1
|
Yin X, Lu C, Sun D, Ji Y, Wang Y, Zheng H, Ma Z, Jia Q, Tan J, Zheng W. Stimulating thyroglobulin to TSH ratio predict long-term efficacy of 131I therapy in patients with differentiated thyroid cancer after total thyroidectomy: a retrospective study. Endocrine 2024; 84:1064-1071. [PMID: 38172344 DOI: 10.1007/s12020-023-03663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVE This study utilized the stimulated thyroglobulin (sTg) to thyroid stimulating hormone (TSH) ratio to predict the long-term efficacy of 131I therapy in patients with moderate-to-high-risk differentiated thyroid cancer (DTC). METHODS This study retrospectively analyzed 960 DTC patients with a median follow-up time of 30 months (6-92 months). The median age was 44 years. All patients underwent total thyroidectomy, lymph node dissection, and at least one 131I therapy. Patients were subjected to a final efficacy evaluation according to American Thyroid Association's 2015 guidelines. Patients were grouped according to their TSH levels before the initial 131I therapy and the final efficacy evaluation, and factors influencing TSH levels and final efficacy were analyzed. Construction of nomograms using independent risk factors affecting long-term outcomes. The cut-offs of sTg and sTg/TSH ratios were calculated for different long-term outcomes. Progression-free survival (PFS) of patients was analyzed by making Kaplan-Meier survival according to the cut-offs of sTg and sTg/TSH ratio. RESULTS TSH (mU/L) levels were more concentrated at 60-90 in females (71.5%) and 30-60 in males (39.0%), while patients with younger age, more lymph node metastases, shorter time interval between surgery and the first 131I therapy, and lower dose of levothyroxine sodium taken prior to the first 131I therapy would have higher TSH levels (All P < 0.05).Patients who are male, have primary tumor involvement of the strap muscles, lymph node metastasis, distant metastasis, and higher sTg and sTg/TSH are more likely to have poor long-term outcomes (All P < 0.05).The cut-offs of sTg and sTg/TSH for long-term efficacy were 7.515 and 0.095. STg, sTg/TSH, tumor size, lymph node metastasis, and distant metastasis were shown to be independent risk factors for long-term efficacy. The mean PFSs were longer for patients who had sTg/TSH ≤ 0.095 and/or sTg≤7.515 ug/L. CONCLUSIONS For patients with moderate-to-high-risk DTC, when sTg>7.515 ug/L and/or sTg/TSH > 0.095 before the first 131I therapy, patients are more likely to have a poor long-term efficacy after full 131I therapy. This means that this group of patients may require further surgical treatment or targeted drug therapy after 131I therapy.
Collapse
Affiliation(s)
- Xue Yin
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Chao Lu
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Danyang Sun
- Department of Nuclear Medicine, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Yanhui Ji
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Wang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongyuan Zheng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Ziyu Ma
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Jia
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Jian Tan
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Zheng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
2
|
Battipaglia C, Petrillo T, Semprini E, Ricciardiello F, Rusce ML, Prampolini G, Ambrosetti F, Sponzilli A, Genazzani AD. Low-Dose Estrogens as Neuroendocrine Modulators in Functional Hypothalamic Amenorrhea (FHA): The Putative Triggering of the Positive Feedback Mechanism(s). Biomedicines 2023; 11:1763. [PMID: 37371858 DOI: 10.3390/biomedicines11061763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/29/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Functional hypothalamic amenorrhea (FHA) is a non-organic reversible chronic endocrine disorder characterized by an impaired pulsatile secretion of the gonadotropin-releasing hormone (GnRH) from the hypothalamus. This impaired secretion, triggered by psychosocial and metabolic stressors, leads to an abnormal pituitary production of gonadotropins. As LH and FSH release is defective, the ovarian function is steadily reduced, inducing a systemic hypoestrogenic condition characterized by amenorrhea, vaginal atrophy, mood changes and increased risk of osteoporosis and cardiovascular disease. Diagnosis of FHA is made excluding other possible causes for secondary amenorrhea, and it is based upon the findings of low serum gonadotropins and estradiol (E2) with evidence of precipitating factors (excessive exercise, low weight, stress). Treatments of women with FHA include weight gain through an appropriate diet and physical activity reduction, psychological support, and integrative approach up to estrogen replacement therapy. If no spontaneous ovarian function is restored, assisted reproductive technologies may be used when pregnancy is desired. Because subjects with FHA are hypoestrogenic, the use of low-dose estrogens has been proposed as a putative treatment to positively modulate the spontaneous restart of gonadotropin secretion, counteracting the blockade of the reproductive axis triggered by stress acting through the neuroendocrine pathways at the basis of positive feedback of estrogens. The mechanism through which low-dose estrogens acts is still unknown, but kisspeptin-secreting neurons may be involved.
Collapse
Affiliation(s)
- Christian Battipaglia
- Center for Gynecological Endocrinology, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, Via del Pozzo 41, 41100 Modena, Italy
| | - Tabatha Petrillo
- Center for Gynecological Endocrinology, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, Via del Pozzo 41, 41100 Modena, Italy
| | - Elisa Semprini
- Center for Gynecological Endocrinology, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, Via del Pozzo 41, 41100 Modena, Italy
| | - Francesco Ricciardiello
- Center for Gynecological Endocrinology, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, Via del Pozzo 41, 41100 Modena, Italy
| | - Maria Laura Rusce
- Center for Gynecological Endocrinology, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, Via del Pozzo 41, 41100 Modena, Italy
| | - Greta Prampolini
- Center for Gynecological Endocrinology, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, Via del Pozzo 41, 41100 Modena, Italy
| | - Fedora Ambrosetti
- Center for Gynecological Endocrinology, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, Via del Pozzo 41, 41100 Modena, Italy
| | - Alessandra Sponzilli
- Center for Gynecological Endocrinology, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, Via del Pozzo 41, 41100 Modena, Italy
| | - Alessandro D Genazzani
- Center for Gynecological Endocrinology, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, Via del Pozzo 41, 41100 Modena, Italy
| |
Collapse
|
3
|
Li L, Li L, Li P. Effects of controlled ovarian stimulation on thyroid function during pregnancy. Biol Reprod 2022; 107:1376-1385. [PMID: 35960990 DOI: 10.1093/biolre/ioac159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Controlled ovarian stimulation (COS) is a major component of assisted reproductive technologies. Clinically, it has been observed that, some women experience changes in thyrotropin levels following COS, which then bring about subclinical hypothyroidism and may adversely affect conception. Studies have also shown that the specific degree as well as the tendency of changes in thyroid function vary with differences in thyroid function before pregnancy, thyroid autoimmunity, the COS regimen, and the observation time point. However, the associated pathophysiological mechanism of the effects of COS on pregnancy has not yet been fully elucidated. This may be because increased estradiol levels, caused by COS, induce increased levels of thyroxine-binding globulin, resulting in a decrease in free thyroxine (FT4) level and an increase in TSH level. Conversely, it has also been observed that human chorionic gonadotropin (hCG) can act directly on thyroid cells, exerting opposite effects on FT4 and TSH levels. Additionally, the effects of COS on thyroid function may be more pronounced, especially in women with autoimmune thyroid disease or thyroid dysfunction before pregnancy, ultimately leading to subclinical hypothyroidism. Here, we review recent research progress regarding the effects of COS on thyroid function during pregnancy.
Collapse
Affiliation(s)
- Lingfei Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Ling Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Ping Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| |
Collapse
|
4
|
Grassi D, Marraudino M, Garcia-Segura LM, Panzica GC. The hypothalamic paraventricular nucleus as a central hub for the estrogenic modulation of neuroendocrine function and behavior. Front Neuroendocrinol 2022; 65:100974. [PMID: 34995643 DOI: 10.1016/j.yfrne.2021.100974] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022]
Abstract
Estradiol and hypothalamic paraventricular nucleus (PVN) help coordinate reproduction with body physiology, growth and metabolism. PVN integrates hormonal and neural signals originating in the periphery, generating an output mediated both by its long-distance neuronal projections, and by a variety of neurohormones produced by its magnocellular and parvocellular neurosecretory cells. Here we review the cyto-and chemo-architecture, the connectivity and function of PVN and the sex-specific regulation exerted by estradiol on PVN neurons and on the expression of neurotransmitters, neuromodulators, neuropeptides and neurohormones in PVN. Classical and non-classical estrogen receptors (ERs) are expressed in neuronal afferents to PVN and in specific PVN interneurons, projecting neurons, neurosecretory neurons and glial cells that are involved in the input-output integration and coordination of neurohormonal signals. Indeed, PVN ERs are known to modulate body homeostatic processes such as autonomic functions, stress response, reproduction, and metabolic control. Finally, the functional implications of the estrogenic modulation of the PVN for body homeostasis are discussed.
Collapse
Affiliation(s)
- D Grassi
- Department of Anatomy, Histology and Neuroscience, Universidad Autonoma de Madrid, Madrid, Spain
| | - M Marraudino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Torino, Italy
| | - L M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - G C Panzica
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Torino, Italy; Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy.
| |
Collapse
|
5
|
Thambirajah AA, Wade MG, Verreault J, Buisine N, Alves VA, Langlois VS, Helbing CC. Disruption by stealth - Interference of endocrine disrupting chemicals on hormonal crosstalk with thyroid axis function in humans and other animals. ENVIRONMENTAL RESEARCH 2022; 203:111906. [PMID: 34418447 DOI: 10.1016/j.envres.2021.111906] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Thyroid hormones (THs) are important regulators of growth, development, and homeostasis of all vertebrates. There are many environmental contaminants that are known to disrupt TH action, yet their mechanisms are only partially understood. While the effects of Endocrine Disrupting Chemicals (EDCs) are mostly studied as "hormone system silos", the present critical review highlights the complexity of EDCs interfering with TH function through their interactions with other hormonal axes involved in reproduction, stress, and energy metabolism. The impact of EDCs on components that are shared between hormone signaling pathways or intersect between pathways can thus extend beyond the molecular ramifications to cellular, physiological, behavioral, and whole-body consequences for exposed organisms. The comparatively more extensive studies conducted in mammalian models provides encouraging support for expanded investigation and highlight the paucity of data generated in other non-mammalian vertebrate classes. As greater genomics-based resources become available across vertebrate classes, better identification and delineation of EDC effects, modes of action, and identification of effective biomarkers suitable for HPT disruption is possible. EDC-derived effects are likely to cascade into a plurality of physiological effects far more complex than the few variables tested within any research studies. The field should move towards understanding a system of hormonal systems' interactions rather than maintaining hormone system silos.
Collapse
Affiliation(s)
- Anita A Thambirajah
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Michael G Wade
- Environmental Health Science & Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Jonathan Verreault
- Centre de Recherche en Toxicologie de l'environnement (TOXEN), Département des Sciences Biologiques, Université du Québec à Montréal, Succursale Centre-ville, Montréal, QC, H3C 3P8, Canada
| | - Nicolas Buisine
- UMR7221 Physiologie Moléculaire et Adaptation, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Paris Cedex 05, France
| | - Verônica A Alves
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), Québec City, QC, G1K 9A9, Canada
| | - Valerie S Langlois
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), Québec City, QC, G1K 9A9, Canada
| | - Caren C Helbing
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8P 5C2, Canada.
| |
Collapse
|
6
|
Parra-Montes de Oca MA, Sotelo-Rivera I, Gutiérrez-Mata A, Charli JL, Joseph-Bravo P. Sex Dimorphic Responses of the Hypothalamus-Pituitary-Thyroid Axis to Energy Demands and Stress. Front Endocrinol (Lausanne) 2021; 12:746924. [PMID: 34745011 PMCID: PMC8565401 DOI: 10.3389/fendo.2021.746924] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022] Open
Abstract
The hypothalamus-pituitary-thyroid-axis (HPT) is one of the main neuroendocrine axes that control energy expenditure. The activity of hypophysiotropic thyrotropin releasing hormone (TRH) neurons is modulated by nutritional status, energy demands and stress, all of which are sex dependent. Sex dimorphism has been associated with sex steroids whose concentration vary along the life-span, but also to sex chromosomes that define not only sexual characteristics but the expression of relevant genes. In this review we describe sex differences in basal HPT axis activity and in its response to stress and to metabolic challenges in experimental animals at different stages of development, as well as some of the limited information available on humans. Literature review was accomplished by searching in Pubmed under the following words: "sex dimorphic" or "sex differences" or "female" or "women" and "thyrotropin" or "thyroid hormones" or "deiodinases" and "energy homeostasis" or "stress". The most representative articles were discussed, and to reduce the number of references, selected reviews were cited.
Collapse
Affiliation(s)
| | | | | | | | - Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| |
Collapse
|
7
|
Jaimes-Hoy L, Pérez-Maldonado A, Narváez Bahena E, de la Cruz Guarneros N, Rodríguez-Rodríguez A, Charli JL, Soberón X, Joseph-Bravo P. Sex Dimorphic Changes in Trh Gene Methylation and Thyroid-Axis Response to Energy Demands in Maternally Separated Rats. Endocrinology 2021; 162:bqab110. [PMID: 34043769 DOI: 10.1210/endocr/bqab110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 12/18/2022]
Abstract
The hypothalamus-pituitary-thyroid (HPT) axis regulates energy balance through the pleiotropic action of thyroid hormones. HPT basal activity and stimulation by cold or voluntary exercise are repressed by previous chronic stress in adults. Maternal separation (MS) modifies HPT basal activity; we thus studied the response of the axis to energy demands and analyzed possible epigenetic changes on Trh promoter. Nonhandled (NH) or MS male Wistar rats were cold exposed 1 h at adulthood; Trh expression in the hypothalamic paraventricular nucleus (PVN) and serum thyrotropin (TSH) concentration were increased only in NH rats. Two weeks of voluntary exercise decreased fat mass and increased Trh expression, and thyroid hormones concentration changed proportionally to running distance in NH male rats and MS male rats. Although NH females ran more than MS and much more than males, exercise decreased body weight and fat mass only in NH rats with no change on any parameter of the HPT axis but increased Pomc expression in arcuate-nucleus of NH and Npy in MS females. Overall, the methylation pattern of PVN Trh gene promoter was similar in NH males and females; MS modified methylation of specific CpG sites, a thyroid hormone receptor (THR)-binding site present after the initiation site was hypomethylated in MS males; in MS females, the THR binding site of the proximal promoter (site 4) and 2 sites in the first intron were hypermethylated. Our studies showed that, in a sex-dimorphic manner, MS blunted the responses of HPT axis to energy demands in adult animals and caused methylation changes on Trh promoter that could alter T3 feedback.
Collapse
Affiliation(s)
- Lorraine Jaimes-Hoy
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| | - Adrián Pérez-Maldonado
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| | - Elian Narváez Bahena
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| | - Natalia de la Cruz Guarneros
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| | - Adair Rodríguez-Rodríguez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| | - Xavier Soberón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
- Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| |
Collapse
|
8
|
Kuroda G, Sasaki S, Matsushita A, Ohba K, Sakai Y, Shinkai S, Nakamura HM, Yamagishi S, Sato K, Hirahara N, Oki Y, Ito M, Suzuki T, Suda T. G ATA2 mediates the negative regulation of the prepro-thyrotropin-releasing hormone gene by liganded T3 receptor β2 in the rat hypothalamic paraventricular nucleus. PLoS One 2020; 15:e0242380. [PMID: 33201916 PMCID: PMC7671546 DOI: 10.1371/journal.pone.0242380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/31/2020] [Indexed: 12/25/2022] Open
Abstract
Thyroid hormone (T3) inhibits thyrotropin-releasing hormone (TRH) synthesis in the hypothalamic paraventricular nucleus (PVN). Although the T3 receptor (TR) β2 is known to mediate the negative regulation of the prepro-TRH gene, its molecular mechanism remains unknown. Our previous studies on the T3-dependent negative regulation of the thyrotropin β subunit (TSHβ) gene suggest that there is a tethering mechanism, whereby liganded TRβ2 interferes with the function of the transcription factor, GATA2, a critical activator of the TSHβ gene. Interestingly, the transcription factors Sim1 and Arnt2, the determinants of PVN differentiation in the hypothalamus, are reported to induce expression of TRβ2 and GATA2 in cultured neuronal cells. Here, we confirmed the expression of the GATA2 protein in the TRH neuron of the rat PVN using immunohistochemistry with an anti-GATA2 antibody. According to an experimental study from transgenic mice, a region of the rat prepro-TRH promoter from nt. -547 to nt. +84 was able to mediate its expression in the PVN. We constructed a chloramphenicol acetyltransferase (CAT) reporter gene containing this promoter sequence (rTRH(547)-CAT) and showed that GATA2 activated the promoter in monkey kidney-derived CV1 cells. Deletion and mutation analyses identified a functional GATA-responsive element (GATA-RE) between nt. -357 and nt. -352. When TRβ2 was co-expressed, T3 reduced GATA2-dependent promoter activity to approximately 30%. Unexpectedly, T3-dependent negative regulation was maintained after mutation of the reported negative T3-responsive element, site 4. T3 also inhibited the GATA2-dependent transcription enhanced by cAMP agonist, 8-bromo-cAMP. A rat thyroid medullary carcinoma cell line, CA77, is known to express the preproTRH mRNA. Using a chromatin immunoprecipitation assay with this cell line where GATA2 expression plasmid was transfected, we observed the recognition of the GATA-RE by GATA2. We also confirmed GATA2 binding using gel shift assay with the probe for the GATA-RE. In CA77 cells, the activity of rTRH(547)-CAT was potentiated by overexpression of GATA2, and it was inhibited in a T3-dependent manner. These results suggest that GATA2 transactivates the rat prepro-TRH gene and that liganded TRβ2 interferes with this activation via a tethering mechanism as in the case of the TSHβ gene.
Collapse
Affiliation(s)
- Go Kuroda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Shigekazu Sasaki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
- * E-mail:
| | - Akio Matsushita
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kenji Ohba
- Medical Education Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yuki Sakai
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Shinsuke Shinkai
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hiroko Misawa Nakamura
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Satoru Yamagishi
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Hamamatsu, Shizuoka, Japan
| | - Kohji Sato
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Hamamatsu, Shizuoka, Japan
| | - Naoko Hirahara
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Japanese Red Cross Shizuoka Hospital, Shizuoka, Shizuoka, Japan
| | - Yutaka Oki
- Department of Internal medicine, Hamamatsu Kita Hospital, Hamamatsu, Shizuoka, Japan
| | - Masahiko Ito
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Tetsuro Suzuki
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
9
|
Klonos E, Katopodis P, Karteris E, Papanikolaou E, Tarlatzis B, Pados G. Endometrial changes in estrogen and progesterone receptor expression during implantation in an oocyte donation program. Exp Ther Med 2020; 20:178. [PMID: 33101468 PMCID: PMC7579777 DOI: 10.3892/etm.2020.9308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022] Open
Abstract
Implantation is the final and most important stage of embryogenesis and is of paramount importance in achieving a successful pregnancy. Progesterone and estrogen are steroid hormones responsible for the regulation of the implantation window and the current study hypothesised that their receptors may be implicated in women undergoing oocyte donation. A total of 15 women aged 25-32 years old (mean ± SD, 28.9±2.89) undergoing oocyte donation were recruited into the present study. Participants underwent ovarian stimulation with gonadotrophin-releasing hormone antagonist and recombinant follicle-stimulating hormone. Endometrial aspiration biopsy was performed on the day of oocyte retrieval and after 5 days (on days 0 and 5, respectively). Endometrial histology and evaluation of estrogen receptor (ER)α and progesterone receptor (PR)-B were performed on days 0 and 5. The ER nodal staining percentage on day 0 was age-associated, with patients aged <30 years demonstrating 100% staining and those aged >30 years exhibiting 90% staining. Pathological staining revealed statistically significant differences between days 0 and 5 following all staining procedures. Wilcoxon signed-rank test resulted in the following P-values, for ER (nodes % and stromal %) day 0/5, P=0.0001; for PR (nodes % and stromal %) day 0/5, P=0.0001 and P=0.035, respectively; for ER (grade nodes and stromal %) day 0/5, P=0.0001; and PR (grade nodes and stromal %) day 0/5 P=0.0001 and P=0.016, respectively. Synchronization between blastocyst development and the acquisition of endometrial receptivity is a prerequisite for the success of in vitro fertilisation (IVF). Aside from the recent discovery of molecules that are considered crucial for successful embryo implantation, assessing the functional characteristics of the endometrium may offer unique insights into this process, thus improving IVF results.
Collapse
Affiliation(s)
- Eleftherios Klonos
- 1st Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, School of Medicine, Thessaloniki 541 24, Greece
| | - Periklis Katopodis
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Emmanouil Karteris
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Evangelos Papanikolaou
- 1st Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, School of Medicine, Thessaloniki 541 24, Greece
| | - Basil Tarlatzis
- Centre for Assisted Reproduction 'Biogenesis', Thessaloniki 555 35, Greece
| | - George Pados
- 1st Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, School of Medicine, Thessaloniki 541 24, Greece.,Centre for Assisted Reproduction 'Biogenesis', Thessaloniki 555 35, Greece
| |
Collapse
|
10
|
Galligan TM, Hale MD, McCoy JA, Bermudez DS, Guillette LJ, Parrott BB. Assessing impacts of precocious steroid exposure on thyroid physiology and gene expression patterns in the American alligator (Alligator mississippiensis). Gen Comp Endocrinol 2019; 271:61-72. [PMID: 30408484 DOI: 10.1016/j.ygcen.2018.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/17/2018] [Accepted: 11/04/2018] [Indexed: 10/27/2022]
Abstract
The thyroid gland is sensitive to steroid hormone signaling, and many thyroid disrupting contaminants also disrupt steroid hormone homeostasis, presenting the possibility that thyroid disruption may occur through altered steroid hormone signaling. To examine this possibility, we studied short-term and persistent impacts of embryonic sex steroid exposure on thyroid physiology in the American alligator. Alligators from a lake contaminated with endocrine disrupting contaminants (Lake Apopka, FL, USA) have been shown to display characteristics of thyroid and steroid hormone disruption. Previous studies suggest these alterations arise during development and raise the possibility that exposure to maternally deposited contaminants might underlie persistent organizational changes in both thyroidal and reproductive function. Thus, this population provides a system to investigate contaminant-mediated organizational thyroid disruption in an environmentally-relevant context. We assess the developmental expression of genetic pathways involved in thyroid hormone biosynthesis and find that expression of these genes increases prior to hatching. Further, we show that nuclear steroid hormone receptors are also expressed during this period, indicating the developing thyroid is potentially responsive to steroid hormone signaling. We then explore functional roles of steroid signaling during development on subsequent thyroid function in juvenile alligators. We exposed alligator eggs collected from both Lake Apopka and a reference site to 17β-estradiol and a non-aromatizable androgen during embryonic development, and investigated effects of exposure on hatchling morphometrics and thyroidal gene expression profiles at 5 months of age. Steroid hormone treatment did not impact the timing of hatching or hatchling size. Furthermore, treatment with steroid hormones did not result in detectable impacts on thyroid transcriptional programs, suggesting that precocious or excess estrogen and androgen exposure does not influence immediate or long-term thyroidal physiology.
Collapse
Affiliation(s)
- Thomas M Galligan
- Medical University of South Carolina, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, USA; Virginia Polytechnic Institute and State University, College of Natural Resources and the Environment, Department of Fish and Wildlife Conservation, 101 Cheatham Hall, 310 West Campus Drive, Blacksburg, VA 24060, USA.
| | - Matthew D Hale
- Medical University of South Carolina, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, USA; University of Georgia, Savannah River Ecology Laboratory, PO Drawer E, Aiken, SC 29802, USA; University of Georgia, Eugene P. Odum School of Ecology, 140 E. Green Street, Athens, GA 30602.
| | - Jessica A McCoy
- Medical University of South Carolina, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, USA; College of Charleston, 66 George Street, Charleston, SC 29424, USA
| | - Dieldrich S Bermudez
- Mars Inc., Global Innovation Center, 1132 W. Blackhawk Street, Chicago, IL 60642, USA
| | - Louis J Guillette
- Medical University of South Carolina, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, USA
| | - Benjamin B Parrott
- Medical University of South Carolina, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, USA; University of Georgia, Savannah River Ecology Laboratory, PO Drawer E, Aiken, SC 29802, USA; University of Georgia, Eugene P. Odum School of Ecology, 140 E. Green Street, Athens, GA 30602.
| |
Collapse
|
11
|
Safarian GK, Gzgzyan AM, Dzhemlikhanova Lyailya K, Niauri Dariko A. Does subclinical hypothyroidism and/or thyroid autoimmunity influence the IVF/ICSI outcome? Review of the literature. Gynecol Endocrinol 2019; 35:56-59. [PMID: 31532314 DOI: 10.1080/09513590.2019.1653564] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
While overt hypothyroidism is a well-known risk factor for infertility, the association of subclinical hypothyroidism (SCH) or thyroid autoimmunity and reproductive failure has been still not elucidated. In this literature review, the current data on the effect of SCH and/or thyroid autoimmunity and human reproduction is presented. The main ART outcome measures are as follows: number of oocytes retrieved, fertilization rate, implantation rate, clinical pregnancy rate per embryo transfer, embryo quality, miscarriage rate, and live birth rate. Current guidelines on the management of women with SCH and/or thyroid autoimmunity undergoing ART cycles will be presented in this review.
Collapse
Affiliation(s)
| | - Alexander Mkrtichevich Gzgzyan
- St. Petersburg State University , St. Petersburg , Russia
- The Research Institute of Obstetrics, Gynecology and Reproduction Named after D.O. Ott , St. Petersburg , Russia
| | - Kharryasovna Dzhemlikhanova Lyailya
- St. Petersburg State University , St. Petersburg , Russia
- The Research Institute of Obstetrics, Gynecology and Reproduction Named after D.O. Ott , St. Petersburg , Russia
| | - Alexandrovna Niauri Dariko
- St. Petersburg State University , St. Petersburg , Russia
- The Research Institute of Obstetrics, Gynecology and Reproduction Named after D.O. Ott , St. Petersburg , Russia
| |
Collapse
|
12
|
Mintziori G, Goulis DG. In vitro fertilization/intracytoplasmic insemination and thyroid function: reviewing the evidence. Metabolism 2018; 86:44-48. [PMID: 29604363 DOI: 10.1016/j.metabol.2018.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 03/18/2018] [Accepted: 03/22/2018] [Indexed: 01/07/2023]
Abstract
Recent findings, that specific G protein-coupled TSH receptors (TSHR) and the nuclear thyroid hormone receptors (THRs) are widely expressed in reproductive tissues, reveal the close links between hypothalamus-pituitary-thyroid and hypothalamus-pituitary-gonadal axes. It has been suggested that thyroid function as well as thyroid autoimmunity (TAI) have an impact on Assisted Reproduction Technology (ART) reproductive outcome. Lately, it became evident that ovarian stimulation (OS) may also have an impact on thyroid function. This narrative review describes the mutual interaction between thyroid function and OS, by reviewing the current evidence, assessing the pathophysiological links and arriving at practical recommendations.
Collapse
Affiliation(s)
- Gesthimani Mintziori
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Dimitrios G Goulis
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
13
|
Mintziori G, Goulis DG, Kolibianakis EM, Slavakis A, Bosdou J, Grimbizis G, Tarlatzis BC. Thyroid function and autoimmunity during ovarian stimulation for intracytoplasmic sperm injection. Reprod Fertil Dev 2017; 29:603-608. [DOI: 10.1071/rd15172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 08/31/2015] [Indexed: 11/23/2022] Open
Abstract
The aim of the present study was to assess changes in thyroid function and thyroid autoimmunity (TAI) throughout ovarian stimulation (OS) for intracytoplasmic sperm injection (ICSI) and the association of these changes with ICSI outcome. A flexible gonadotrophin-releasing hormone (GnRH) antagonist protocol was used in 42 women and their thyroid function and TAI were assessed at baseline and five times during OS (Days 3 and 5 of the menstrual cycle, the day of hCG administration, the day of ovum pick-up and the day of the pregnancy test). The primary outcome measure was the change in thyroid function throughout OS. No overall change was recorded in thyrotropin-stimulating hormone (TSH) concentrations throughout OS (P = 0.066). In women who became pregnant (n = 8), an increase in TSH concentrations was noted on the day of the pregnancy test compared with Day 3 of the menstrual cycle (3.410 ± 1.200 vs 2.014 ± 0.950 μIU mL–1, respectively; P = 0.001; mean ± s.d.). TAI was present in 11 of 42 women. Biochemical pregnancy was negatively correlated with changes in TSH (r = –0.7, P = 0.004). No such association was noted regarding the live birth rate. The present study provides evidence that TSH concentrations could increase during OS, especially in women who become pregnant.
Collapse
|
14
|
Abstract
The activity of the hypothalamus-pituitary-thyroid axis (HPT) is coordinated by hypophysiotropic thyrotropin releasing hormone (TRH) neurons present in the paraventricular nucleus of the hypothalamus. Hypophysiotropic TRH neurons act as energy sensors. TRH controls the synthesis and release of thyrotropin, which activates the synthesis and secretion of thyroid hormones; in target tissues, transporters and deiodinases control their local availability. Thyroid hormones regulate many functions, including energy homeostasis. This review discusses recent evidence that covers several aspects of TRH role in HPT axis regulation. Knowledge about the mechanisms of TRH signaling has steadily increased. New transcription factors engaged in TRH gene expression have been identified, and advances made on how they interact with signaling pathways and define the dynamics of TRH neurons response to acute and/or long-term influences. Albeit yet incomplete, the relationship of TRH neurons activity with positive energy balance has emerged. The importance of tanycytes as a central relay for the feedback control of the axis, as well as for HPT responses to alterations in energy balance, and other stimuli has been reinforced. Finally, some studies have started to shed light on the interference of prenatal and postnatal stress and nutrition on HPT axis programing, which have confirmed the axis susceptibility to early insults.
Collapse
Affiliation(s)
- Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, 62250, Cuernavaca MOR, Morelos, México.
| | - Lorraine Jaimes-Hoy
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, 62250, Cuernavaca MOR, Morelos, México
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, 62250, Cuernavaca MOR, Morelos, México
| |
Collapse
|
15
|
|
16
|
Genazzani AD, Podfigurna-Stopa A, Czyzyk A, Katulski K, Prati A, Despini G, Angioni S, Simoncini T, Meczekalski B. Short-term estriol administration modulates hypothalamo-pituitary function in patients with functional hypothalamic amenorrhea (FHA). Gynecol Endocrinol 2016; 32:253-7. [PMID: 26634769 DOI: 10.3109/09513590.2015.1118452] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To evaluate the influence of short-term estriol administration (10 d) on the hypothalamus-pituitary function and gonadotropins secretion in patients affected by functional hypothalamic amenorrhea (FHA). STUDY DESIGN Controlled clinical study on patients with FHA (n = 12) in a clinical research environment. INTERVENTION(S) Hormonal determinations and gonadotropin (luteinizing hormone [LH] and FSH) response to a gonadotropin-releasing hormone (GnRH) bolus (10 μg) at baseline condition and after 10 d of therapy with 2 mg/d of estriol per os. MAIN OUTCOME MEASURE(S) Measurements of plasma LH, FSH, prolactin, estradiol, androstenedione, 17α-hydroxyprogesterone, insulin, cortisol, thyroid-stimulating hormone, free triiodothyronine, and free thyroxine. RESULT(S) After treatment, the FHA patients showed a statistically significant increase of both LH and FSH plasma levels and the significant increase of their responses to the GnRH bolus. CONCLUSION(S) Estriol short-term therapy modulates within 10 d of administration the neuroendocrine control of the hypothalamus-pituitary unit and induces the recovery of both gonadotropins synthesis and secretion in hypogonadotropic patients with FHA.
Collapse
Affiliation(s)
- Alessandro D Genazzani
- a Department of Obstetrics and Gynecology , University of Modena and Reggio Emilia , Modena , Italy
| | | | - Adam Czyzyk
- b Department of Gynecological Endocrinology , Poznan University of Medical Sciences , Poznan , Poland
| | - Krzysztof Katulski
- b Department of Gynecological Endocrinology , Poznan University of Medical Sciences , Poznan , Poland
| | - Alessia Prati
- a Department of Obstetrics and Gynecology , University of Modena and Reggio Emilia , Modena , Italy
| | - Giulia Despini
- a Department of Obstetrics and Gynecology , University of Modena and Reggio Emilia , Modena , Italy
| | - Stefano Angioni
- c Department of Obstetrics and Gynecology , University of Pisa , Pisa , Italy , and
| | - Tommaso Simoncini
- d Department of Obstetrics and Gynecology , University of Cagliari , Cagliari , Italy
| | - Blazej Meczekalski
- b Department of Gynecological Endocrinology , Poznan University of Medical Sciences , Poznan , Poland
| |
Collapse
|
17
|
Endogenous TSH levels at the time of 131I ablation do not influence ablation success, recurrence-free survival or differentiated thyroid cancer-related mortality. Eur J Nucl Med Mol Imaging 2015; 43:224-231. [PMID: 26493309 DOI: 10.1007/s00259-015-3223-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/07/2015] [Indexed: 12/29/2022]
Abstract
PURPOSE Based on a single older study it is established dogma that TSH levels should be ≥30 mU/l at the time of postoperative 131I ablation in differentiated thyroid cancer (DTC) patients. We sought to determine whether endogenous TSH levels, i.e. after levothyroxine withdrawal, at the time of ablation influence ablation success rates, recurrence-free survival and DTC-related mortality. METHODS A total of 1,873 patients without distant metastases referred for postoperative adjuvant 131I therapy were retrospectively included from 1991 onwards. Successful ablation was defined as stimulated Tg <1 μg/l. RESULTS Age, gender and the presence of lymph node metastases were independent determinants of TSH levels at the time of ablation. TSH levels were not significantly related to ablation success rates (p = 0.34), recurrence-free survival (p = 0.29) or DTC -elated mortality (p = 0.82), but established risk factors such as T-stage, lymph node metastases and age were. Ablation was successful in 230 of 275 patients (83.6 %) with TSH <30 mU/l and in 1,359 of 1,598 patients (85.0 %) with TSH ≥30 mU/l. The difference was not significant (p = 0.55). Of the whole group of 1,873 patients, 21 had recurrent disease. There were no significant differences in recurrence rates between patients with TSH <30 mU/l and TSH ≥30 mU/l (p = 0.16). Ten of the 1,873 patients died of DTC. There were no significant differences in DTC-specific survival between patients with TSH <30 mU/l and TSH ≥30 mU/l (p = 0.53). CONCLUSION The precise endogenous TSH levels at the time of 131I ablation are not related to the ablation success rates, recurrence free survival and DTC related mortality. The established dogma that TSH levels need to be ≥30 mU/l at the time of 131I ablation can be discarded.
Collapse
|
18
|
Joseph-Bravo P, Jaimes-Hoy L, Charli JL. Regulation of TRH neurons and energy homeostasis-related signals under stress. J Endocrinol 2015; 224:R139-59. [PMID: 25563352 DOI: 10.1530/joe-14-0593] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Energy homeostasis relies on a concerted response of the nervous and endocrine systems to signals evoked by intake, storage, and expenditure of fuels. Glucocorticoids (GCs) and thyroid hormones are involved in meeting immediate energy demands, thus placing the hypothalamo-pituitary-thyroid (HPT) and hypothalamo-pituitary-adrenal axes at a central interface. This review describes the mode of regulation of hypophysiotropic TRHergic neurons and the evidence supporting the concept that they act as metabolic integrators. Emphasis has been be placed on i) the effects of GCs on the modulation of transcription of Trh in vivo and in vitro, ii) the physiological and molecular mechanisms by which acute or chronic situations of stress and energy demands affect the activity of TRHergic neurons and the HPT axis, and iii) the less explored role of non-hypophysiotropic hypothalamic TRH neurons. The partial evidence gathered so far is indicative of a contrasting involvement of distinct TRH cell types, manifested through variability in cellular phenotype and physiology, including rapid responses to energy demands for thermogenesis or physical activity and nutritional status that may be modified according to stress history.
Collapse
Affiliation(s)
- Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología MolecularInstituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), A.P. 510-3, Cuernavaca, Morelos 62250, Mexico
| | - Lorraine Jaimes-Hoy
- Departamento de Genética del Desarrollo y Fisiología MolecularInstituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), A.P. 510-3, Cuernavaca, Morelos 62250, Mexico
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología MolecularInstituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), A.P. 510-3, Cuernavaca, Morelos 62250, Mexico
| |
Collapse
|
19
|
Kordi F, Khazali H. The effect of ghrelin and estradiol on mean concentration of thyroid hormones. Int J Endocrinol Metab 2015; 13:e17988. [PMID: 25745491 PMCID: PMC4338654 DOI: 10.5812/ijem.17988] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 08/04/2014] [Accepted: 09/29/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Ghrelin is a novel peptide hormone that has GH releasing activity and also other endocrine and metabolic functions. It can also increase food intake and decrease T3 and T4 concentrations. Several parameters of hypothalamic-pituitary-thyroid (HPT) axis function are modulated by 17β-estradiol (E2). OBJECTIVES The purpose of this study was to investigate the effect of interactions between ghrelin and estradiol (injected via ICV route) on plasma T3 and T4 concentrations in female rats. MATERIALS AND METHODS Eighteen Wistar female rats (bodyweight, 200-250 g) were randomly divided into three groups. Group 1 received estradiol, Group 2 received ghrelin and Group 3 received ghrelin and estradiol. Plasma samples were used to assess T3 and T4 concentration by RIA. RESULTS The results indicated that ghrelin significantly decreased thyroid hormone concentrations, whereas estradiol increased these concentrations. The simultaneous injection of ghrelin and estradiol significantly decreased the inhibitory effect of ghrelin on thyroid hormone concentrations (P < 0.05). CONCLUSIONS According to the results of this study, both ghrelin and estradiol affect the concentration of thyroid hormone but in opposite directions. This difference might be due to different underlying hormonal mechanisms such as HPA and/or HPT axis melanocyte stimulating hormone (MSH) systems could be suggested.
Collapse
Affiliation(s)
- Fatemeh Kordi
- Department of Physiology, Shahid Beheshti University, Tehran, IR Iran
| | - Homayoun Khazali
- Department of Physiology, Shahid Beheshti University, Tehran, IR Iran
- Corresponding author: Homayoun Khazali, Department of Physiology, Shahid Beheshti University, Tehran, IR Iran. Tel: +98-9121254041, E-mail:
| |
Collapse
|
20
|
Cui ZJ, Deng JX, Zhao KB, Yu DM, Hu S, Shi SQ, Deng JB. Effects of chronic cold exposure on murine central nervous system. J Neurosci Res 2014; 92:496-505. [DOI: 10.1002/jnr.23333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/24/2013] [Accepted: 10/25/2013] [Indexed: 01/29/2023]
Affiliation(s)
- Zhan-Jun Cui
- Institute of Neurobiology of Henan University; Kaifeng People's Republic of China
- Medical College of Henan University; Kaifeng People's Republic of China
| | - Jie-Xin Deng
- Institute of Neurobiology of Henan University; Kaifeng People's Republic of China
| | - Kai-Bing Zhao
- Medical College of Kaifeng University; Kaifeng People's Republic of China
| | - Dong-Ming Yu
- Institute of Neurobiology of Henan University; Kaifeng People's Republic of China
| | - Sang Hu
- Institute of Neurobiology of Henan University; Kaifeng People's Republic of China
| | - Shu-Qin Shi
- Institute of Neurobiology of Henan University; Kaifeng People's Republic of China
| | - Jin-Bo Deng
- Institute of Neurobiology of Henan University; Kaifeng People's Republic of China
| |
Collapse
|
21
|
Chiappini F, Ramadoss P, Vella KR, Cunha LL, Ye FD, Stuart RC, Nillni EA, Hollenberg AN. Family members CREB and CREM control thyrotropin-releasing hormone (TRH) expression in the hypothalamus. Mol Cell Endocrinol 2013; 365:84-94. [PMID: 23000398 PMCID: PMC3572472 DOI: 10.1016/j.mce.2012.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/05/2012] [Accepted: 09/11/2012] [Indexed: 01/19/2023]
Abstract
Thyrotropin-releasing hormone (TRH) in the paraventricular nucleus (PVN) of the hypothalamus is regulated by thyroid hormone (TH). cAMP response element binding protein (CREB) has also been postulated to regulate TRH expression but its interaction with TH signaling in vivo is not known. To evaluate the role of CREB in TRH regulation in vivo, we deleted CREB from PVN neurons to generate the CREB1(ΔSIM1) mouse. As previously shown, loss of CREB was compensated for by an up-regulation of CREM in euthyroid CREB1(ΔSIM1) mice but TSH, T₄ and T₃ levels were normal, even though TRH mRNA levels were elevated. Interestingly, TRH mRNA expression was also increased in the PVN of CREB1(ΔSIM1) mice in the hypothyroid state but became normal when made hyperthyroid. Importantly, CREM levels were similar in CREB1(ΔSIM1) mice regardless of thyroid status, demonstrating that the regulation of TRH by T₃ in vivo likely occurs independently of the CREB/CREM family.
Collapse
Affiliation(s)
- Franck Chiappini
- Division of Endocrinology, Diabetes and Metabolism. Beth Israel Deaconess Medical Center and Harvard Medical School. Center of Life Science, Boston, MA, 02115. ; ; ; ; ;
- Address correspondence and reprint request to: Dr. Franck Chiappini or Dr. Anthony Hollenberg, MD, 330 Brookline Avenue, E/CLS 0728, MA, 02215. Tel: 617-735-3268. Fax: 617-735-3323; ,
| | - Preeti Ramadoss
- Division of Endocrinology, Diabetes and Metabolism. Beth Israel Deaconess Medical Center and Harvard Medical School. Center of Life Science, Boston, MA, 02115. ; ; ; ; ;
| | - Kristen R. Vella
- Division of Endocrinology, Diabetes and Metabolism. Beth Israel Deaconess Medical Center and Harvard Medical School. Center of Life Science, Boston, MA, 02115. ; ; ; ; ;
| | - Lucas L. Cunha
- Division of Endocrinology, Diabetes and Metabolism. Beth Israel Deaconess Medical Center and Harvard Medical School. Center of Life Science, Boston, MA, 02115. ; ; ; ; ;
| | - Felix D. Ye
- Division of Endocrinology, Diabetes and Metabolism. Beth Israel Deaconess Medical Center and Harvard Medical School. Center of Life Science, Boston, MA, 02115. ; ; ; ; ;
| | - Ronald C. Stuart
- Division of Endocrinology, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903. ;
| | - Eduardo A. Nillni
- Division of Endocrinology, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903. ;
| | - Anthony N. Hollenberg
- Division of Endocrinology, Diabetes and Metabolism. Beth Israel Deaconess Medical Center and Harvard Medical School. Center of Life Science, Boston, MA, 02115. ; ; ; ; ;
- Address correspondence and reprint request to: Dr. Franck Chiappini or Dr. Anthony Hollenberg, MD, 330 Brookline Avenue, E/CLS 0728, MA, 02215. Tel: 617-735-3268. Fax: 617-735-3323; ,
| |
Collapse
|
22
|
Sinchak K, Wagner EJ. Estradiol signaling in the regulation of reproduction and energy balance. Front Neuroendocrinol 2012; 33:342-63. [PMID: 22981653 PMCID: PMC3496056 DOI: 10.1016/j.yfrne.2012.08.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 08/18/2012] [Accepted: 08/22/2012] [Indexed: 12/14/2022]
Abstract
Our knowledge of membrane estrogenic signaling mechanisms and their interactions that regulate physiology and behavior has grown rapidly over the past three decades. The discovery of novel membrane estrogen receptors and their signaling mechanisms has started to reveal the complex timing and interactions of these various signaling mechanisms with classical genomic steroid actions within the nervous system to regulate physiology and behavior. The activation of the various estrogenic signaling mechanisms is site specific and differs across the estrous cycle acting through both classical genomic mechanisms and rapid membrane-initiated signaling to coordinate reproductive behavior and physiology. This review focuses on our current understanding of estrogenic signaling mechanisms to promote: (1) sexual receptivity within the arcuate nucleus of the hypothalamus, (2) estrogen positive feedback that stimulates de novo neuroprogesterone synthesis to trigger the luteinizing hormone surge important for ovulation and estrous cyclicity, and (3) alterations in energy balance.
Collapse
Affiliation(s)
- Kevin Sinchak
- Department of Biological Sciences, California State University, Long Beach, 1250 Bellflower Blvd., Long Beach, CA 90840-9502, United States.
| | | |
Collapse
|
23
|
Stavreus Evers A. Paracrine interactions of thyroid hormones and thyroid stimulation hormone in the female reproductive tract have an impact on female fertility. Front Endocrinol (Lausanne) 2012; 3:50. [PMID: 22649421 PMCID: PMC3355884 DOI: 10.3389/fendo.2012.00050] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 03/13/2012] [Indexed: 11/13/2022] Open
Abstract
Thyroid disease often causes menstrual disturbances and infertility problems. Thyroid hormone (TH) acts through its receptors, transcription factors present in most cell types in the body. Thyroid stimulating hormone (TSH) stimulates TH synthesis in the thyroid gland, but seems to have other functions as well in the female reproductive tract. The receptors of both TH and TSH increase in the receptive endometrium, suggesting that they are important for implantation, possible by influencing inflammatory mediators such as leukemia inhibitory factor. The roles of these receptors in the ovary need further studies. However, it is likely that the thyroid system is important for both follicular and embryo development. The association between thyroid disease and infertility indicate that TH and TSH affect the endometrium and ovary on the paracrine level.
Collapse
|
24
|
Mintziori G, Goulis DG, Toulis KA, Venetis CA, Kolibianakis EM, Tarlatzis BC. Thyroid function during ovarian stimulation: a systematic review. Fertil Steril 2011; 96:780-5. [DOI: 10.1016/j.fertnstert.2011.06.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 06/07/2011] [Accepted: 06/08/2011] [Indexed: 01/20/2023]
|