogaster) by activating oxytocin receptors in the nucleus accumbens of females. Mating facilitates partner preference formation, and oxytocin-immunoreactive fibers in the nucleus accumbens have been described in prairie voles. However, there has been no direct evidence of oxytocin release in the nucleus accumbens during sociosexual interactions, and the origin of the oxytocin fibers is unknown. Here we show for the first time that extracellular concentrations of oxytocin are increased in the nucleus accumbens of female prairie vole during unrestricted interactions with a male. We further show that the distribution of oxytocin-immunoreactive fibers in the nucleus accumbens is conserved in voles, mice and rats, despite remarkable species differences in oxytocin receptor binding in the region. Using a combination of site-specific and peripheral infusions of the retrograde tracer Fluorogold, we demonstrate that the nucleus accumbens oxytocin-immunoreactive fibers likely originate from paraventricular and supraoptic hypothalamic neurons. This distribution of retrogradely labeled neurons is consistent with the hypothesis that striatal oxytocin fibers arise from collaterals of magnocellular neurons of the neurohypophysial system. If correct, this may serve to coordinate peripheral and central release of oxytocin with appropriate behavioral responses associated with reproduction, including pair bonding after mating, and maternal responsiveness following parturition and during lactation.
Collapse
|
24
|
Abstract
A number of exciting findings have been made in astrocytes during the past 15 years that have led many researchers to redefine how the brain works. Astrocytes are now widely regarded as cells that propagate Ca(2+) over long distances in response to stimulation, and, similar to neurons, release transmitters (called gliotransmitters) in a Ca(2+)-dependent manner to modulate a host of important brain functions. Although these discoveries have been very exciting, it is essential to place them in the proper context of the approaches used to obtain them to determine their relevance to brain physiology. This review revisits the key observations made in astrocytes that greatly impact how they are thought to regulate brain function, including the existence of widespread propagating intercellular Ca(2+) waves, data suggesting that astrocytes signal to neurons through Ca(2+)-dependent release of glutamate, and evidence for the presence of vesicular machinery for the regulated exocytosis of gliotransmitters.
Collapse
Affiliation(s)
- Todd A Fiacco
- Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521, USA.
| | | | | |
Collapse
|
25
|
Zhou HY, Chen SR, Chen H, Pan HL. The glutamatergic nature of TRPV1-expressing neurons in the spinal dorsal horn. J Neurochem 2008; 108:305-18. [PMID: 19012737 DOI: 10.1111/j.1471-4159.2008.05772.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The transient receptor potential vanilloid receptor 1 (TRPV1) is expressed on primary afferent terminals and spinal dorsal horn neurons. However, the neurochemical phenotypes and functions of TRPV1-expressing post-synaptic neurons in the spinal cord are not clear. In this study, we tested the hypothesis that TRPV1-expressing dorsal horn neurons are glutamatergic. Immunocytochemical labeling revealed that TRPV1 and vesicular glutamate transporter-2 were colocalized in dorsal horn neurons and their terminals in the rat spinal cord. Resiniferatoxin (RTX) treatment or dorsal rhizotomy ablated TRPV1-expressing primary afferents but did not affect TRPV1- and vesicular glutamate transporter-2-expressing dorsal horn neurons. Capsaicin significantly increased the frequency of glutamatergic spontaneous excitatory post-synaptic currents and miniature excitatory post-synaptic currents in almost all the lamina II neurons tested in control rats. In RTX-treated or dorsal rhizotomized rats, capsaicin still increased the frequency of spontaneous excitatory post-synaptic currents and miniature excitatory post-synaptic currents in the majority of neurons examined, and this effect was abolished by a TRPV1 blocker or by non-NMDA receptor antagonist. In RTX-treated or in dorsal rhizotomized rats, capsaicin also produced an inward current in a subpopulation of lamina II neurons. However, capsaicin had no effect on GABAergic and glycinergic spontaneous inhibitory post-synaptic currents of lamina II neurons in RTX-treated or dorsal rhizotomized rats. Collectively, our study provides new histological and functional evidence that TRPV1-expressing dorsal horn neurons in the spinal cord are glutamatergic and that they mediate excitatory synaptic transmission. This finding is important to our understanding of the circuitry and phenotypes of intrinsic dorsal horn neurons in the spinal cord.
Collapse
Affiliation(s)
- Hong-Yi Zhou
- Department of Anesthesiology and Pain Medicine, The University of Texas M D Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
26
|
Abstract
L-glutamate, the main excitatory neurotransmitter, influences virtually all neurones of the neuroendocrine hypothalamus via synaptic mechanisms. Vesicular glutamate transporters (VGLUT1-3), which selectively accumulate L-glutamate into synaptic vesicles, provide markers with which to visualise glutamatergic neurones in histological preparations; excitatory neurones in the endocrine hypothalamus synthesise the VGLUT2 isoform. Results of recent dual-label in situ hybridisation studies indicate that glutamatergic neurones in the preoptic area and the hypothalamic paraventricular, supraoptic and periventricular nuclei include parvocellular and magnocellular neurosecretory neurones which secrete peptide neurohormones into the bloodstream to regulate endocrine functions. Neurosecretory terminals of GnRH, TRH, CRF-, somatostatin-, oxytocin- and vasopressin-secreting neurones contain VGLUT2 immunoreactivity, suggesting the co-release of glutamate with hypophysiotrophic peptides. The presence of VGLUT2 also indicates glutamate secretion from non-neuronal endocrine cells, including gonadotrophs and thyrotrophs of the anterior pituitary. Results of in vitro studies show that ionotropic glutamate receptor analogues can elicit hormone secretion at neuroendocrine/endocrine release sites. Structural constituents of the median eminence, adenohypophysis and neurohypophysis contain elements of glutamatergic transmission, including glutamate receptors and enzymes of the glutamate/glutamine cycle. The synthesis of VGLUT2 exhibits robust up-regulation in response to certain endocrine challenges, indicating that altered glutamatergic signalling may represent an important adaptive mechanism. This review article discusses the newly emerged non-synaptic role of glutamate in neuroendocrine and endocrine communication.
Collapse
Affiliation(s)
- E Hrabovszky
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | |
Collapse
|
27
|
Abstract
Pulsatile neuropeptide secretion is associated with burst firing patterns; however, intracellular signaling cascades leading to bursts remain unclear. We explored mechanisms underlying burst firing in oxytocin (OT) neurons in the supraoptic nucleus in brain slices from lactating rats. Application of 10 pm OT for 30 min or progressively rising OT concentrations from 1 to 100 pm induced burst firing in OT neurons in patch-clamp recordings. Burst generation was blocked by OT antagonist and ionotropic glutamate receptor blockers or tetanus toxin. Blocking G-protein activation with suramin or intracellular GDP-beta-S, but not intracellularly administered antibody against the OT-receptor (OTR) C terminus, blocked bursts. Moreover, pretreatment of slices with pertussis toxin, an inhibitor of G(i/o)-proteins, did not block OT-evoked bursts, suggesting that G(i)/G(o) activation is unnecessary for burst generation. Thus, we further examined G alpha(q/11)-associated signaling pathways in OT-evoked bursts. Inhibition of phospholipase C or RhoA/Rho kinase did not block bursts. Activation of G betagamma subunits using myristoylated G betagamma-binding peptide (mSIRK) caused bursts, whereas intracellularly loaded antibody against G beta subunit blocked OT-evoked bursts. Blocking Src family kinase, but not phosphatidylinositol 3-kinase, occluded OT-evoked bursts. Similar to the effects of OT on EPSCs, mSIRK inhibited tonic EPSCs and elicited EPSC clustering. Finally, suckling caused dissociation of OTRs and G beta subunits from G alpha(q/11) subunits shown by coimmunoprecipitation and immunocytochemistry, supporting crucial roles for OTRs and G betagamma subunits in the milk-ejection reflex. We conclude that G betagamma subunits play a dominant role in burst firing evoked by applied OT or by suckling.
Collapse
Affiliation(s)
- Yu-Feng Wang
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, California 92521, USA.
| | | |
Collapse
|
28
|
Montana V, Malarkey EB, Verderio C, Matteoli M, Parpura V. Vesicular transmitter release from astrocytes. Glia 2006; 54:700-715. [PMID: 17006898 DOI: 10.1002/glia.20367] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Astrocytes can release a variety of transmitters, including glutamate and ATP, in response to stimuli that induce increases in intracellular Ca(2+) levels. This release occurs via a regulated, exocytotic pathway. As evidence of this, astrocytes express protein components of the vesicular secretory apparatus, including synaptobrevin 2, syntaxin, and SNAP-23. Additionally, astrocytes possess vesicular organelles, the essential morphological elements required for regulated Ca(2+)-dependent transmitter release. The location of specific exocytotic sites on these cells, however, remains to be unequivocally determined.
Collapse
Affiliation(s)
- Vedrana Montana
- Department of Cell Biology and Neuroscience, Center for Glial-Neuronal Interactions, University of California, Riverside, California
| | - Erik B Malarkey
- Department of Cell Biology and Neuroscience, Center for Glial-Neuronal Interactions, University of California, Riverside, California
| | - Claudia Verderio
- Department of Medical Pharmacology, Consiglio Nazionalle delle Ricerche Institute of Neuroscience, University of Milano, Milano, Italy
| | - Michela Matteoli
- Department of Medical Pharmacology, Consiglio Nazionalle delle Ricerche Institute of Neuroscience, University of Milano, Milano, Italy
| | - Vladimir Parpura
- Department of Cell Biology and Neuroscience, Center for Glial-Neuronal Interactions, University of California, Riverside, California
| |
Collapse
|
29
|
Ponzio TA, Wang YF, Hatton GI. Activation of adenosine A2A receptors alters postsynaptic currents and depolarizes neurons of the supraoptic nucleus. Am J Physiol Regul Integr Comp Physiol 2006; 291:R359-66. [PMID: 16644907 DOI: 10.1152/ajpregu.00747.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Supraoptic nucleus (SON) neurons secrete oxytocin or vasopressin in response to various physiological stimuli (e.g., lactation/suckling, dehydration). Released near fenestrated capillaries of the neurohypophysis, these peptides enter the blood and travel to peripheral target organs. The pervasive neuromodulator adenosine, acting at A1 receptors, is an important inhibitory regulator of magnocellular neuroendocrine cell activity. Another high-affinity adenosine receptor exists in this system, however. We examined the physiological effects of adenosine A2A receptor activation and determined its localization among various cell types within the SON. In whole cell patch-clamp recordings from rat brain slices, application of the selective adenosine A2A receptor agonist CGS-21680 caused membrane depolarizations in SON neurons, often leading to increased firing activity. Membrane potential changes were persistent (>10 min) and could be blocked by the selective A2A receptor antagonist ZM-241385, or GDP-beta-S, the latter suggesting postsynaptic sites of action. However, +/--alpha-methyl-(4-carboxyphenyl)glycine or TTX also blocked CGS-21680 effects, indicating secondary actions on postsynaptic neurons. In voltage-clamp mode, application of CGS-21680 caused a slight increase (approximately 8%) in high-frequency clusters of excitatory postsynaptic currents. With the use of specific antibodies, adenosine A2A receptors were immunocytochemically localized to both the magnocellular neurons and astrocytes of the SON. Ecto-5'nucleotidase, an enzyme involved in the metabolism of ATP to adenosine, was also localized to astrocytes of the SON. These results demonstrate that adenosine acting at A2A receptors can enhance the excitability of SON neurons and modulate transmitter release from glutamatergic afferents projecting to the nucleus. We suggest that adenosine A2A receptors may function in neuroendocrine regulation through both direct neuronal mechanisms and via actions involving glia.
Collapse
Affiliation(s)
- Todd A Ponzio
- Department of Cell Biology and Neuroscience, University of California, Riverside, USA.
| | | | | |
Collapse
|