1
|
Kashif M, Poimala A, Vainio EJ, Sutela S, Piri T, Dálya LB, Hantula J. Complex transmission of partiti-, ambi- and ourmiaviruses in the forest pathogen Heterobasidion parviporum. Virus Res 2024; 350:199466. [PMID: 39384434 PMCID: PMC11736393 DOI: 10.1016/j.virusres.2024.199466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/11/2024]
Abstract
Utilizing Heterobasidion partitivirus 13 strain an1 (HetPV13-an1) and 15 strain pa1 (HetPV15-pa1) in co-infection is considered a potential biocontrol approach against Heterobasidion root and butt rot. Both partitiviruses mediate debilitating effects in most Heterobasidion host isolates and are generally transmitted efficiently between host strains. In this investigation, we conducted transmission experiments in the laboratory (in vitro) using several H. parviporum isolates to test whether using dual partitivirus infections is a more efficient way of transmitting viruses to new hosts compared to using single partitivirus infections, and whether co-occurring single-stranded RNA (ssRNA) viruses are co-transmitted during the process. The results showed that H. parviporum donors carrying both partitiviruses, HetPV13-an1 and HetPV15-pa1, transmitted HetPV15-pa1 more efficiently to recipients than the same donors infected with only HetPV15-pa1. In contrast, the transmission of HetPV13-an1 did not differ significantly between donors infected with both or only one partitivirus. Altogether, the transmission rates of HetPV13-an1 and HetPV15-pa1 were high on artificial media. Moreover, the transmission of the ssRNA viruses Heterobasidion ourmia-like virus 1(HetOlV1-pa7) and 4 (HetOlV4-an1) as well as Heterobasidion ambi-like virus 3 (HetAlV3-pa4) across different recipients were found to be variable. This study demonstrated for the first time the transmission of ambi- and ourmiaviruses between H. parviporum isolates in dual cultures and showed that H. parviporum mycelia can be cured of these ssRNA viruses using heat treatment.
Collapse
Affiliation(s)
- Muhammad Kashif
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | - Anna Poimala
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland.
| | - Eeva J Vainio
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | - Suvi Sutela
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | - Tuula Piri
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | | | - Jarkko Hantula
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| |
Collapse
|
2
|
Kozhar O, Burns KS, Schoettle AW, Stewart JE. Distribution of Cronartium x flexili, an interspecific hybrid of two fungal tree rust pathogens, in subalpine forest ecosystems of western USA. Fungal Biol 2024; 128:1578-1589. [PMID: 38341263 DOI: 10.1016/j.funbio.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 02/12/2024]
Abstract
Interspecific hybridization plays a key role in the evolution of novel fungal pathogens, and when it occurs between native and invasive species, can lead to potentially serious consequences. In this study, we examined the temporal and spatial distribution of a recently detected hybrid (Cronartium x flexili) of two tree pathogens, invasive to North America Cronartium ribicola and native Cronartium comandrae. In total, 726 and 1452 aecia from 178 Pinus contorta ssp. latifolia and 357 Pinus flexilis trees were collected from 26 sites in four national forests in 2019-2021. Using morphological and molecular analyses, 71 aecia collected from 25 P. flexilis trees had intermediate morphology and contained heterozygous SNPs in two genomic regions. Population analyses revealed the presence of multiple hybrid genotypes randomly distributed among sites and years. No aecia from P. contorta ssp. latifolia were identified as hybrids suggesting unidirectional gene flow from native C. comandrae to invasive C. ribicola. Aeciospores from 2 hybrid aecia produced urediniospores on Ribes nigrum. Overall, these results suggest that, even though low in frequency, C. x flexili is persistent in the region and has pathogenic potential. Hybrid expansion into the large range of susceptible pines could have cascading impacts on forest health.
Collapse
Affiliation(s)
- Olga Kozhar
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA.
| | - Kelly S Burns
- Forest Health Protection, Rocky Mountain Region, USDA Forest Service, Golden, CO, USA
| | - Anna W Schoettle
- Rocky Mountain Research Station, USDA Forest Service, Fort Collins, CO, USA
| | - Jane E Stewart
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
3
|
Garbelotto M, Lione G, Martiniuc AV, Gonthier P. The alien invasive forest pathogen Heterobasidion irregulare is replacing the native Heterobasidion annosum. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02775-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractInvasions by alien pathogens are a major threat to forest conservation. The North American fungal pathogen of conifers Heterobasidion irregulare, inadvertently introduced in Central Italy in the 1940s, has been spreading causing high mortality of Italian stone pine (Pinus pinea). While invading newfound niches, H. irregulare has established itself in the current range of the native congener H. annosum. The aims of this study were to determine whether in time: (I) H. irregulare populations may be increasing in size; (II) H. irregulare may be replacing H. annosum, rather than simply coexisting with it; and, (III) H. annosum may disappear in forests infested by H. irregulare. The presence, abundance and distribution of H. annosum and H. irregulare were assessed through an aerobiological assay replicated ten years apart in a forest in which both species have been coexisting. Replacement index (RI), Markov chains and geometric progressions were used to model the interspecific interaction between the two species and to assess the invasiveness of H. irregulare. Results showed that, in 10 years, the incidence of H. annosum dropped from 39.4 to 6.1%, while that of H. irregulare increased from 57.6 to 81.8%, with the alien pathogen replacing the native species (RI = 84.6%) and spreading at a maximum rate of 139 ha/year. Although our models show that the extinction of H. annosum may be unlikely, the ability of H. irregulare to replace it suggests the alien pathogen may also readily colonize those parts of Europe where H. annosum is more abundant than in Central Italy.
Collapse
|
4
|
Sillo F, Garbelotto M, Giordano L, Gonthier P. Genic introgression from an invasive exotic fungal forest pathogen increases the establishment potential of a sibling native pathogen. NEOBIOTA 2021. [DOI: 10.3897/neobiota.65.64031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significant hybridization between the invasive North American fungal plant pathogen Heterobasidion irregulare and its Eurasian sister species H. annosum is ongoing in Italy. Whole genomes of nine natural hybrids were sequenced, assembled and compared with those of three genotypes each of the two parental species. Genetic relationships among hybrids and their level of admixture were determined. A multi-approach pipeline was used to assign introgressed genomic blocks to each of the two species. Alleles that introgressed from H. irregulare to H. annosum were associated with pathways putatively related to saprobic processes, while alleles that introgressed from the native to the invasive species were mainly linked to gene regulation. There was no overlap of allele categories introgressed in the two directions. Phenotypic experiments documented a fitness increase in H. annosum genotypes characterized by introgression of alleles from the invasive species, supporting the hypothesis that hybridization results in putatively adaptive introgression. Conversely, introgression from the native into the exotic species appeared to be driven by selection on genes favoring genome stability. Since the introgression of specific alleles from the exotic H. irregulare into the native H. annosum increased the invasiveness of the latter species, we propose that two invasions may be co-occurring: the first one by genotypes of the exotic species, and the second one by alleles belonging to the exotic species. Given that H. irregulare represents a threat to European forests, monitoring programs need to track not only exotic genotypes in native forest stands, but also exotic alleles introgressed in native genotypes.
Collapse
|
5
|
Hessenauer P, Feau N, Gill U, Schwessinger B, Brar GS, Hamelin RC. Evolution and Adaptation of Forest and Crop Pathogens in the Anthropocene. PHYTOPATHOLOGY 2021; 111:49-67. [PMID: 33200962 DOI: 10.1094/phyto-08-20-0358-fi] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Anthropocene marks the era when human activity is making a significant impact on earth, its ecological and biogeographical systems. The domestication and intensification of agricultural and forest production systems have had a large impact on plant and tree health. Some pathogens benefitted from these human activities and have evolved and adapted in response to the expansion of crop and forest systems, resulting in global outbreaks. Global pathogen genomics data including population genomics and high-quality reference assemblies are crucial for understanding the evolution and adaptation of pathogens. Crops and forest trees have remarkably different characteristics, such as reproductive time and the level of domestication. They also have different production systems for disease management with more intensive management in crops than forest trees. By comparing and contrasting results from pathogen population genomic studies done on widely different agricultural and forest production systems, we can improve our understanding of pathogen evolution and adaptation to different selection pressures. We find that in spite of these differences, similar processes such as hybridization, host jumps, selection, specialization, and clonal expansion are shaping the pathogen populations in both crops and forest trees. We propose some solutions to reduce these impacts and lower the probability of global pathogen outbreaks so that we can envision better management strategies to sustain global food production as well as ecosystem services.
Collapse
Affiliation(s)
- Pauline Hessenauer
- Faculty of Forestry, Geography and Geomatics, Laval University, Quebec City, QC, G1V 0A6 Canada
| | - Nicolas Feau
- Faculty of Forestry, The University of British Columbia, Vancouver, BC, V6T 1Z4 Canada
| | - Upinder Gill
- College of Agriculture, Food Systems, and Natural Resources, North Dakota State University, Fargo, ND 58102, U.S.A
| | - Benjamin Schwessinger
- Research School of Biology, Australian National University, Acton, ACT 2601 Australia
| | - Gurcharn S Brar
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, V6T 1Z4 Canada
| | - Richard C Hamelin
- Faculty of Forestry, Geography and Geomatics, Laval University, Quebec City, QC, G1V 0A6 Canada
- Faculty of Forestry, The University of British Columbia, Vancouver, BC, V6T 1Z4 Canada
| |
Collapse
|
6
|
Hamberg L, Saksa T, Hantula J. Role and function of Chondrostereum purpureum in biocontrol of trees. Appl Microbiol Biotechnol 2020; 105:431-440. [PMID: 33340337 PMCID: PMC7806553 DOI: 10.1007/s00253-020-11053-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/06/2020] [Accepted: 12/09/2020] [Indexed: 11/30/2022]
Abstract
Abstract A decay fungus, Chondrostereum purpureum (Pers. Ex Fr.) Pouzar, has been investigated in Europe, Northern America and New Zealand for its ability to decay hardwood stumps and thus prevent sprouting. The aim of these investigations has been to find an alternative to mechanical (cutting only) and chemical sprout control (cutting and applying chemicals to stumps in order to prevent sprouting). Mechanical sprout control is not an efficient option due to hardwood tree species’ ability to re-sprout efficiently after cutting, and therefore management costs are high. Chemicals would be efficient but due to their harmful effects on the environment, alternatives are needed. The fungal treatment, i.e., cutting accompanied with C. purpureum inoculum is an environmentally friendly and efficient option for sprout control. This mini-review comprises the role and function of C. purpureum in biocontrol of trees: the ecology of C. purpureum, its sprout control efficacy, factors affecting sprout control efficacy, devices in biological sprout control, potential risks, and the future perspectives of biological sprout control. Key points • A fungus Chondrostereum purpureum is efficient in preventing sprouting of hardwoods • C. purpureum is not sensitive to environmental conditions • Devices should be developed for cost-efficient biological sprout control
Collapse
Affiliation(s)
- Leena Hamberg
- Natural Resources Institute Finland, P.O. Box 2, (Latokartanonkaari 9), FI-00790, Helsinki, Finland.
| | - Timo Saksa
- Natural Resources Institute Finland, Juntintie 154, FI-77600, Suonenjoki, Finland
| | - Jarkko Hantula
- Natural Resources Institute Finland, P.O. Box 2, (Latokartanonkaari 9), FI-00790, Helsinki, Finland
| |
Collapse
|
7
|
Jayawardena RS, Hyde KD, Chen YJ, Papp V, Palla B, Papp D, Bhunjun CS, Hurdeal VG, Senwanna C, Manawasinghe IS, Harischandra DL, Gautam AK, Avasthi S, Chuankid B, Goonasekara ID, Hongsanan S, Zeng X, Liyanage KK, Liu N, Karunarathna A, Hapuarachchi KK, Luangharn T, Raspé O, Brahmanage R, Doilom M, Lee HB, Mei L, Jeewon R, Huanraluek N, Chaiwan N, Stadler M, Wang Y. One stop shop IV: taxonomic update with molecular phylogeny for important phytopathogenic genera: 76–100 (2020). FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00460-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractThis is a continuation of a series focused on providing a stable platform for the taxonomy of phytopathogenic fungi and fungus-like organisms. This paper focuses on one family: Erysiphaceae and 24 phytopathogenic genera: Armillaria, Barriopsis, Cercospora, Cladosporium, Clinoconidium, Colletotrichum, Cylindrocladiella, Dothidotthia,, Fomitopsis, Ganoderma, Golovinomyces, Heterobasidium, Meliola, Mucor, Neoerysiphe, Nothophoma, Phellinus, Phytophthora, Pseudoseptoria, Pythium, Rhizopus, Stemphylium, Thyrostroma and Wojnowiciella. Each genus is provided with a taxonomic background, distribution, hosts, disease symptoms, and updated backbone trees. Species confirmed with pathogenicity studies are denoted when data are available. Six of the genera are updated from previous entries as many new species have been described.
Collapse
|
8
|
Reduced Virulence of an Introduced Forest Pathogen over 50 Years. Microorganisms 2019; 7:microorganisms7100420. [PMID: 31590374 PMCID: PMC6843257 DOI: 10.3390/microorganisms7100420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 12/21/2022] Open
Abstract
Pathogen incursions are a major impediment for global forest health. How pathogens and forest trees coexist over time, without pathogens simply killing their long-lived hosts, is a critical but unanswered question. The Dothistroma Needle Blight pathogen Dothistroma septosporum was introduced into New Zealand in the 1960s and remains a low-diversity, asexual population, providing a unique opportunity to analyze the evolution of a forest pathogen. Isolates of D. septosporum collected from commercial pine forests over 50 years were compared at whole-genome and phenotype levels. Limited genome diversity and increased diversification among recent isolates support the premise of a single introduction event. Isolates from the 1960s show significantly elevated virulence against Pinus radiata seedlings and produce higher levels of the virulence factor dothistromin compared to isolates collected in the 1990s and 2000s. However, later isolates have no increased tolerance to copper, used in fungicide treatments of infested forests and traditionally assumed to be a strong selection pressure. The isolated New Zealand population of this forest pathogen therefore appears to have become less virulent over time, likely in part to maintain the viability of its long-lived host. This finding has broad implications for forest health and highlights the benefits of long-term pathogen surveys.
Collapse
|
9
|
An ectomycorrhizal symbiosis differently affects host susceptibility to two congeneric fungal pathogens. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Sillo F, Gonthier P, Lockman B, Kasuga T, Garbelotto M. Molecular analyses identify hybridization-mediated nuclear evolution in newly discovered fungal hybrids. Ecol Evol 2019; 9:6588-6605. [PMID: 31236246 PMCID: PMC6580273 DOI: 10.1002/ece3.5238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/14/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
Hybridization may be a major driver in the evolution of plant pathogens. In a high elevation Alpine larch stand in Montana, a novel hybrid fungal pathogen of trees originating from the mating of Heterobasidion irregulare with H. occidentale has been recently discovered. In this study, sequence analyses of one mitochondrial and four nuclear loci from 11 Heterobasidion genotypes collected in the same Alpine larch stand indicated that hybridization has increased allelic diversity by generating novel polymorphisms unreported in either parental species. Sequence data and ploidy analysis through flow cytometry confirmed that heterokaryotic (n + n) genotypes were not first-generation hybrids, but were the result of multiple backcrosses, indicating hybrids are fertile. Additionally, all admixed genotypes possessed the H. occidentale mitochondrion, indicating that the hybrid progeny may have been backcrossing mostly with H. occidentale. Based on reticulate phylogenetic network analysis by PhyloNet, Bayesian assignment, and ordination tests, alleles can be defined as H. irregulare-like or H. occidentale-like. H. irregulare-like alleles are clearly distinct from all known H. irregulare alleles and are derived from the admixing of both Heterobasidion species. Instead, all but one H. occidentale alleles found in hybrids, although novel, were not clearly distinct from alleles found in the parental H. occidentale population. This discovery demonstrates that Alpine larch can be a universal host favouring the interspecific hybridization between H. irregulare and H. occidentale and the hybridization-mediated evolution of a nucleus, derived from H. irregulare parental species but clearly distinct from it.
Collapse
Affiliation(s)
- Fabiano Sillo
- Department of Agricultural, Forest and Food Sciences (DISAFA)University of TorinoGrugliasco (TO)Italy
| | - Paolo Gonthier
- Department of Agricultural, Forest and Food Sciences (DISAFA)University of TorinoGrugliasco (TO)Italy
| | - Blakey Lockman
- Pacific Northwest Region, State and Private ForestryUSDA Forest ServicePortlandOregon
| | - Takao Kasuga
- Crops Pathology and Genetics Research UnitUSDA Agricultural Research ServiceDavisCalifornia
| | - Matteo Garbelotto
- Department of Agricultural, Forest and Food Sciences (DISAFA)University of TorinoGrugliasco (TO)Italy
- Department of Environmental Science, Policy and Management, Forest Pathology and Mycology LaboratoryUniversity of California, BerkeleyBerkeleyCalifornia
| |
Collapse
|
11
|
Fungal species and their boundaries matter – Definitions, mechanisms and practical implications. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2017.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Giordano L, Sillo F, Garbelotto M, Gonthier P. Mitonuclear interactions may contribute to fitness of fungal hybrids. Sci Rep 2018; 8:1706. [PMID: 29374209 PMCID: PMC5786003 DOI: 10.1038/s41598-018-19922-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 01/05/2018] [Indexed: 12/15/2022] Open
Abstract
Hybridization between species is being recognized as a major force in the rapid adaptive evolution of fungal plant pathogens. The first stages of interspecific hybridization necessarily involve nuclear-mitochondrial chimeras. In their 2001 publication, Olson and Stenlid reported that mitochondria control the virulence of first generation hybrids between the North American fungal pathogen Heterobasidion irregulare and its congeneric H. occidentale. By assessing saprobic ability and gene expression of H. irregulare × H. annosum sensu stricto hybrids and of their parental genotypes, we demonstrate that mitochondria also influence saprobic growth of hybrids. Moreover, gene expression data suggest that fungal fitness is modulated by an intimate interplay between nuclear genes and mitochondrial type, and is dependent on the specific mitonuclear combination.
Collapse
Affiliation(s)
- Luana Giordano
- University of Torino, Department of Agricultural, Forest and Food Sciences (DISAFA), Largo Paolo Braccini 2, I-10095, Grugliasco (TO), Italy.,Centre of Competence for the Innovation in the Agro-Environmental Field (AGROINNOVA), University of Torino, Largo Paolo Braccini 2, I-10095, Grugliasco (TO), Italy
| | - Fabiano Sillo
- University of Torino, Department of Agricultural, Forest and Food Sciences (DISAFA), Largo Paolo Braccini 2, I-10095, Grugliasco (TO), Italy.
| | - Matteo Garbelotto
- University of California, Berkeley, Department of Environmental Science, Policy and Management, Forest Pathology and Mycology Laboratory, 54 Mulford Hall, 94720, Berkeley, California, USA
| | - Paolo Gonthier
- University of Torino, Department of Agricultural, Forest and Food Sciences (DISAFA), Largo Paolo Braccini 2, I-10095, Grugliasco (TO), Italy
| |
Collapse
|
13
|
Burgess TI, Crous CJ, Slippers B, Hantula J, Wingfield MJ. Tree invasions and biosecurity: eco-evolutionary dynamics of hitchhiking fungi. AOB PLANTS 2017; 8:plw076. [PMID: 27821517 PMCID: PMC5206332 DOI: 10.1093/aobpla/plw076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/26/2016] [Indexed: 05/28/2023]
Abstract
When non-native plants reach novel environments, they typically arrive with hidden microbiomes. In general, most of these hitchhikers remain on their co-evolved hosts, some contribute to the invasiveness of their hosts, and a small number can undergo host shifts and move onto native hosts. Invasion success can vary depending upon the different categories of fungal associates. When an invader tree relies on a fungal mutualism to survive in the new environment, there is a fundamentally lower likelihood of either the tree, or the fungus, establishing novel associations. In contrast, parasitic hitchhikers could merely use their host plants to move through the landscape and to become established on new hosts (host shifts). Evidence suggests the frequency of these host shifts is low and depends upon the fungal functional group. However, epidemics caused by invasive pathogens in native ecosystems have occurred globally. Thus, elucidating the potential for hidden non-native fungi to form novel host associations in a new environment is important for biodiversity conservation.
Collapse
Affiliation(s)
- Treena I Burgess
- Centre of Phytophthora Science and Management, School of Veterinary and Life Science, Murdoch University, Murdoch 6150, Australia
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Casparus J Crous
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
- Present address: Centre for Ecology, Evolution and Environmental Changes, Faculty of Sciences, University of Lisbon, Campo Grande, Lisbon 1749-016, Portugal
| | - Bernard Slippers
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Jarkko Hantula
- Natural Resources Institute Finland, Natural Resources and Bioproduction Unit, Vantaa 01300, Finland
| | - Michael J Wingfield
- Centre of Phytophthora Science and Management, School of Veterinary and Life Science, Murdoch University, Murdoch 6150, Australia
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
14
|
Gonthier P, Sillo F, Lagostina E, Roccotelli A, Cacciola OS, Stenlid J, Garbelotto M. Selection processes in simple sequence repeats suggest a correlation with their genomic location: insights from a fungal model system. BMC Genomics 2015; 16:1107. [PMID: 26714466 PMCID: PMC4696308 DOI: 10.1186/s12864-015-2274-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/03/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adaptive processes shape the evolution of genomes and the diverse functions of different genomic regions are likely to have an impact on the trajectory and outcome of this evolution. The main underlying hypothesis of this study is that the evolution of Simple Sequence Repeats (SSRs) is correlated with the evolution of the genomic region in which they are located, resulting in differences of motif size, number of repeats, and levels of polymorphisms. These differences should be clearly detectable when analyzing the frequency and type of SSRs within the genome of a species, when studying populations within a species, and when comparing closely related sister taxa. By coupling a genome-wide SSR survey in the genome of the plant pathogenic fungus Heterobasidion irregulare with an analysis of intra- and interspecific variability of 39 SSR markers in five populations of the two sibling species H. irregulare and H. annosum, we investigated mechanisms of evolution of SSRs. RESULTS Results showed a clear dominance of trirepeats and a selection against other repeat number, i.e. di- and tetranucleotides, both in regions inside Open Reading Frames (ORFs) and upstream 5' untranslated region (5'UTR). Locus per locus AMOVA showed SSRs both inside ORFs and upstream 5'UTR were more conserved within species compared to SSRs in other genomic regions, suggesting their evolution is constrained by the functions of the regions they are in. Principal coordinates analysis (PCoA) indicated that even if SSRs inside ORFs were less polymorphic than those in intergenic regions, they were more powerful in differentiating species. These findings indicate SSRs evolution undergoes a directional selection pressure comparable to that of the ORFs they interrupt and to that of regions involved in regulatory functions. CONCLUSIONS Our work linked the variation and the type of SSRs with regions upstream 5'UTR, putatively harbouring regulatory elements, and shows that the evolution of SSRs might be affected by their location in the genome. Additionally, this study provides a first glimpse on a possible molecular basis for fast adaptation to the environment mediated by SSRs.
Collapse
Affiliation(s)
- Paolo Gonthier
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10095, Grugliasco, Italy.
| | - Fabiano Sillo
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10095, Grugliasco, Italy.
| | - Elisa Lagostina
- Department of Environmental Sciences, Policy and Management, University of California at Berkeley, CA, 94720, Berkeley, USA. .,Department of Earth and Environmental Sciences, University of Pavia, 27100, Pavia, Italy.
| | - Angela Roccotelli
- Department of Environmental Sciences, Policy and Management, University of California at Berkeley, CA, 94720, Berkeley, USA. .,Department of Agriculture, Mediterranean University of Reggio Calabria, 89122, Reggio Calabria, Italy.
| | - Olga Santa Cacciola
- Department of Agriculture, Food and Environment, University of Catania, 95123, Catania, Italy.
| | - Jan Stenlid
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden.
| | - Matteo Garbelotto
- Department of Environmental Sciences, Policy and Management, University of California at Berkeley, CA, 94720, Berkeley, USA.
| |
Collapse
|
15
|
Sillo F, Garbelotto M, Friedman M, Gonthier P. Comparative Genomics of Sibling Fungal Pathogenic Taxa Identifies Adaptive Evolution without Divergence in Pathogenicity Genes or Genomic Structure. Genome Biol Evol 2015; 7:3190-206. [PMID: 26527650 PMCID: PMC4700942 DOI: 10.1093/gbe/evv209] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2015] [Indexed: 12/27/2022] Open
Abstract
It has been estimated that the sister plant pathogenic fungal species Heterobasidion irregulare and Heterobasidion annosum may have been allopatrically isolated for 34-41 Myr. They are now sympatric due to the introduction of the first species from North America into Italy, where they freely hybridize. We used a comparative genomic approach to 1) confirm that the two species are distinct at the genomic level; 2) determine which gene groups have diverged the most and the least between species; 3) show that their overall genomic structures are similar, as predicted by the viability of hybrids, and identify genomic regions that instead are incongruent; and 4) test the previously formulated hypothesis that genes involved in pathogenicity may be less divergent between the two species than genes involved in saprobic decay and sporulation. Results based on the sequencing of three genomes per species identified a high level of interspecific similarity, but clearly confirmed the status of the two as distinct taxa. Genes involved in pathogenicity were more conserved between species than genes involved in saprobic growth and sporulation, corroborating at the genomic level that invasiveness may be determined by the two latter traits, as documented by field and inoculation studies. Additionally, the majority of genes under positive selection and the majority of genes bearing interspecific structural variations were involved either in transcriptional or in mitochondrial functions. This study provides genomic-level evidence that invasiveness of pathogenic microbes can be attained without the high levels of pathogenicity presumed to exist for pathogens challenging naïve hosts.
Collapse
Affiliation(s)
- Fabiano Sillo
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco, Italy
| | - Matteo Garbelotto
- Department of Environmental Science, Policy and Management, University of California, Berkeley
| | - Maria Friedman
- Department of Environmental Science, Policy and Management, University of California, Berkeley
| | - Paolo Gonthier
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco, Italy
| |
Collapse
|
16
|
Vainio EJ, Hantula J. Taxonomy, biogeography and importance of Heterobasidion viruses. Virus Res 2015; 219:2-10. [PMID: 26477938 DOI: 10.1016/j.virusres.2015.10.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/08/2015] [Accepted: 10/10/2015] [Indexed: 11/17/2022]
Abstract
The genus Heterobasidion consists of several species of necrotrophic and saprotrophic fungi, and includes some of the most detrimental organisms in boreal conifer forests. These fungi host a widespread and diverse mycovirus community composed of more than 16 species of Partitiviridae, a species of Narnaviridae and one taxonomically unassigned virus related to the Curvularia thermal tolerance virus. These viruses are able to cross species borders, co-infect single host strains and cause phenotypic changes in their hosts. The abundance of viruses increases over time in Heterobasidion infection centers, and they are targeted by fungal RNA interference. Long-term field studies are essential for obtaining a comprehensive view of virus effects in the nature.
Collapse
Affiliation(s)
- Eeva J Vainio
- Natural Resources Institute Finland (Luke), Jokiniemenkuja 1, POB 18, 01301 Vantaa, Finland.
| | - Jarkko Hantula
- Natural Resources Institute Finland (Luke), Jokiniemenkuja 1, POB 18, 01301 Vantaa, Finland.
| |
Collapse
|
17
|
Identification of genes differentially expressed during the interaction between the plant symbiont Suillus luteus and two plant pathogenic allopatric Heterobasidion species. Mycol Prog 2015. [DOI: 10.1007/s11557-015-1130-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Burgess TI. Molecular Characterization of Natural Hybrids Formed between Five Related Indigenous Clade 6 Phytophthora Species. PLoS One 2015; 10:e0134225. [PMID: 26248187 PMCID: PMC4527719 DOI: 10.1371/journal.pone.0134225] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 07/07/2015] [Indexed: 11/29/2022] Open
Abstract
Most Phytophthora hybrids characterized to date have emerged from nurseries and managed landscapes, most likely generated as a consequence of biological invasions associated with the movement of living plants and germplasm for ornamental, horticultural and agricultural purposes. Presented here is evidence for natural hybridization among a group of five closely related indigenous clade 6 Phytophthora species isolated from waterways and riparian ecosystems in Western Australia. Molecular characterization of hybrids consisted of cloning and sequencing two nuclear genes (ITS and ASF), sequencing of two further nuclear loci (BT and HSP) and of two mitochondrial loci (COI and NADH). Additionally, phenotypic traits including morphology of sporangia and optima and maxima temperatures for growth were also determined. In most cases the nuclear genes were biparentally and in all cases the mtDNA were uniparentally inherited, indicating hybrid formation through sexual crosses. Some isolates bear the molecular signature of three parents suggesting additional hybrid events, although it cannot be determined from the data if these were sequential or simultaneous. These species and their hybrids co-exist in riparian ecosystems and waterways where their ability for rapid asexual proliferation would enable them to rapidly colonize green plant litter. The apparent ease of hybridization could eventually lead to the merging of species through introgression. However, at this point in time, species integrity has been maintained and a more likely scenario is that the hybrids are not stable evolutionary lineages, but rather transient hybrid clones.
Collapse
Affiliation(s)
- Treena I. Burgess
- Centre for Phytophthora Science and Management, School of Veterinary and Life Sciences, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
- * E-mail:
| |
Collapse
|
19
|
Baccelli I, Gonthier P, Bernardi R. Gene expression analyses reveal a relationship between conidiation and cerato-platanin in homokaryotic and heterokaryotic strains of the fungal plant pathogen Heterobasidion irregulare. Mycol Prog 2015. [DOI: 10.1007/s11557-015-1063-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Pollastrini M, Luchi N, Michelozzi M, Gerosa G, Marzuoli R, Bussotti F, Capretti P. Early physiological responses of Pinus pinea L. seedlings infected by Heterobasidion sp.pl. in an ozone-enriched atmospheric environment. TREE PHYSIOLOGY 2015; 35:331-40. [PMID: 25725363 DOI: 10.1093/treephys/tpv008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/16/2015] [Indexed: 05/12/2023]
Abstract
The presence of the American root-rot disease fungus Heterobasidion irregulare Garbel. & Otrosina was detected in Italian coastal pine forests (Pinus pinea L.) in addition to the common native species Heterobasidion annosum (Fries) Brefeld. High levels of tropospheric ozone (O3) as an atmospheric pollutant are usually experienced in Mediterranean pine forests. To explore the effect of interaction between the two Heterobasidion species and ozone pollution on P. pinea, an open-top chamber (OTC) experiment was carried out. Five-year-old P. pinea seedlings were inoculated with the fungal species considered (H. irregulare, H. annosum and mock-inoculation as control), and then exposed in charcoal-filtered open-top chambers (CF-OTC) and non-filtered ozone-enriched chambers (NF+) from July to the first week of August 2010 at the experimental facilities of Curno (North Italy). Fungal inoculation effects in an ozone-enriched environment were assessed as: (i) the length of the inoculation lesion; (ii) chlorophyll a fluorescence (ChlF) responses; and (iii) analysis of resin terpenes. Results showed no differences on lesion length between fungal and ozone treatments, whereas the short-term effects of the two stress factors on ChlF indicate an increased photosynthetic efficiency, thus suggesting the triggering of compensation/repair processes. The total amount of resin terpenes is enhanced by fungal infection of both species, but depressed by ozone to the levels observed in mock-inoculated plants. Variations in terpene profiles were also induced by stem base inoculations and ozone treatment. Ozone might negatively affect terpene defences making plants more susceptible to pathogens and insects.
Collapse
Affiliation(s)
- Martina Pollastrini
- Department of Agri-Food Productions and Environmental Sciences (DiSPAA), Università degli Studi di Firenze, Piazzale delle Cascine 28, I-50144 Florence, Italy
| | - Nicola Luchi
- Institute for Sustainable Plant Protection (IPSP) - Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Marco Michelozzi
- Institute of Biosciences and Bioresources (IBBR) - Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Giacomo Gerosa
- Department of Mathematics and Physics, Università Cattolica del Sacro Cuore di Brescia, Via dei Musei 41, 25121 Brescia, Italy
| | - Riccardo Marzuoli
- Department of Mathematics and Physics, Università Cattolica del Sacro Cuore di Brescia, Via dei Musei 41, 25121 Brescia, Italy
| | - Filippo Bussotti
- Department of Agri-Food Productions and Environmental Sciences (DiSPAA), Università degli Studi di Firenze, Piazzale delle Cascine 28, I-50144 Florence, Italy
| | - Paolo Capretti
- Department of Agri-Food Productions and Environmental Sciences (DiSPAA), Università degli Studi di Firenze, Piazzale delle Cascine 28, I-50144 Florence, Italy
| |
Collapse
|
21
|
Balvočūtė M, Spillner A, Moulton V. FlatNJ: A Novel Network-Based Approach to Visualize Evolutionary and Biogeographical Relationships. Syst Biol 2014; 63:383-96. [DOI: 10.1093/sysbio/syu001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Restrepo S, Tabima JF, Mideros MF, Grünwald NJ, Matute DR. Speciation in fungal and oomycete plant pathogens. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:289-316. [PMID: 24906125 DOI: 10.1146/annurev-phyto-102313-050056] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The process of speciation, by definition, involves evolution of one or more reproductive isolating mechanisms that split a single species into two that can no longer interbreed. Determination of which processes are responsible for speciation is important yet challenging. Several studies have proposed that speciation in pathogens is heavily influenced by host-pathogen dynamics and that traits that mediate such interactions (e.g., host mobility, reproductive mode of the pathogen, complexity of the life cycle, and host specificity) must lead to reproductive isolation and ultimately affect speciation rates. In this review, we summarize the main evolutionary processes that lead to speciation of fungal and oomycete plant pathogens and provide an outline of how speciation can be studied rigorously, including novel genetic/genomic developments.
Collapse
Affiliation(s)
- Silvia Restrepo
- Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | | | | | | | | |
Collapse
|
23
|
Identification of a fungus able to secrete enzymes that degrade regenerated cellulose films and analyses of its extracellular hydrolases. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0741-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
24
|
Garbelotto M, Guglielmo F, Mascheretti S, Croucher PJP, Gonthier P. Population genetic analyses provide insights on the introduction pathway and spread patterns of the North American forest pathogen Heterobasidion irregulare in Italy. Mol Ecol 2013; 22:4855-69. [PMID: 24033583 DOI: 10.1111/mec.12452] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 11/26/2022]
Abstract
A population genetics approach is used to identify the most likely introduction site and introduction pathway for the North American forest pathogen Heterobasidion irregulare using 101 isolates from six sites in Italy and 34 isolates from five sites in North America. Diversity indices based on sequences from ten loci indicate the highest diversity in Italy is found in Castelfusano/Castelporziano and that diversity progressively decreases with increasing distance from that site. AMOVA, Bayesian clustering and principal coordinates analyses based on 12 SSR loci indicate high levels of gene flow among sites, high frequency of admixing, and fail to identify groups of genotypes exclusive to single locations. Cumulatively, these analyses suggest the current infestation is the result of multiple genotypes expanding their range from a single site. Based on two sequenced loci, a single source site in North America could provide enough variability to explain the variability observed in Italy. These results support the notion that H. irregulare was introduced originally in Castelporziano: because Castelporziano has been sealed off from the rest of the world for centuries except for a camp set up by the US military in 1944, we conclude the fungus may have been transported in infected wood used by the military. Finally, spatial autocorrelation analyses using SSR data indicate a significant under-dispersion of alleles up to 0.5-10 km, while a significant overdispersion of alleles was detected at distances over 80 km: these ranges can be used to make predictions on the likely dispersal potential of the invasive pathogen.
Collapse
Affiliation(s)
- M Garbelotto
- Department of Environmental Science, Policy and Management, University of California at Berkeley, 37 Mulford Hall, Berkeley, CA, 94720, USA
| | | | | | | | | |
Collapse
|
25
|
The saprobic and fruiting abilities of the exotic forest pathogen Heterobasidion irregulare may explain its invasiveness. Biol Invasions 2013. [DOI: 10.1007/s10530-013-0538-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
van Diepen LTA, Olson A, Ihrmark K, Stenlid J, James TY. Extensive trans-specific polymorphism at the mating type locus of the root decay fungus Heterobasidion. Mol Biol Evol 2013; 30:2286-301. [PMID: 23864721 DOI: 10.1093/molbev/mst126] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Incompatibility systems in which individuals bearing identical alleles reject each other favor the maintenance of a diversity of alleles. Mushroom mating type loci (MAT) encode for dozens or hundreds of incompatibility alleles whose loss from the population is greatly restricted through negative frequency selection, leading to a system of alleles with highly divergent sequences. Here, we use DNA sequences of homeodomain (HD) encoding genes at the MAT locus of five closely related species of the root rot basidiomycete Heterobasidion annosum sensu lato to show that the extended coalescence time of MAT alleles greatly predates speciation in the group, contrasting loci outside of MAT that show allele divergences largely consistent with the species phylogeny with those of MAT, which show rampant trans-species polymorphism. We observe a roughly 6-fold greater genealogical depth and polymorphism of MAT compared with non-MAT that argues for the maintenance of balanced polymorphism for a minimum duration of 24 My based on a molecular-clock calibrated species phylogeny. As with other basidiomycete HD genes, balancing selection appears to be concentrated at the specificity-determining region in the N-terminus of the protein based on identification of codons under selection and the absence of recombination within the region. However, the elevated polymorphism extends into the nonspecificity determining regions as well as a neighboring non-MAT gene, the mitochondrial intermediate peptidase (MIP). In doing so, increased divergence should decrease recombination among alleles and as a by-product create incompatibilities in the functional domains not involved in allele recognition but in regulating sexual development.
Collapse
|
27
|
Combining field epidemiological information and genetic data to comprehensively reconstruct the invasion history and the microevolution of the sudden oak death agent Phytophthora ramorum (Stramenopila: Oomycetes) in California. Biol Invasions 2013; 15:2281-2297. [PMID: 24078788 PMCID: PMC3782357 DOI: 10.1007/s10530-013-0453-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 03/18/2013] [Indexed: 11/27/2022]
Abstract
Understanding the migration patterns of invasive organisms is of paramount importance to predict and prevent their further spread. Previous attempts at reconstructing the entire history of the sudden oak death (SOD) epidemic in California were limited by: (1) incomplete sampling; (2) the inability to include infestations caused by a single genotype of the pathogen; (3) collapsing of non-spatially contiguous yet genetically similar samples into large meta-samples that confounded the coalescent analyses. Here, we employ an intensive sampling coverage of 832 isolates of Phytopthora ramorum (the causative agent of SOD) from 60 California forests, genotyped at nine microsatellite loci, to reconstruct its invasion. By using age of infestation as a constraint on coalescent analyses, by dividing genetically indistinguishable meta-populations into highly-resolved sets of spatially contiguous populations, and by using Bruvo genetic distances for most analyses, we reconstruct the entire history of the epidemic and convincingly show infected nursery plants are the original source for the entire California epidemic. Results indicate that multiple human-mediated introductions occurred in most counties and that further disease sources were represented by large wild infestations. The study also identifies minor introductions, some of them relatively recent, linked to infected ornamental plants. Finally, using archival isolates collected soon after the discovery of the pathogen in California, we corroborate that the epidemic is likely to have resulted form 3 to 4 core founder individuals evolved from a single genotype. This is probably the most complete reconstruction ever completed for an invasion by an exotic forest pathogen, and the approach here described may be useful for the reconstruction of invasions by any clonally reproducing organism with a relatively limited natural dispersal range.
Collapse
|
28
|
Garbelotto M, Gonthier P. Biology, epidemiology, and control of Heterobasidion species worldwide. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:39-59. [PMID: 23642002 DOI: 10.1146/annurev-phyto-082712-102225] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Heterobasidion annosum sensu lato is a species complex comprising five species that are widely distributed in coniferous forests of the Northern Hemisphere and are each characterized by a distinct host preference. More than 1,700 papers have been published on these fungi in the past four decades, making them perhaps the most widely studied forest fungi. Heterobasidion species are at different levels on the saprotroph-necrotroph gradient, and the same individual can switch from one mode to the other. This offers a unique opportunity to study how genomic structure, gene expression, and genetic trade-offs may all interact with environmental factors to determine the life mode of the organism. The abilities of Heterobasidion spp. to infect stumps as saprotrophs and to spread to neighboring trees as pathogens have resulted in significant damages to timber production in managed forests. This review focuses on the current knowledge of the biology, ecology, evolution, and management of these species and is based on classical and modern studies.
Collapse
Affiliation(s)
- Matteo Garbelotto
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
29
|
Gonthier P, Lione G, Giordano L, Garbelotto M. The American forest pathogen Heterobasidion irregulare colonizes unexpected habitats after its introduction in Italy. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2012; 22:2135-2143. [PMID: 23387115 DOI: 10.1890/12-0420.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Habitat preference of an invasive fungal tree pathogen is here compared with that of a sympatric and native closely related congener to test the hypothesis that the invasive ability of the exotic organism may be linked to its capacity to colonize substrates unavailable to the indigenous relative. We compared the distribution of infectious airspora of the North American Heterobasidion irregulare introduced into Italy with that of the native H. annosum, both regarded to be able to establish only in the presence of conifers. Geostatistical and statistical analyses were employed to test for association between both species and five Mediterranean vegetation types. Results show that H. annosum is positively associated with pines and negatively associated with deciduous oaks. The probability of finding its spores decreases to almost 0 at distances over 500 m from pines, and this species is virtually absent in pure oak forests. Spores of H. irregulare are present irrespective of vegetation type, and this species can be found not only where pines are present, but also in pure oak forests. This knowledge implies that spread of H. irregulare is not limited by the fragmented distribution of pine woodlands in central Italy and is essential to both predict and hinder its progress in Europe.
Collapse
Affiliation(s)
- Paolo Gonthier
- Department of Agricultural, Forest and Food Sciences, University of Turin, Via L. da Vinci 44, I-10095 Grugliasco, Italy
| | | | | | | |
Collapse
|
30
|
Sun Y, Corcoran P, Menkis A, Whittle CA, Andersson SGE, Johannesson H. Large-scale introgression shapes the evolution of the mating-type chromosomes of the filamentous ascomycete Neurospora tetrasperma. PLoS Genet 2012; 8:e1002820. [PMID: 22844246 PMCID: PMC3406010 DOI: 10.1371/journal.pgen.1002820] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 05/17/2012] [Indexed: 12/14/2022] Open
Abstract
The significance of introgression as an evolutionary force shaping natural populations is well established, especially in animal and plant systems. However, the abundance and size of introgression tracts, and to what degree interspecific gene flow is the result of adaptive processes, are largely unknown. In this study, we present medium coverage genomic data from species of the filamentous ascomycete Neurospora, and we use comparative genomics to investigate the introgression landscape at the genomic level in this model genus. We revealed one large introgression tract in each of the three investigated phylogenetic lineages of Neurospora tetrasperma (sizes of 5.6 Mbp, 5.2 Mbp, and 4.1 Mbp, respectively). The tract is located on the chromosome containing the locus conferring sexual identity, the mating-type (mat) chromosome. The region of introgression is confined to the region of suppressed recombination and is found on one of the two mat chromosomes (mat a). We used Bayesian concordance analyses to exclude incomplete lineage sorting as the cause for the observed pattern, and multilocus genealogies from additional species of Neurospora show that the introgression likely originates from two closely related, freely recombining, heterothallic species (N. hispaniola and N. crassa/N. perkinsii). Finally, we investigated patterns of molecular evolution of the mat chromosome in Neurospora, and we show that introgression is correlated with reduced level of molecular degeneration, consistent with a shorter time of recombination suppression. The chromosome specific (mat) and allele specific (mat a) introgression reported herein comprise the largest introgression tracts reported to date from natural populations. Furthermore, our data contradicts theoretical predictions that introgression should be less likely on sex-determining chromosomes. Taken together, the data presented herein advance our general understanding of introgression as a force shaping eukaryotic genomes. Introgression is a process by which genetic material from one species becomes infiltrated into another, genetically distinct species. Introgression usually occurs via sexual reproduction: individuals of two species mate and produce a hybrid offspring, then the offspring repeatedly backcross with one of the parental species. Introgression has long been recognized as a key process in evolution, as it may contribute to speciation, diversification, and adaptation to new environments. The importance and prevalence of introgression has been well established in plant and animal systems, and in this study we use a fungal model system, Neurospora, to study the introgression at the genomic level. We gathered genomic data from six genomes, and by comparative genomics we revealed genetic transfer of DNA regions of unprecedentedly large sizes, covering over 50% of the mating-type chromosomes, and used phylogenetic analyses to reveal the origin and direction of the transfer. Introgression was found solely on the mating-type chromosomes, which contradicts theoretical predictions for sex-determining chromosomes. We argue that this unexpected pattern is due to the fact that fungi do not have differentiated sexes (female/male) and thereby are free from sex-biased evolutionary forces. Instead, we suggest that introgression between fungal species may result in reinvigoration of genomic regions exposed to suppressed recombination.
Collapse
Affiliation(s)
- Yu Sun
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
| | - Pádraic Corcoran
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
| | - Audrius Menkis
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Carrie A. Whittle
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
| | | | - Hanna Johannesson
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
31
|
Skrede I, Carlsen T, Stensrud Ø, Kauserud H. Genome wide AFLP markers support cryptic species in Coniophora (Boletales). Fungal Biol 2012; 116:778-84. [PMID: 22749164 DOI: 10.1016/j.funbio.2012.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 02/29/2012] [Accepted: 04/13/2012] [Indexed: 10/28/2022]
Abstract
Numerous fungal morphospecies include cryptic species that routinely are detected by sequencing a few unlinked DNA loci. However, whether the patterns observed by multi-locus sequencing are compatible with genome wide data, such as amplified fragment length polymorphisms (AFLPs), is not well known for fungi. In this study we compared the ability of three DNA loci and AFLP data to discern between cryptic fungal lineages in the three morphospecies Coniophora olivacea, Coniophora arida, and Coniophora puteana. The sequences and the AFLP data were highly congruent in delimiting the morphotaxa into multiple cryptic species. However, while the DNA sequences indicated introgression or hybridization between some of the cryptic lineages the AFLP data did not. We conclude that as few as three polymorphic DNA loci was sufficient to recognize cryptic lineages within the studied Coniophora taxa. However, based on analyses of a few (three) sequenced loci the hybridization could not easily be distinguished from incomplete lineage sorting. Hence, great caution should be taken when concluding about hybridization based on data from just a few loci.
Collapse
Affiliation(s)
- Inger Skrede
- Microbial Evolution Research Group, Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo, Norway.
| | | | | | | |
Collapse
|
32
|
|