1
|
Sa G, Yao J, Deng C, Liu J, Zhang Y, Zhu Z, Zhang Y, Ma X, Zhao R, Lin S, Lu C, Polle A, Chen S. Amelioration of nitrate uptake under salt stress by ectomycorrhiza with and without a Hartig net. THE NEW PHYTOLOGIST 2019; 222:1951-1964. [PMID: 30756398 PMCID: PMC6594093 DOI: 10.1111/nph.15740] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/01/2019] [Indexed: 05/13/2023]
Abstract
Salt stress is an important environmental cue impeding poplar nitrogen nutrition. Here, we characterized the impact of salinity on proton-driven nitrate fluxes in ectomycorrhizal roots and the importance of a Hartig net for nitrate uptake. We employed two Paxillus involutus strains for root colonization: MAJ, which forms typical ectomycorrhizal structures (mantle and Hartig net), and NAU, colonizing roots with a thin, loose hyphal sheath. Fungus-colonized and noncolonized Populus × canescens were exposed to sodium chloride and used to measure root surface pH, nitrate (NO3- ) flux and transcription of NO3- transporters (NRTs; PcNRT1.1, -1.2, -2.1), and plasmalemma proton ATPases (HAs; PcHA4, -8, -11). Paxillus colonization enhanced root NO3- uptake, decreased surface pH, and stimulated NRTs and HA4 of the host regardless the presence or absence of a Hartig net. Under salt stress, noncolonized roots exhibited strong net NO3- efflux, whereas beneficial effects of fungal colonization on surface pH and HAs prevented NO3- loss. Inhibition of HAs abolished NO3- influx under all conditions. We found that stimulation of HAs was crucial for the beneficial influence of ectomycorrhiza on NO3- uptake, whereas the presence of a Hartig net was not required for improved NO3- translocation. Mycorrhizas may contribute to host adaptation to salt-affected environments by keeping up NO3- nutrition.
Collapse
Affiliation(s)
- Gang Sa
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
- Gansu Provincial Key Laboratory of Aridland Crop SciencesGansu Agricultural UniversityLanzhou730070China
| | - Jun Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| | - Chen Deng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| | - Jian Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| | - Yinan Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| | - Zhimei Zhu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| | - Yuhong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| | - Xujun Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
- Urat Desert‐Grassland Research StationNorthwest Institute of Eco‐Environment and ResourcesChinese Academy of ScienceLanzhou730000China
| | - Rui Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| | - Shanzhi Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| | - Cunfu Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| | - Andrea Polle
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
- Forest Botany and Tree PhysiologyUniversity of GoettingenGöttingen37077Germany
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| |
Collapse
|
2
|
de Freitas Pereira M, Veneault-Fourrey C, Vion P, Guinet F, Morin E, Barry KW, Lipzen A, Singan V, Pfister S, Na H, Kennedy M, Egli S, Grigoriev I, Martin F, Kohler A, Peter M. Secretome Analysis from the Ectomycorrhizal Ascomycete Cenococcum geophilum. Front Microbiol 2018; 9:141. [PMID: 29487573 PMCID: PMC5816826 DOI: 10.3389/fmicb.2018.00141] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/22/2018] [Indexed: 11/21/2022] Open
Abstract
Cenococcum geophilum is an ectomycorrhizal fungus with global distribution in numerous habitats and associates with a large range of host species including gymnosperm and angiosperm trees. Moreover, C. geophilum is the unique ectomycorrhizal species within the clade Dothideomycetes, the largest class of Ascomycetes containing predominantly saprotrophic and many devastating phytopathogenic fungi. Recent studies highlight that mycorrhizal fungi, as pathogenic ones, use effectors in form of Small Secreted Proteins (SSPs) as molecular keys to promote symbiosis. In order to better understand the biotic interaction of C. geophilum with its host plants, the goal of this work was to characterize mycorrhiza-induced small-secreted proteins (MiSSPs) that potentially play a role in the ectomycorrhiza formation and functioning of this ecologically very important species. We combined different approaches such as gene expression profiling, genome localization and conservation of MiSSP genes in different C. geophilum strains and closely related species as well as protein subcellular localization studies of potential targets of MiSSPs in interacting plants using in tobacco leaf cells. Gene expression analyses of C. geophilum interacting with Pinus sylvestris (pine) and Populus tremula × Populus alba (poplar) showed that similar sets of genes coding for secreted proteins were up-regulated and only few were specific to each host. Whereas pine induced more carbohydrate active enzymes (CAZymes), the interaction with poplar induced the expression of specific SSPs. We identified a set of 22 MiSSPs, which are located in both, gene-rich, repeat-poor or gene-sparse, repeat-rich regions of the C. geophilum genome, a genome showing a bipartite architecture as seen for some pathogens but not yet for an ectomycorrhizal fungus. Genome re-sequencing data of 15 C. geophilum strains and two close relatives Glonium stellatum and Lepidopterella palustris were used to study sequence conservation of MiSSP-encoding genes. The 22 MiSSPs showed a high presence-absence polymorphism among the studied C. geophilum strains suggesting an evolution through gene gain/gene loss. Finally, we showed that six CgMiSSPs target four distinct sub-cellular compartments such as endoplasmic reticulum, plasma membrane, cytosol and tonoplast. Overall, this work presents a comprehensive analysis of secreted proteins and MiSSPs in different genetic level of C. geophilum opening a valuable resource to future functional analysis.
Collapse
Affiliation(s)
- Maíra de Freitas Pereira
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Interactions Arbres, Microorganismes, Laboratoire D'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystémes Forestiers, Centre Institut National de la Recherche Agronomique-Lorraine, Champenoux, France
- Swiss Federal Research Institute WSL, Forest Dynamics, Birmensdorf, Switzerland
| | - Claire Veneault-Fourrey
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Interactions Arbres, Microorganismes, Laboratoire D'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystémes Forestiers, Centre Institut National de la Recherche Agronomique-Lorraine, Champenoux, France
- Université de Lorraine, Unité Mixte de Recherche 1136 Interactions Arbres-Microorganismes, Vandoeuvre les Nancy, France
| | - Patrice Vion
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Interactions Arbres, Microorganismes, Laboratoire D'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystémes Forestiers, Centre Institut National de la Recherche Agronomique-Lorraine, Champenoux, France
| | - Fréderic Guinet
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Interactions Arbres, Microorganismes, Laboratoire D'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystémes Forestiers, Centre Institut National de la Recherche Agronomique-Lorraine, Champenoux, France
- Université de Lorraine, Unité Mixte de Recherche 1136 Interactions Arbres-Microorganismes, Vandoeuvre les Nancy, France
| | - Emmanuelle Morin
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Interactions Arbres, Microorganismes, Laboratoire D'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystémes Forestiers, Centre Institut National de la Recherche Agronomique-Lorraine, Champenoux, France
| | - Kerrie W. Barry
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Anna Lipzen
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Vasanth Singan
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Stephanie Pfister
- Swiss Federal Research Institute WSL, Forest Dynamics, Birmensdorf, Switzerland
| | - Hyunsoo Na
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Megan Kennedy
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Simon Egli
- Swiss Federal Research Institute WSL, Forest Dynamics, Birmensdorf, Switzerland
| | - Igor Grigoriev
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Francis Martin
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Interactions Arbres, Microorganismes, Laboratoire D'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystémes Forestiers, Centre Institut National de la Recherche Agronomique-Lorraine, Champenoux, France
| | - Annegret Kohler
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Interactions Arbres, Microorganismes, Laboratoire D'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystémes Forestiers, Centre Institut National de la Recherche Agronomique-Lorraine, Champenoux, France
| | - Martina Peter
- Swiss Federal Research Institute WSL, Forest Dynamics, Birmensdorf, Switzerland
| |
Collapse
|
3
|
Liao HL, Chen Y, Vilgalys R. Metatranscriptomic Study of Common and Host-Specific Patterns of Gene Expression between Pines and Their Symbiotic Ectomycorrhizal Fungi in the Genus Suillus. PLoS Genet 2016; 12:e1006348. [PMID: 27736883 PMCID: PMC5065116 DOI: 10.1371/journal.pgen.1006348] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 09/08/2016] [Indexed: 01/19/2023] Open
Abstract
Ectomycorrhizal fungi (EMF) represent one of the major guilds of symbiotic fungi associated with roots of forest trees, where they function to improve plant nutrition and fitness in exchange for plant carbon. Many groups of EMF exhibit preference or specificity for different plant host genera; a good example is the genus Suillus, which grows in association with the conifer family Pinaceae. We investigated genetics of EMF host-specificity by cross-inoculating basidiospores of five species of Suillus onto ten species of Pinus, and screened them for their ability to form ectomycorrhizae. Several Suillus spp. including S. granulatus, S. spraguei, and S. americanus readily formed ectomycorrhizae (compatible reaction) with white pine hosts (subgenus Strobus), but were incompatible with other pine hosts (subgenus Pinus). Metatranscriptomic analysis of inoculated roots reveals that plant and fungus each express unique gene sets during incompatible vs. compatible pairings. The Suillus-Pinus metatranscriptomes utilize highly conserved gene regulatory pathways, including fungal G-protein signaling, secretory pathways, leucine-rich repeat and pathogen resistance proteins that are similar to those associated with host-pathogen interactions in other plant-fungal systems. Metatranscriptomic study of the combined Suillus-Pinus transcriptome has provided new insight into mechanisms of adaptation and coevolution of forest trees with their microbial community, and revealed that genetic regulation of ectomycorrhizal symbiosis utilizes universal gene regulatory pathways used by other types of fungal-plant interactions including pathogenic fungal-host interactions. Ectomycorrhizal fungi (EMF) comprise the dominant group of symbiotic fungi associated with plant roots in temperate and boreal forests. We examined host-specificity and gene-expression of five EMF Suillus species that exhibited strong patterns of mycorrhizal compatibility/incompatibility with either white pines (Pinus subg. Strobus) or hard pines (subg. Pinus). Using RNA-Seq, we identified conserved transcriptomic responses associated with compatible versus incompatible Pinus-Suillus species pairings. Comparative metatranscriptomic analysis of compatible vs. incompatible pairings allowed us to identify unique sets of fungal and plant genes associated with symbiont recognition and specificity. Comparativ transcriptomic study of the Suillus-Pinus system provides insight into the core functions involved in ectomycorrhizal symbiosis, and the mechanisms by which host-symbiont pairs recognize one another.
Collapse
Affiliation(s)
- Hui-Ling Liao
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Yuan Chen
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Rytas Vilgalys
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
4
|
Crespo-Sempere A, Selma-Lázaro C, Martínez-Culebras P, González-Candelas L. Characterization and disruption of the cipC gene in the ochratoxigenic fungus Aspergillus carbonarius. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
5
|
Proteome analysis of the fungus Aspergillus carbonarius under ochratoxin A producing conditions. Int J Food Microbiol 2011; 147:162-9. [PMID: 21531034 DOI: 10.1016/j.ijfoodmicro.2011.03.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/22/2011] [Accepted: 03/30/2011] [Indexed: 11/22/2022]
Abstract
Aspergillus carbonarius is an important ochratoxin A producing fungus that is responsible for mycotoxin contamination of grapes and wine. In this study, the proteomes of highly (W04-40) and weakly (W04-46) OTA-producing A. carbonarius strains were compared to identify proteins that may be involved in OTA biosynthesis. Protein samples were extracted from two biological replicates and subjected to two dimensional gel electrophoresis analysis and mass spectrometry. Expression profile comparison (PDQuest software), revealed 21 differential spots that were statistically significant and showed a two-fold change in expression, or greater. Among these, nine protein spots were identified by MALDI-MS/MS and MASCOT database and twelve remain unidentified. Of the identified proteins, seven showed a higher expression in strain W04-40 (high OTA producer) and two in strain W04-46 (low OTA producer). Some of the identified amino acid sequences shared homology with proteins involved in regulation, amino acid metabolism, oxidative stress and sporulation. It is worth noting the presence of a protein with 126.5 fold higher abundance in strain W04-40 showing homology with protein CipC, a protein with unknown function related with pathogenesis and mycotoxin production by some authors. Variations in protein expression were also further investigated at the mRNA level by real-time PCR analysis. The mRNA expression levels from three identified proteins including CipC showed correlation with protein expression levels. This study represents the first proteomic analysis for a comparison of two A. carbonarius strains with different OTA production and will contribute to a better understanding of the molecular events involved in OTA biosynthesis.
Collapse
|
6
|
Reich M, Kohler A, Martin F, Buée M. Development and validation of an oligonucleotide microarray to characterise ectomycorrhizal fungal communities. BMC Microbiol 2009; 9:241. [PMID: 19930707 PMCID: PMC2789087 DOI: 10.1186/1471-2180-9-241] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 11/24/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In forest ecosystems, communities of ectomycorrhizal fungi (ECM) are influenced by several biotic and abiotic factors. To understand their underlying dynamics, ECM communities have been surveyed with ribosomal DNA-based sequencing methods. However, most identification methods are both time-consuming and limited by the number of samples that can be treated in a realistic time frame. As a result of ongoing implementation, the array technique has gained throughput capacity in terms of the number of samples and the capacity for parallel identification of several species. Thus far, although phylochips (microarrays that are used to detect species) have been mostly developed to trace bacterial communities or groups of specific fungi, no phylochip has been developed to carry oligonucleotides for several ectomycorrhizal species that belong to different genera. RESULTS We have constructed a custom ribosomal DNA phylochip to identify ECM fungi. Specific oligonucleotide probes were targeted to the nuclear internal transcribed spacer (ITS) regions from 95 fungal species belonging to 21 ECM fungal genera. The phylochip was first validated using PCR amplicons of reference species. Ninety-nine percent of the tested oligonucleotides generated positive hybridisation signals with their corresponding amplicons. Cross-hybridisation was mainly restricted at the genus level, particularly for Cortinarius and Lactarius species. The phylochip was subsequently tested with environmental samples that were composed of ECM fungal DNA from spruce and beech plantation fungal communities. The results were in concordance with the ITS sequencing of morphotypes and the ITS clone library sequencing results that were obtained using the same PCR products. CONCLUSION For the first time, we developed a custom phylochip that is specific for several ectomycorrhizal fungi. To overcome cross-hybridisation problems, specific filter and evaluation strategies that used spot signal intensity were applied. Evaluation of the phylochip by hybridising environmental samples confirmed the possible application of this technology for detecting and monitoring ectomycorrhizal fungi at specific sites in a routine and reproducible manner.
Collapse
Affiliation(s)
- Marlis Reich
- UMR 1136 INRA/Nancy Université Interactions Arbres/Microorganimes, INRA Nancy, 54280 Champenoux, France
| | - Annegret Kohler
- UMR 1136 INRA/Nancy Université Interactions Arbres/Microorganimes, INRA Nancy, 54280 Champenoux, France
| | - Francis Martin
- UMR 1136 INRA/Nancy Université Interactions Arbres/Microorganimes, INRA Nancy, 54280 Champenoux, France
| | - Marc Buée
- UMR 1136 INRA/Nancy Université Interactions Arbres/Microorganimes, INRA Nancy, 54280 Champenoux, France
| |
Collapse
|
7
|
Hedh J, Johansson T, Tunlid A. Variation in host specificity and gene content in strains from genetically isolated lineages of the ectomycorrhizal fungus Paxillus involutus s. lat. MYCORRHIZA 2009; 19:549-558. [PMID: 19452174 DOI: 10.1007/s00572-009-0252-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 04/22/2009] [Indexed: 05/27/2023]
Abstract
Ectomycorrhizal fungi are known to vary in host range. Some fungi can enter into symbiosis with multiple plant species, while others have restricted host ranges. The aim of this study was to examine variation in host specificity among strains from the basidiomycete Paxillus involutus s. lat. Recent studies have shown that this fungus consists of at least four genetically isolated lineages, phylogenetic species (PS) I (which corresponds to the morphological species Paxillus obscurosporus), PS II (P. involutus s. str.), PS III (Paxillus validus), and PS IV (not yet supported by any reference material). Thirty-five Paxillus strains of PS I to IV were examined in microcosms for their capacity to infect birch (Betula pendula) and spruce (Picea abies). Seventeen strains were compatible and formed mycorrhizae with both tree species. Seven strains were incompatible with both birch and spruce. The gene content in three pairs of incompatible and compatible strains PS I, II, and III were compared using microarray-based comparative genomic hybridizations. Of 4,113 P. involutus gene representatives analyzed, 390 varied in copy numbers in at least one of the three pairwise comparisons. Only three reporters showed significant changes in all three pairwise comparisons, and none of these were changed in a similar way in three comparisons. Our data indicate that changes in host range have occurred frequently and independently among strains in P. obscurosporus, P. involutus s. str., and P. validus. No evidence was obtained demonstrating that these changes have been associated with the gain or loss of similar genes in these three species.
Collapse
Affiliation(s)
- Jenny Hedh
- Department of Microbial Ecology, Lund University, Ecology Building, 223 62, Lund, Sweden
| | - Tomas Johansson
- Department of Microbial Ecology, Lund University, Ecology Building, 223 62, Lund, Sweden
| | - Anders Tunlid
- Department of Microbial Ecology, Lund University, Ecology Building, 223 62, Lund, Sweden.
| |
Collapse
|
8
|
Tan KC, Heazlewood JL, Millar AH, Thomson G, Oliver RP, Solomon PS. A signaling-regulated, short-chain dehydrogenase of Stagonospora nodorum regulates asexual development. EUKARYOTIC CELL 2008; 7:1916-29. [PMID: 18776038 PMCID: PMC2583533 DOI: 10.1128/ec.00237-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 08/22/2008] [Indexed: 11/20/2022]
Abstract
The fungus Stagonospora nodorum is a causal agent of leaf and glume blotch disease of wheat. It has been previously shown that inactivation of heterotrimeric G protein signaling in Stagonospora nodorum caused development defects and reduced pathogenicity [P. S. Solomon et al., Mol. Plant-Microbe Interact. 17:456-466, 2004]. In this study, we sought to identify targets of the signaling pathway that may have contributed to phenotypic defects of the signaling mutants. A comparative analysis of Stagonospora nodorum wild-type and Galpha-defective mutant (gna1) intracellular proteomes was performed via two-dimensional polyacrylamide gel electrophoresis. Several proteins showed significantly altered abundances when comparing the two strains. One such protein, the short-chain dehydrogenase Sch1, was 18-fold less abundant in the gna1 strain, implying that it is positively regulated by Galpha signaling. Gene expression and transcriptional enhanced green fluorescent protein fusion analyses of Sch1 indicates strong expression during asexual development. Mutant strains of Stagonospora nodorum lacking Sch1 demonstrated poor growth on minimal media and exhibited a significant reduction in asexual sporulation on all growth media examined. Detailed histological experiments on sch1 pycnidia revealed that the gene is required for the differentiation of the subparietal layers of asexual pycnidia resulting in a significant reduction in both pycnidiospore size and numbers.
Collapse
Affiliation(s)
- Kar-Chun Tan
- Australian Centre for Necrotrophic Fungal Pathogens, Murdoch University, South Street, Murdoch 6150, Australia
| | | | | | | | | | | |
Collapse
|
9
|
Hedh J, Samson P, Erland S, Tunlid A. Multiple gene genealogies and species recognition in the ectomycorrhizal fungus Paxillus involutus. ACTA ACUST UNITED AC 2008; 112:965-75. [PMID: 18554888 DOI: 10.1016/j.mycres.2008.01.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 01/14/2008] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
Abstract
Paxillus involutus (basidiomycetes, Boletales) is a common ectomycorrhizal fungus in the Northern Hemisphere. The fungus displays significant variation in phenotypic characters related to morphology, physiology, and ecology. Previous studies have shown that P. involutus contains several intersterility groups and morphological species. In this study, we have used concordance of multiple gene genealogies to identify genetically isolated species of P. involutus. Fragments from five protein coding genes in 50 isolates of P. involutus collected from different hosts and environments in Europe and one location in Canada were analysed using phylogenetic methods. Concordance of the five gene genealogies showed that P. involutus comprises at least four distinct phylogenetic lineages: phylogenetic species I (with nine isolates), II (33 isolates), III (three isolates), and IV (five isolates). The branches separating the four species were long and well supported compared with the species internodes. A low level of shared polymorphisms was observed among the four lineages indicating a long time since the genetic isolation began. Three of the phylospecies corresponded to earlier identified morphological species: I to P. obscurosporus, II to P. involutus s. str., and III to P. validus. The phylogenetic species had an overlapping geographical distribution. Species I and II differed partly in habitat and host preferences.
Collapse
Affiliation(s)
- Jenny Hedh
- Department of Microbial Ecology, Lund University, Ecology Building, SE-223 62, Lund, Sweden
| | | | | | | |
Collapse
|
10
|
Paun O, Fay MF, Soltis DE, Chase MW. Genetic and epigenetic alterations after hybridization and genome doubling. TAXON 2007; 56:649-656. [PMID: 21082042 DOI: 10.2307/25065849] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Hybridization and polyploidization are now recognized as major phenomena in the evolution of plants, promoting genetic diversity, adaptive radiation and speciation. Modern molecular techniques have recently provided evidence that allopolyploidy can induce several types of genetic and epigenetic events that are of critical importance for the evolutionary success of hybrids: (1) chromosomal rearrangements within one or both parental genomes contribute toward proper meiotic pairing and isolation of the hybrid from its progenitors; (2) demethylation and activation of dormant transposable elements may trigger insertional mutagenesis and changes in local patterns of gene expression, facilitating rapid genomic reorganisation; (3) rapid and reproducible loss of low copy DNA sequence appears to result in further differentiation of homoeologous chromosomes; and (4) organ-specific up- or down-regulation of one of the duplicated genes, resulting in unequal expression or silencing one copy. All these alterations also have the potential, while stabilizing allopolyploid genomes, to produce novel expression patterns and new phenotypes, which together with increased heterozygosity and gene redundancy might confer on hybrids an elevated evolutionary potential, with effects at scales ranging from molecular to ecological. Although important advances have been made in understanding genomic responses to allopolyploidization, further insights are still expected to be gained in the near future, such as the direction and nature of the diploidization process, functional relevance of gene expression alterations, molecular mechanisms that result in adaptation to different ecologies/habitats, and ecological and evolutionary implications of recurrent polyploidization.
Collapse
Affiliation(s)
- Ovidiu Paun
- Molecular Systematics Section, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK
| | | | | | | |
Collapse
|
11
|
GAFUR ABDUL, SCHUTZENDUBEL ANDRES, POLLE ANDREA. Peroxidase Activity in Poplar Inoculated with Compatible and Incompetent Isolates of Paxillus involutus. HAYATI JOURNAL OF BIOSCIENCES 2007. [DOI: 10.4308/hjb.14.2.49] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
12
|
Böhmer M, Colby T, Böhmer C, Bräutigam A, Schmidt J, Bölker M. Proteomic analysis of dimorphic transition in the phytopathogenic fungus Ustilago maydis. Proteomics 2007; 7:675-85. [PMID: 17340586 DOI: 10.1002/pmic.200600900] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the corn smut fungus Ustilago maydis, the dimorphic transition from budding to filamentous growth is intrinsically associated with the switch from a saprophytic to a pathogenic lifestyle. Both pathogenicity and filament formation are triggered by a heterodimeric homeodomain transcription factor encoded by the b mating type locus. Here, we present a reference map of the proteome of this dimorphic phytopathogenic fungus. Using 2-DE in combination with MALDI-TOF-MS and ESI-MS/MS, we were able to identify 250 distinct proteins obtained from soluble protein samples. In addition, we determined the abundance of cytosolic proteins in filamentous U. maydis cells and compared it with that of budding cells. Filamentous growth was induced by two independent regimes, either by overexpression of the bW2/bE1-heterodimer or by overexpression of the small GTP binding protein Rac1. By comparison of expression profiles, we have identified 13 protein spots that were significantly enhanced during filamentous growth induced by bW2/bE1. Rac1 only up-regulates a subset of four of these protein spots. None of these proteins have previously been associated with filamentous growth. Comparison of Rac1- and b-regulated protein sets supports the hypothesis that filament formation during pathogenic development occurs via stimulation of a Rac1-containing signalling module.
Collapse
Affiliation(s)
- Maik Böhmer
- Max-Planck Institute for Plant Breeding Research, Köln, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Microarray studies have examined global gene expression in over 20 species of filamentous fungi encompassing a wide variety of research areas. The majority have addressed aspects of metabolism or pathogenicity. Metabolic studies have revealed important differences in the transcriptional regulation of genes for primary metabolic pathways between filamentous fungi and yeast. Transcriptional profiles for genes involved in secondary metabolism have also been established. Genes required for the biosynthesis of both useful and detrimental secondary metabolites have been identified. Due to the economic, ecological and medical implications, it is not surprising that many studies have used microarray analysis to examine gene expression in pathogenic filamentous fungi. Genes involved in various stages of pathogenicity have been identified, including those thought to be important for adaptation to the host environment. While most of the studies have simulated pathogenic conditions in vitro, a small number have also reported fungal gene expression within their plant hosts. This review summarizes the first 50 microarray studies in filamentous fungi and highlights areas for future investigation.
Collapse
Affiliation(s)
- Andrew Breakspear
- Department of Plant Biology, The University of Georgia, 1505 Miller Plant Sciences, Athens, GA 30602, USA
| | | |
Collapse
|
14
|
Kammenga JE, Herman MA, Ouborg NJ, Johnson L, Breitling R. Microarray challenges in ecology. Trends Ecol Evol 2007; 22:273-9. [PMID: 17296243 DOI: 10.1016/j.tree.2007.01.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 01/11/2007] [Accepted: 01/29/2007] [Indexed: 01/03/2023]
Abstract
Microarrays are used to measure simultaneously the amount of mRNAs transcribed from many genes. They were originally designed for gene expression profiling in relatively simple biological systems, such as cell lines and model systems under constant laboratory conditions. This poses a challenge to ecologists who increasingly want to use microarrays to unravel the genetic mechanisms underlying complex interactions among organisms and between organisms and their environment. Here, we discuss typical experimental and statistical problems that arise when analyzing genome-wide expression profiles in an ecological context. We show that experimental design and environmental confounders greatly influence the identification of candidate genes in ecological microarray studies, and that following several simple recommendations could facilitate the analysis of microarray data in ecological settings.
Collapse
Affiliation(s)
- Jan E Kammenga
- Laboratory of Nematology, Wageningen University, Binnenhaven 5, 6709 PD, Wageningen, the Netherlands.
| | | | | | | | | |
Collapse
|
15
|
Rajashekar B, Samson P, Johansson T, Tunlid A. Evolution of nucleotide sequences and expression patterns of hydrophobin genes in the ectomycorrhizal fungus Paxillus involutus. THE NEW PHYTOLOGIST 2007; 174:399-411. [PMID: 17388902 DOI: 10.1111/j.1469-8137.2007.02022.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Hydrophobins are small, secreted proteins that play important roles in the development of pathogenic and symbiotic fungi. Evolutionary mechanisms generating sequence and expression divergence among members in hydrophobin gene families are largely unknown. Seven hydrophobin (hyd) genes and one hyd pseudogene were isolated from strains of the ectomycorrhizal fungus Paxillus involutus. Sequences were analysed using phylogenetic methods. Expression profiles were inferred from microarray experiments. The hyd genes included both young (recently diverged) and old duplicates. Some young hyd genes exhibited an initial phase of enhanced sequence evolution owing to relaxed or positive selection. There was no significant association between sequence divergence and variation in expression levels. However, three hyd genes displayed a shift in the expression levels or an altered tissue specificity following duplication. The Paxillus hyd genes evolve according to the so-called birth-and-death model in which some duplicates are maintained for a long time, whereas others are inactivated through mutations. The role of subfunctionalization and/or neofunctionalization for preserving the hyd duplicates in the genome is discussed.
Collapse
Affiliation(s)
| | | | - Tomas Johansson
- Department of Microbial Ecology, Lund University, Ecology Building, SE-223 62, Lund, Sweden
| | - Anders Tunlid
- Department of Microbial Ecology, Lund University, Ecology Building, SE-223 62, Lund, Sweden
| |
Collapse
|
16
|
Abstract
Genomics and bioinformatics have great potential to help address numerous topics in ecology and evolution. Expressed sequence tags (ESTs) can bridge genomics and molecular ecology because they can provide a means of accessing the gene space of almost any organism. We review how ESTs have been used in molecular ecology research in the last several years by providing sequence data for the design of molecular markers, genome-wide studies of gene expression and selection, the identification of candidate genes underlying adaptation, and the basis for studies of gene family and genome evolution. Given the tremendous recent advances in inexpensive sequencing technologies, we predict that molecular ecologists will increasingly be developing and using EST collections in the years to come. With this in mind, we close our review by discussing aspects of EST resource development of particular relevance for molecular ecologists.
Collapse
Affiliation(s)
- Amy Bouck
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA.
| | | |
Collapse
|
17
|
Wang B, Qiu YL. Phylogenetic distribution and evolution of mycorrhizas in land plants. MYCORRHIZA 2006; 16:299-363. [PMID: 16845554 DOI: 10.1007/s00572-005-0033-6] [Citation(s) in RCA: 769] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 12/15/2005] [Indexed: 05/10/2023]
Abstract
A survey of 659 papers mostly published since 1987 was conducted to compile a checklist of mycorrhizal occurrence among 3,617 species (263 families) of land plants. A plant phylogeny was then used to map the mycorrhizal information to examine evolutionary patterns. Several findings from this survey enhance our understanding of the roles of mycorrhizas in the origin and subsequent diversification of land plants. First, 80 and 92% of surveyed land plant species and families are mycorrhizal. Second, arbuscular mycorrhiza (AM) is the predominant and ancestral type of mycorrhiza in land plants. Its occurrence in a vast majority of land plants and early-diverging lineages of liverworts suggests that the origin of AM probably coincided with the origin of land plants. Third, ectomycorrhiza (ECM) and its derived types independently evolved from AM many times through parallel evolution. Coevolution between plant and fungal partners in ECM and its derived types has probably contributed to diversification of both plant hosts and fungal symbionts. Fourth, mycoheterotrophy and loss of the mycorrhizal condition also evolved many times independently in land plants through parallel evolution.
Collapse
Affiliation(s)
- B Wang
- Department of Ecology and Evolutionary Biology, The University Herbarium, University of Michigan, 830 N. University Avenue, Ann Arbor, MI, 48109-1048, USA.
| | | |
Collapse
|
18
|
Backström N, Brandström M, Gustafsson L, Qvarnström A, Cheng H, Ellegren H. Genetic mapping in a natural population of collared flycatchers (Ficedula albicollis): conserved synteny but gene order rearrangements on the avian Z chromosome. Genetics 2006; 174:377-86. [PMID: 16783008 PMCID: PMC1569790 DOI: 10.1534/genetics.106.058917] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Data from completely sequenced genomes are likely to open the way for novel studies of the genetics of nonmodel organisms, in particular when it comes to the identification and analysis of genes responsible for traits that are under selection in natural populations. Here we use the draft sequence of the chicken genome as a starting point for linkage mapping in a wild bird species, the collared flycatcher - one of the most well-studied avian species in ecological and evolutionary research. A pedigree of 365 flycatchers was established and genotyped for single nucleotide polymorphisms in 23 genes selected from (and spread over most of) the chicken Z chromosome. All genes were also found to be located on the Z chromosome in the collared flycatcher, confirming conserved synteny at the level of gene content across distantly related avian lineages. This high degree of conservation mimics the situation seen for the mammalian X chromosome and may thus be a general feature in sex chromosome evolution, irrespective of whether there is male or female heterogamety. Alternatively, such unprecedented chromosomal conservation may be characteristic of most chromosomes in avian genome evolution. However, several internal rearrangements were observed, meaning that the transfer of map information from chicken to nonmodel bird species cannot always assume conserved gene orders. Interestingly, the rate of recombination on the Z chromosome of collared flycatchers was only approximately 50% that of chicken, challenging the widely held view that birds generally have high recombination rates.
Collapse
Affiliation(s)
- Niclas Backström
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
19
|
Johannesson H, Kasuga T, Schaller RA, Good B, Gardner MJ, Townsend JP, Cole GT, Taylor JW. Phase-specific gene expression underlying morphological adaptations of the dimorphic human pathogenic fungus, Coccidioides posadasii. Fungal Genet Biol 2006; 43:545-59. [PMID: 16697669 DOI: 10.1016/j.fgb.2006.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 02/01/2006] [Accepted: 02/02/2006] [Indexed: 11/17/2022]
Abstract
Coccidioides posadasii is a dimorphic fungal pathogen that grows as a filamentous saprobe in the soil and as endosporulating spherules within the host. To identify genes specific to the pathogenic phase of Co. posadasii, we carried out a large-scale study of gene expression in two isolates of the species. From the sequenced Co. posadasii genome, we chose 1,000 open reading frames to construct a 70-mer microarray. RNA was recovered from both isolates at three life-cycle phases: hyphae, presegmented spherules, and spherules releasing endospores. Comparative hybridizations were conducted in a circuit design, permitting comparison between both isolates at all three life-cycle phases, and among all life-cycle phases for each isolate. By using this approach, we identified 92 genes that were differentially expressed between pathogenic and saprobic phases in both fungal isolates, and 43 genes with consistent differential expression between the two parasitic developmental phases. Genes with elevated expression in the pathogenic phases of both isolates included a number of genes that were involved in the response to environmental stress as well as in the metabolism of lipids. The latter observation is in agreement with previous studies demonstrating that spherules contain a higher proportion of lipids than saprobic phase tissue. Intriguingly, we discovered statistically significant and divergent levels of gene expression between the two isolates profiled for 64 genes. The results suggest that incorporating more than one isolate in the experimental design offers a means of categorizing the large collection of candidate genes that transcriptional profiling typically identifies into those that are strain-specific and those that characterize the entire species.
Collapse
Affiliation(s)
- H Johannesson
- Department of Evolution, Genomics and Systematics, Uppsala University, SE-752 36 Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Wegner KM, Kalbe M, Rauch G, Kurtz J, Schaschl H, Reusch TBH. Genetic variation in MHC class II expression and interactions with MHC sequence polymorphism in three-spined sticklebacks. Mol Ecol 2006; 15:1153-64. [PMID: 16599974 DOI: 10.1111/j.1365-294x.2006.02855.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Genes of the major histocompatibility complex (MHC) have been studied for several decades because of their pronounced allelic polymorphism. Structural allelic polymorphism is, however, not the only source of variability subjected to natural selection. Genetic variation may also exist in gene expression patterns. Here, we show that in a natural population of three-spined sticklebacks (Gasterosteus aculeatus) the expression of MHC class IIB genes was positively correlated with parasite load, which indicates increased immune activation of the MHC when infections are frequent. To experimentally study MHC expression, we used laboratory-bred sticklebacks that were exposed to three naturally occurring species of parasite. We found strong differences in MHC class IIB expression patterns among fish families, which were consistent over two generations, thus demonstrating a genetic component. The average number of MHC class IIB sequence variants within families was negatively correlated to the MHC expression level suggesting compensatory up-regulation in fish with a low (i.e. suboptimal) MHC sequence variability. The observed differences among families and the negative correlation with individual sequence diversity imply that MHC expression is evolutionary relevant for the onset and control of the immune response in natural populations.
Collapse
Affiliation(s)
- K M Wegner
- Max-Planck-Institute of Limnology, Department of Evolutionary Ecology, August--Thienemann-Str. 2, 24306 Plön, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Le Quéré A, Eriksen KA, Rajashekar B, Schützendübel A, Canbäck B, Johansson T, Tunlid A. Screening for rapidly evolving genes in the ectomycorrhizal fungus Paxillus involutus using cDNA microarrays. Mol Ecol 2006; 15:535-50. [PMID: 16448419 DOI: 10.1111/j.1365-294x.2005.02796.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have examined the variations in gene content and sequence divergence that could be associated with symbiotic adaptations in the ectomycorrhizal fungus Paxillus involutus and the closely related species Paxillus filamentosus. Strains with various abilities to form mycorrhizae were analysed by comparative genomic hybridizations using a cDNA microarray containing 1076 putative unique genes of P. involutus. To screen for genes diverging at an enhanced and presumably non-neutral rate, we implemented a simple rate test using information from both the variations in hybridizations signal and data on sequence divergence of the arrayed genes relative to the genome of Coprinus cinereus. C. cinereus is a free-living saprophyte and is the closest evolutionary relative to P. involutus that has been fully sequenced. Approximately 17% of the genes investigated were detected as rapidly diverging within Paxillus. Furthermore, 6% of the genes varied in copy numbers between the analysed strains. Genome rearrangements associated with this variation including duplications and deletions may also play a role in adaptive evolution. The cohort of divergent and duplicated genes showed an over-representation of either orphans, genes whose products are located at membranes, or genes encoding for components of stress/defence reactions. Some of the identified genomic changes may be associated with the variation in host specificity of ectomycorrhizal fungi. The proposed procedure could be generally applicable to screen for rapidly evolving genes in closely related strains or species where at least one has been sequenced or characterized by expressed sequence tag analysis.
Collapse
Affiliation(s)
- Antoine Le Quéré
- Department of Microbial Ecology, Lund University, Ecology Building, SE-223 62 Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
22
|
Zaretsky M, Sitrit Y, Mills D, Roth-Bejerano N, Kagan-Zur V. Differential expression of fungal genes at preinfection and mycorrhiza establishment between Terfezia boudieri isolates and Cistus incanus hairy root clones. THE NEW PHYTOLOGIST 2006; 171:837-45. [PMID: 16918554 DOI: 10.1111/j.1469-8137.2006.01791.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Changes in gene expression by isolates of Terfezia boudieri during mycorrhization with Cistus incanus hairy roots were followed. Four fungus-hairy root clone combinations were cultivated under two sets of conditions, in which the root and the fungus were separated by a cellophane sheet or were allowed physical contact. One of the combinations produced endomycorrhizas, the other three solely ectomycorrhizas. Fragments isolated by cDNA-AFLP analysis from cellophane-separated cultures (preinfection) were used to identify differentially expressed genes by reverse Northern analysis. Genes showing no homology to known sequences constituted the largest group under both growth conditions. Some fungal genes were expressed transiently, while others exhibited altered expression patterns as conditions changed from individually growing through the preinfection stage to mycorrhizas. Genes expressed exclusively under combinations allowing either ectomycorrhiza or endomycorrhiza under a particular condition were detected. Our results point, for the first time, to some of the genes that might be involved in determining the type of association that will be formed: ecto- or endomycorrhiza.
Collapse
Affiliation(s)
- Marianna Zaretsky
- Department of Life Sciences, Ben Gurion University, POB 653, Beer Sheva, Israel
| | | | | | | | | |
Collapse
|
23
|
Abstract
Researchers in the field of molecular ecology and evolution require versatile and low-cost genetic typing methods. The AFLP (amplified fragment length polymorphism) method was introduced 10 years ago and shows many features that fulfil these requirements. With good quality genomic DNA at hand, it is relatively easy to generate anonymous multilocus DNA profiles in most species and the start-up time before data can be generated is often less than a week. Built-in dynamic, yet simple modifications make it possible to find a protocol suitable to the genome size of the species and to screen thousands of loci in hundreds of individuals for a relatively low cost. Until now, the method has primarily been applied in studies of plants, bacteria and fungi, with a strong bias towards economically important cultivated species and their pests. In this review we identify a number of research areas in the study of wild species of animals where the AFLP method, presently very much underused, should be a very valuable tool. These aspects include classical problems such as studies of population genetic structure and phylogenetic reconstructions, and also new challenges such as finding markers for genes governing adaptations in wild populations and modifications of the protocol that makes it possible to measure expression variation of multiple genes (cDNA-AFLP) and the distribution of DNA methylation. We hope this review will help molecular ecologists to identify when AFLP is likely to be superior to other more established methods, such as microsatellites, SNP (single nucleotide polymorphism) analyses and multigene DNA sequencing.
Collapse
Affiliation(s)
- Staffan Bensch
- Department of Animal Ecology, Ecology Building, Lund University, S-223 62 Lund, Sweden.
| | | |
Collapse
|
24
|
Wright DP, Johansson T, Le Quéré A, Söderström B, Tunlid A. Spatial patterns of gene expression in the extramatrical mycelium and mycorrhizal root tips formed by the ectomycorrhizal fungus Paxillus involutus in association with birch (Betula pendula) seedlings in soil microcosms. THE NEW PHYTOLOGIST 2005; 167:579-96. [PMID: 15998408 DOI: 10.1111/j.1469-8137.2005.01441.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Functional compartmentation of the extramatrical mycelium of ectomycorrhizal (ECM) fungi is considered important for the operation of ECM associations, although the molecular basis is poorly characterized. Global gene expression profiles of mycelium colonizing an ammonium sulphate ((NH4)2SO4) nutrient patch, rhizomorphs and ECM root tips of the Betula pendula-Paxillus involutus association were compared by cDNA microarray analysis. The expression profiles of rhizomorphs and nutrient patch mycelium were similar to each other but distinctly different from that of mycorrhizal tips. Statistical analyses revealed 337 of 1075 fungal genes differentially regulated among these three tissues. Clusters of genes exhibiting distinct expression patterns within specific tissues were identified. Genes implicated in the glutamine synthetase/glutamate synthase (GS/GOGAT) and urea cycles, and the provision of carbon skeletons for ammonium assimilation via beta-oxidation and the glyoxylate cycle, were highly expressed in rhizomorph and nutrient patch mycelium. Genes implicated in vesicular transport, cytoskeleton organization and morphogenesis and protein degradation were also differentially expressed. Differential expression of genes among the extramatrical mycelium and mycorrhizal tips indicates functional specialization of tissues forming ECM associations.
Collapse
Affiliation(s)
- Derek P Wright
- Department of Microbial Ecology, Ecology Building, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden
| | | | | | | | | |
Collapse
|
25
|
Le Quéré A, Wright DP, Söderström B, Tunlid A, Johansson T. Global patterns of gene regulation associated with the development of ectomycorrhiza between birch (Betula pendula Roth.) and Paxillus involutus (Batsch) Fr. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:659-73. [PMID: 16042012 DOI: 10.1094/mpmi-18-0659] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The formation of ectomycorrhizal (ECM) root tissue is characterized by distinct morphological and developmental stages, such as preinfection and adhesion, mantle, and Hartig net formation. The global pattern of gene expression during these stages in the birch (Betula pendula)-Paxillus involutus ECM association was analyzed using cDNA microarrays. In comparison with nonsymbiotic conditions, 251 fungal (from a total of 1,075) and 138 plant (1,074 in total) genes were found to be differentially regulated during the ECM development. For instance, during mantle and Hartig net development, there were several plant genes upregulated that are normally involved in defense responses during pathogenic fungal challenges. These responses were, at later stages of ECM development, found to be repressed. Other birch genes that showed differential regulation involved several homologs that usually are implicated in water permeability (aquaporins) and water stress tolerance (dehydrins). Among fungal genes differentially upregulated during stages of mantle and Hartig net formation were homologs putatively involved in mitochondrial respiration. In fully developed ECM tissue, there was an upregulation of fungal genes related to protein synthesis and the cytoskeleton assembly machinery. This study highlights complex molecular interactions between two symbionts during the development of an ECM association.
Collapse
Affiliation(s)
- Antoine Le Quéré
- Department of Microbial Ecology, Ecology Building, Lund University, SE-223 62 Lund, Sweden
| | | | | | | | | |
Collapse
|