1
|
Wang J, Pettis GS. The tra locus of streptomycete plasmid pIJ101 mediates efficient transfer of a circular but not a linear version of the same replicon. MICROBIOLOGY-SGM 2010; 156:2723-2733. [PMID: 20522498 DOI: 10.1099/mic.0.036467-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Conjugal transfer of circular plasmids in Streptomyces involves a unique mechanism employing few plasmid-encoded loci and the transfer of double-stranded DNA by an as yet uncharacterized intercellular route. Efficient transfer of the circular streptomycete plasmid pIJ101 requires only two plasmid loci: the pIJ101 tra gene, and as a cis-acting function known as clt. Here, we compared the ability of the pIJ101 transfer apparatus to promote conjugal transfer of circular versus linear versions of the same replicon. While the pIJ101 tra locus readily transferred the circular form of the replicon, the linear version was transferred orders of magnitude less efficiently and all plasmids isolated from the transconjugants were circular, regardless of their original configuration in the donor. Additionally, relatively rare circularization of linear plasmids was detectable in the donor cells, which is consistent with the notion that this event was a prerequisite for transfer by TraB(pIJ101). Linear versions of this same replicon did transfer efficiently, in that configuration, from strains containing the conjugative linear plasmid SLP2. Our data indicate that functions necessary and sufficient for transfer of circular DNA were insufficient for transfer of a related linear DNA molecule. The results here suggest that the conjugation mechanisms of linear versus circular DNA in Streptomyces spp. are inherently different and/or that efficient transfer of linear DNA requires additional components.
Collapse
Affiliation(s)
- Jing Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Gregg S Pettis
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
2
|
Schully KL, Pettis GS. Separate and coordinate transcriptional control mechanisms link expression of the potentially lethal KilB spread locus to the upstream transmission operon on Streptomyces plasmid pIJ101. J Mol Biol 2004; 334:875-84. [PMID: 14643654 DOI: 10.1016/j.jmb.2003.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Efficient conjugation of the high copy plasmid pIJ101 among members of the bacterial genus Streptomyces depends on a single plasmid gene (tra) for initial inter-mycelial transfer, and involves three additional pIJ101 functions (spdA, spdB, and kilB), which may promote intra-mycelial spread of the plasmid upon its entrance into the recipient. The genes tra, spdA, and spdB are co-transcribed as part of an operon, whose expression is negatively controlled by the pIJ101 repressor KorA. Downstream of this transmission operon and in the same orientation, the kilB spread gene possesses its own promoter, which is recognized by the pIJ101 KorB repressor protein; binding of KorB appears to prevent the lethal overexpression of the KilB protein, which otherwise shows a temporally increasing pattern of production or accumulation during the streptomycete life cycle. To define better the mechanism(s) controlling the concentration of the potentially toxic KilB protein in cells, a variety of transcriptional analyses involving the kilB promoter and kilB-specific mRNA were performed. These studies demonstrated that transcription originating from the kilB promoter on pIJ101 is dramatically reduced by KorB binding under non-mating conditions; more significantly, however, as judged by evidence of readthrough transcription across the kilB promoter region and polarity effects of upstream insertion and deletion mutations, kilB was found to be expressed also as part of the transmission operon with optimal KilB production being necessarily tied to such co-transcription. Our data indicate that the genes tra, spdA, spdB, and kilB comprise an unusual operon in which separate tight control of the distal gene (kilB) by the KorB repressor is superimposed on coordinate regulation of full operon transcription by KorA. Moreover, our results imply that potential interactions between elongating RNA polymerase molecules synthesizing transmission operon transcripts and KorB repressor bound to the intercistronic kilB promoter region are important for modulating kilB expression.
Collapse
Affiliation(s)
- Kevin L Schully
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
3
|
Ducote MJ, Pettis GS. Common and distinguishing regulatory and expression characteristics of the highly related KorB proteins of streptomycete plasmids pIJ101 and pSB24.2. J Bacteriol 2003; 185:3780-7. [PMID: 12813071 PMCID: PMC161596 DOI: 10.1128/jb.185.13.3780-3787.2003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2002] [Accepted: 04/15/2003] [Indexed: 11/20/2022] Open
Abstract
The conjugative plasmid pIJ101 of the spore-forming bacterium Streptomyces lividans contains a regulatory gene, korB, whose product is required to repress potentially lethal expression of the pIJ101 kilB gene. The KorB protein also autoregulates korB gene expression and may be involved in control of pIJ101 copy number. KorB (pIJ101) is expressed as a 10-kDa protein in S. lividans that is immediately processed to a mature 6-kDa repressor molecule. The conjugative Streptomyces cyanogenus plasmid pSB24.1 is deleted upon entry into S. lividans to form pSB24.2, a nonconjugative derivative that contains a korB gene nearly identical to that of pIJ101. Previous evidence that korB of pSB24.2 is capable of overriding pIJ101 kilB-associated lethality supported the notion that pIJ101 and pSB24.2 encode highly related, perhaps even identical conjugation systems. Here we show that KorB (pIJ101) and KorB (pSB24.2) repress transcription from the pIJ101 kilB promoter equally well, although differences exist with respect to their interactions with kilB promoter sequences. Despite high sequence and functional similarities, KorB (pSB24.2) was found to exist as multiple stable forms ranging in size from 10 to 6 kDa both in S. lividans and S. cyanogenus. Immediate processing of KorB (pIJ101) exclusively to the 6-kDa repressor form meanwhile was conserved between the two species. A feature common to both proteins was a marked increase in expression or accumulation upon sporulation, an occurrence that may indicate a particular need for increased quantities of this regulatory protein upon spore germination and resumption of active growth of plasmid-containing cells.
Collapse
Affiliation(s)
- Matthew J Ducote
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | |
Collapse
|
4
|
Grohmann E, Muth G, Espinosa M. Conjugative plasmid transfer in gram-positive bacteria. Microbiol Mol Biol Rev 2003; 67:277-301, table of contents. [PMID: 12794193 PMCID: PMC156469 DOI: 10.1128/mmbr.67.2.277-301.2003] [Citation(s) in RCA: 403] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Conjugative transfer of bacterial plasmids is the most efficient way of horizontal gene spread, and it is therefore considered one of the major reasons for the increase in the number of bacteria exhibiting multiple-antibiotic resistance. Thus, conjugation and spread of antibiotic resistance represents a severe problem in antibiotic treatment, especially of immunosuppressed patients and in intensive care units. While conjugation in gram-negative bacteria has been studied in great detail over the last decades, the transfer mechanisms of antibiotic resistance plasmids in gram-positive bacteria remained obscure. In the last few years, the entire nucleotide sequences of several large conjugative plasmids from gram-positive bacteria have been determined. Sequence analyses and data bank comparisons of their putative transfer (tra) regions have revealed significant similarities to tra regions of plasmids from gram-negative bacteria with regard to the respective DNA relaxases and their targets, the origins of transfer (oriT), and putative nucleoside triphosphatases NTP-ases with homologies to type IV secretion systems. In contrast, a single gene encoding a septal DNA translocator protein is involved in plasmid transfer between micelle-forming streptomycetes. Based on these clues, we propose the existence of two fundamentally different plasmid-mediated conjugative mechanisms in gram-positive microorganisms, namely, the mechanism taking place in unicellular gram-positive bacteria, which is functionally similar to that in gram-negative bacteria, and a second type that occurs in multicellular gram-positive bacteria, which seems to be characterized by double-stranded DNA transfer.
Collapse
Affiliation(s)
- Elisabeth Grohmann
- Microbial Ecology Group, University of Technology Berlin, D-10587 Berlin, Germany.
| | | | | |
Collapse
|
5
|
Ingmer H, Miller C, Cohen SN. The RepA protein of plasmid pSC101 controls Escherichia coli cell division through the SOS response. Mol Microbiol 2001; 42:519-26. [PMID: 11703672 DOI: 10.1046/j.1365-2958.2001.02661.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although plasmid copy number varies widely among different plasmid species, normally copy number is maintained within a narrow range for any given plasmid. Such copy number control has been shown to occur by regulation of the rate of plasmid DNA replication. Here we report a novel mechanism by which the pSC101 plasmid also can detect an imbalance between the cellular level of its replication protein, RepA, and plasmid-borne RepA binding sites to inhibit bacterial DNA replication and delay host cell division when RepA is in relative excess. We show that delayed cell division occurs by RepA-mediated induction of the SOS response and can be reversed by over-expression of the host DNA primase, DnaG. The effects of RepA excess are prevented by introducing a surfeit of RepA binding sites. The mechanism reported here may help to limit variation in plasmid copy number and allow repopulation of cells with plasmids when copy number falls--potentially pre-empting plasmid loss in cultures of dividing cells.
Collapse
Affiliation(s)
- H Ingmer
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5120, USA
| | | | | |
Collapse
|
6
|
Pettis GS, Ward N, Schully KL. Expression characteristics of the transfer-related kilB gene product of Streptomyces plasmid pIJ101: implications for the plasmid spread function. J Bacteriol 2001; 183:1339-45. [PMID: 11157947 PMCID: PMC95008 DOI: 10.1128/jb.183.4.1339-1345.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2000] [Accepted: 11/27/2000] [Indexed: 11/20/2022] Open
Abstract
Intermycelial transfer of Streptomyces plasmid pIJ101 occurs prior to cellular differentiation and is mediated by plasmid functions that are also required for production of zones of growth-inhibited recipient cells (i.e., pocks) that develop around individual donors during mating on agar medium. Several other pIJ101 functions, including that of the kilB gene, whose unregulated expression on pIJ101 is lethal, are required for normal pock size and so have been postulated to mediate intramycelial spread of the plasmid throughout recipient cells. Using antibodies raised against a KilB fusion protein expressed in Escherichia coli, native KilB protein was detected throughout development of pIJ101-containing Streptomyces lividans cells, with the concentration of KilB increasing dramatically and reaching a maximum during the final stages (i.e., sporulation and secondary metabolism) of cellular differentiation. Insertion of the kilB gene of pIJ101 into the S. lividans chromosome in cells lacking the pIJ101 KorB protein, which normally represses kilB gene transcription, resulted in elevated but still temporally increasing amounts of KilB. The increased expression or accumulation of the KilB spread protein throughout cellular differentiation of S. lividans, which leads to maximum KilB concentrations during developmental stages that occur far later than when intermycelial transfer of pIJ101 is mediated, supports the existence of a subsequent intramycelial component to the pIJ101 spread function. The results also suggest that intramycelial spread of pIJ101 molecules within the recipient extends beyond intercompartmental movements within the substrate mycelia and includes undetermined steps within the spore-yielding aerial hyphae as well.
Collapse
Affiliation(s)
- G S Pettis
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | | | | |
Collapse
|
7
|
Pettis GS, Prakash S. Complementation of conjugation functions of Streptomyces lividans plasmid pIJ101 by the related Streptomyces plasmid pSB24.2. J Bacteriol 1999; 181:4680-5. [PMID: 10419972 PMCID: PMC103605 DOI: 10.1128/jb.181.15.4680-4685.1999] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/1999] [Accepted: 05/28/1999] [Indexed: 11/20/2022] Open
Abstract
A database search revealed extensive sequence similarity between Streptomyces lividans plasmid pIJ101 and Streptomyces plasmid pSB24. 2, which is a deletion derivative of Streptomyces cyanogenus plasmid pSB24.1. The high degree of relatedness between the two plasmids allowed the construction of a genetic map of pSB24.2, consisting of putative transfer and replication loci. Two pSB24.2 loci, namely, the cis-acting locus for transfer (clt) and the transfer-associated korB gene, were shown to be capable of complementing the pIJ101 clt and korB functions, respectively, a result that is consistent with the notion that pIJ101 and the parental plasmid pSB24.1 encode highly similar, if not identical, conjugation systems.
Collapse
Affiliation(s)
- G S Pettis
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | | |
Collapse
|
8
|
Holčík M, Iyer VM. Conditionally lethal genes associated with bacterial plasmids. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 11):3403-3416. [PMID: 9387219 DOI: 10.1099/00221287-143-11-3403] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Martin Holčík
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa Ontario Canada K1S5B6
| | - V M Iyer
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa Ontario Canada K1S5B6
| |
Collapse
|
9
|
Wilson SA, Williams RJ, Pearl LH, Drew RE. Identification of two new genes in the Pseudomonas aeruginosa amidase operon, encoding an ATPase (AmiB) and a putative integral membrane protein (AmiS). J Biol Chem 1995; 270:18818-24. [PMID: 7642533 DOI: 10.1074/jbc.270.32.18818] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The nucleotide sequence of the amidase operon of Pseudomonas aeruginosa has been completed and two new genes identified amiB and amiS. The complete gene order for the operon is thus amiEBCRS. The amiB gene encodes a 42-kDa protein containing an ATP binding motif that shares extensive homology with the Clp family of proteins and also to an open reading frame adjacent to the amidase gene from Rhodococcus erythropolis. Deletion of the amiB gene has no apparent effect on inducible amidase expression and it is thus unlikely to encode a regulatory protein. A maltose-binding protein-AmiB fusion has been purified and shown to have an intrinsic ATPase activity (Km = 174 +/- 15 mM; Vmax = 2.4 +/- 0.1 mM/min/mg), which is effectively inhibited by ammonium vanadate and ADP. The amiS gene encodes an 18-kDa protein with a high content of hydrophobic residues. Hydropathy analysis suggests the presence of six transmembrane helices in this protein. The AmiS sequences is homologous to an open reading frame identified adjacent to the amidase gene from Mycobacterium smegmatis and to the ureI gene from the urease operon of Helicobacter pylori. AmiS and its homologs appear to be a novel family of integral membrane proteins. Together AmiB and AmiS resemble two components of an ABC transporter system.
Collapse
Affiliation(s)
- S A Wilson
- Department of Biochemistry and Molecular Biology, University College London, United Kingdom
| | | | | | | |
Collapse
|
10
|
Pettis GS, Cohen SN. Transfer of the plJ101 plasmid in Streptomyces lividans requires a cis-acting function dispensable for chromosomal gene transfer. Mol Microbiol 1994; 13:955-64. [PMID: 7854128 DOI: 10.1111/j.1365-2958.1994.tb00487.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The tra gene of Streptomyces lividans plasmid plJ101 is required for both plasmid DNA transfer and plJ101-induced mobilization of chromosomal genes during mating. We show that a chromosomally inserted copy of tra mediates transfer of chromosomal DNA at high frequency but promotes efficient transfer of plasmids only when they contain a previously unknown locus, here named clt. Insertional mutation or deletion of clt from plJ101 reduced plasmid transfer mediated by either plasmid-borne or chromosomally located tra by at least three orders of magnitude, abolished the transfer-associated pocking phenomenon, and interfered with the ability of tra+ plasmids to promote transfer of chromosomal DNA. Our results indicate that plasmid transfer in S. lividans involves a cis-acting function dispensable for chromosomal gene transfer and imply that either the S. lividans chromosome encodes its own clt-like function or, alternatively, that transfer of plasmid and chromosomal DNA occurs by different mechanisms.
Collapse
Affiliation(s)
- G S Pettis
- Department of Genetics, Stanford University School of Medicine, California 94305
| | | |
Collapse
|