1
|
Ilyasov RA, Rašić S, Takahashi J, Danilenko VN, Proshchalykin MY, Lelej AS, Sattarov VN, Thai PH, Raffiudin R, Kwon HW. Genetic Relationships and Signatures of Adaptation to the Climatic Conditions in Populations of Apis cerana Based on the Polymorphism of the Gene Vitellogenin. INSECTS 2022; 13:1053. [PMID: 36421957 PMCID: PMC9694869 DOI: 10.3390/insects13111053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Apis cerana and Apis mellifera are important honey bee species in Asia. A. cerana populations are distributed from a cold, sharply continental climate in the north to a hot, subtropical climate in the south. Due to the Sacbrood virus, almost all A. cerana populations in Asia have declined significantly in recent decades and have recovered over the past five years. This could lead to a shift in the gene pool of local A. cerana populations that could affect their sustainability and adaptation. It was assumed that adaptation of honey bees could be observed by comparative analysis of the sequences of genes involved in development, labor division, and caste differentiation, such as the gene Vitellogenin VG. The VG gene nucleotide sequences were used to assess the genetic structure and signatures of adaptation of local populations of A. cerana from Korea, Russia, Japan, Nepal, and China. A. mellifera samples from India and Poland were used as the outgroup. The signatures of adaptive selection were found in the local population of A. cerana using VG gene sequence analysis based on Jukes−Cantor genetic distances, cluster analysis, dN/dS ratio evaluation, and Tajima’s D neutrality test. Based on analysis of the VG gene sequences, Apis cerana koreana subspecies in the Korean Peninsula were subdivided into three groups in accordance with their geographic localization from north to south. The VG gene sequences are acceptable tools to study the sustainability and adaptation of A. cerana populations.
Collapse
Affiliation(s)
- Rustem A. Ilyasov
- Scientific and Educational Center, Bashkir State Agrarian University, 50-Letiya Oktyabrya Str. 34, 450001 Ufa, Russia
- Department of Life Sciences, Convergence Research Center for Insect Vectors, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
- Department of Genetics and Biotechnology, Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Str. 3, 119333 Moscow, Russia
| | - Slađan Rašić
- Faculty of Ecological Agriculture, Educons University, Vojvode Putnika 87, 21208 Sremska Kamenica, Serbia
| | - Junichi Takahashi
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita Ward, Kyoto 603-8555, Japan
| | - Valery N. Danilenko
- Department of Genetics and Biotechnology, Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Str. 3, 119333 Moscow, Russia
| | - Maxim Y. Proshchalykin
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Prospekt 100-let Vladivostoka, 159, 690022 Vladivostok, Russia
| | - Arkady S. Lelej
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Prospekt 100-let Vladivostoka, 159, 690022 Vladivostok, Russia
| | - Vener N. Sattarov
- Department of Bioecology and Biological Education, Bashkir State Pedagogical University Named after M. Akmulla, 3a October Revolution Street, 450008 Ufa, Russia
| | - Pham Hong Thai
- Research Center for Tropical Bees and Beekeeping, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 100000, Vietnam
| | - Rika Raffiudin
- Department of Biology, Bogor Agricultural University, Darmaga, Bogor 16680, Indonesia
| | - Hyung Wook Kwon
- Department of Life Sciences, Convergence Research Center for Insect Vectors, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| |
Collapse
|
2
|
Leipart V, Ludvigsen J, Kent M, Sandve S, To T, Árnyasi M, Kreibich CD, Dahle B, Amdam GV. Identification of 121 variants of honey bee Vitellogenin protein sequences with structural differences at functional sites. Protein Sci 2022; 31:e4369. [PMID: 35762708 PMCID: PMC9207902 DOI: 10.1002/pro.4369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/21/2022] [Indexed: 12/04/2022]
Abstract
Proteins are under selection to maintain central functions and to accommodate needs that arise in ever-changing environments. The positive selection and neutral drift that preserve functions result in a diversity of protein variants. The amount of diversity differs between proteins: multifunctional or disease-related proteins tend to have fewer variants than proteins involved in some aspects of immunity. Our work focuses on the extensively studied protein Vitellogenin (Vg), which in honey bees (Apis mellifera) is multifunctional and highly expressed and plays roles in immunity. Yet, almost nothing is known about the natural variation in the coding sequences of this protein or how amino acid-altering variants might impact structure-function relationships. Here, we map out allelic variation in honey bee Vg using biological samples from 15 countries. The successful barcoded amplicon Nanopore sequencing of 543 bees revealed 121 protein variants, indicating a high level of diversity in Vg. We find that the distribution of non-synonymous single nucleotide polymorphisms (nsSNPs) differs between protein regions with different functions; domains involved in DNA and protein-protein interactions contain fewer nsSNPs than the protein's lipid binding cavities. We outline how the central functions of the protein can be maintained in different variants and how the variation pattern may inform about selection from pathogens and nutrition.
Collapse
Affiliation(s)
- Vilde Leipart
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
| | - Jane Ludvigsen
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
- Fürst Medisinsk LaboratoriumOsloNorway
| | - Matthew Kent
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE)Norwegian University of Life SciencesÅsNorway
| | - Simen Sandve
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE)Norwegian University of Life SciencesÅsNorway
| | - Thu‐Hien To
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE)Norwegian University of Life SciencesÅsNorway
| | - Mariann Árnyasi
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE)Norwegian University of Life SciencesÅsNorway
| | - Claus D. Kreibich
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
| | - Bjørn Dahle
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
- Norwegian Beekeepers AssociationKløftaNorway
| | - Gro V. Amdam
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
- School of Life SciencesArizona State UniversityTempeArizonaUSA
| |
Collapse
|
3
|
Lang S, Simone-Finstrom M, Healy K. Context-Dependent Viral Transgenerational Immune Priming in Honey Bees (Hymenoptera: Apidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:19. [PMID: 35137131 PMCID: PMC8826052 DOI: 10.1093/jisesa/ieac001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Indexed: 06/01/2023]
Abstract
Transgenerational immune priming is the process of increased resistance to infection in offspring due to parental pathogen exposure. Honey bees (Apis mellifera L. (Hymenoptera: Apidae)) are hosts to multiple pathogens, and this complex immune function could help protect against overwhelming infection. Honey bees have demonstrated transgenerational immune priming for the bacterial pathogen Paenibacillus larvae; however, evidence for viral transgenerational immune priming is lacking across insects in general. Here we test for the presence of transgenerational immune priming in honey bees with Deformed wing virus (DWV) by injecting pupae from DWV-exposed queens and measuring virus titer and immune gene expression. Our data suggest that there is evidence for viral transgenerational immune priming in honey bees, but it is highly context-dependent based on route of maternal exposure and potentially host genetics or epigenetic factors.
Collapse
Affiliation(s)
- Sarah Lang
- Department of Entomology, Louisiana State University and AgCenter Louisiana State University 404 Life Sciences Building, Louisiana State University, Baton Rouge, LA 70803, USA
- USDA ARS Honey Bee, Breeding and Physiology Lab, 1157 Ben Hur Road, Baton Rouge, LA 70820, USA
| | - Michael Simone-Finstrom
- USDA ARS Honey Bee, Breeding and Physiology Lab, 1157 Ben Hur Road, Baton Rouge, LA 70820, USA
| | - Kristen Healy
- Department of Entomology, Louisiana State University and AgCenter Louisiana State University 404 Life Sciences Building, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
4
|
Leipart V, Montserrat-Canals M, Cunha ES, Luecke H, Herrero-Galán E, Halskau Ø, Amdam GV. Structure prediction of honey bee vitellogenin: a multi-domain protein important for insect immunity. FEBS Open Bio 2021; 12:51-70. [PMID: 34665931 PMCID: PMC8727950 DOI: 10.1002/2211-5463.13316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/27/2021] [Accepted: 10/18/2021] [Indexed: 11/28/2022] Open
Abstract
Vitellogenin (Vg) has been implicated as a central protein in the immunity of egg‐laying animals. Studies on a diverse set of species suggest that Vg supports health and longevity through binding to pathogens. Specific studies of honey bees (Apis mellifera) further indicate that the vitellogenin (vg) gene undergoes selection driven by local pathogen pressures. Determining the complete 3D structure of full‐length Vg (flVg) protein will provide insights regarding the structure–function relationships underlying allelic variation. Honey bee Vg has been described in terms of function, and two subdomains have been structurally described, while information about the other domains is lacking. Here, we present a structure prediction, restrained by experimental data, of flVg from honey bees. To achieve this, we performed homology modeling and used AlphaFold before using a negative‐stain electron microscopy map to restrict, orient, and validate our 3D model. Our approach identified a highly conserved Ca2+‐ion‐binding site in a von Willebrand factor domain that might be central to Vg function. Thereafter, we used rigid‐body fitting to predict the relative position of high‐resolution domains in a flVg model. This mapping represents the first experimentally validated full‐length protein model of a Vg protein and is thus relevant for understanding Vg in numerous species. Our results are also specifically relevant to honey bee health, which is a topic of global concern due to rapidly declining pollinator numbers.
Collapse
Affiliation(s)
- Vilde Leipart
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
| | | | - Eva S Cunha
- Norwegian Center for Molecular Medicine, University of Oslo, Norway
| | - Hartmut Luecke
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Elías Herrero-Galán
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Øyvind Halskau
- Department of Biological Sciences, University of Bergen, Norway
| | - Gro V Amdam
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway.,School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
5
|
Zhao F, Morandin C, Jiang K, Su T, He B, Lin G, Huang Z. Molecular evolution of bumble bee vitellogenin and vitellogenin-like genes. Ecol Evol 2021; 11:8983-8992. [PMID: 34257940 PMCID: PMC8258195 DOI: 10.1002/ece3.7736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 01/30/2023] Open
Abstract
Vitellogenin (Vg), a storage protein, has been significantly studied for its egg yolk precursor role in oviparous animals. Recent studies found that vitellogenin and its Vg-like homologs were fundamentally involved in many other biological processes in social insects such as female caste differences and oxidative stress resilience. In this study, we conducted the first large-scale molecular evolutionary analyses of vitellogenin coding genes (Vg) and Vg-like genes of bumble bees, a primitively eusocial insect belonging to the genus Bombus. We obtained sequences for each of the four genes (Vg, Vg-like-A, Vg-like-B, and Vg-like-C) from 27 bumble bee genomes (nine were newly sequenced in this study), and sequences from the two closest clades of Bombus, including five Apis species and five Tetragonula species. Our molecular evolutionary analyses show that in bumble bee, the conventional Vg experienced strong positive selection, while the Vg-like genes showed overall relaxation of purifying selection. In Apis and Tetragonula; however, all four genes were found under purifying selection. Furthermore, the conventional Vg showed signs of strong positive selection in most subgenera in Bombus, apart from the obligate parasitic subgenus Psithyrus which has no caste differentiation. Together, these results indicate that the conventional Vg, a key pleiotropic gene in social insects, is the most rapidly evolving copy, potentially due to its multiple known social functions for both worker and queen castes. This study shows that concerted evolution and purifying selection shaped the evolution of the Vg gene family following their ancient gene duplication and may be the leading forces behind the evolution of new potential protein function enabling functional social pleiotropy.
Collapse
Affiliation(s)
- Fang Zhao
- School of Life SciencesJinggangshan UniversityJi’anChina
| | - Claire Morandin
- Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
| | - Kai Jiang
- School of Life SciencesJinggangshan UniversityJi’anChina
| | - Tianjuan Su
- School of Life SciencesJinggangshan UniversityJi’anChina
| | - Bo He
- School of Life SciencesJinggangshan UniversityJi’anChina
| | - Gonghua Lin
- School of Life SciencesJinggangshan UniversityJi’anChina
| | - Zuhao Huang
- School of Life SciencesJinggangshan UniversityJi’anChina
| |
Collapse
|
6
|
Ilyasov RA, Han GY, Lee ML, Kim KW, Proshchalykin MY, Lelej AS, Park JH, Takahashi JI, Kwon HW, Nikolenko AG. Genetic Properties and Evolution of Asian Honey Bee Apis cerana
ussuriensis from Primorsky Krai, Russia. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421050033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Ilyasov RA, Lee ML, Takahashi JI, Kwon HW, Nikolenko AG. A revision of subspecies structure of western honey bee Apis mellifera. Saudi J Biol Sci 2020; 27:3615-3621. [PMID: 33304172 PMCID: PMC7714978 DOI: 10.1016/j.sjbs.2020.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/01/2020] [Accepted: 08/02/2020] [Indexed: 01/21/2023] Open
Abstract
The taxonomy of honey bee A. mellifera contains a lot of issues due to the specificity of population structure, features of biology and resolutions of honey bee subspecies discrimination methods. There are a lot of transition zones between ranges of subspecies which led to the gradual changes of characteristics among neighbor subspecies. The modern taxonomic pattern of honey bee Apis mellifera is given in this paper. Thirty-three distinct honey bee subspecies are distributed across all Africa (11 subspecies), Western Asia and the Middle East (9 subspecies), and Europe (13 subspecies). All honey bee subspecies are subdivided into 5 evolutionary lineages: lineage A (10 subspecies) and its sublineage Z (3 subspecies), lineage M (3 subspecies), lineage C (10 subspecies), lineage O (3 subspecies), lineage Y (1 subspecies), lineage C or O (3 subspecies).
Collapse
Affiliation(s)
- Rustem A. Ilyasov
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of Russian Academy of Sciences, Prospect Oktyabrya 71, Ufa 450054, Russia
- Division of Life Sciences, Major of Biological Sciences, and Convergence Research Center for Insect Vectors, Incheon National University, Academy-ro 119, Yeonsu-gu, Songdo-dong, Incheon 22012, Republic of Korea
| | - Myeong-lyeol Lee
- Division of Life Sciences, Major of Biological Sciences, and Convergence Research Center for Insect Vectors, Incheon National University, Academy-ro 119, Yeonsu-gu, Songdo-dong, Incheon 22012, Republic of Korea
| | - Jun-ichi Takahashi
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita Ward, Kyoto 603-8555, Japan
| | - Hyung Wook Kwon
- Division of Life Sciences, Major of Biological Sciences, and Convergence Research Center for Insect Vectors, Incheon National University, Academy-ro 119, Yeonsu-gu, Songdo-dong, Incheon 22012, Republic of Korea
| | - Alexey G. Nikolenko
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of Russian Academy of Sciences, Prospect Oktyabrya 71, Ufa 450054, Russia
| |
Collapse
|
8
|
Dittmer J, Alafndi A, Gabrieli P. Fat body-specific vitellogenin expression regulates host-seeking behaviour in the mosquito Aedes albopictus. PLoS Biol 2019; 17:e3000238. [PMID: 31071075 PMCID: PMC6508604 DOI: 10.1371/journal.pbio.3000238] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/04/2019] [Indexed: 11/22/2022] Open
Abstract
The high vector competence of mosquitoes is intrinsically linked to their reproductive strategy because females need a vertebrate blood meal to develop large batches of eggs. However, the molecular mechanisms and pathways regulating mosquito host-seeking behaviour are largely unknown. Here, we test whether host-seeking behaviour may be linked to the female's energy reserves, with low energy levels triggering the search for a nutrient-rich blood meal. Our results demonstrate that sugar feeding delays host-seeking behaviour in the invasive tiger mosquito Aedes albopictus, but the levels of energy reserves do not correlate with changes in host-seeking behaviour. Using tissue-specific gene expression analyses, we show for the first time, to our knowledge, that sugar feeding alone induces a transient up-regulation of several vitellogenesis-related genes in the female fat body, resembling the transcriptional response after a blood meal. Specifically, high expression levels of a vitellogenin gene (Vg-2) correlated with the lowest host-seeking activity of sugar-fed females. Knocking down the Vg-2 gene via RNA interference (RNAi) restored host-seeking behaviour in these females, firmly establishing that Vg-2 gene expression has a pivotal role in regulating host-seeking behaviour in young Ae. albopictus females. The identification of a molecular mechanism regulating host-seeking behaviour in mosquitoes could pave the way for novel vector control strategies aiming to reduce the biting activity of mosquitoes. From an evolutionary perspective, this is the first demonstration of vitellogenin genes controlling feeding-related behaviours in nonsocial insects, while vitellogenins are known to regulate caste-specific foraging and brood-care behaviours in eusocial insects. Hence, this work confirms the key role of vitellogenin in controlling feeding-related behaviours in distantly related insect orders, suggesting that this function could be more ubiquitous than previously thought.
Collapse
Affiliation(s)
- Jessica Dittmer
- Department of Biology and Biotechnology, Università degli Studi di Pavia, Pavia, Italy
| | - Ayad Alafndi
- Department of Biology and Biotechnology, Università degli Studi di Pavia, Pavia, Italy
| | - Paolo Gabrieli
- Department of Biology and Biotechnology, Università degli Studi di Pavia, Pavia, Italy
| |
Collapse
|
9
|
Privman E, Cohen P, Cohanim AB, Riba-Grognuz O, Shoemaker D, Keller L. Positive selection on sociobiological traits in invasive fire ants. Mol Ecol 2018; 27:3116-3130. [PMID: 29920818 DOI: 10.1111/mec.14767] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/03/2018] [Accepted: 05/09/2018] [Indexed: 01/05/2023]
Abstract
The fire ant Solenopsis invicta and its close relatives are highly invasive. Enhanced social cooperation may facilitate invasiveness in these and other invasive ant species. We investigated whether invasiveness in Solenopsis fire ants was accompanied by positive selection on sociobiological traits by applying a phylogenomics approach to infer ancient selection, and a population genomics approach to infer recent and ongoing selection in both native and introduced S. invicta populations. A combination of whole-genome sequencing of 40 haploid males and reduced-representation genomic sequencing of 112 diploid workers identified 1,758,116 and 169,682 polymorphic markers, respectively. The resulting high-resolution maps of genomic polymorphism provide high inference power to test for positive selection. Our analyses provide evidence of positive selection on putative ion channel genes, which are implicated in neurological functions, and on vitellogenin, which is a key regulator of development and caste determination. Furthermore, molecular functions implicated in pheromonal signalling have experienced recent positive selection. Genes with signatures of positive selection were significantly more often those overexpressed in workers compared with queens and males, suggesting that worker traits are under stronger selection than queen and male traits. These results provide insights into selection pressures and ongoing adaptation in an invasive social insect and support the hypothesis that sociobiological traits are under more positive selection than nonsocial traits in such invasive species.
Collapse
Affiliation(s)
- Eyal Privman
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel
| | - Pnina Cohen
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel
| | - Amir B Cohanim
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel
| | - Oksana Riba-Grognuz
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - DeWayne Shoemaker
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Ricigliano VA, Mott BM, Floyd AS, Copeland DC, Carroll MJ, Anderson KE. Honey bees overwintering in a southern climate: longitudinal effects of nutrition and queen age on colony-level molecular physiology and performance. Sci Rep 2018; 8:10475. [PMID: 29992997 PMCID: PMC6041268 DOI: 10.1038/s41598-018-28732-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/28/2018] [Indexed: 11/25/2022] Open
Abstract
Honey bee colony nutritional ecology relies on the acquisition and assimilation of floral resources across a landscape with changing forage conditions. Here, we examined the impact of nutrition and queen age on colony health across extended periods of reduced forage in a southern climate. We measured conventional hive metrics as well as colony-level gene expression of eight immune-related genes and three recently identified homologs of vitellogenin (vg), a storage glycolipoprotein central to colony nutritional state, immunity, oxidative stress resistance and life span regulation. Across three apiary sites, concurrent longitudinal changes in colony-level gene expression and nutritional state reflected the production of diutinus (winter) bees physiologically altered for long-term nutrient storage. Brood production by young queens was significantly greater than that of old queens, and was augmented by feeding colonies supplemental pollen. Expression analyses of recently identified vg homologs (vg-like-A, -B, and -C) revealed distinct patterns that correlated with colony performance, phenology, and immune-related gene transcript levels. Our findings provide new insights into dynamics underlying managed colony performance on a large scale. Colony-level, molecular physiological profiling is a promising approach to effectively identify factors influencing honey bee health in future landscape and nutrition studies.
Collapse
Affiliation(s)
| | - Brendon M Mott
- USDA-ARS Carl Hayden Bee Research Center, Tucson, AZ, 85719, USA
| | - Amy S Floyd
- Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Duan C Copeland
- USDA-ARS Carl Hayden Bee Research Center, Tucson, AZ, 85719, USA.,Department of Microbiology, School of Animal & Comparative Biomedical Sciences; University of Arizona, Tucson, AZ, 85721, USA
| | - Mark J Carroll
- USDA-ARS Carl Hayden Bee Research Center, Tucson, AZ, 85719, USA
| | - Kirk E Anderson
- USDA-ARS Carl Hayden Bee Research Center, Tucson, AZ, 85719, USA. .,Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
11
|
Sun ZX, Kang K, Cai YJ, Zhang JQ, Zhai YF, Zeng RS, Zhang WQ. Transcriptional regulation of the vitellogenin gene through a fecundity-related single nucleotide polymorphism within a GATA-1 binding motif in the brown planthopper, Nilaparvata lugens. INSECT MOLECULAR BIOLOGY 2018; 27:365-372. [PMID: 29484744 DOI: 10.1111/imb.12378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Identifying the Single Nucleotide Polymorphisms (SNPs) with functions in insect fecundity promises to provide novel insight into genetic mechanisms of adaptation and to aid in effective control of insect populations. We previously identified several SNPs within the vitellogenin (Vg) promoter region between a high-fecundity population (HFP) and a low-fecundity population (LFP) of the brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae). Here, we found that an A-to-T (HFP allele to LFP allele) transversion at nucleotide -953 upstream of Vg in a Nilaparvata lugens GATA-1 (NlGATA-1) binding motif is associated with the level of Vg transcription. We also characterized NlGATA-1, containing a double CX2 CX17 CX2 C zinc finger, which has been implicated in the activation of Vg gene expression. Knockdown of the NlGATA-1 gene results in a reduced basal level of expression of the Vg gene and fewer offspring of N. lugens in vivo, whereas overexpression of NlGATA-1 in cells increased Vg promoter activity. Moreover, upon cotransfection with NlGATA-1 expression vector, the luciferase activities of Vg reporter vectors with the A allele were significantly higher than those with the T allele. These findings support a mechanism in which a SNP within the promoter of Vg is associated with the level of Vg transcription by altering the binding activity of NlGATA-1 and subsequently affecting fecundity in N. lugens.
Collapse
Affiliation(s)
- Z-X Sun
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, China
| | - K Kang
- Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, China
| | - Y-J Cai
- Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, China
| | - J-Q Zhang
- Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, China
| | - Y-F Zhai
- Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, China
| | - R-S Zeng
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - W-Q Zhang
- Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
12
|
Kulmuni J, Westram AM. Intrinsic incompatibilities evolving as a by-product of divergent ecological selection: Considering them in empirical studies on divergence with gene flow. Mol Ecol 2017; 26:3093-3103. [PMID: 28423210 DOI: 10.1111/mec.14147] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 12/31/2022]
Abstract
The possibility of intrinsic barriers to gene flow is often neglected in empirical research on local adaptation and speciation with gene flow, for example when interpreting patterns observed in genome scans. However, we draw attention to the fact that, even with gene flow, divergent ecological selection may generate intrinsic barriers involving both ecologically selected and other interacting loci. Mechanistically, the link between the two types of barriers may be generated by genes that have multiple functions (i.e., pleiotropy), and/or by gene interaction networks. Because most genes function in complex networks, and their evolution is not independent of other genes, changes evolving in response to ecological selection can generate intrinsic barriers as a by-product. A crucial question is to what extent such by-product barriers contribute to divergence and speciation-that is whether they stably reduce gene flow. We discuss under which conditions by-product barriers may increase isolation. However, we also highlight that, depending on the conditions (e.g., the amount of gene flow and the strength of selection acting on the intrinsic vs. the ecological barrier component), the intrinsic incompatibility may actually destabilize barriers to gene flow. In practice, intrinsic barriers generated as a by-product of divergent ecological selection may generate peaks in genome scans that cannot easily be interpreted. We argue that empirical studies on divergence with gene flow should consider the possibility of both ecological and intrinsic barriers. Future progress will likely come from work combining population genomic studies, experiments quantifying fitness and molecular studies on protein function and interactions.
Collapse
Affiliation(s)
- J Kulmuni
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - A M Westram
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
13
|
Kaur N, Chen W, Zheng Y, Hasegawa DK, Ling KS, Fei Z, Wintermantel WM. Transcriptome analysis of the whitefly, Bemisia tabaci MEAM1 during feeding on tomato infected with the crinivirus, Tomato chlorosis virus, identifies a temporal shift in gene expression and differential regulation of novel orphan genes. BMC Genomics 2017; 18:370. [PMID: 28494755 PMCID: PMC5426028 DOI: 10.1186/s12864-017-3751-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/02/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Whiteflies threaten agricultural crop production worldwide, are polyphagous in nature, and transmit hundreds of plant viruses. Little is known how whitefly gene expression is altered due to feeding on plants infected with a semipersistently transmitted virus. Tomato chlorosis virus (ToCV; genus Crinivirus, family Closteroviridae) is transmitted by the whitefly (Bemisia tabaci) in a semipersistent manner and infects several globally important agricultural and ornamental crops, including tomato. RESULTS To determine changes in global gene regulation in whiteflies after feeding on tomato plants infected with a crinivirus (ToCV), comparative transcriptomic analysis was performed using RNA-Seq on whitefly (Bemisia tabaci MEAM1) populations after 24, 48, and 72 h acquisition access periods on either ToCV-infected or uninfected tomatoes. Significant differences in gene expression were detected between whiteflies fed on ToCV-infected tomato and those fed on uninfected tomato among the three feeding time periods: 447 up-regulated and 542 down-regulated at 24 h, 4 up-regulated and 7 down-regulated at 48 h, and 50 up-regulated and 160 down-regulated at 72 h. Analysis revealed differential regulation of genes associated with metabolic pathways, signal transduction, transport and catabolism, receptors, glucose transporters, α-glucosidases, and the uric acid pathway in whiteflies fed on ToCV-infected tomatoes, as well as an abundance of differentially regulated novel orphan genes. Results demonstrate for the first time, a specific and temporally regulated response by the whitefly to feeding on a host plant infected with a semipersistently transmitted virus, and advance the understanding of the whitefly vector-virus interactions that facilitate virus transmission. CONCLUSION Whitefly transmission of semipersistent viruses is believed to require specific interactions between the virus and its vector that allow binding of virus particles to factors within whitefly mouthparts. Results provide a broader understanding of the potential mechanism of crinivirus transmission by whitefly, aid in discerning genes or loci in whitefly that influence virus interactions or transmission, and subsequently facilitate development of novel, genetics-based control methods against whitefly and whitefly-transmitted viruses.
Collapse
Affiliation(s)
- Navneet Kaur
- USDA-ARS, Crop Improvement and Protection Research, 1636 East Alisal Street, Salinas, CA 93905 USA
| | - Wenbo Chen
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853-1801 USA
| | - Yi Zheng
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853-1801 USA
| | - Daniel K. Hasegawa
- USDA-ARS, U.S. Vegetable Laboratory, Charleston, 2700 Savannah Highway, Charleston, SC 29414 USA
| | - Kai-Shu Ling
- USDA-ARS, U.S. Vegetable Laboratory, Charleston, 2700 Savannah Highway, Charleston, SC 29414 USA
| | - Zhangjun Fei
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853-1801 USA
| | - William M. Wintermantel
- USDA-ARS, Crop Improvement and Protection Research, 1636 East Alisal Street, Salinas, CA 93905 USA
| |
Collapse
|
14
|
Early gut colonizers shape parasite susceptibility and microbiota composition in honey bee workers. Proc Natl Acad Sci U S A 2016; 113:9345-50. [PMID: 27482088 DOI: 10.1073/pnas.1606631113] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Microbial symbionts living within animal guts are largely composed of resident bacterial species, forming communities that often provide benefits to the host. Gut microbiomes of adult honey bees (Apis mellifera) include core residents such as the betaproteobacterium Snodgrassella alvi, alongside transient parasites such as the protozoan Lotmaria passim To test how these species affect microbiome composition and host physiology, we administered S alvi and/or L passim inocula to newly emerged worker bees from four genetic backgrounds (GH) and reared them in normal (within hives) or stressed (protein-deficient, asocial) conditions. Microbiota acquired by normal bees were abundant but quantitatively differed across treatments, indicating treatment-associated dysbiosis. Pretreatment with S. alvi made normal bees more susceptible to L. passim and altered developmental and detoxification gene expression. Stressed bees were more susceptible to L. passim and were depauperate in core microbiota, yet supplementation with S. alvi did not alter this susceptibility. Microbiomes were generally more variable by GH in stressed bees, which also showed opposing and comparatively reduced modulation of gene expression responses to treatments compared with normal bees. These data provide experimental support for a link between altered gut microbiota and increased parasite and pathogen prevalence, as observed from honey bee colony collapse disorder.
Collapse
|
15
|
Fouks B, Lattorff HMG. Contrasting Evolutionary Rates between Social and Parasitic Bumblebees for Three Social Effect Genes. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Salmela H, Stark T, Stucki D, Fuchs S, Freitak D, Dey A, Kent CF, Zayed A, Dhaygude K, Hokkanen H, Sundström L. Ancient Duplications Have Led to Functional Divergence of Vitellogenin-Like Genes Potentially Involved in Inflammation and Oxidative Stress in Honey Bees. Genome Biol Evol 2016; 8:495-506. [PMID: 26961250 PMCID: PMC4825421 DOI: 10.1093/gbe/evw014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Protection against inflammation and oxidative stress is key in slowing down aging processes. The honey bee (Apis mellifera) shows flexible aging patterns linked to the social role of individual bees. One molecular factor associated with honey bee aging regulation is vitellogenin, a lipoglycophosphoprotein with anti-inflammatory and antioxidant properties. Recently, we identified three genes in Hymenopteran genomes arisen from ancient insect vitellogenin duplications, named vg-like-A, -B, and -C. The function of these vitellogenin homologs is unclear. We hypothesize that some of them might share gene- and protein-level similarities and a longevity-supporting role with vitellogenin. Here, we show how the structure and modifications of the vg-like genes and proteins have diverged from vitellogenin. Furthermore, all three vg-like genes show signs of positive selection, but the spatial location of the selected protein sites differ from those found in vitellogenin. We show that all these genes are expressed in both long-lived winter worker bees and in summer nurse bees with intermediate life expectancy, yet only vg-like-A shows elevated expression in winter bees as found in vitellogenin. Finally, we show that vg-like-A responds more strongly than vitellogenin to inflammatory and oxidative conditions in summer nurse bees, and that also vg-like-B responds to oxidative stress. We associate vg-like-A and, to lesser extent, vg-like-B to the antiaging roles of vitellogenin, but that vg-like-C probably is involved in some other function. Our analysis indicates that an ancient duplication event facilitated the adaptive and functional divergence of vitellogenin and its paralogs in the honey bee.
Collapse
Affiliation(s)
- Heli Salmela
- Department of Biosciences, Centre of Excellence in Biological Interactions, University of Helsinki, Helsinki, Finland
| | - Taina Stark
- Department of Biosciences, Centre of Excellence in Biological Interactions, University of Helsinki, Helsinki, Finland Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Dimitri Stucki
- Department of Biosciences, Centre of Excellence in Biological Interactions, University of Helsinki, Helsinki, Finland
| | - Siiri Fuchs
- Department of Biosciences, Centre of Excellence in Biological Interactions, University of Helsinki, Helsinki, Finland
| | - Dalial Freitak
- Department of Biosciences, Centre of Excellence in Biological Interactions, University of Helsinki, Helsinki, Finland
| | - Alivia Dey
- Department of Biology, York University, Toronto, ON, Canada
| | - Clement F Kent
- Department of Biology, York University, Toronto, ON, Canada
| | - Amro Zayed
- Department of Biology, York University, Toronto, ON, Canada
| | - Kishor Dhaygude
- Department of Biosciences, Centre of Excellence in Biological Interactions, University of Helsinki, Helsinki, Finland
| | - Heikki Hokkanen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Liselotte Sundström
- Department of Biosciences, Centre of Excellence in Biological Interactions, University of Helsinki, Helsinki, Finland
| |
Collapse
|
17
|
Ronai I, Vergoz V, Oldroyd B. The Mechanistic, Genetic, and Evolutionary Basis of Worker Sterility in the Social Hymenoptera. ADVANCES IN THE STUDY OF BEHAVIOR 2016. [DOI: 10.1016/bs.asb.2016.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Salmela H, Amdam GV, Freitak D. Transfer of Immunity from Mother to Offspring Is Mediated via Egg-Yolk Protein Vitellogenin. PLoS Pathog 2015; 11:e1005015. [PMID: 26230630 PMCID: PMC4521805 DOI: 10.1371/journal.ppat.1005015] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/09/2015] [Indexed: 11/19/2022] Open
Abstract
Insect immune systems can recognize specific pathogens and prime offspring immunity. High specificity of immune priming can be achieved when insect females transfer immune elicitors into developing oocytes. The molecular mechanism behind this transfer has been a mystery. Here, we establish that the egg-yolk protein vitellogenin is the carrier of immune elicitors. Using the honey bee, Apis mellifera, model system, we demonstrate with microscopy and western blotting that vitellogenin binds to bacteria, both Paenibacillus larvae--the gram-positive bacterium causing American foulbrood disease--and to Escherichia coli that represents gram-negative bacteria. Next, we verify that vitellogenin binds to pathogen-associated molecular patterns; lipopolysaccharide, peptidoglycan and zymosan, using surface plasmon resonance. We document that vitellogenin is required for transport of cell-wall pieces of E. coli into eggs by imaging tissue sections. These experiments identify vitellogenin, which is distributed widely in oviparous species, as the carrier of immune-priming signals. This work reveals a molecular explanation for trans-generational immunity in insects and a previously undescribed role for vitellogenin.
Collapse
Affiliation(s)
- Heli Salmela
- Centre of Excellence in Biological Interactions, University of Helsinki, Helsinki, Finland & University of Jyväskylä, Jyväskylä, Finland
| | - Gro V. Amdam
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Dalial Freitak
- Centre of Excellence in Biological Interactions, University of Helsinki, Helsinki, Finland & University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
19
|
Harney E, Plaistow SJ, Paterson S. Transcriptional changes during Daphnia pulex development indicate that the maturation decision resembles a rate more than a threshold. J Evol Biol 2015; 28:944-58. [PMID: 25786891 DOI: 10.1111/jeb.12624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/04/2015] [Accepted: 03/12/2015] [Indexed: 01/05/2023]
Abstract
Maturation is a critical developmental process, and the age and size at which it occurs have important fitness consequences. Although maturation is remarkably variable, certain mechanisms, including a minimum size or state threshold, are proposed to underlie the process across a broad diversity of taxa. Recent evidence suggests that thresholds may themselves be developmentally plastic, and in the crustacean Daphnia pulex it is unclear whether maturation follows a threshold or is a gradual process more akin to a rate. Changes in gene expression across four instars before and during maturation were compared in a cDNA microarray experiment. Developmental stage was treated statistically both as a discontinuous and as a continuous variable, to determine whether genes showed gradual or discrete changes in expression. The continuous analysis identified a greater number of genes with significant differential expression (45) than the discontinuous analysis (11). The majority of genes, including those coding for histones, factors relating to transcription and cell cycle processes, and a putative developmental hormone showed continuous increases or decreases in expression from the first to the fourth instars that were studied, suggestive of a prolonged and gradual maturation process. Three genes coding for a fused vitellogenin/superoxide dismutase showed increases in expression following the second instar and coincided with the posited maturation threshold, but even their expression increased in a continuous fashion.
Collapse
Affiliation(s)
- E Harney
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
20
|
Ilyasov RA, Poskryakov AV, Nikolenko AG. New SNP markers of the honeybee vitellogenin gene (Vg) used for identification of subspecies Apis mellifera mellifera L. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415020088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Harpur BA, Chernyshova A, Soltani A, Tsvetkov N, Mahjoorighasrodashti M, Xu Z, Zayed A. No genetic tradeoffs between hygienic behaviour and individual innate immunity in the honey bee, Apis mellifera. PLoS One 2014; 9:e104214. [PMID: 25162411 PMCID: PMC4146461 DOI: 10.1371/journal.pone.0104214] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/11/2014] [Indexed: 12/05/2022] Open
Abstract
Many animals have individual and social mechanisms for combating pathogens. Animals may exhibit short-term physiological tradeoffs between social and individual immunity because the latter is often energetically costly. Genetic tradeoffs between these two traits can also occur if mutations that enhance social immunity diminish individual immunity, or vice versa. Physiological tradeoffs between individual and social immunity have been previously documented in insects, but there has been no study of genetic tradeoffs involving these traits. There is strong evidence that some genes influence both innate immunity and behaviour in social insects – a prerequisite for genetic tradeoffs. Quantifying genetic tradeoffs is critical for understanding the evolution of immunity in social insects and for devising effective strategies for breeding disease-resistant pollinator populations. We conducted two experiments to test the hypothesis of a genetic tradeoff between social and individual immunity in the honey bee, Apis mellifera. First, we estimated the relative contribution of genetics to individual variation in innate immunity of honey bee workers, as only heritable traits can experience genetic tradeoffs. Second, we examined if worker bees with hygienic sisters have reduced individual innate immune response. We genotyped several hundred workers from two colonies and found that patriline genotype does not significantly influence the antimicrobial activity of a worker’s hemolymph. Further, we did not find a negative correlation between hygienic behaviour and the average antimicrobial activity of a worker’s hemolymph across 30 honey bee colonies. Taken together, our work indicates no genetic tradeoffs between hygienic behaviour and innate immunity in honey bees. Our work suggests that using artificial selection to increase hygienic behaviour of honey bee colonies is not expected to concurrently compromise individual innate immunity of worker bees.
Collapse
Affiliation(s)
- Brock A. Harpur
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Anna Chernyshova
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Arash Soltani
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Nadejda Tsvetkov
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | - Zhixing Xu
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Amro Zayed
- Department of Biology, York University, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
22
|
Romiguier J, Lourenco J, Gayral P, Faivre N, Weinert LA, Ravel S, Ballenghien M, Cahais V, Bernard A, Loire E, Keller L, Galtier N. Population genomics of eusocial insects: the costs of a vertebrate-like effective population size. J Evol Biol 2014; 27:593-603. [DOI: 10.1111/jeb.12331] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 12/27/2013] [Accepted: 01/02/2014] [Indexed: 12/15/2022]
Affiliation(s)
- J. Romiguier
- Institut des Sciences de l'Evolution de Montpellier; Université Montpellier 2; CNRS UMR 5554; Montpellier France
| | - J. Lourenco
- Institut des Sciences de l'Evolution de Montpellier; Université Montpellier 2; CNRS UMR 5554; Montpellier France
| | - P. Gayral
- Institut des Sciences de l'Evolution de Montpellier; Université Montpellier 2; CNRS UMR 5554; Montpellier France
- Institut de Recherches sur la Biologie de l'Insecte; CNRS UMR 7261; Université François-Rabelais; Tours France
| | - N. Faivre
- Institut des Sciences de l'Evolution de Montpellier; Université Montpellier 2; CNRS UMR 5554; Montpellier France
| | - L. A. Weinert
- Institut des Sciences de l'Evolution de Montpellier; Université Montpellier 2; CNRS UMR 5554; Montpellier France
- Department of Veterinary Medicine; University of Cambridge; Cambridge UK
| | - S. Ravel
- Institut des Sciences de l'Evolution de Montpellier; Université Montpellier 2; CNRS UMR 5554; Montpellier France
| | - M. Ballenghien
- Institut des Sciences de l'Evolution de Montpellier; Université Montpellier 2; CNRS UMR 5554; Montpellier France
| | - V. Cahais
- Institut des Sciences de l'Evolution de Montpellier; Université Montpellier 2; CNRS UMR 5554; Montpellier France
| | - A. Bernard
- Institut des Sciences de l'Evolution de Montpellier; Université Montpellier 2; CNRS UMR 5554; Montpellier France
| | - E. Loire
- Institut des Sciences de l'Evolution de Montpellier; Université Montpellier 2; CNRS UMR 5554; Montpellier France
| | - L. Keller
- Department of Ecology and Evolution, Biophore; University of Lausanne; Lausanne Switzerland
| | - N. Galtier
- Institut des Sciences de l'Evolution de Montpellier; Université Montpellier 2; CNRS UMR 5554; Montpellier France
| |
Collapse
|
23
|
Population genomics of the honey bee reveals strong signatures of positive selection on worker traits. Proc Natl Acad Sci U S A 2014; 111:2614-9. [PMID: 24488971 DOI: 10.1073/pnas.1315506111] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Most theories used to explain the evolution of eusociality rest upon two key assumptions: mutations affecting the phenotype of sterile workers evolve by positive selection if the resulting traits benefit fertile kin, and that worker traits provide the primary mechanism allowing social insects to adapt to their environment. Despite the common view that positive selection drives phenotypic evolution of workers, we know very little about the prevalence of positive selection acting on the genomes of eusocial insects. We mapped the footprints of positive selection in Apis mellifera through analysis of 40 individual genomes, allowing us to identify thousands of genes and regulatory sequences with signatures of adaptive evolution over multiple timescales. We found Apoidea- and Apis-specific genes to be enriched for signatures of positive selection, indicating that novel genes play a disproportionately large role in adaptive evolution of eusocial insects. Worker-biased proteins have higher signatures of adaptive evolution relative to queen-biased proteins, supporting the view that worker traits are key to adaptation. We also found genes regulating worker division of labor to be enriched for signs of positive selection. Finally, genes associated with worker behavior based on analysis of brain gene expression were highly enriched for adaptive protein and cis-regulatory evolution. Our study highlights the significant contribution of worker phenotypes to adaptive evolution in social insects, and provides a wealth of knowledge on the loci that influence fitness in honey bees.
Collapse
|
24
|
Chávez-Galarza J, Henriques D, Johnston JS, Azevedo JC, Patton JC, Muñoz I, De la Rúa P, Pinto MA. Signatures of selection in the Iberian honey bee (Apis mellifera iberiensis) revealed by a genome scan analysis of single nucleotide polymorphisms. Mol Ecol 2013; 22:5890-907. [PMID: 24118235 DOI: 10.1111/mec.12537] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 09/12/2013] [Accepted: 09/19/2013] [Indexed: 12/30/2022]
Abstract
Understanding the genetic mechanisms of adaptive population divergence is one of the most fundamental endeavours in evolutionary biology and is becoming increasingly important as it will allow predictions about how organisms will respond to global environmental crisis. This is particularly important for the honey bee, a species of unquestionable ecological and economical importance that has been exposed to increasing human-mediated selection pressures. Here, we conducted a single nucleotide polymorphism (SNP)-based genome scan in honey bees collected across an environmental gradient in Iberia and used four FST -based outlier tests to identify genomic regions exhibiting signatures of selection. Additionally, we analysed associations between genetic and environmental data for the identification of factors that might be correlated or act as selective pressures. With these approaches, 4.4% (17 of 383) of outlier loci were cross-validated by four FST -based methods, and 8.9% (34 of 383) were cross-validated by at least three methods. Of the 34 outliers, 15 were found to be strongly associated with one or more environmental variables. Further support for selection, provided by functional genomic information, was particularly compelling for SNP outliers mapped to different genes putatively involved in the same function such as vision, xenobiotic detoxification and innate immune response. This study enabled a more rigorous consideration of selection as the underlying cause of diversity patterns in Iberian honey bees, representing an important first step towards the identification of polymorphisms implicated in local adaptation and possibly in response to recent human-mediated environmental changes.
Collapse
Affiliation(s)
- Julio Chávez-Galarza
- Mountain Research Centre (CIMO), Polytechnic Institute of Bragança, Campus de Sta. Apolónia, Apartado 1172, 5301-855, Bragança, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Flatt T, Amdam GV, Kirkwood TBL, Omholt SW. Life-history evolution and the polyphenic regulation of somatic maintenance and survival. QUARTERLY REVIEW OF BIOLOGY 2013; 88:185-218. [PMID: 24053071 DOI: 10.1086/671484] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Here we discuss life-history evolution from the perspective of adaptive phenotypic plasticity, with a focus on polyphenisms for somatic maintenance and survival. Polyphenisms are adaptive discrete alternative phenotypes that develop in response to changes in the environment. We suggest that dauer larval diapause and its associated adult phenotypes in the nematode (Caenorhabditis elegans), reproductive dormancy in the fruit fly (Drosophila melanogaster) and other insects, and the worker castes of the honey bee (Apis mellifera) are examples of what may be viewed as the polyphenic regulation of somatic maintenance and survival. In these and other cases, the same genotype can--depending upon its environment--express either of two alternative sets of life-history phenotypes that differ markedly with respect to somatic maintenance, survival ability, and thus life span. This plastic modulation of somatic maintenance and survival has traditionally been underappreciated by researchers working on aging and life history. We review the current evidence for such adaptive life-history switches and their molecular regulation and suggest that they are caused by temporally and/or spatially varying, stressful environments that impose diversifying selection, thereby favoring the evolution of plasticity of somatic maintenance and survival under strong regulatory control. By considering somatic maintenance and survivorship from the perspective of adaptive life-history switches, we may gain novel insights into the mechanisms and evolution of aging.
Collapse
Affiliation(s)
- Thomas Flatt
- Institut für Populationsgenetik, Vetmeduni Vienna, A-1210 Vienna, Austria.
| | | | | | | |
Collapse
|
26
|
Corona M, Libbrecht R, Wurm Y, Riba-Grognuz O, Studer RA, Keller L. Vitellogenin underwent subfunctionalization to acquire caste and behavioral specific expression in the harvester ant Pogonomyrmex barbatus. PLoS Genet 2013; 9:e1003730. [PMID: 23966882 PMCID: PMC3744404 DOI: 10.1371/journal.pgen.1003730] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 07/03/2013] [Indexed: 11/18/2022] Open
Abstract
The reproductive ground plan hypothesis (RGPH) proposes that the physiological pathways regulating reproduction were co-opted to regulate worker division of labor. Support for this hypothesis in honeybees is provided by studies demonstrating that the reproductive potential of workers, assessed by the levels of vitellogenin (Vg), is linked to task performance. Interestingly, contrary to honeybees that have a single Vg ortholog and potentially fertile nurses, the genome of the harvester ant Pogonomyrmex barbatus harbors two Vg genes (Pb_Vg1 and Pb_Vg2) and nurses produce infertile trophic eggs. P. barbatus, thus, provides a unique model to investigate whether Vg duplication in ants was followed by subfunctionalization to acquire reproductive and non-reproductive functions and whether Vg reproductive function was co-opted to regulate behavior in sterile workers. To investigate these questions, we compared the expression patterns of P. barbatus Vg genes and analyzed the phylogenetic relationships and molecular evolution of Vg genes in ants. qRT-PCRs revealed that Pb_Vg1 is more highly expressed in queens compared to workers and in nurses compared to foragers. By contrast, the level of expression of Pb_Vg2 was higher in foragers than in nurses and queens. Phylogenetic analyses show that a first duplication of the ancestral Vg gene occurred after the divergence between the poneroid and formicoid clades and subsequent duplications occurred in the lineages leading to Solenopsis invicta, Linepithema humile and Acromyrmex echinatior. The initial duplication resulted in two Vg gene subfamilies preferentially expressed in queens and nurses (subfamily A) or in foraging workers (subfamily B). Finally, molecular evolution analyses show that the subfamily A experienced positive selection, while the subfamily B showed overall relaxation of purifying selection. Our results suggest that in P. barbatus the Vg gene underwent subfunctionalization after duplication to acquire caste- and behavior- specific expression associated with reproductive and non-reproductive functions, supporting the validity of the RGPH in ants. One of the main features of social insects is the division of labor, whereby queens monopolize reproduction while sterile workers perform all of the tasks related to colony maintenance. The workers usually do so in an age-dependent sequence: young workers tend to nurse the brood inside the nest and older workers are more likely to forage for food. Previous studies revealed that vitellogenin, a yolk protein typically involved in the regulation of reproduction in solitary insects, has been co-opted to regulate division of labor in the honeybee. In this study, we investigate such a role of vitellogenin in another group of social insects: the ants. We first use phylogenetic analyses to reveal the existence of multiple vitellogenin genes in most of the sequenced ant genomes. Then we compare the expression of the two vitellogenin genes (Pb_Vg1 and Pb_Vg2) among queens, nurses and foragers in the seed-harvester ant Pogonomyrmex barbatus. Our results suggest that, after the initial duplication in ants, the vitellogenin genes acquired caste and behavioral specific expression associated with reproductive and non-reproductive nutritionally related functions. This study also shows that ants and bees, despite having evolved sociality independently, have conserved similar mechanisms to regulate division of labor.
Collapse
Affiliation(s)
- Miguel Corona
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|
27
|
Havukainen H, Münch D, Baumann A, Zhong S, Halskau Ø, Krogsgaard M, Amdam GV. Vitellogenin recognizes cell damage through membrane binding and shields living cells from reactive oxygen species. J Biol Chem 2013; 288:28369-81. [PMID: 23897804 DOI: 10.1074/jbc.m113.465021] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Large lipid transfer proteins are involved in lipid transportation and diverse other molecular processes. These serum proteins include vitellogenins, which are egg yolk precursors and pathogen pattern recognition receptors, and apolipoprotein B, which is an anti-inflammatory cholesterol carrier. In the honey bee, vitellogenin acts as an antioxidant, and elevated vitellogenin titer is linked to prolonged life span in this animal. Here, we show that vitellogenin has cell and membrane binding activity and that it binds preferentially to dead and damaged cells. Vitellogenin binds directly to phosphatidylcholine liposomes and with higher affinity to liposomes containing phosphatidylserine, a lipid of the inner leaflet of cell membranes that is exposed in damaged cells. Vitellogenin binding to live cells, furthermore, improves cell oxidative stress tolerance. This study can shed more light on why large lipid transfer proteins have a well conserved α-helical domain, because we locate the lipid bilayer-binding ability of vitellogenin largely to this region. We suggest that recognition of cell damage and oxidation shield properties are two mechanisms that allow vitellogenin to extend honey bee life span.
Collapse
Affiliation(s)
- Heli Havukainen
- From the Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, 1432 Aas, Norway
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Eusocial Hymenoptera, such as the European honey bee, Apis mellifera, have the highest recombination rates of multicellular animals.(1) Recently, we showed(2) that a side-effect of recombination in the honey bee, GC biased gene conversion (bGC), helps maintain the unusual bimodal GC-content distribution of the bee genome by increasing GC-content in high recombination areas while low recombination areas are losing GC-content because of biased AT mutations and low rates of bGC. Although the very high recombination rate of A. mellifera makes GC-content evolution easier to study, the pattern is consistent with results found in many other species including mammals and yeast.(3) Also consistent across phyla is the association of higher genetic diversity and divergence with high GC and high recombination areas.(4) (,) (5) Finally, we showed that genes overexpressed in the brains of workers cluster in GC-rich genomic areas with the highest rates of recombination and molecular evolution.(2) In this Addendum we present a conceptual model of how eusociality and high recombination rates may co-evolve.
Collapse
Affiliation(s)
- Clement F Kent
- Department of Biology; York University; Toronto, ON Canada
| | | |
Collapse
|
29
|
Harpur BA, Minaei S, Kent CF, Zayed A. Admixture increases diversity in managed honey bees: reply to De la Rúa et al. (2013). Mol Ecol 2013; 22:3211-5. [PMID: 24433573 DOI: 10.1111/mec.12332] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/26/2013] [Accepted: 03/29/2013] [Indexed: 11/30/2022]
Abstract
De la Rúa et al. (2013) express some concerns about the conclusions of our recent study showing that management increases genetic diversity of honey bees (Apis mellifera) by promoting admixture (Harpur et al. 2012). We provide a brief review of the literature on the population genetics of A. mellifera and show that we utilized appropriate sampling methods to estimate genetic diversity in the focal populations. Our finding of higher genetic diversity in two managed A. mellifera populations on two different continents is expected to be the norm given the large number of studies documenting admixture in honey bees. Our study focused on elucidating how management affects genetic diversity in honey bees, not on how to best manage bee colonies. We do not endorse the intentional admixture of honey bee populations, and we agree with De la Rúa et al. (2013) that native honey bee subspecies should be conserved.
Collapse
Affiliation(s)
- Brock A Harpur
- Department of Biology, York University, 4700 Keele Street, Toronto, M3J 1P3, Ontario, Canada
| | | | | | | |
Collapse
|
30
|
Andrew RL, Bernatchez L, Bonin A, Buerkle CA, Carstens BC, Emerson BC, Garant D, Giraud T, Kane NC, Rogers SM, Slate J, Smith H, Sork VL, Stone GN, Vines TH, Waits L, Widmer A, Rieseberg LH. A road map for molecular ecology. Mol Ecol 2013; 22:2605-26. [DOI: 10.1111/mec.12319] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 03/16/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Rose L. Andrew
- Department of Botany; University of British Columbia; 3529-6270 University Blvd Vancouver BC V6T 1Z4 Canada
| | - Louis Bernatchez
- DInstitut de Biologie Intégrative et des Systémes; Département de Biologie; 1030, Avenue de la Médecine Université Laval; Québec QC G1V 0A6 Canada
| | - Aurélie Bonin
- Laboratoire d'Ecologie Alpine; CNRS UMR 5553 Université Joseph Fourier; BP 53, 38041 Grenoble Cedex 9 France
| | - C. Alex. Buerkle
- Department of Botany; University of Wyoming; 1000 E. University Ave. Laramie WY 82071 USA
| | - Bryan C. Carstens
- Department of Evolution, Ecology and Organismal Biology; 318 W. 12th Ave. The Ohio State University; Columbus OH 43210 USA
| | - Brent C. Emerson
- Island Ecology and Evolution Research Group; Instituto de Productos Naturales y Agrobiología (IPNA-CSIC) C/Astrofísico Francisco Sánchez 3 La Laguna Tenerife; Canary Islands 38206 Spain
| | - Dany Garant
- Département de Biologie; Université de Sherbrooke; Sherbrooke QC J1K 2R1 Canada
| | - Tatiana Giraud
- Laboratoire Ecologie, Systématique et Evolution; UMR 8079 CNRS-UPS-AgroParisTech, Bâtiment 360 Univ. Paris Sud; 91405 Orsay cedex France
| | - Nolan C. Kane
- Department of Botany; University of British Columbia; 3529-6270 University Blvd Vancouver BC V6T 1Z4 Canada
| | - Sean M. Rogers
- Department of Biological Sciences; University of Calgary; 2500 University Drive N.W., Calgary AB T2N 1N4 Canada
| | - Jon Slate
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield S10 2TN UK
| | - Harry Smith
- 79 Melton Road Burton-on-the-Wolds Loughborough LE12 5TQ UK
| | - Victoria L. Sork
- Department of Ecology and Evolutionary Biology; University of California Los Angeles; 4139 Terasaki Life Sciences Building, 610 Charles E. Young Drive East Los Angeles CA 90095 USA
| | - Graham N. Stone
- Institute of Evolutionary Biology; University of Edinburgh; The King's Buildings, West Mains Road, Edinburgh EH9 3JT UK
| | - Timothy H. Vines
- Molecular Ecology Editorial Office; 6270 University Blvd Vancouver BC V6T 1Z4 Canada
| | - Lisette Waits
- Department of Fish and Wildlife Sciences; University of Idaho; 875 Perimeter Drive MS 1136 Moscow ID 83844 USA
| | - Alex Widmer
- ETH Zurich; Institute of Integrative Biology; Universitätstrasse 16 Zurich 8092 Switzerland
| | - Loren H. Rieseberg
- Department of Botany; University of British Columbia; 3529-6270 University Blvd Vancouver BC V6T 1Z4 Canada
- Department of Biology; Indiana University; 1001 E. 3 St., Bloomington IN 47405 USA
| |
Collapse
|
31
|
Harpur BA, Zayed A. Accelerated evolution of innate immunity proteins in social insects: adaptive evolution or relaxed constraint? Mol Biol Evol 2013; 30:1665-74. [PMID: 23538736 DOI: 10.1093/molbev/mst061] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The genomes of eusocial insects have a reduced complement of immune genes-an unusual finding considering that sociality provides ideal conditions for disease transmission. The following three hypotheses have been invoked to explain this finding: 1) social insects are attacked by fewer pathogens, 2) social insects have effective behavioral or 3) novel molecular mechanisms for combating pathogens. At the molecular level, these hypotheses predict that canonical innate immune pathways experience a relaxation of selective constraint. A recent study of several innate immune genes in ants and bees showed a pattern of accelerated amino acid evolution, which is consistent with either positive selection or a relaxation of constraint. We studied the population genetics of innate immune genes in the honey bee Apis mellifera by partially sequencing 13 genes from the bee's Toll pathway (∼10.5 kb) and 20 randomly chosen genes (∼16.5 kb) sequenced in 43 diploid workers. Relative to the random gene set, Toll pathway genes had significantly higher levels of amino acid replacement mutations segregating within A. mellifera and fixed between A. mellifera and A. cerana. However, levels of diversity and divergence at synonymous sites did not differ between the two gene sets. Although we detect strong signs of balancing selection on the pathogen recognition gene pgrp-sa, many of the genes in the Toll pathway show signatures of relaxed selective constraint. These results are consistent with the reduced complement of innate immune genes found in social insects and support the hypothesis that some aspect of eusociality renders canonical innate immunity superfluous.
Collapse
Affiliation(s)
- Brock A Harpur
- Department of Biology, York University, Toronto, Ontario, Canada
| | | |
Collapse
|
32
|
Recombination is associated with the evolution of genome structure and worker behavior in honey bees. Proc Natl Acad Sci U S A 2012; 109:18012-7. [PMID: 23071321 DOI: 10.1073/pnas.1208094109] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The rise of insect societies, marked by the formation of reproductive and sterile castes, represents a major unsolved mystery in evolution. Across several independent origins of sociality, the genomes of social hymenopterans share two peculiar attributes: high recombination and low but heterogeneous GC content. For example, the genome of the honey bee, Apis mellifera, represents a mosaic of GC-poor and GC-rich regions with rates of recombination an order of magnitude higher than in humans. However, it is unclear how heterogeneity in GC content arises, and how it relates to the expression and evolution of worker traits. Using population genetic analyses, we demonstrate a bias in the allele frequency and fixation rate of derived C or G mutations in high-recombination regions, consistent with recombination's causal influence on GC-content evolution via biased gene conversion. We also show that recombination and biased gene conversion actively maintain the heterogeneous GC content of the honey bee genome despite an overall A/T mutation bias. Further, we found that GC-rich genes and intergenic regions have higher levels of genetic diversity and divergence relative to GC-poor regions, also consistent with recombination's causal influence on the rate of molecular evolution. Finally, we found that genes associated with behavior and those with worker-biased expression are found in GC-rich regions of the bee genome and also experience high rates of molecular evolution. Taken together, these findings suggest that recombination acts to maintain a genetically diverse and dynamic part of the genome where genes underlying worker behavior evolve more quickly.
Collapse
|
33
|
Zayed A, Robinson GE. Understanding the relationship between brain gene expression and social behavior: lessons from the honey bee. Annu Rev Genet 2012; 46:591-615. [PMID: 22994354 DOI: 10.1146/annurev-genet-110711-155517] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Behavior is a complex phenotype that is plastic and evolutionarily labile. The advent of genomics has revolutionized the field of behavioral genetics by providing tools to quantify the dynamic nature of brain gene expression in relation to behavioral output. The honey bee Apis mellifera provides an excellent platform for investigating the relationship between brain gene expression and behavior given both the remarkable behavioral repertoire expressed by members of its intricate society and the degree to which behavior is influenced by heredity and the social environment. Here, we review a linked series of studies that assayed changes in honey bee brain transcriptomes associated with natural and experimentally induced changes in behavioral state. These experiments demonstrate that brain gene expression is closely linked with behavior, that changes in brain gene expression mediate changes in behavior, and that the association between specific genes and behavior exists over multiple timescales, from physiological to evolutionary.
Collapse
Affiliation(s)
- Amro Zayed
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada.
| | | |
Collapse
|
34
|
Chen X, Hu Y, Zheng H, Cao L, Niu D, Yu D, Sun Y, Hu S, Hu F. Transcriptome comparison between honey bee queen- and worker-destined larvae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:665-673. [PMID: 22659440 DOI: 10.1016/j.ibmb.2012.05.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 05/09/2012] [Accepted: 05/13/2012] [Indexed: 06/01/2023]
Abstract
Caste differentiation in the female honey bee is one of the most intriguing polyphenism phenomena. This developmental switch depends on the differential expression of entire suites of the genes involved in the larval fate between the queens and workers. In this study, we compared the transcriptome differences between full-sister queen- (QL) and worker-destined larvae (WL) using high-throughput RNA-Seq. QL and WL at fourth (L4) and fifth instar (L5) were used to prepare four libraries and to generate 50,191,699 (QL4), 57,628,541 (WL4), 56,613,619 (QL5), and 58,626,829 (WL5) usable reads, which were assembled into groups of 7,952, 7,993, 7,971, and 8,023 genes, respectively. The transcriptome changes were investigated using the DEGs Package (DEGseq), which resulted in more than 4,500 differentially expressed genes (DEGs) between the castes. Eight of the DEGs were verified by quantitative real-time RT-PCR (qRT-PCR), and the results supported our sequencing data. All of the DEGs were analysed using Web Gene Ontology Annotation Plot (WEGO) and then mapped using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. These results suggest that over 70% of the DEGs in each instar were more highly expressed in QL than in WL, possibly suggesting that the QL genes had higher transcriptional activity than the WL genes during differentiation. The same gene set is active (but differentially expressed) in both castes, which in turn result in dimorphic females. The L4 stage is a very active gene expression period for both QL and WL before their pupal stage. The activity of the mTOR (a target of rapamycin) encoding gene in the mTOR signalling pathway is higher in QL4 than in WL4, and this difference was no longer present by the L5 feeding stage. The genes down-stream of mTOR maintained this change at the L5 stage. These results could contribute to an in-depth study of the candidate genes during honey bee caste differentiation and improve our current understanding of the polyphenism phenomenon in insects.
Collapse
Affiliation(s)
- Xuan Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Havukainen H, Underhaug J, Wolschin F, Amdam G, Halskau Ø. A vitellogenin polyserine cleavage site: highly disordered conformation protected from proteolysis by phosphorylation. ACTA ACUST UNITED AC 2012; 215:1837-46. [PMID: 22573762 DOI: 10.1242/jeb.065623] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vitellogenin (Vg) is an egg-yolk precursor protein in most oviparous species. In honeybee (Apis mellifera), the protein (AmVg) also affects social behavior and life-span plasticity. Despite its manifold functions, the AmVg molecule remains poorly understood. The subject of our structure-oriented AmVg study is its polyserine tract - a little-investigated repetitive protein segment mostly found in insects. We previously reported that AmVg is tissue specifically cleaved in the vicinity of this tract. Here, we show that, despite its potential for an open, disordered structure, AmVg is unexpectedly resistant to trypsin/chymotrypsin digestion at the tract. Our findings suggest that multiple phosphorylation plays a role in this resilience. Sequence variation is highly pronounced at the polyserine region in insect Vgs. We demonstrate that sequence differences in this region can lead to structural variation, as NMR and circular dichroism (CD) evidence assign different conformational propensities to polyserine peptides from the honeybee and the jewel wasp Nasonia vitripennis; the former is extended and disordered and the latter more compact and helical. CD analysis of the polyserine region of bumblebee Bombus ignitus and wasp Pimpla nipponica supports a random coil structure in these species. The spectroscopic results strengthen our model of the AmVg polyserine tract as a flexible domain linker shielded by phosphorylation.
Collapse
Affiliation(s)
- Heli Havukainen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway.
| | | | | | | | | |
Collapse
|
36
|
Zhu YC, Guo Z, He Y, Luttrell R. Microarray analysis of gene regulations and potential association with acephate-resistance and fitness cost in Lygus lineolaris. PLoS One 2012; 7:e37586. [PMID: 22655059 PMCID: PMC3360042 DOI: 10.1371/journal.pone.0037586] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 04/21/2012] [Indexed: 11/19/2022] Open
Abstract
The tarnished plant bug has become increasingly resistant to organophosphates in recent years. To better understand acephate resistance mechanisms, biological, biochemical, and molecular experiments were systematically conducted with susceptible (LLS) and acephate-selected (LLR) strains. Selection of a field population with acephate significantly increased resistance ratio to 5.9-fold, coupled with a significant increase of esterase activities by 2-fold. Microarray analysis of 6,688 genes revealed 329 up- and 333 down-regulated (≥2-fold) genes in LLR. Six esterase, three P450, and one glutathione S-transferase genes were significantly up-regulated, and no such genes were down-regulated in LLR. All vitellogenin and eggshell protein genes were significantly down-regulated in LLR. Thirteen protease genes were significantly down-regulated and only 3 were up-regulated in LLR. More than twice the number of catalysis genes and more than 3.6-fold of metabolic genes were up-regulated, respectively, as compared to those down-regulated with the same molecular and biological functions. The large portion of metabolic or catalysis genes with significant up-regulations indicated a substantial increase of metabolic detoxification in LLR. Significant increase of acephate resistance, increases of esterase activities and gene expressions, and variable esterase sequences between LLS and LLR consistently demonstrated a major esterase-mediated resistance in LLR, which was functionally provable by abolishing the resistance with esterase inhibitors. In addition, significant elevation of P450 gene expression and reduced susceptibility to imidacloprid in LLR indicated a concurrent resistance risk that may impact other classes of insecticides. This study demonstrated the first association of down-regulation of reproductive- and digestive-related genes with resistance to conventional insecticides, suggesting potential fitness costs associated with resistance development. This study shed new light on the understanding of the molecular basis of insecticide resistance, and the information is highly valuable for development of chemical control guidelines and tactics to minimize resistance and cross-resistance risks.
Collapse
Affiliation(s)
- Yu Cheng Zhu
- Southern Insect Management Research Unit, Agricultural Research Service, United States Department of Agriculture, Stoneville, Mississippi, United States of America.
| | | | | | | |
Collapse
|
37
|
Harpur BA, Minaei S, Kent CF, Zayed A. Management increases genetic diversity of honey bees via admixture. Mol Ecol 2012; 21:4414-21. [PMID: 22564213 DOI: 10.1111/j.1365-294x.2012.05614.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The process of domestication often brings about profound changes in levels of genetic variation in animals and plants. The honey bee, Apis mellifera, has been managed by humans for centuries for both honey and wax production and crop pollination. Human management and selective breeding are believed to have caused reductions in genetic diversity in honey bee populations, thereby contributing to the global declines threatening this ecologically and economically important insect. However, previous studies supporting this claim mostly relied on population genetic comparisons of European and African (or Africanized) honey bee races; such conclusions require reassessment given recent evidence demonstrating that the honey bee originated in Africa and colonized Europe via two independent expansions. We sampled honey bee workers from two managed populations in North America and Europe as well as several old-world progenitor populations in Africa, East and West Europe. Managed bees had highly introgressed genomes representing admixture between East and West European progenitor populations. We found that managed honey bees actually have higher levels of genetic diversity compared with their progenitors in East and West Europe, providing an unusual example whereby human management increases genetic diversity by promoting admixture. The relationship between genetic diversity and honey bee declines is tenuous given that managed bees have more genetic diversity than their progenitors and many viable domesticated animals.
Collapse
Affiliation(s)
- Brock A Harpur
- Department of Biology York University, Toronto, Ontario, Canada M3J 1P3
| | | | | | | |
Collapse
|
38
|
Havukainen H, Halskau Ø, Amdam GV. Social pleiotropy and the molecular evolution of honey bee vitellogenin. Mol Ecol 2012; 20:5111-3. [PMID: 22250301 DOI: 10.1111/j.1365-294x.2011.05351.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this issue of Molecular Ecology, Kent et al. (2011) describe the adaptive evolution of honey bee vitellogenin that belongs to a phylogenetically conserved group of egg yolk precursors. This glyco-lipoprotein leads a double life: it is central to egg production in the reproductive queen caste, and a regulator of social behaviour in the sterile worker caste. Does such social pleiotropy constrain molecular evolution? To the contrary; Kent et al. show that the vitellogenin gene is under strong positive selection in honey bees. Rapid change has taken place in specific protein regions, shedding light on the evolution of novel vitellogenin functions.
Collapse
Affiliation(s)
- Heli Havukainen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003 1432 Aas, Norway
| | | | | |
Collapse
|