1
|
Prajapati B, Bernal-Cabas M, López-Álvarez M, Schaffer M, Bartel J, Rath H, Steil L, Becher D, Völker U, Mäder U, van Dijl JM. Double trouble: Bacillus depends on a functional Tat machinery to avoid severe oxidative stress and starvation upon entry into a NaCl-depleted environment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118914. [PMID: 33245978 DOI: 10.1016/j.bbamcr.2020.118914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/08/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022]
Abstract
The widely conserved twin-arginine translocases (Tat) allow the transport of fully folded cofactor-containing proteins across biological membranes. In doing so, these translocases serve different biological functions ranging from energy conversion to cell division. In the Gram-positive soil bacterium Bacillus subtilis, the Tat machinery is essential for effective growth in media lacking iron or NaCl. It was previously shown that this phenomenon relates to the Tat-dependent export of the heme-containing peroxidase EfeB, which converts Fe2+ to Fe3+ at the expense of hydrogen peroxide. However, the reasons why the majority of tat mutant bacteria perish upon dilution in NaCl-deprived medium and how, after several hours, a sub-population adapts to this condition was unknown. Here we show that, upon growth in the absence of NaCl, the bacteria face two major problems, namely severe oxidative stress at the membrane and starvation leading to death. The tat mutant cells can overcome these challenges if they are fed with arginine, which implies that severe arginine depletion is a major cause of death and resumed arginine synthesis permits their survival. Altogether, our findings show that the Tat system of B. subtilis is needed to preclude severe oxidative stress and starvation upon sudden drops in the environmental Na+ concentration as caused by flooding or rain.
Collapse
Affiliation(s)
- Bimal Prajapati
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands
| | - Margarita Bernal-Cabas
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands
| | - Marina López-Álvarez
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands
| | - Marc Schaffer
- University Medicine Greifswald, Interfaculty Institute of Genetics and Functional Genomics, Department of Functional Genomics, Greifswald, Germany
| | - Jürgen Bartel
- University of Greifswald, Institute of Microbiology, Department of Microbial Proteomics, Greifswald, Germany
| | - Hermann Rath
- University Medicine Greifswald, Interfaculty Institute of Genetics and Functional Genomics, Department of Functional Genomics, Greifswald, Germany
| | - Leif Steil
- University Medicine Greifswald, Interfaculty Institute of Genetics and Functional Genomics, Department of Functional Genomics, Greifswald, Germany
| | - Dörte Becher
- University of Greifswald, Institute of Microbiology, Department of Microbial Proteomics, Greifswald, Germany
| | - Uwe Völker
- University Medicine Greifswald, Interfaculty Institute of Genetics and Functional Genomics, Department of Functional Genomics, Greifswald, Germany
| | - Ulrike Mäder
- University Medicine Greifswald, Interfaculty Institute of Genetics and Functional Genomics, Department of Functional Genomics, Greifswald, Germany.
| | - Jan Maarten van Dijl
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands.
| |
Collapse
|
2
|
Bertram R, Schlicht M, Mahr K, Nothaft H, Saier MH, Titgemeyer F. In silico and transcriptional analysis of carbohydrate uptake systems of Streptomyces coelicolor A3(2). J Bacteriol 2004; 186:1362-73. [PMID: 14973030 PMCID: PMC344420 DOI: 10.1128/jb.186.5.1362-1373.2004] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Streptomyces coelicolor is the prototype for the investigation of antibiotic-producing and differentiating actinomycetes. As soil bacteria, streptomycetes can metabolize a wide variety of carbon sources and are hence vested with various specific permeases. Their activity and regulation substantially determine the nutritional state of the cell and, therefore, influence morphogenesis and antibiotic production. We have surveyed the genome of S. coelicolor A3(2) to provide a thorough description of the carbohydrate uptake systems. Among 81 ATP-binding cassette (ABC) permeases that are present in the genome, we found 45 to encode a putative solute binding protein, an essential feature for carbohydrate permease function. Similarity analysis allowed the prediction of putative ABC systems for transport of cellobiose and cellotriose, alpha-glucosides, lactose, maltose, maltodextrins, ribose, sugar alcohols, xylose, and beta-xylosides. A novel putative bifunctional protein composed of a substrate binding and a membrane-spanning moiety is likely to account for ribose or ribonucleoside uptake. Glucose may be incorporated by a proton-driven symporter of the major facilitator superfamily while a putative sodium-dependent permease of the solute-sodium symporter family may mediate uptake of galactose and a facilitator protein of the major intrinsic protein family may internalize glycerol. Of the predicted gene clusters, reverse transcriptase PCRs showed active gene expression in 8 of 11 systems. Together with the previously surveyed permeases of the phosphotransferase system that accounts for the uptake of fructose and N-acetylglucosamine, the genome of S. coelicolor encodes at least 53 potential carbohydrate uptake systems.
Collapse
Affiliation(s)
- Ralph Bertram
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
3
|
Llamas I, Suárez A, Quesada E, Béjar V, del Moral A. Identification and characterization of the carAB genes responsible for encoding carbamoylphosphate synthetase in Halomonas eurihalina. Extremophiles 2003; 7:205-11. [PMID: 12768451 DOI: 10.1007/s00792-002-0311-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2002] [Accepted: 12/02/2002] [Indexed: 10/28/2022]
Abstract
Halomonas eurihalina is a moderately halophilic bacterium which produces exopolysaccharides potentially of great use in many fields of industry and ecology. Strain F2-7 of H. eurihalina synthesizes an anionic exopolysaccharide known as polymer V2-7, which not only has emulsifying activity but also becomes viscous under acidic conditions, and therefore we consider it worthwhile making a detailed study of the genetics of this strain. By insertional mutagenesis using the mini-Tn 5 Km2 transposon we isolated and characterized a mutant strain, S36 K, which requires both arginine and uracil for growth and does not excrete EPS. S36 K carries a mutation within the carB gene that encodes the synthesis of the large subunit of the carbamoylphosphate synthetase enzyme, which in turn catalyzes the synthesis of carbamoylphosphate, an important precursor of arginine and pyrimidines. We describe here the cloning and characterization of the carAB genes, which encode carbamoylphosphate synthetase in Halomonas eurihalina, and discuss this enzyme's possible role in the pathways for the synthesis of exopolysaccharides in strain F2-7.
Collapse
Affiliation(s)
- Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain
| | | | | | | | | |
Collapse
|
4
|
Oosthuizen MC, Steyn B, Theron J, Cosette P, Lindsay D, Von Holy A, Brözel VS. Proteomic analysis reveals differential protein expression by Bacillus cereus during biofilm formation. Appl Environ Microbiol 2002; 68:2770-80. [PMID: 12039732 PMCID: PMC123966 DOI: 10.1128/aem.68.6.2770-2780.2002] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Bacillus cereus, a dairy-associated toxigenic bacterium, readily forms biofilms on various surfaces and was used to gain a better understanding of biofilm development by gram-positive aerobic rods. B. cereus DL5 was shown to readily adapt to an attached mode of growth, with dense biofilm structures developing within 18 h after inoculation when glass wool was used as a surface. Two-dimensional gel electrophoresis (2DE) revealed distinct and reproducible phenotypic differences between 2- and 18-h-old biofilm and planktonic cells (grown both in the presence and in the absence of glass wool). Whereas the 2-h-old biofilm proteome indicated expression of 15 unique proteins, the 18-h-old biofilm proteome contained 7 uniquely expressed proteins. Differences between the microcolony (2-h) proteome and the more developed biofilm (18-h) proteome were largely due to up- and down-regulation of the expression of a multitude of proteins. Selected protein spots excised from 2DE gels were subjected to N-terminal sequencing and identified with high confidence. Among the proteins were catabolic ornithine carbamoyltransferase and L-lactate dehydrogenase. Interestingly, increased levels of YhbH, a member of the sigma 54 modulation protein family which is strongly induced in response to environmental stresses and energy depletion via both sigma(B) and sigma(H), could be observed within 2 h in both attached cells and planktonic cultures growing in the presence of glass wool, indicating that this protein plays an important role in regulation of the biofilm phenotype. Distinct band differences were also found between the extracellular proteins of 18-h-old cultures grown in the presence and in the absence of glass wool.
Collapse
Affiliation(s)
- Marinda C Oosthuizen
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, 2050, South Africa.
| | | | | | | | | | | | | |
Collapse
|
5
|
Adler E, Barák I, Stragier P. Bacillus subtilis locus encoding a killer protein and its antidote. J Bacteriol 2001; 183:3574-81. [PMID: 11371520 PMCID: PMC95233 DOI: 10.1128/jb.183.12.3574-3581.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2001] [Accepted: 03/30/2001] [Indexed: 11/20/2022] Open
Abstract
We have isolated mutations that block sporulation after formation of the polar septum in Bacillus subtilis. These mutations were mapped to the two genes of a new locus, spoIIS. Inactivation of the second gene, spoIISB, decreases sporulation efficiency by 4 orders of magnitude. Inactivation of the first gene, spoIISA, has no effect on sporulation but it fully restores sporulation of a spoIISB null mutant, indicating that SpoIISB is required only to counteract the negative effect of SpoIISA on sporulation. An internal promoter ensures the synthesis of an excess of SpoIISB over SpoIISA during exponential growth and sporulation. In the absence of SpoIISB, the sporulating cells show lethal damage of their envelope shortly after asymmetric septation, a defect that can be corrected by synthesizing SpoIISB only in the mother cell. However, forced synthesis of SpoIISA in exponentially growing cells or in the forespore leads to the same type of morphological damage and to cell death. In both cases protection against the killing effect of SpoIISA can be provided by simultaneous synthesis of SpoIISB. The spoIIS locus is unique to B. subtilis, and since it is completely dispensable for sporulation its physiological role remains elusive.
Collapse
Affiliation(s)
- E Adler
- Institut de Biologie Physico-Chimique, Paris, France
| | | | | |
Collapse
|
6
|
Ravagnani A, Jennert KC, Steiner E, Grünberg R, Jefferies JR, Wilkinson SR, Young DI, Tidswell EC, Brown DP, Youngman P, Morris JG, Young M. Spo0A directly controls the switch from acid to solvent production in solvent-forming clostridia. Mol Microbiol 2000; 37:1172-85. [PMID: 10972834 DOI: 10.1046/j.1365-2958.2000.02071.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The spo0A genes of Clostridium beijerinckii NCIMB 8052 and Clostridium cellulolyticum ATCC 35319 were isolated and characterized. The C-terminal DNA-binding domains of the predicted products of spo0A from these two organisms, as well as 16 other taxonomically diverse species of Bacillus and Clostridium, show extensive amino acid sequence conservation (56% identity, 65% similarity over 104 residues). A 12-amino-acid motif (SRVERAIRHAIE) that forms the putative DNA recognition helix is particularly highly conserved, suggesting a common DNA target. Insertional inactivation of spo0A in C. beijerinckii blocked the formation of solvents (as well as spores and granulose). Sequences resembling Spo0A-binding motifs (TGNCGAA) are found in the promoter regions of several of the genes whose expression is modulated at the onset of solventogenesis in Clostridium acetobutylicum and C. beijerinckii. These include the upregulated adc gene, encoding acetoacetate decarboxylase (EC 4.1.1. 4), and the downregulated ptb gene, encoding phosphotransbutyrylase (EC 2.3.1.c). In vitro gel retardation experiments using C. acetobutylicum adc and C. beijerinckii ptb promoter fragments and recombinant Bacillus subtilis and C. beijerinckii Spo0A suggested that adc and ptb are directly controlled by Spo0A. The binding affinity was reduced when the 0A boxes were destroyed, and enhanced when they were modified to conform precisely to the consensus sequence. In vivo analysis of wild-type and mutagenized promoters transcriptionally fused to the gusA reporter gene in C. beijerinckii validated this hypothesis. Post-exponential phase expression from the mutagenized adc promoter was substantially reduced, whereas expression from the mutagenized ptb promoter was not shut down at the end of exponential growth.
Collapse
Affiliation(s)
- A Ravagnani
- Institute of Biological Sciences, University of Wales, Aberystwyth, Ceredigion SY23 3DD, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Miller BS, Diaz-Torres MR. Proteome analysis of biofilms: growth of Bacillus subtilis on solid medium as model. Methods Enzymol 1999; 310:433-41. [PMID: 10547810 DOI: 10.1016/s0076-6879(99)10034-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- B S Miller
- Genencor International Inc., Palo Alto, California 94304, USA
| | | |
Collapse
|
8
|
Schuch R, Garibian A, Saxild HH, Piggot PJ, Nygaard P. Nucleosides as a carbon source in Bacillus subtilis: characterization of the drm-pupG operon. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 10):2957-66. [PMID: 10537218 DOI: 10.1099/00221287-145-10-2957] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Bacillus subtilis, nucleosides are readily taken up from the growth medium and metabolized. The key enzymes in nucleoside catabolism are nucleoside phosphorylases, phosphopentomutase, and deoxyriboaldolase. The characterization of two closely linked loci, drm and pupG, which encode phosphopentomutase (Drm) and guanosine (inosine) phosphorylase (PupG), respectively, is reported here. When expressed in Escherichia coli mutant backgrounds, drm and pupG confer phosphopentomutase and purine-nucleoside phosphorylase activity. Northern blot and enzyme analyses showed that drm and pupG form a dicistronic operon. Both enzymes are induced when nucleosides are present in the growth medium. Using mutants deficient in nucleoside catabolism, it was demonstrated that the low-molecular-mass effectors of this induction most likely were deoxyribose 5-phosphate and ribose 5-phosphate. Both Drm and PupG activity levels were higher when succinate rather than glucose served as the carbon source, indicating that the expression of the operon is subject to catabolite repression. Primer extension analysis identified two transcription initiation signals upstream of drm; both were utilized in induced and non-induced cells. The nucleoside-catabolizing system in B. subtilis serves to utilize the base for nucleotide synthesis while the pentose moiety serves as the carbon source. When added alone, inosine barely supports growth of B. subtilis. This slow nucleoside catabolism contrasts with that of E. coli, which grows rapidly on a nucleoside as a carbon source. When inosine was added with succinate or deoxyribose, however, a significant increase in growth was observed in B. subtilis. The findings of this study therefore indicate that the B. subtilis system for nucleoside catabolism differs greatly from the well-studied system in E. coli.
Collapse
Affiliation(s)
- R Schuch
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences Bethesda, MD 20814, USA
| | | | | | | | | |
Collapse
|
9
|
Chauvaux S, Paulsen IT, Saier MH. CcpB, a novel transcription factor implicated in catabolite repression in Bacillus subtilis. J Bacteriol 1998; 180:491-7. [PMID: 9457849 PMCID: PMC106913 DOI: 10.1128/jb.180.3.491-497.1998] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/1997] [Accepted: 11/10/1997] [Indexed: 02/06/2023] Open
Abstract
Recent work has shown that in Bacillus subtilis catabolite repression of several operons is mediated by a mechanism dependent on DNA-binding protein CcpA complexed to a seryl-phosphorylated derivative of HPr [HPr(Ser-P)], the small phosphocarrier protein of the phosphoenolpyruvate-sugar phosphotransferase system. In this study, it was found that a transposon insertional mutation resulted in the partial loss of gluconate (gnt) and xylose (xyl) operon catabolite repression by glucose, mannitol, and sucrose. The transposon insertion was localized to a gene, designated ccpB, encoding a protein 30% identical to CcpA, and relief from catabolite repression was shown to be due to the absence of CcpB rather than to the absence of a protein encoded by a downstream gene within the same operon. The relative intensities of CcpA- and CcpB-mediated catabolite repression depended on growth conditions. On solid media, and when cells were grown in liquid media with little agitation, CcpB and CcpA both proved to function in catabolite repression. However, when cells were grown in liquid media with much agitation, CcpA alone mediated catabolite repression. Like CcpA, CcpB appears to exert its catabolite-repressing effect by a mechanism dependent on the presence of HPr(Ser-P).
Collapse
Affiliation(s)
- S Chauvaux
- Department of Biology, University of California at San Diego, La Jolla 92093-0116, USA
| | | | | |
Collapse
|
10
|
O'Reilly M, Devine KM. Expression of AbrB, a transition state regulator from Bacillus subtilis, is growth phase dependent in a manner resembling that of Fis, the nucleoid binding protein from Escherichia coli. J Bacteriol 1997; 179:522-9. [PMID: 8990306 PMCID: PMC178724 DOI: 10.1128/jb.179.2.522-529.1997] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The transition state regulator AbrB functions as an activator, a repressor, and a preventer of gene expression in Bacillus subtilis. In this paper, we show that expression of abrB is growth phase dependent. Accumulation of abrB transcript is restricted to a short period spanning the transition between the lag and exponential phases of the growth cycle. The level of abrB transcript then falls sharply, and transcript cannot be detected at the mid-exponential period of the growth cycle. The level of AbrB protein is also maximal during early exponential growth but decreases gradually throughout the remainder of the growth cycle. The abrupt reduction of abrB transcript level during the early period of the growth cycle is effected by the phosphorylated form of the response regulator Spo0p3and to a lesser extent by negative autoregulation. The growth cycle-dependent expression of abrB is very similar to that observed for fis in Escherichia coli and in Salmonella typhimurium. Although AbrB and Fis are not homologous proteins, they display extensive similarity in terms of size, DNA binding characteristics, growth cycle-dependent patterns of expression, and their control over the expression of a varied group of operons. We hypothesize therefore that AbrB, like Fis, is a nucleoid binding protein.
Collapse
Affiliation(s)
- M O'Reilly
- Department of Genetics, Trinity College, Dublin, Ireland
| | | |
Collapse
|
11
|
Helmann JD. Compilation and analysis of Bacillus subtilis sigma A-dependent promoter sequences: evidence for extended contact between RNA polymerase and upstream promoter DNA. Nucleic Acids Res 1995; 23:2351-60. [PMID: 7630711 PMCID: PMC307037 DOI: 10.1093/nar/23.13.2351] [Citation(s) in RCA: 304] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Sequence analysis of 236 promoters recognized by the Bacillus subtilis sigma A-RNA polymerase reveals an extended promoter structure. The most highly conserved bases include the -35 and -10 hexanucleotide core elements and a TG dinucleotide at position -15, -14. In addition, several weakly conserved A and T residues are present upstream of the -35 region. Analysis of dinucleotide composition reveals A2- and T2-rich sequences in the upstream promoter region (-36 to -70) which are phased with the DNA helix: An tracts are common near -43, -54 and -65; Tn tracts predominate at the intervening positions. When compared with larger regions of the genome, upstream promoter regions have an excess of An and Tn sequences for n > 4. These data indicate that an RNA polymerase binding site affects DNA sequence as far upstream as -70. This sequence conservation is discussed in light of recent evidence that the alpha subunits of the polymerase core bind DNA and that the promoter may wrap around RNA polymerase.
Collapse
Affiliation(s)
- J D Helmann
- Section of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| |
Collapse
|
12
|
Kunst F, Rapoport G. Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis. J Bacteriol 1995; 177:2403-7. [PMID: 7730271 PMCID: PMC176898 DOI: 10.1128/jb.177.9.2403-2407.1995] [Citation(s) in RCA: 324] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Growth under conditions of salt stress has important effects on the synthesis of degradative enzymes in Bacillus subtilis. Salt stress strongly stimulates the expression of sacB, encoding levansucrase (about ninefold), and downregulates the expression of aprE, encoding alkaline protease (about sixfold). It is suggested that the DegS-DegU two-component system is involved in sensing salt stress. Moreover, it has been shown that the level of sacB expression strongly depends on the growth conditions; its expression level is about eightfold higher in cells grown on agar plates than in cells grown in liquid medium.
Collapse
Affiliation(s)
- F Kunst
- URA 1300, Centre National de la Recherche Scientifique, Département des Biotechnologies, Institut Pasteur, Paris, France
| | | |
Collapse
|
13
|
Londoño-Vallejo JA, Stragier P. Cell-cell signaling pathway activating a developmental transcription factor in Bacillus subtilis. Genes Dev 1995; 9:503-8. [PMID: 7883171 DOI: 10.1101/gad.9.4.503] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Transcription in the mother cell at early stages of sporulation in Bacillus subtilis is controlled by sigma E, a sigma factor that is synthesized in the predivisional cell as an inactive larger precursor, pro-sigma E. Activation of sigma E depends on sigma F, the factor that governs transcription in the forespore. Genetic experiments have indicated that transduction of the activation signal from the forespore to the mother cell requires the products of some genes belonging to the sigma F-controlled regulon. We have identified and characterized a sigma F-dependent gene, csfX, encoding a protein necessary and sufficient for triggering processing of pro-sigma E. The CsfX protein contains a typical amino-terminal signal sequence suggesting that, although synthesized in the forespore, it may act across the septum to activate the membrane-bound enzyme that is responsible for pro-sigma E processing in the mother cell.
Collapse
|
14
|
Abstract
Bacillus subtilis undergoes a typical bacterial stress response when exposed to low concentrations (0.1 mM) of hydrogen peroxide. Protection is thereby induced against otherwise lethal, challenge concentrations (10 mM) of this oxidant and a number of proteins are induced including the scavenging enzymes, catalase and alkyl hydroperoxide reductase, and a putative DNA binding and protecting protein. Induced protection against higher concentrations (10-30 mM) of hydrogen peroxide is eliminated in a catalase-deficient mutant. Both RecA and Spo0A influence the basal but not the induced resistance to hydrogen peroxide. A regulatory mutation has been characterized that affects the inducible phenotype and is constitutively resistant to high concentrations of hydrogen peroxide. This mutant constitutively overexpresses the proteins induced by hydrogen peroxide in the wild-type. The resistance of spores to hydrogen peroxide is partly attributable to binding of small acid soluble proteins by the spore DNA and partly to a second step which coincides with the depletion of the NADH pool, which may inhibit the generation of hydroxyl radicals from hydrogen peroxide.
Collapse
Affiliation(s)
- B C Dowds
- Department of Biology, St Patrick's College, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
15
|
McDonnell GE, Wood H, Devine KM, McConnell DJ. Genetic control of bacterial suicide: regulation of the induction of PBSX in Bacillus subtilis. J Bacteriol 1994; 176:5820-30. [PMID: 8083174 PMCID: PMC196787 DOI: 10.1128/jb.176.18.5820-5830.1994] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
PBSX is a phage-like bacteriocin (phibacin) of Bacillus subtilis 168. Bacteria carrying the PBSX genome are induced by DNA-damaging agents to lyse and produce PBSX particles. The particles cannot propagate the PBSX genome. The particles produced by this suicidal response kill strains nonlysogenic for PBSX. A 5.2-kb region which controls the induction of PBSX has been sequenced. The genes identified include the previously identified repressor gene xre and a positive control factor gene, pcf. Pcf is similar to known sigma factors and acts at the late promoter PL, which has been located distal to pcf. The first two genes expressed from the late promoter show homology to genes encoding the subunits of phage terminases.
Collapse
Affiliation(s)
- G E McDonnell
- Department of Genetics, Trinity College, Dublin, Ireland
| | | | | | | |
Collapse
|