1
|
Pasinato A, Singh G. Lichens are a treasure chest of bioactive compounds: fact or fake? THE NEW PHYTOLOGIST 2025; 246:389-395. [PMID: 40013383 PMCID: PMC11923404 DOI: 10.1111/nph.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/05/2025] [Indexed: 02/28/2025]
Affiliation(s)
- Anna Pasinato
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121, Padova, Italy
- National Biodiversity Future Center (NBFC), Piazza Marina, 61, 90133, Palermo, Italy
| | - Garima Singh
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121, Padova, Italy
- National Biodiversity Future Center (NBFC), Piazza Marina, 61, 90133, Palermo, Italy
- Botanical Garden, University of Padova, Via Orto Botanico, 15, 35123, Padova, Italy
| |
Collapse
|
2
|
Rojas V, Rivera D, Ruiz C, Larrondo LF. A new flavor of synthetic yeast communities sees the light. mBio 2025; 16:e0200823. [PMID: 39912663 PMCID: PMC11898667 DOI: 10.1128/mbio.02008-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
No organism is an island: organisms of varying taxonomic complexity, including genetic variants of a single species, can coexist in particular niches, cooperating for survival while simultaneously competing for environmental resources. In recent years, synthetic biology strategies have witnessed a surge of efforts focused on creating artificial microbial communities to tackle pressing questions about the complexity of natural systems and the interactions that underpin them. These engineered ecosystems depend on the number and nature of their members, allowing complex cell communication designs to recreate and create diverse interactions of interest. Due to its experimental simplicity, the budding yeast Saccharomyces cerevisiae has been harnessed to establish a mixture of varied cell populations with the potential to explore synthetic ecology, metabolic bioprocessing, biosensing, and pattern formation. Indeed, engineered yeast communities enable advanced molecule detection dynamics and logic operations. Here, we present a concise overview of the state-of-the-art, highlighting examples that exploit optogenetics to manipulate, through light stimulation, key yeast phenotypes at the community level, with unprecedented spatial and temporal regulation. Hence, we envision a bright future where the application of optogenetic approaches in synthetic communities (optoecology) illuminates the intricate dynamics of complex ecosystems and drives innovations in metabolic engineering strategies.
Collapse
Affiliation(s)
- Vicente Rojas
- ANID-Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela Rivera
- ANID-Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Ruiz
- ANID-Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba, Santiago, Chile
| | - Luis F. Larrondo
- ANID-Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
3
|
Miral A, Jargeat P, Mambu L, Rouaud I, Tranchimand S, Tomasi S. Microbial community associated with the crustose lichen Rhizocarpon geographicum L. (DC.) living on oceanic seashore: A large source of diversity revealed by using multiple isolation methods. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:856-872. [PMID: 35860838 PMCID: PMC9796121 DOI: 10.1111/1758-2229.13105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/06/2022] [Accepted: 04/22/2022] [Indexed: 05/13/2023]
Abstract
Recently, the study of the interactions within a microcosm between hosts and their associated microbial communities drew an unprecedented interest arising from the holobiont concept. Lichens, a symbiotic association between a fungus and an alga, are redefined as complex ecosystems considering the tremendous array of associated microorganisms that satisfy this concept. The present study focuses on the diversity of the microbiota associated with the seashore located lichen Rhizocarpon geographicum, recovered by different culture-dependent methods. Samples harvested from two sites allowed the isolation and the molecular identification of 68 fungal isolates distributed in 43 phylogenetic groups, 15 bacterial isolates distributed in five taxonomic groups and three microalgae belonging to two species. Moreover, for 12 fungal isolates belonging to 10 different taxa, the genus was not described in GenBank. These fungal species have never been sequenced or described and therefore non-studied. All these findings highlight the novel and high diversity of the microflora associated with R. geographicum. While many species disappear every day, this work suggests that coastal and wild environments still contain an unrevealed variety to offer and that lichens constitute a great reservoir of new microbial taxa which can be recovered by multiplying the culture-dependent techniques.
Collapse
Affiliation(s)
- Alice Miral
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)‐UMR 6226RennesFrance
| | - Patricia Jargeat
- UMR 5174 UPS‐CNRS‐IRD Laboratoire Evolution et Diversité Biologique, EDBUniversité Toulouse‐3, Bât 4R1ToulouseFrance
| | - Lengo Mambu
- EA 7500 Laboratoire PEIRENE, Faculté de PharmacieUniversité de LimogesLimoges CedexFrance
| | - Isabelle Rouaud
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)‐UMR 6226RennesFrance
| | - Sylvain Tranchimand
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)‐UMR 6226Université de RennesRennesFrance
| | - Sophie Tomasi
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)‐UMR 6226RennesFrance
| |
Collapse
|
4
|
Miral A, Kautsky A, Alves-Carvalho S, Cottret L, Guillerm-Erckelboudt AY, Buguet M, Rouaud I, Tranchimand S, Tomasi S, Bartoli C. Rhizocarpon geographicum Lichen Discloses a Highly Diversified Microbiota Carrying Antibiotic Resistance and Persistent Organic Pollutant Tolerance. Microorganisms 2022; 10:1859. [PMID: 36144461 PMCID: PMC9503503 DOI: 10.3390/microorganisms10091859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
As rock inhabitants, lichens are exposed to extreme and fluctuating abiotic conditions associated with poor sources of nutriments. These extreme conditions confer to lichens the unique ability to develop protective mechanisms. Consequently, lichen-associated microbes disclose highly versatile lifestyles and ecological plasticity, enabling them to withstand extreme environments. Because of their ability to grow in poor and extreme habitats, bacteria associated with lichens can tolerate a wide range of pollutants, and they are known to produce antimicrobial compounds. In addition, lichen-associated bacteria have been described to harbor ecological functions crucial for the evolution of the lichen holobiont. Nevertheless, the ecological features of lichen-associated microbes are still underestimated. To explore the untapped ecological diversity of lichen-associated bacteria, we adopted a novel culturomic approach on the crustose lichen Rhizocarpon geographicum. We sampled R. geographicum in French habitats exposed to oil spills, and we combined nine culturing methods with 16S rRNA sequencing to capture the greatest bacterial diversity. A deep functional analysis of the lichen-associated bacterial collection showed the presence of a set of bacterial strains resistant to a wide range of antibiotics and displaying tolerance to Persistent Organic Pollutants (POPs). Our study is a starting point to explore the ecological features of the lichen microbiota.
Collapse
Affiliation(s)
- Alice Miral
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, University of Rennes 1, 35000 Rennes, France
| | - Adam Kautsky
- IGEPP, INRAE, Institut Agro, University of Rennes 1, LIPME, INRAE, 35653 Le Rheu, France
| | - Susete Alves-Carvalho
- IGEPP, INRAE, Institut Agro, University of Rennes 1, LIPME, INRAE, 35653 Le Rheu, France
| | - Ludovic Cottret
- CNRS, Université de Toulouse, 31320 Castanet-Tolosan, France
| | | | - Manon Buguet
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, University of Rennes 1, 35000 Rennes, France
| | - Isabelle Rouaud
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, University of Rennes 1, 35000 Rennes, France
| | - Sylvain Tranchimand
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, University of Rennes 1, 35000 Rennes, France
| | - Sophie Tomasi
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, University of Rennes 1, 35000 Rennes, France
| | - Claudia Bartoli
- IGEPP, INRAE, Institut Agro, University of Rennes 1, LIPME, INRAE, 35653 Le Rheu, France
| |
Collapse
|
5
|
Osyczka P, Lenart-Boroń A, Boroń P, Rola K. Lichen-forming fungi in postindustrial habitats involve alternative photobionts. Mycologia 2020; 113:43-55. [PMID: 33146594 DOI: 10.1080/00275514.2020.1813486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Mycobionts of many lichen genera appear to demonstrate strong selectivity in the choice of algal partner. The biological properties of a photobiont and its availability in an environment significantly determine the habitat requirements of lichens. Flexibility in photobiont choice extends the ecological amplitude of lichens; therefore, it may constitute an important adaptive strategy for colonization of extreme habitats. The photobiont inventory of the three epigeic lichens most resistant to soil pollution, i.e., Cladonia cariosa, C. rei, and the hyperaccumulator Diploschistes muscorum, was examined to verify whether and to what extent algal composition depends on the type of habitat and substrate enrichment with heavy metals. Photobionts Asterochloris and Trebouxia were identified in the studied lichen species; however, the presence of Trebouxia was directly related to anthropogenic sites with technogenic substrates, and the proportion of lichen specimens with these algae clearly depended on the level of heavy-metal soil pollution and the habitat type. The total number of algal haplotypes increased with increasing soil pollution, and the richness was associated more with soil pollution than with a given lichen species. Additionally, a large number of lichen individuals bearing multiple algal genotypes at polluted sites were recorded. Although Cladonia lichens were previously thought to be restricted to Asterochloris, they are able to start the relichenization process with Trebouxia under specific habitat conditions and to establish a stable association with these algae when colonization of disturbed sites takes place. Comparative analysis of the internal transcribed spacer (ITS) rDNA sequences revealed as many as 13 haplotypes of Trebouxia, and phylogenetic analysis grouped them into two different clades. Such a high level of genetic diversity indicates that Trebouxia is well adapted to metal pollution and could be an alternative photosynthetic partner for certain lichens, especially in polluted sites.
Collapse
Affiliation(s)
- Piotr Osyczka
- Institute of Botany, Faculty of Biology, Jagiellonian University , Gronostajowa 3, 30-387 Kraków, Poland
| | - Anna Lenart-Boroń
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków , Adam Mickiewicz Ave. 24/28, 31-059 Kraków, Poland
| | - Piotr Boroń
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Kraków , 29 Listopada Ave. 46, 31-425 Kraków, Poland
| | - Kaja Rola
- Institute of Botany, Faculty of Biology, Jagiellonian University , Gronostajowa 3, 30-387 Kraków, Poland
| |
Collapse
|
6
|
Greshake Tzovaras B, Segers FHID, Bicker A, Dal Grande F, Otte J, Anvar SY, Hankeln T, Schmitt I, Ebersberger I. What Is in Umbilicaria pustulata? A Metagenomic Approach to Reconstruct the Holo-Genome of a Lichen. Genome Biol Evol 2020; 12:309-324. [PMID: 32163141 PMCID: PMC7186782 DOI: 10.1093/gbe/evaa049] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2020] [Indexed: 12/29/2022] Open
Abstract
Lichens are valuable models in symbiosis research and promising sources of biosynthetic genes for biotechnological applications. Most lichenized fungi grow slowly, resist aposymbiotic cultivation, and are poor candidates for experimentation. Obtaining contiguous, high-quality genomes for such symbiotic communities is technically challenging. Here, we present the first assembly of a lichen holo-genome from metagenomic whole-genome shotgun data comprising both PacBio long reads and Illumina short reads. The nuclear genomes of the two primary components of the lichen symbiosis-the fungus Umbilicaria pustulata (33 Mb) and the green alga Trebouxia sp. (53 Mb)-were assembled at contiguities comparable to single-species assemblies. The analysis of the read coverage pattern revealed a relative abundance of fungal to algal nuclei of ∼20:1. Gap-free, circular sequences for all organellar genomes were obtained. The bacterial community is dominated by Acidobacteriaceae and encompasses strains closely related to bacteria isolated from other lichens. Gene set analyses showed no evidence of horizontal gene transfer from algae or bacteria into the fungal genome. Our data suggest a lineage-specific loss of a putative gibberellin-20-oxidase in the fungus, a gene fusion in the fungal mitochondrion, and a relocation of an algal chloroplast gene to the algal nucleus. Major technical obstacles during reconstruction of the holo-genome were coverage differences among individual genomes surpassing three orders of magnitude. Moreover, we show that GC-rich inverted repeats paired with nonrandom sequencing error in PacBio data can result in missing gene predictions. This likely poses a general problem for genome assemblies based on long reads.
Collapse
Affiliation(s)
- Bastian Greshake Tzovaras
- Applied Bioinformatics Group, Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Germany
- Lawrence Berkeley National Laboratory, Berkeley, California
- Center for Research & Interdisciplinarity, Université de Paris, France
| | - Francisca H I D Segers
- Applied Bioinformatics Group, Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Germany
- LOEWE Center for Translational Biodiversity Genomics, Frankfurt, Germany
| | - Anne Bicker
- Institute for Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University Mainz, Germany
| | - Francesco Dal Grande
- LOEWE Center for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
| | - Jürgen Otte
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
| | - Seyed Yahya Anvar
- Department of Human Genetics, Leiden University Medical Center, The Netherlands
| | - Thomas Hankeln
- Institute for Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University Mainz, Germany
| | - Imke Schmitt
- LOEWE Center for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
- Molecular Evolutionary Biology Group, Institute of Ecology, Diversity, and Evolution, Goethe University Frankfurt, Germany
| | - Ingo Ebersberger
- Applied Bioinformatics Group, Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Germany
- LOEWE Center for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
| |
Collapse
|
7
|
Gastropod grazing may prevent reintroduction of declining N-fixing epiphytic lichens in broadleaved deciduous forests. FUNGAL ECOL 2018. [DOI: 10.1016/j.funeco.2018.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Greshake B, Zehr S, Dal Grande F, Meiser A, Schmitt I, Ebersberger I. Potential and pitfalls of eukaryotic metagenome skimming: a test case for lichens. Mol Ecol Resour 2015; 16:511-23. [PMID: 26345272 DOI: 10.1111/1755-0998.12463] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/28/2015] [Accepted: 08/22/2015] [Indexed: 11/30/2022]
Abstract
Whole-genome shotgun sequencing of multispecies communities using only a single library layout is commonly used to assess taxonomic and functional diversity of microbial assemblages. Here, we investigate to what extent such metagenome skimming approaches are applicable for in-depth genomic characterizations of eukaryotic communities, for example lichens. We address how to best assemble a particular eukaryotic metagenome skimming data, what pitfalls can occur, and what genome quality can be expected from these data. To facilitate a project-specific benchmarking, we introduce the concept of twin sets, simulated data resembling the outcome of a particular metagenome sequencing study. We show that the quality of genome reconstructions depends essentially on assembler choice. Individual tools, including the metagenome assemblers Omega and MetaVelvet, are surprisingly sensitive to low and uneven coverages. In combination with the routine of assembly parameter choice to optimize the assembly N50 size, these tools can preclude an entire genome from the assembly. In contrast, MIRA, an all-purpose overlap assembler, and SPAdes, a multisized de Bruijn graph assembler, facilitate a comprehensive view on the individual genomes across a wide range of coverage ratios. Testing assemblers on a real-world metagenome skimming data from the lichen Lasallia pustulata demonstrates the applicability of twin sets for guiding method selection. Furthermore, it reveals that the assembly outcome for the photobiont Trebouxia sp. falls behind the a priori expectation given the simulations. Although the underlying reasons remain still unclear, this highlights that further studies on this organism require special attention during sequence data generation and downstream analysis.
Collapse
Affiliation(s)
- Bastian Greshake
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Max-von-Laue Str. 13, D-60438, Frankfurt, Germany
| | - Simonida Zehr
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Max-von-Laue Str. 13, D-60438, Frankfurt, Germany
| | - Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Anlage 25, D-60325, Frankfurt, Germany
| | - Anjuli Meiser
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Max-von-Laue Str. 13, D-60438, Frankfurt, Germany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Anlage 25, D-60325, Frankfurt, Germany.,Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Max-von-Laue Str. 13, D-60438, Frankfurt, Germany
| | - Ingo Ebersberger
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Max-von-Laue Str. 13, D-60438, Frankfurt, Germany
| |
Collapse
|
9
|
Singh G, Dal Grande F, Divakar PK, Otte J, Leavitt SD, Szczepanska K, Crespo A, Rico VJ, Aptroot A, Cáceres MEDS, Lumbsch HT, Schmitt I. Coalescent-based species delimitation approach uncovers high cryptic diversity in the cosmopolitan lichen-forming fungal genus Protoparmelia (Lecanorales, Ascomycota). PLoS One 2015; 10:e0124625. [PMID: 25932996 PMCID: PMC4416777 DOI: 10.1371/journal.pone.0124625] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/17/2015] [Indexed: 11/18/2022] Open
Abstract
Species recognition in lichen-forming fungi has been a challenge because of unsettled species concepts, few taxonomically relevant traits, and limitations of traditionally used morphological and chemical characters for identifying closely related species. Here we analyze species diversity in the cosmopolitan genus Protoparmelia s.l. The ~25 described species in this group occur across diverse habitats from the boreal -arctic/alpine to the tropics, but their relationship to each other remains unexplored. In this study, we inferred the phylogeny of 18 species currently assigned to this genus based on 160 specimens and six markers: mtSSU, nuLSU, ITS, RPB1, MCM7, and TSR1. We assessed the circumscription of species-level lineages in Protoparmelia s. str. using two coalescent-based species delimitation methods – BP&P and spedeSTEM. Our results suggest the presence of a tropical and an extra-tropical lineage, and eleven previously unrecognized distinct species-level lineages in Protoparmelia s. str. Several cryptic lineages were discovered as compared to phenotype-based species delimitation. Many of the putative species are supported by geographic evidence.
Collapse
Affiliation(s)
- Garima Singh
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe Universität, Grüneburgplatz 1, 60323, Frankfurt am Main, Germany
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- * E-mail: (GS); (IS)
| | - Francesco Dal Grande
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Pradeep K. Divakar
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense, Plaza de Ramon y Cajal s/n, E-28040, Madrid, Spain
| | - Jürgen Otte
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Steven D. Leavitt
- Science & Education, Field Museum of Natural History, 1400 S. Lake Shore Drive, Chicago, IL, 60605, United States of America
| | - Katarzyna Szczepanska
- Department of Botany and Plant Ecology, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363, Wroclaw, Poland
| | - Ana Crespo
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense, Plaza de Ramon y Cajal s/n, E-28040, Madrid, Spain
| | - Víctor J. Rico
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense, Plaza de Ramon y Cajal s/n, E-28040, Madrid, Spain
| | - André Aptroot
- Advice Bureau for Bryology and Lichenology Herbarium, Soest, The Netherlands
| | | | - H. Thorsten Lumbsch
- Science & Education, Field Museum of Natural History, 1400 S. Lake Shore Drive, Chicago, IL, 60605, United States of America
| | - Imke Schmitt
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe Universität, Grüneburgplatz 1, 60323, Frankfurt am Main, Germany
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- * E-mail: (GS); (IS)
| |
Collapse
|
10
|
Košuthová A, Svitková I, Pišút I, Senko D, Valachovič M, Zaniewski PT, Hájek M. Climatic gradients within temperate Europe and small-scale species composition of lichen-rich dry acidophilous Scots pine forests. FUNGAL ECOL 2015. [DOI: 10.1016/j.funeco.2014.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Dal Grande F, Beck A, Cornejo C, Singh G, Cheenacharoen S, Nelsen MP, Scheidegger C. Molecular phylogeny and symbiotic selectivity of the green algal genus Dictyochloropsis s.l. (Trebouxiophyceae): a polyphyletic and widespread group forming photobiont-mediated guilds in the lichen family Lobariaceae. THE NEW PHYTOLOGIST 2014; 202:455-470. [PMID: 24443895 DOI: 10.1111/nph.12678] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/05/2013] [Indexed: 06/03/2023]
Abstract
Dictyochloropsis s.l. is an ecologically important, common but little-studied genus of green algae. Here, we examined the diversity and host selectivity of algae attributed to this genus at both species-to-species and species-to-community levels. We conducted a molecular investigation of 15 cultured strains and several lichen photobionts, using 18S rRNA, rbcL and ITS sequence data. We further used seven alga-specific microsatellite markers to study algal sharing among fungi of the family Lobariaceae in two populations in Madeira and Taiwan (454 lichens). We found that the genus Dictyochloropsis s.l. is polyphyletic. Dictyochloropsis clade 1 comprises only free-living algae whereas Dictyochloropsis clade 2 includes lichenized algae as well as free-living algae. Fungal selectivity towards algae belonging to Dictyochloropsis clade 2 is high. Selectivity varies geographically, with photobionts being restricted to a single region. Finally, we showed that Dictyochloropsis clade 2 individuals are shared among different fungal hosts in communities of lichens of the Lobariaceae. As for other green algal lineages, there is a high amount of cryptic diversity in Dictyochloropsis. Furthermore, co-evolution between Dictyochloropsis clade 2 algae and representatives of the Lobariaceae is manifested at the community level, with several unrelated fungal species being horizontally connected by shared photobiont clones.
Collapse
Affiliation(s)
- Francesco Dal Grande
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
| | - Andreas Beck
- Department of Lichenology and Bryology, Botanische Staatssammlung München, 80638, München, Germany
- GeoBio-Center, Ludwig-Maximilians Universität München, Richard-Wagner-Str. 10, D-80333, München, Germany
| | - Carolina Cornejo
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
| | - Garima Singh
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe Universität, Max-von-Laue-Str. 13, D-60438, Frankfurt, Germany
| | - Saran Cheenacharoen
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
| | - Matthew P Nelsen
- Committee on Evolutionary Biology, University of Chicago, 1025 E. 57th Street, Chicago, IL, 60637, USA
- Department of Botany, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL, 60605, USA
| | - Christoph Scheidegger
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
| |
Collapse
|
12
|
Sadowska-Deś AD, Dal Grande F, Lumbsch HT, Beck A, Otte J, Hur JS, Kim JA, Schmitt I. Integrating coalescent and phylogenetic approaches to delimit species in the lichen photobiont Trebouxia. Mol Phylogenet Evol 2014; 76:202-10. [PMID: 24685499 DOI: 10.1016/j.ympev.2014.03.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 03/04/2014] [Accepted: 03/17/2014] [Indexed: 02/05/2023]
Abstract
The accurate assessment of species boundaries in symbiotic systems is a prerequisite for the study of speciation, co-evolution and selectivity. Many studies have shown the high genetic diversity of green algae from the genus Trebouxia, the most common photobiont of lichen-forming fungi. However, the phylogenetic relationships, and the amount of cryptic diversity of these algae are still poorly understood, and an adequate species concept for trebouxiophycean algae is still missing. In this study we used a multifaceted approach based on coalescence (GMYC, STEM) and phylogenetic relationships to assess species boundaries in the trebouxioid photobionts of the lichen-forming fungus Lasallia pustulata. We further investigated whether putative species of Trebouxia found in L. pustulata are shared with other lichen-forming fungi. We found that L. pustulata is associated with at least five species of Trebouxia and most of them are shared with other lichen-forming fungi, showing different patterns of species-to-species and species-to-community interactions. We also show that one of the putative Trebouxia species is found exclusively in association with L. pustulata and is restricted to thalli from localities with Mediterranean microclimate. We suggest that the species delimitation method presented in this study is a promising tool to address species boundaries within the heterogeneous genus Trebouxia.
Collapse
Affiliation(s)
- Anna D Sadowska-Deś
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe Universität, Max-von-Laue-Str. 13, D-60438 Frankfurt, Germany; Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325 Frankfurt, Germany.
| | - Francesco Dal Grande
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325 Frankfurt, Germany
| | - H Thorsten Lumbsch
- Science & Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL 60605, USA
| | - Andreas Beck
- Department of Lichenology and Bryology, Botanische Staatssammlung München, Menzinger Straße 67, D-80638 München, Germany; GeoBio-Center, Ludwig-Maximilians Universität München, Richard-Wagner-Str. 10, D-80333 München, Germany
| | - Jürgen Otte
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325 Frankfurt, Germany
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Suncheon 540-742, South Korea
| | - Jung A Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon 540-742, South Korea
| | - Imke Schmitt
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe Universität, Max-von-Laue-Str. 13, D-60438 Frankfurt, Germany; Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325 Frankfurt, Germany.
| |
Collapse
|
13
|
Muggia L, Vancurova L, Škaloud P, Peksa O, Wedin M, Grube M. The symbiotic playground of lichen thalli - a highly flexible photobiont association in rock-inhabiting lichens. FEMS Microbiol Ecol 2013; 85:313-23. [DOI: 10.1111/1574-6941.12120] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
| | - Lucie Vancurova
- Department of Botany; Faculty of Science; Charles University in Prague; Prague; Czech Republic
| | - Pavel Škaloud
- Department of Botany; Faculty of Science; Charles University in Prague; Prague; Czech Republic
| | | | - Mats Wedin
- Cryptogamic Botany; Swedish Museum of Natural History; Stockholm; Sweden
| | - Martin Grube
- Institute of Plant Sciences; Karl-Franzens-University Graz; Graz; Austria
| |
Collapse
|
14
|
Singh G, Dal Grande F, Cornejo C, Schmitt I, Scheidegger C. Genetic basis of self-incompatibility in the lichen-forming fungus Lobaria pulmonaria and skewed frequency distribution of mating-type idiomorphs: implications for conservation. PLoS One 2012; 7:e51402. [PMID: 23236495 PMCID: PMC3517546 DOI: 10.1371/journal.pone.0051402] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 11/02/2012] [Indexed: 12/14/2022] Open
Abstract
Fungal populations that reproduce sexually are likely to be genetically more diverse and have a higher adaptive potential than asexually reproducing populations. Mating systems of fungal species can be self-incompatible, requiring the presence of isolates of different mating-type genes for sexual reproduction to occur, or self-compatible, requiring only one. Understanding the distribution of mating-type genes in populations can help to assess the potential of self-incompatible species to reproduce sexually. In the locally threatened epiphytic lichen-forming fungus Lobaria pulmonaria (L.) Hoffm., low frequency of sexual reproduction is likely to limit the potential of populations to adapt to changing environmental conditions. Our study provides direct evidence of self-incompatibility (heterothallism) in L. pulmonaria. It can thus be hypothesized that sexual reproduction in small populations might be limited by an unbalanced distribution of mating-type genes. We therefore assessed neutral genetic diversity (using microsatellites) and mating-type ratio in 27 lichen populations (933 individuals). We found significant differences in the frequency of the two mating types in 13 populations, indicating a lower likelihood of sexual reproduction in these populations. This suggests that conservation translocation activities aiming at maximizing genetic heterogeneity in threatened and declining populations should take into account not only presence of fruiting bodies in transplanted individuals, but also the identity and balanced representation of mating-type genes.
Collapse
Affiliation(s)
- Garima Singh
- Biodiversity and Conservation Biology, WSL Swiss Federal Research Institute, Birmensdorf, Switzerland
| | - Francesco Dal Grande
- Biodiversity and Conservation Biology, WSL Swiss Federal Research Institute, Birmensdorf, Switzerland
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Carolina Cornejo
- Biodiversity and Conservation Biology, WSL Swiss Federal Research Institute, Birmensdorf, Switzerland
| | - Imke Schmitt
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe Universität, Frankfurt, Germany
| | - Christoph Scheidegger
- Biodiversity and Conservation Biology, WSL Swiss Federal Research Institute, Birmensdorf, Switzerland
| |
Collapse
|
15
|
Widmer I, Dal Grande F, Excoffier L, Holderegger R, Keller C, Mikryukov VS, Scheidegger C. European phylogeography of the epiphytic lichen fungusLobaria pulmonariaand its green algal symbiont. Mol Ecol 2012; 21:5827-44. [DOI: 10.1111/mec.12051] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 07/18/2012] [Accepted: 08/19/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Ivo Widmer
- WSL Swiss Federal Research Institute; Zürcherstrasse 111; Birmensdorf; CH-8903; Switzerland
| | - Francesco Dal Grande
- WSL Swiss Federal Research Institute; Zürcherstrasse 111; Birmensdorf; CH-8903; Switzerland
| | | | - Rolf Holderegger
- WSL Swiss Federal Research Institute; Zürcherstrasse 111; Birmensdorf; CH-8903; Switzerland
| | - Christine Keller
- WSL Swiss Federal Research Institute; Zürcherstrasse 111; Birmensdorf; CH-8903; Switzerland
| | - Vladimir S. Mikryukov
- Laboratory of Population and Community Ecotoxicology; Institute of Plant and Animal Ecology, Ural Branch; Russian Academy of Sciences; ul. Vos'mogo Marta 202; Ekaterinburg; 620144; Russia
| | - Christoph Scheidegger
- WSL Swiss Federal Research Institute; Zürcherstrasse 111; Birmensdorf; CH-8903; Switzerland
| |
Collapse
|